RadiSys iRM X®
C Library Reference

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0698-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is aregistered trademark of Intel Corporation.
All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 0 1999 by RadiSys Corporation

All rights reserved.

Quick Contents

Chapter 1. Introduction
Chapter 2. Functional Groupings
Chapter 3. Functions

Index

C Library Reference

Notational Conventions

Descriptive text in this manual uses these notational conventions:

C library functions and macros appear like this, for example fprintf(). C functions
are indicated by the () suffix. iIRMX system calls appear likethisand haveanrq_
prefix, for example rg_exit_io_job.

Standard C language syntax as used in your program, including constants, keywords,
identifiers, and types, appears| i ke this. Variablenamesalso appear | i ke this,
for examplet ype, nenber.

Filenames and book titles appear like this, for example : config: r?env, System Call
Reference. In addition, C header filenames are indicated by surrounding < >
characters.

If ANSI appearsin the heading, thisisan ANSI function. If stdio appears, this
function requires that the calling task has access to the standard streams. If DOS
appears in the function heading, thisisa DOS function.

These abbreviations are used:

Abbreviation M eaning

ANSI American National Standard for Information Systems, C
programming language

BIOS Basic I/0O system layer for the IRMX OS

<CR> Carriage-return character

Ctask Process (task) that usesthe C library

EIOS Extended 1/0O system layer for the iRMX OS

Epoch time 00:00:00, January 1, 1970, GMT

GMT Greenwich mean time

HI Human Interface layer for the iRMX OS

ICU iRMX Interactive Configuration Utility

/0 Input/output

<LF> Line-feed character

stdio Indicates that access to the standard streams: stdin, stdout,

and stderr isrequired

Related Publications

For additional information about the C programming language and library functions

See also: C: A Reference Manual by Harbison and Steele,
The Sandard C Library by P.J. Plauger

The term ANSI indicates that a function conforms to the 1989 American National
Standard for Information Systems - Programming Language C (ANSI X3.159-1989).
The C library provides a superset of ANSI functionality, with additional features
defined by the |EEE Portable Operating System Interface for Computer
Environments (POSI X).

See also: |EEE Std 1003.1-1988, IEEE Standard Portable Operating System
Interface for Computer Environments, copyright 1988, by The Institute
of Electrical and Electronics Engineers, Inc.

This standard provides locale-specific information, such as the al phabetic
international currency symbol.

See also: SO 4217 Codes for the Representation of Currency and Funds
V arious mathemati cs reference books provide information about the Bessel functions.

See also: Handbook of Mathematical Functions (Abramowitz and Stegun;
Washington: U.S. Government Printing Office, 1964)

For further information refer to the manuals provided with your C compiler.

C Library Reference %

Contents

1 Introduction

Shared C Library OVEIVIEWccccoerirereeieee et 1
Shared C Library AdVantages..........cooeeeereererenieneneeieeeeee e 2
Resources Allocated to C Tasks and JOBS.........cccceeveecieieeveecee e 3

JOD RESDUICES.......oecuiitiecteeteete ettt ettt 3

TASK RESDUICES.......cvieuieetieteesteeteeteseeseesteesreere e e ereesbeesbe e beentesnnea 3
Supplied C Library FIIES.... ...t 5
The Cstart MOAUIE.........cceeee e 5
DOS SYNEBX ...ccveeteenteeuie ettt e et ee st sttt eb e s ae e s ae e s b e e b e et esatesaeesaeesbeeaneeanas 5
Support for DevelopmENt TOOIS........cccoerirerereeerere e 6
HEAOE! FlES.....eieece e et 7

2 Functional Groupings

Character Processing FUNCLIONS.........cceviririnneseseeeseeeeeereeee e 9
CONLrOl FUNCHIONS ...ttt st st st 10
CONVErSiON FUNCHIONScuoiiiiiiiieie et 11
DOS Console [/O FUNCLIONScciiieeiriiieiirieeesiee e 12
DOS Interface FUNCLIONSciiiiieiieecrer e 12
File Management FUNCLIONS..........c.ccoveeeeeriere e s 13
INPUL/OULPUL FUNCLIONS........cviie ettt sre s 13
IRMX-SPECITIC FUNCLIONS......ceeiieie ettt 15
LOW-1EVEl 1/O FUNCLIONS.......cceeiiiiieiiriiieesiee e 16
Math FUNCHIONS......c.eetiiiieierie et 16
MEMOIY FUNCHIONS........cceiiieeeieieste ettt sttt ae et sreens 18
Searching and Sorting FUNCLIONSccoviieiesese e 18
Storage AlloCation FUNCLIONS.........c.covieierese e 19
String Processing FUNCLIONS.........ccoiiieieiecese s see et eneeneens 19
Time and Date FUNCHIONS........ccciiiieiriiecrieeeses e 21
Variable Argument FUNCLIONS.........ccuiieieieriese e e see e e e see e e 21

Driver Programming Concepts Contents Vii

viii

Functions

= 0= (0] TR (o [T
BESSE]l FUNCLIONS.......ccoviiitie ittt ettt et besebe s e sbeeebesssvesenree s

= (oo B OO PO OO OO TP URRORRPTI

Contents

24
25
26
27
28
29
30
31
32

35
37
38
39

GRERS

46
47

49
50
51
53

56
57

59
60
61
62

66
67
68
69
70
72

_00S SELABLEcveeee e reeae s 74

_00S SEHIME. .. e e 75
e (0 FSTE = 11] 11TC TS SRR 76
e (0SS T . €1 (= RO UPSR 77
(o (1o o (0] o 220U 78
L= oL SRR PR URTURUPR 79
<o) RS 80
L= (L = (1 ST 81
L2 O TP USURTURUPRN 82
=0 TSR 83
fCloSe, TClOSEAIL ... 84
03 SO UOURR 85
L0 (0] 0= o SRRSO 86
OO e e 88
L= USSR 89
FETUSNL e 90
FOBLC, FOBICNAY - e e i
L0 1=:1 00 1SRRI 92
L0 1=: 7SRRI 93
FHEIENGN. ... e 94
L= o TSSO 95
Lo SO SRR 96
FIUSNAIL ... 97
L0070 o [P SRURRR 98
0] 1< PSR 99
L] 1 0L USSR 100
FPULC, TPULCNEN ... oo 101
L] 1013 SRR 102
FTEAO....eeeeee et 103
LSS 104
L0 0 PSR 105
L5 o TSR 106
FSCAINT ..ttt 107
FSBEK ettt 108
L= 1010 LSRR 110
LS = OSSOSO PTURTTPSRPR 111
LI s 112
L0 VSRR 113
L= ST 114
[0V PPV URTURURRUIN 115
B0 A= (018 001= 01 E TS U PRV PR 116
QELC, JELCRANot e e 118
QELCH, GELCNE. ... e e 119

Driver Programming Concepts Contents iX

FaTo N [T i 0 SRR
e o] 441 o SRR
[SEAICR ..

Contents

120
121
122
123
124
126
127
128
129
130
131
132
134
135
136
137
138
139
140
141
142
143
144
145
146
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

MKEME. ..eeeeieiie e
.. 167

(97070 |
T 168
L 169
B 170
D 172
B 173
prmtf .. 174
D 175
D T 182
pUtenv .. 183
e 184
o O 185
Dy 186
B 187
R 188
S 190
T 192
O 193
MO 194
FAL0C 195
O 196
I 197
MO v 198
I 199
T 200
K 201
S 202
e 207
i 208
T 209
00 210
O 212
T 214
i 215
D 218
B 219
b 220
T 222
e 223
LR 224
D 225
B 226
.. 227

Driver Programming Concepts Content
ents Xi

Xii

stremp, strempi, StHCMP ...
SICOl e

SENCPY vt
SENICMP .o

SETUDE e

time macros, _tzset ptr........cccccceeeeene
tMPFle .o

va arg, va end, va start.......ccccceeenee.
viprintf, vprintf, vsprintf.....................

vfscanf, vscanf, vsscanf (ANSI, stdio)

Contents

228
229
230
231
232
233
234
235
236
238
239
240
241
242
243
244
245
246
247
248
249
250
251
253
255
256
257
258
259
260
261
262
263
264
265
267
268
270
271
272
273
275
276

(AT 0= ()1 41 1T 277

(AT 0100 1 | o J SRR 278
(L (TSR 279
Index 281
Tables
Table 1-1. Input and OULPUL FUNCLIONScoeririiiiinere e e 4
Table 1-2. Resources Used for C Tasks and JOBSccocecuiiiicieeeicciie e 4

Driver Programming Concepts Contents Xiii

Xiv Contents

Introduction

The shared C library includes functions and macros for applications that run in the

iRMXU Operating System environment. This manual describes theiRMX shared C
library; it isintended for C program developers who are using a compiler that follows
ANSI and POSIX C language standards.

This manual assumes general knowledge of the C programming language, standard
programming techniques and the iRM X OS.

This chapter provides general information that is helpful in using the C Library
Reference:

e Clibrary overview

« Supplied Clibrary files

« DOS syntax

« Support for non-Intel devel opment tools

« Overview

Shared C Library Overview

The C library isavailable as an iIRMX OS extension job to your application in one of
two ways:

* Run-timeloadable job, clib.job, loaded using the HI sysload command

e Resident first-level job, set up using the Interactive Configuration Utility (ICU)
Sub-systems and Shared C Library screens

Instead of each C application having to link to its own copy of the library, thisjobisa
system-wide library that can be shared by all tasks and jobs in the system. This
greatly reduces the code size of individual applications as well as decreases the time
required to bind (link), load, and execute the applications. For example, if you run
five applications that call a certain C function and each application isindividually
linked to a C library, the code for that function is loaded into memory five different
times. With the shared C library, there is only one copy of the function loaded, and it
isavailable to al five applications.

C Library Reference Chapter 1 1

You link each application to a small interface library, which provides accessto the
shared C library.

Any number of tasks and jobs can share the C library. Each task can have its own
data segment; the data segment does not have to be shared. A few functions related
to signal handling, such as abort, raise, and signal, are private to each task. These
functions are in the interface library linked to the task, not in the shared C library.

The shared C library supports many standard C functions that enable a task to
perform common, OS-independent operations without making direct, iRM X
OS-dependent system calls. Y ou can mix shared C library calls with direct iIRMX
system callsin your application.

The shared C library takes care of iRM X OS-dependent operations such as
multitasking, time-of-day, signal management, and environment management; this
enables you to create portable code using standard ANSI and POSI X programming
practices.

The C Library includes floating point functions and macros and links to the standard
floating point libraries; there are no separate libraries for floating point applications.

Depending on your system configuration, the C library may not support all of the
functions mentioned in this manual.

See also: Supplied C Library Files, in this chapter
C Library, clib.job, System Configuration and Administration

Shared C Library Advantages

The C library can be shared concurrently by multiple tasks and jobs running on the
system. The advantages of the shared C library are;

Codesize Only one small interface library, which provides accessto the
shared C Library, is bound to the application.

Bind speed Only the application and interface library symbolic
information need to be processed.

Load speed The application which utilizes the shared C Library is much
smaller.

Execution speed Because the shared C Library isan iRMX OS extension, the
need for localized task and job management is eliminated. In
addition, many small functions are performed in the interface
library itself, rather than by the shared C library.

Each C job or task can have its own data segment; this segment does not have to be
shared with other C jobs or tasks using the library.

2 Chapter 1 Introduction

Resources Allocated to C Tasks and Jobs

The C library automatically manages common system resources such as 1/0O
interfaces and memory when your code makes calls that use these common resources.

Job Resources

Each C job uses resources which count against the memory and object limits for the
job. When aC jobiscreated, the C library allocates one private memory heap from
the job's memory pool; every C task is associated with its owner job's heap. The C
library alocates additional resources when atask in the job makesthefirst call toaC
library function; these resources consist of a bookkeeping segment for heap
management, exit() register, stat() directory cache, and one synchronization
semaphore for the heap manager. When the job terminates, these resources are
automatically deleted. The malloc mutual exclusion semaphore and any malloc
segments are also deleted when the job is deleted.

Task Resources

When atask makes the first C library call, some task-specific resources are
automatically allocated and maintained locally. These include data structures and
semaphores that support the task's operation in the multitasking environment.

The standard 1/O functions are contained in the stdio header file. When thefirst call
is made to an stdio function, all of the standard streams are created, open for sharing
by all tasks. The stdio connections are cataloged using the existing :ci: as stdin, :co:
as stdout, and :term: as stderr. These connections and the memory required for them
are added to the resources allocated to the task. They also count against the memory
and object limitsfor the job. Thus, if atask does not make stdio calls, it consumes
fewer resources. Y ou can minimize the total amount of resources required by an
application by having a single task that calls stdio functions, or by dynamically
creating and deleting tasks that call stdio functions.

The streams are opened using the iIRMX system callsrg_s attach_fileand
rq_s open.

C Library Reference Chapter 1 3

Table 1-1 lists functions which are responsible for input and output.

Table 1-1. Input and Output Functions

chmod chsize close creat

_dup dup2 eof fclose
fcloseall fdopen fgetpos filelength
fopen freopen fstat ftell

getenv getuid isatty Iseek

Itell mkdir mktemp open

putenv remove rename rmdir

stat tmpfile tmpnam tzset

unlink utime _tzset_ptr _dos_close
_dos_creat _dos_creatnew _dos_findfirst _dos_findnext
_dos_getdate _dos_getftime _dos_open _dos_setdate
_dos_setftime _tzset_ptrs

The resources associated with a C task are not automatically freed when the task is
deleted with rq_delete task. Before you delete a C task using rq_delete_task,
delete the task's C library-specific resources using the _cstop() function.

Most resource allocations apply to each task; there are also resources allocated to
each job containing C library applications. Table 1-2 lists the resources used per task
and per job. Each connection object, mailbox, and semaphore consumes from the
object limitsfor the job.

Table 1-2. Resources Used for C Tasks and Jobs

Resources Connection
Required For: Memory Semaphores Mailboxes Objects
Each Job 600 bytes 1

Each Task 300 bytes 2

Additional for each 400 bytes 3 6 3

stdio Task

Chapter 1 Introduction

Supplied C Library Files

TheiRMX OS provides header (include) files containing declarations for C library
functions and definitions of related macros and data types. The shared C library
loadable job is clib.job.

32-bit interface libraries are provided, as well as cstart modules which initialize
processes and call main().

There are avariety of interface libraries supplied with the OS for the interfaceto C
library functions and iRMX system calls. For different Intel and non-Intel tools you
must bind (link) to different libraries.

See also: Cstart, iC-386 Compiler User's Guide,
Cstart modules to use with non-Intel compilers, Programming
Techniques,
Interface libraries, System Call References, for a complete list of
interface libraries for different compilers,
Header files for a description of the include libraries, in this chapter,
clib.job, System Configuration and Administration

The Cstart Module

Each application must link to the cstart module. This code makes library calls that
set up an internal C environment for your application. To make initialization changes
in earlier (individually linked) versions of the C library, you would change source
code for the cstart module and reassemble it before linking to your code. With the
shared C library it is rarely necessary to make initialization changesin cstart.
However, there are two configuration changes you can make.

The source code for the cstart module defines values for two literals used in parsing
of command lines. Edit and re-assemble a copy of the cstart source code to change
these values:

« _ARGV_MAX, the maximum number of command-line parameters (argv)

« _COMMAND_MAX, the maximum number of charactersin acommand line

DOS Syntax

Y ou can use DOS syntax or iRMX syntax in all C library calls that require a
pathname argument. DOS backdlashes are converted to iRM X forward slashes and
DOS device names are converted to iRMX logical hames.

C Library Reference Chapter 1 5

Support for Development Tools

Y ou can develop applications with DOS-based devel opment tools by using these
provided iRMX elements:

« A set of common C header files, compatible with all supported compilers.
« A custom cstart module for each supported compiler.

« Aninterface library to the shared clib, for each supported compiler.

« An OMF trandator to convert .exe and .exp filesto OMF-386.

See also: Programming Techniques for more details on third-party compilers,
System Call Reference, for information on interface libraries

The following configuration and compiler control header files control program
compilation without being compiler-specific.

<_align.h> Starts 2-byte/4-byte structure alignment (16-bit/32-bit compilers);
default header file, required to support multiple compilers

<_noalign.h> Ends multiple-byte alignment (refer to <_align.h> above);
provides compiler-independent 1-byte structure alignment (no
alignment)

<yvals.h> Standard C values and support definitions that help make the

other header files compiler-independent

<_restore.h> Returns structure alignment to the compiler default

6 Chapter 1 Introduction

Header Files

The header files described here contain declarations for C library functions and
definitions of related macros and data types. For more complete and detailed
information, see the header files themselves.

See also: Header files, System Call Reference, for alist of iIRMX OS-specific
header files

A CAUTION

For the C functions to work properly, you must use the header files,
and you must not change them.

Header File
<_align.h>

<assert.h>
<ctype.h>
<conio.h>
<direct.h>
<dos.h>
<errno.h>
<fentl.h>
<float.h>
<io.h>
<limits.h>
<locale.n>
<math.h>
<_noalign.h>

<process.h>
<_restore.h>
<rmxtypes.h>
<search.h>
<setjmp.h>
<share.h>
<signal.h>
<stdarg.h>
<stddef.h>
<stdio.h>
<stdlib.h>

Header File
<string.h>

C Library Reference

Contents

Starts 2-byte/4-byte alignment (16-bit/32-bit compilers); default
header file, required to support multiple compilers

Assert macro (diagnostic tool)

Character handling functions and macros

DOS-specific console 1/0 functions

Directory management functions and types

DOS system call macros

Error indication macros

File access mode and status flag macros

Floating-point types and constants

File input/output functions

Ranges of integer and character types

L ocale-specific functions, types, and macros

Floating-point math functions and macros

Ends multiple-byte alignment (refer to <_align.h> above);
provides compiler-independent 1-byte alignment (no alignment)
Task execution and identification functions and types
Returns structure alignment to the compiler default
MakesiRMX PL/M datatypes available to C programmers
Linear search functions

Non-local jump functions and environment structure
Access, sharing and inheritance rights

Signal handling functions and signals

Variable-argument list macros

Common types and macros

Stream input/output functions, macros, and types

Utility functions, macros, and types

Contents
String handling functions

Chapter 1

<syg/stat.h> File information functions, macros, manifest constants,

and types
<sys/types.h> File information primitive types
<sys/utime.h> utime function and type
<time.h> Date/time functions, macros, and types
<udi_c.h> iRMX UDI system calls
<unistd.h> Symbolic constants used by Iseek() function
<yvalsh> Standard C values and support definitions that help make the

other header files compiler-independent

Y ou must include the appropriate header files in order to use the functions. The
description of each function lists the required include statements.

Chapter 1 Introduction

Functional Groupings

This chapter lists al the C functions, grouped to identify the functions that are
appropriate for a specific purpose.

Character Processing Functions

These functions classify and convert characters for text manipulation.
Test for alphanumeric character.

isalnum

isalpha Test for alphabetical character.

T Test if a character-coded integer is an ASCII code (i.e., between O
and Ox7F inclusive).

isentrl Test for control character.

isdigit Test for decimal digit.

isgraph Test for printable character (excluding space).

islower Test for lowercase character.

isprint Test for printable character (including space).

ispunct Test for punctuation character.

isspace Test for white space character.

isupper Test for uppercase character.

isxdigit Test for hexadecimal digit.

toascii Converts character to ASCII.

tolower Converts uppercase character to lowercase.

_tolower Converts uppercase character to lowercase if appropriate.

toupper Converts lowercase character to uppercase.

_toupper Converts lowercase character to uppercase if appropriate.

C Library Reference Chapter 2

Control Functions

These functions control and monitor task execution.

abort Aborts the current job and returns the error code.

assert Prints a diagnostic message and aborts the calling task.

atexit Processes the specified function when the calling task terminates
normally.

exit Terminates the current job after cleanup.

_exit Terminates the current job immediately.

getenv Searches the environment-variable table for a specified entry.

getpid Gets the calling task's connection token (process ID).

getuid Gets the calling task's user ID.

longjmp Restores the context previously saved by setjmp.

onexit Registers a function to be called when the task terminates
normally.

putenv Adds new environment variables or modifies the values of
existing ones.

raise Sends a signal to the executing program.

setimp Saves the current context of the executing program and stores it
in the specified location.

signal Sets up one of several ways for a task to handle an interrupt
signal from the OS.

sleep Suspends a task for a specified number of seconds.

system Invokes the system call rq_c_send_command to execute an

iIRMX command line.

10 Chapter 2 Functional Groupings

Conversion Functions

These functions cover arange of purposes including conversion of various data types
to strings and to wide characters.

ecvt
fevt
ftoa

gevt

itoa

itoh

ltoa

Itoh

Itos
mblen
mbstowcs
strtod
strol

strtoul

ultoa
utoa
wcstombs

wctomb

C Library Reference

Converts a value to a character string.
Converts a floating point value to a string.
Converts a double value to a formatted string.

Converts a double value to a string of significant digits and places
them in a specified location.

Converts an integer of the specified base to a null-terminated
string of characters and stores it.

Converts an integer into the equivalent null-terminated,
hexadecimal string and stores it.

Converts a long integer of the specified base to a null-terminated
string of characters and stores it.

Converts a long integer to a null-terminated hexadecimal string
and stores it.

Converts a long integer to a null-terminated string of characters
and stores it; negative base values are acceptable.

Gets the length and determines the validity of a multibyte
character.

Converts a sequence of multibyte characters to a sequence of
wide characters, as determined by the current locale; stores the
resulting wide-character string at the specified address.

Converts a string to double.
Converts a string to long.
Converts a string to unsigned long.

Converts unsigned long to a null-terminated string and stores it
without overflow checking.

Converts an integer to a null-terminated string and stores it
without overflow checking.

Converts a sequence of wide characters to a corresponding
sequence of multibyte characters.

Converts a wide character to a corresponding multibyte
characters.

Chapter 2 11

DOS Console I/O Functions

These functions provide DOS-compatible ways for an application to get input from or
provide output to the console.

DOS

12

cgets
cprintf
cputs

cscanf

getch
getche
putch

ungetch

Gets a character string from the console and stores it.
Formats a string and prints to the console.
Writes a null-terminated string directly to the console.

Reads formatted data from the console into the specified
locations.

Reads a single character from the console without echoing.
Reads a single character and echoes the character read.
Writes a character directly (without buffering) to the console.

Pushes a character back to the console, causing that character to
be the next character read.

Interface Functions

These functions provide a DOS-like interface for DOS program compatibility.

_dos_allocmem
_dos_close

_dos_creat,
_dos_creatnew

_dos_findfirst,
_dos_findnext

_dos_freemem

_dos_getdate
_dos_getftime
_dos_gettime
_dos_open
_dos_read
_dos_setdate
_dos_setftime
_dos_settime

_dos_write

Chapter 2

Allocates a block of memory.
Closes a file.

These functions create and open a new file with the
specified access attributes.

_dos_findfirst finds the first file with the specified name
and attributes; _dos_findnext finds the next file.

Releases a block of memory previously allocated by
_dos_allocmem.

Gets the current system date.

Gets the date and time that a file was last written.
Gets the current system time.

Opens an existing file.

Reads a specified number of bytes of data from a file.
Sets the current system date.

Sets the date and time that a file was last written.
Sets the current system time.

Writes a specified number of bytes from a buffer to a file.

Functional Groupings

File Management Functions

These functions manage the file system. Thisincludes for making directories and
changing file attributes. This also includes functions for obtaining information about
afile’slength or adescriptor associated with afile.

chmod
chsize
closedir
filelength
fstat

isatty

mkdir

mktemp
opendir
readdir
rewinddir
rmdir
setmode
stat

umask

unlink

Changes the permission mode of a file.

Extends or truncates the size of a file to the specified length.
Closes a directory.

Gets the length of a file in bytes.

Gets information on the file associated with the specified file
descriptor.

Determines whether a file descriptor is associated with a
character device: aterminal, console, printer, or serial port.

Creates a new directory with the specified ownership and access
rights.

Creates a unique temporary filename.
Opens a directory.

Reads a directory.

Resets a directory.

Deletes a directory.

Sets binary or text translation mode of a file.
Gets information on a file.

Sets the default file-permission mask of the current process to the
specified mode.

Deletes a file.

Input/Output Functions

These functions provide ways to control the flow of an application.

clearerr
fclose
fcloseall

fdopen

feof

ferror

C Library Reference

Resets the error and end-of-file indicators for a stream.
Closes a specified stream.
Closes all open streams.

Opens a stream associated with a file descriptor, allowing a file
opened for low-level I/0 to be buffered and formatted.

Tests for end-of-file on a stream.

Tests for a read or write error on a stream.

Chapter 2

13

fflush Flushes a buffered stream (has no effect on an unbuffered

stream).

fgetc Reads a single character from the current position of the specified
stream and increments the file pointer to the next character.

fgetchar Reads from a single character from stdin.

fgetpos Gets a stream's file pointer position-indicator and stores it. This
function does not get the file pointer; use the ftell function instead.

fgets Reads a specified number of characters from a stream and stores
them in a string.

fileno Gets the file descriptor associated with a stream.

flushall Writes the contents of all buffers associated with open output
streams to their associated files.

fopen Opens a file with the specified open mode.

fprintf Prints formatted data to a stream.

fputc Writes a single character to an output stream at the current
position.

fputchar Writes a single character to stdout.

fputs Writes a string to the stream at the current file pointer.

fread Reads up to the specified number of items of the specified size
from the input stream and stores them in a buffer.

freopen Closes the file currently associated with a stream and reassigns a
new file to the stream.

fscanf Reads and formats character data from the current position of a
stream into the specified locations.

fseek Moves the file pointer to a specified location in a stream.

fsetpos Sets a stream's file pointer position-indicator.

ftell Gets the current position of the file pointer for a stream.

fwrite Writes a specified number of characters to a stream.

getc, getchar ~ Getc reads a single character from a stream and increments the
associated file pointer to point to the next character;
getchar reads from stdin.

gets Gets a line from stdin and stores it in the specified location.

getw Reads the next integer from a stream and increments the
associated file pointer (if there is one) to point to the next unread
value.

14 Chapter 2 Functional Groupings

perror
printf
putc
putchar

puts

putw
rename

rewind
rmtmp

scanf
setbuf
setvbuf
sprintf
sscanf

tmpfile
tmpnam

vfprintf
vprintf

vsprintf

IRMX-specific

Prints an error message to stderr.

Prints formatted data to stdout.

Writes a character to a specified stream at the current position.
Writes a character to stdout.

Writes a string to stdout, replacing the string's terminating null
character \ 0 with a newline character \ n.

Writes an integer to the current position of a stream.
Renames a file or directory.

Repositions the file pointer to the beginning of a file and clears
the end-of-file indicator.

Removes all the temporary files that were created by tmpfile from
the current directory.

Reads from stdin at current position, and formats character data.
Allows the user to control buffering for a stream.

Controls stream buffering and buffer size.

Prints formatted data to a string.

Reads and formats character data from a string.

Creates a temporary file, opens in it binary read/write mode, and
returns a stream pointer to it.

Creates a temporary filename, which can open a temporary file
without overwriting an existing file.

Formats and sends data to the file specified by st r eam
Sends data to stdout.

Sends data to the memory pointed to by buf f er .

Functions

These functions provide C library access to OS-specific functions.

_cstop
_get_arguments
_get_cs
_get_ds

_get_info

C Library Reference

Deletes the C resources allocated for a task.
Sets up the standard C command line parser.
Returns an application’s current code segment.
Returns an application’s current data segment.

Obtains specific C library information.

Chapter 2

15

_get_rmx_conn

_get_ss

_put_rmx_conn

_set_info

Translates a file descriptor to a valid iRMX connection token,
usable as a parameter in iRMX system calls.

Returns an application’s current stack segment.

Places an iRMX connection token into the file descriptor table and
returns a valid file descriptor, usable as an argument in C library
calls.

Modifies C library information.

Low-level I/O Functions

These functions provide low-level ways to manage file processing

creat

eof

Iseek

Itell

open

read

sopen

write

Creates a new file or opens an existing file for writing and
truncates it to length 0, destroying the previous contents.

Checks whether the file's current file pointer is EOF.

Moves the file pointer to a location specified as an offset from the
origin in a file.

Sets the absolute position of the file pointer for the next /10
operation.

Opens a file and prepares it for subsequent reading or writing.

Reads the specified number of bytes from a file into a buffer,
beginning at the current position of the file pointer.

Opens a file for shared reading or writing.

Writes data from a buffer to a file.

Math Functions

These functions provide such math functions as integer, floating point, trigonometric

16

operations.
abs

acos
asin
atan
atan2

Bessel
functions

cabs

Chapter 2

Calculates the absolute value of an integer.

Calculates the arccosine of a double value.

Calculates the arcsine of a double value.

Calculates the arctangent of a double value.

Calculates the arctangent of the quotient of two doubles.

Compute the Bessel function.

Calculates the absolute value of a complex number.

Functional Groupings

ceil

cos
cosh
div

exp
fabs

floor

fmod
frexp
labs
Idexp
Idiv

log
log10
matherr
modf
pow
rand
sin

sinh
sqrt

srand

square
tan

tanh

C Library Reference

Calculates the ceiling (the smallest integer that is greater than or
equal to the value) of a double value.

Calculates the cosine.
Calculates the hyperbolic cosine of an angle.

Divides the numerator by the denominator, computing the
guotient and the remainder of two integer values.

Calculates the exponential of a double value.
Calculates the absolute value of a double value.

Calculates the floor (largest integer that is less than or equal to a
value) of a double value.

Calculates the floating-point remainder.

Gets the mantissa and exponent of a double value.
Calculates the absolute value of a long integer.

Computes a real number from the mantissa and exponent.

Divides numerator by denominator, and computes the quotient
and remainder.

Calculates the natural logarithm of a value.

Calculates the base-10 logarithm.

Processes errors generated by the functions of the math library.
Splits a value into fractional and integer parts, retaining the sign.
Computes a value raised to the power of another value.
Generates a pseudo-random number.

Calculates the sine.

Calculates the hyperbolic sine of an angle.

Calculates the square root of a number.

Sets the starting point for generating a series of pseudo-random
integers.

Calculates the square of a number.
Calculates the tangent.

Calculates the hyperbolic tangent of the number.

Chapter 2

17

Memory Functions

These functions copy, compare, and set blocks of memory.

memccpy Copies characters from one buffer to another, halting when the
specified character is copied or when the specified number of
bytes have been copied.

memcpy Copies specified number of bytes from a source buffer to a
destination buffer.

memchr Finds the first occurrence of a character in a buffer and stops
when it finds the character or when it has checked the specified
number of bytes.

memcmp Compares the specified number of bytes of two buffers and
returns a value indicating their relationship.

memicmp Compares characters in two buffers byte-by-byte (case-
insensitive).

memmove Moves specified number of bytes from a source buffer to a
destination buffer.

memset Sets characters in a buffer to a specified character.

swab Copies while swapping bytes.

Searching and Sorting Functions

18

These functions provide efficient search and sort routines.

bsearch Performs a binary search of a sorted array.
Ifind Performs a linear search for a specified key in an unsorted array.
Isearch Performs a linear search for a specified value in an unsorted

array, appending the value to the array if not found.

gsort Performs a quick sort of an array, overwriting the input array with
the sorted elements.

Chapter 2 Functional Groupings

Storage Allocation Functions

These functions provide storage allocation management.

calloc

free
malloc

realloc

sbrk

Allocates and clears an array in memory; initializes each element
to 0.

Deallocates a memory block previously allocated by malloc.
Allocates a memory block of the specified size.

Changes the size of a previously allocated memory block or
allocates a new one.

Creates iRMX segments of the specified number of bytes.

String Processing Functions

The following functions provide string conversion, parsing, movement and
mani pulation capabilities.

atof
atoi
atol

cstr

strcmp,
strempi,
stricmp

strcat
strchr

strcoll

strcpy
strcspn
strdup
strerror
strlen

striwr

strncat

strncmp

C Library Reference

Converts a character string to a double value.
Converts to an integer value.
Converts to a long integer value.

Converts a count-prefixed iRMX-style string to a null-terminated
C-style string and stores it.

Compare two null-terminated strings lexicographically.

Appends a null-terminated string to another string.
Searches for a character in a null-terminated string.

Compares null-terminated strings using locale-specific collating
sequences.

Copies a null-terminated string.

Finds a null-terminated substring in a string.
Duplicates null-terminated strings.

Gets a system error message.

Gets the length of a null-terminated string.

Converts uppercase letters in a null-terminated string to
lowercase. Other characters are not affected.

Appends characters to a string.

Compares substrings.

Chapter 2

19

strncpy Copies the specified number of characters from one string to

another.

strnicmp Compares substrings without regard to case.

strnset Sets the specified number of characters in a string to a character.

strpbrk Searches a string for the first occurrence of any character in the
specified character set.

strrchr Searches a string for the last occurrence of a character.

strrev Reverses the order of the characters in a string.

strset Sets all characters in a string to a specified character.

strspn Finds the first character in a string that does not belong to a set of
characters in a substring.

strstr Finds a substring within a string.

strtok Finds the next token in a string.

strup Converts any lowercase letters in a null-terminated string to
uppercase.

strxfrm Transforms a string based on locale-specific information and
stores the result.

strtod Converts a string to double.

strol Converts to long.

strtoul Converts to an unsigned long.

udistr Converts a null-terminated C-style string to a count-prefixed

iIRMX-style string and stores it.

20 Chapter 2 Functional Groupings

Time and Date Functions

These functions provides ways to control and process the time and date

asctime

clock

ctime
difftime
gmtime
localeconv

localtime

mktime

setlocale
strftime

time

time macros,
_tzset_ptr
tzset

utime

Converts a time stored as a structure to a character string.

Measures the time used by the calling task, from when the calling
task first began execution to the current time.

Converts a time stored as ati ne_t value to a character string.
Finds the difference between two time values.

Converts a time value to a structure.

Gets detailed information on locale settings.

Converts a time stored as ati ne_t value and corrects for the
local timezone.

Converts the time/date structure into a fully-defined structure with
normalized values and then converts it to calendar time.

Sets the task's current entire locale or specified portions of it.
Formats a time string.
Gets the system time.

Accesses daylight, timezone, and tzname environment variables.

Sets the time environment variables.

Sets the modification time for a file.

Variable Argument Functions

These functions provide a convenient way to access argument lists.

va_arg
va_end

va_start

C Library Reference

Retrieves current argument.
Resets argument list pointer.

Sets argument list pointer to first optional argument.

Chapter 2 21

22 Chapter 2 Functional Groupings

Functions

This chapter presents C library function descriptions in a phabetical order. Inthese
descriptions, double means floating-point, double precision value.

Y ou must include the appropriate header files in order to use the functions. The
description of each function lists the required include statements. To check the errno
value, you must include the <errno.h> header file.

Each C function (or group of related functions) contains a description with these
elements:

* Function heading

* Required #i ncl ude statement(s)

» Function prototype(s)

» Description of argument(s)

e Description of behavior

» Description of successful returns followed by error returns

If ANSI appearsin the function heading, thisisan ANSI function. If DOS appearsin
the function heading, thisisa DOS function. If stdio appears, thisis a stdio function,
which requires that the calling task has access to the standard streams: stdin, stdout,
and stderr, along with the necessary connections and memory requirements.

C Library Reference Chapter 3 23

abort ANSI

abort

Aborts the current task and returns an error code.

Syntax

#i ncl ude <process. h>
#i ncl ude <stdlib. h>
voi d abort (void);

Additional Information

Abort() does not flush stream buffers or do atexit()/onexit() processing. It does
not return control to the caller.

Thisfunction callsraise (SIGABRT); the response to the signal depends on the
action defined in aprior call to signal(). The default action isfor the calling task to
terminate with an _exit() call.

This function isimplemented in the C interface library (not in the shared C library)
and is private to each application.

See also: _exit(), raise(), signal()

Returns
Exit code 3 (default) to the parent job and terminates the task.

24 Chapter 3 Functions

ANSI abs

abs

Calculates the absolute value of an integer.

Syntax
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
int abs (int n);
Parameter

n Integer value whose absol ute value is calcul ated.

Seedso: fabs(), labs(), cabs()

Returns
The absolute value result.

No error return.

C Library Reference Chapter 3 25

acos ANSI

acos

Calculates the arccosine of a double value.

Syntax
#i ncl ude <mat h. h>
doubl e acos (double x);
Parameter
X Value whose arccosineis calculated. Must be between -1 and 1.

See also: asin(), atan(), cos(), matherr(), sin(), tan()

Returns

The arccosine result in the range 0 to Ttradians.

0if x islessthan -1 or greater than 1; the function sets errno to EDOM and prints a
DOMAIN error message to stderr.

This function does not return standard ANSI domain or range errors.

26 Chapter 3 Functions

ANSI asctime

asctime

Converts atime stored as a structure to a character string.

Syntax

#i nclude <tine. h>
char *asctime (const struct tm *tinmedate);

Parameter

ti medate
A pointer to at mtime/date structure, usually obtained using gmtime() or
localtime().
Additional Information
The converted string contains exactly 26 characters and has this form:
Wed Jan 02 02: 03: 55 1980\ n\ 0

All elements have a constant width. The newline character \ n and the null character
\ 0 occupy the last two positions of the string.

This function uses a 24-hour clock.

The function uses asingle statically allocated buffer to hold the return string. Each
call destroys the result of the previous call.

See also: Description of the t mstructure elementsin <time.h>,
localtime(), time(), tzset()

Returns
A pointer to the character string.

No error return.

C Library Reference Chapter 3 27

asin ANSI

asin
Calculates the arcsine of a double value.

Syntax
#i ncl ude <mat h. h>
doubl e asin (double x);
Parameter
X Value whose arcsine is calculated. Must be between -1 and 1.

See also: acog(), atan(), cos(), matherr(), sin(), tan()

Returns

The arcsine result in the range —T2 to TV2 radians.

0if x islessthan -1 or greater than 1; function sets errno to EDOM and prints a
DOMAIN error message to stderr.

This function does not return standard ANSI domain or range errors.

28 Chapter 3 Functions

ANSI, stdio assert

assert
Prints a diagnostic message and aborts the calling task.

Syntax

#i ncl ude <assert. h>
#i ncl ude <stdio. h>
voi d assert (int expression);

Parameter

expressi on
C expression specifying assertion being tested.
Additional Information

This function callsthe abort() function if expr essi on isfase (0). The diagnostic
message has this form:

Assertion failed: expression, filefilename, |inelinenunber
Where:

filename Name of the sourcefile.

| i nenunber
Line number of the assertion that failed in the source file.

No actionistaken if expr essi on istrue (not 0).

Use the assert() macro in program development to identify program logic errors.
Choose expr essi on so that it holds true only if the program is operating as
intended.

After aprogram has been debugged, remove assert() calls from the program using
the special identifier NDEBUG. |f NDEBUG s defined by any value witha/ D
command-line option or with a#def i ne directive, the C preprocessor removes all
assert() callsfrom the program source.

See also: abort(), raise(), signal()

Returns
Nothing.

C Library Reference Chapter 3 29

atan, atan2 ANSI

atan, atan2
Atan() calculates the arctangent of a double value; atan2() calculates the arctangent
of the quotient of two doubles.
Syntax
#i ncl ude <math. h>
doubl e atan (double x);
doubl e atan2 (double x, double y);
Parameters
X,y Any number(s) whose arctangent is calcul ated.

Additional Information

The atan2() function uses the signs of both arguments to determine the quadrant of
the return value.

See also: acog(), asin(), cos(), matherr(), sin(), tan()

Returns
Atan() Returns the arctangent result in the range -T72 to TV2 radians.

Atan2() Returns the arctangent result in the range —Ttto Ttradians.
Returns 0 if both arguments are 0, sets errno to EDOM and prints a
DOMAIN error message to stderr.

This function does not return standard ANS| domain or range errors.

30 Chapter 3 Functions

ANSI atexit

atexit

Processes the specified function when the calling task terminates normally.

Syntax
#i nclude <stdlib. h>

int atexit (void (_Pascal * func) (void));
Parameter

func Function(s) to be called; the called function(s) cannot take parameters. No more than
32 functions can be registered. Atexit() receives the address of f unc when the task
terminates normally, using the exit() function.

Additional Information

Successive calls to atexit() create aregister of functions that executein LIFO (last-
in-first-out) order.

See also: exit(), onexit()

Returns

Value Meaning
0 Successful
Not O Error occurred, such as 32 exit functions already defined

C Library Reference Chapter 3 31

atof, atoi, atol ANSI

atof, atoi, atol

Atof() converts a character string to a double value; atoi() converts to an integer
value; atol() convertsto along integer value.

Syntax

#i ncl ude <math. h>
#i ncl ude <stdlib. h>
doubl e atof (const char *string);
int atoi (const char *string);
I ong atol (const char *string);

Parameter
string A sequence of characters that represent a numerical value of the specified type. The
maximum string size for atof () is 100 characters.

Additional Information

These functions stop reading the input string at the first character not recognizable as
part of anumber. This character may be the null character \ 0 terminating the string.

Atof() expectsst ri ng to have thisform:

[whitespace] [sign] {[digits]|[.digits]} [d]| D| e | E[sign]digits]

Where:
whi t espace

Space and/or tab characters, which are ignored.
sign Either plus (+) or minus (-).

digits Decimal digits. If no digits appear before the decimal point, at |east one
must appear after it. There may be an exponent, which isan
introductory letter (d, D, e, or E) and an optionally signed integer.

32 Chapter 3 Functions

ANSI atof, atoi, atol

Atoi() and atol() do not recognize decimal points or exponents. Thestri ng
argument for these functions has this form:

[whitespace] [sign] [digits]
Where whi t espace, si gn, anddi gi ts are asdescribed for atof().
Results are undefined on overflow.

See also: ecvt(), fevt(), gevt()

Returns
The converted value.

Ofor atoi(), OL for atol(), and 0.0 for atof(), if the input cannot be converted to a
value of the specified type.

C Library Reference Chapter 3 33

Bessel Functions

Bessel Functions
Compute the Bessel function.

Syntax

#i ncl ude <math. h>
double jO (double x);
double j1 (double x);
double jn (int n, double x);
doubl e yO (double x);
doubl e y1 (double x);
double yn (int n, double x);

Parameters
X Value must be positive for yO(), y1(), and yn().
n Integer order.

Additional Information

These functions are commonly used in the mathematics of electromagnetic wave
theory.

See also: Mathematics reference books, such as the Handbook of Mathematical
Functions (Abramowitz and Stegun; Washington: U.S. Government
Printing Office, 1964), matherr()

Returns

JO(), j1(), and jn() return the result of Bessel functions of the first kind: orders 0,
1, and n, respectively.

YO(), y1(), and yn() return the result of Bessel functions of the second kind: orders
0, 1, and n, respectively. If x isnegative, functions set errno to EDOM, print a
DOMAIN error message to stderr, and return -HUGE_VAL.

This function does not return standard ANSI domain or range errors.

34 Chapter 3 Functions

ANSI bsearch

bsearch

Performs a binary search of a sorted array.

Syntax

#i ncl ude <stdlib. h>
#i ncl ude <search. h>
voi d *bsearch (const void *key, const void *base, size_t
num size_t width, int (*conpare) (const
voi d
*el eml, const void *elenR));

Parameters
key Value being sought.
base Pointer to base of array to be searched.

num Number of elementsin the array.

wi dt h Width of elementsin bytes.

conpar e
Pointer to a user-supplied routine that compares two array elements, el eml and
el en?, and returns a value specifying their relationship:

Value Meaning

<0 eleml less than elem?2
=0 eleml identical to elem2
>0 eleml greater than elem2

el enl Pointer to the key for the search.
el en2 Pointer to the array element to be compared with the key.

Additional Information

The function calls the conpar e routine one or more times during the search, passing
pointers to two array elements on each call.

If the array you are searching is not in ascending sort order, bsear ch() does not work
properly. If the array contains duplicate records with identical keys, thereis no way
to predict which of the duplicate records will be located by bsear ch().

See also: Ifind(), Isearch(), gsort()

C Library Reference Chapter 3 35

bsearch ANSI

Returns
A pointer to the first occurrence of key in the array pointed to by base.

A null pointer if amatch is not found.

36 Chapter 3 Functions

ANSI cabs

cabs

Calculates the absolute value of a complex number.

Syntax
#i ncl ude <math. h>

doubl e_cabs(struct_conpl ex z):
Parameter

z Complex number.

Additional Information

The complex number z must be a structure of type _conpl ex. The structure z is
composed of areal component x and an imaginary componenty. A call to cabsis
equivalent to:

sqrt(z.x*z.x + z.y*z.y)

Seedso: abs(), fabs(), labs()

Returns

On overflow, thisfunction calls matherr (), returns HUGE_VAL, and setserrno to
ERANGE.

C Library Reference Chapter 3 37

calloc ANSI

calloc

Allocates and clears an array in memory; initializes each element to 0.

Syntax
#i nclude <stdlib. h>
void *calloc (size_t num size_t size);
Parameters
num Number of elementsto allocate storage space for.

size Lengthin bytesof each element.

Additional Information

The allocated memory is guaranteed to be suitably aligned for storage of any type of
object. To get apointer to atype other than voi d, use atype cast on the return value.

See also: free(), malloc(), realloc()

Returns
A pointer to the allocated space.

38 Chapter 3 Functions

ANSI ceil

ceil
Calculates the ceiling (the smallest integer that is greater than or equal to the value)
of adouble value.

Syntax

#i ncl ude <mmt h. h>
doubl e ceil (double x);

Parameter
X Value to calculate ceiling for.
See also: floor(), fmod()

Returns
The ceiling result.

No error return.

C Library Reference Chapter 3 39

cgets

DOS

cgets

Gets a character string from the console and storesiit.

Syntax

#i ncl ude <coni 0. h>

char *cgets (char *buffer);

Parameter

buf f er

Storage location for data. Must be a pointer to a character array. The first element of
the array, buf f er [0] , must contain the maximum length in characters of the string
to beread. The array must contain enough elements to hold the string, a terminating
null character \ 0, and two additional bytes.

Additional Information

This function continues to read characters until it reads a carriage-return line-feed
(<CR><LF>) combination, or the specified number of characters. If it readsa
<CR><LF> combination, it replaces the <CR><LF> with anull character \ 0 before
storage. The cgets() function then stores the actual length of the string in the second
array element, buf fer [1] .

See also: getch(), getche()

Returns

40

A pointer to the start of the string, at buf fer [2] .

No error return.

Chapter 3 Functions

chmod

chmod

Changes the permission mode of afile.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <i o. h>
int chnod (const char *fil ename, node_t pnode);

Parameters

fil ename
Pathname of existing file.

prmode New permission mode for file, which controls file ownership and accessrights.

Additional Information

Prode contains one or more of the manifest constants defined in <sys/stat.h>. The
meaning of pnode is:

Value M eaning

S IRGRP Read permission bit for POSIX file group

S IROTH Read permission bit for POSIX World owner
S IRUSR Read permission bit for POSIX file owner

S IRWXG Mask for POSIX file group
S IRWXO Mask for POSIX World (other) owner

S IRWXU Mask for POSIX file owner

S ISGID Set group ID on execution

S ISUID Set user ID on execution

S IWGRP Write permission bit for POSIX file group

S IWOTH Write permission bit for POSIX World owner

S IWUSR Write permission bit for POSIX file owner

S IXGRP Execute or search permission bit for POSIX file group

S IXOTH Execute or search permission bit for POSIX World owner
S IXUSR Execute or search permission bit for POSIX file owner

Join more than one constant with the bitwise-OR operator (|).

C Library Reference Chapter 3 41

chmod

This function trandates POSI X file ownership rights this way:

POSIX Owner iRMX Owner

Owner Owner 1 (first accessor)

Group Owner 2 (second accessor)

World (other) World

This function also trandates POSI X accessrights to the iIRMX OS equivalent this
way:

POSIX AccessRights iIRM X Access Rights

Read Read

Write Delete, Append, and Update

Execute Ignored (no iRMX OS equivalent)

See also: creat(), fstat(), open(), stat()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to ENOENT, indicating that the

specified file could not be found.

42 Chapter 3 Functions

stdio chsize

chsize
Extends or truncates the size of afile to the specified length.

Syntax

#i ncl ude <io. h>
int chsize (int handle, |ong size);

Parameters

handl e Descriptor referring to an open file. The file must be open in a mode that permits
writing.

size New length of filein bytes.

Additional Information

If thefileis extended, null characters\ 0 are appended. If thefileistruncated, all
data from the end of the shortened file to the original length of the fileislost.

The directory update is done when afileis closed. Consequently, while a program is
running, requests to determine the amount of free disk space may receive inaccurate
results.

See also: close(), creat(), open()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these values:

EACCES Specified fileislocked against access.

EBAD Specified fileisread-only or aninvalid file descriptor.
ENOSPC No spaceisleft on device.

C Library Reference Chapter 3 43

clearerr ANSI, stdio

clearerr

Resets the error and end-of-file indicators for a stream.

Syntax
#i ncl ude <stdio. h>

void clearerr (FILE *stream;
Parameter

st r eam Pointer to FI LE structure.

Additional Information

Once the error indicator for a specified stream is set, operations on that stream
continue to return an error value. Invoke clearerr () to reset the error indicator. You
can also call fseek(), fsetpos(), or rewind() to do the same thing.

See also: eof(), feof(), ferror(), fseek(), fsetpos(), perror(), rewind()

Returns
Nothing.

44 Chapter 3 Functions

ANSI clock

clock

Measures the time used by the calling task, from when the calling task first began
execution to the current time.

Syntax
#i ncl ude <tine. h>

clock_t clock (void);
Additional Information

In the multitasking iIRM X OS environment, this does not tell how much processor
time has been used by the calling task.

Seedso: difftime(), time()

Returns

The product of the time in seconds and the value of the CLOCKS PER _SEC
constant. Divide the return value by the CLOCKS PER_SEC constant to obtain the
actua time.

-1, cast ascl ock_t, if unsuccessful.

C Library Reference Chapter 3 45

close ANSI

close

Closes afile.

Syntax
#i ncl ude <io. h>
int close (int handle);
Parameter
handl e Descriptor referring to an open file.

See also: chsize(), creat(), dup(), dup2(), open(), unlink()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to EBADF, indicating an invalid

file descriptor argument.

46 Chapter 3 Functions

stdio closedir

closedir

Closes the directory stream associated with the directory. The directory stream
descriptor directory is not available after this call.

Syntax

#i ncl ude <sys/types. h>
#i nclude <dirent. h>

int closedir(DIR *dir);

Returns
The closedir() function returns 0 on success or -1 on failure.
EBADF Invalid directory stream descriptor dir.
See also: close(2), opendir(3), readdir(3), rewinddir(3)

C Library Reference Chapter 3 47

cos, cosh ANSI

C0S, cosh

Cos calculates the cosine and cosh cal culates the hyperbolic cosine of an angle.

Syntax

#i ncl ude <mat h. h>
doubl e cos (double x);
doubl e cosh (double x);

Parameter
X Anglein radians.

See also: acog(), asin(), atan(), matherr(), sin(), tan()

Returns
The cosine or hyperbolic cosine.

Cos() Returnsa PLOSS error if x islarge and apartia loss of significancein
the result occurs; function sets errno to ERANGE.

Prints a TLOSS message to stderr and returns O if x is so large that
significance in the result is completely lost; function sets errno to
ERANGE.

Cosh() Returns HUGE_VAL and setserrno to ERANGE if the result istoo
large.

This function does not return standard ANSI domain or range errors.

48 Chapter 3 Functions

DOS cprintf

cprintf

Formats a string and prints to the console.

Syntax
#i ncl ude <coni o. h>

int cprintf (char *format [, argument] ...);
Parameters

f or mat Format-control string.

ar gument
Optional arguments.
Additional Information
This function uses the putch() function to output characters.

Each ar gunent (if any) is converted and output according to the corresponding
format specification.

Thef or mat argument has the form and function described in the printf(') function.

Cprintf() does not trandate line-feed charactersinto carriage-return line-feed
combinations on output, unlike the fprintf(), printf(), and sprintf() functions.

See also: fprintf(), printf(), sprintf(), vprintf()

Returns

The number of characters printed.

C Library Reference Chapter 3 49

cputs DOS

cputs
Writes a null-terminated string directly to the console.

Syntax
#i ncl ude <coni o. h>

int cputs (char *string);
Parameter

st ri ng Output string; must be null-terminated. A carriage-return line-feed (<CR><LF>)
combination is not automatically appended.

See also: putch()

Returns

Value Meaning
0 Successful
EOF Unsuccessful

50 Chapter 3 Functions

stdio creat

creat

Creates anew file and opensit for writing in the specified permission mode or opens
an existing file for writing and truncates it to length 0, destroying the previous
contents.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <i o. h>
int creat (const char *fil ename, node_t pnode);

Parameters

fil ename
Pathname of file to be opened for writing.

pnode Permission mode, one or more of the manifest constants described in chmod(). Join
multiple constants with the bitwise-OR operator (|). Appliesto newly created files
only.

Additional Information

The creat() function applies the default file-permission mask (set with the umask()
function) to pnode before setting the permissions. A new file receives the specified
ownership and access rights after it is closed for the first time.

By default, files opened by this function are sharable by all tasks. If O_EXCL is
ORed with prode, the file is opened with share-with-none permission, like UNIX.

This function tranglates POSI X file ownership rights and access rights as described in
chmod().

See also: chmod(), chsize(), close(), dup(), dup2(), open(), sopen(), umask()

Returns
A descriptor for the created file.
-1 and sets errno to one of these valuesif unsuccessful:

EACCES Pathname specifies an existing read-only file or specifies a directory
instead of afile.

EMFILE No morefile descriptors available (too many open files).

C Library Reference Chapter 3 51

Ccreat stdio

ENOENT Pathname not found.

52 Chapter 3 Functions

DOS cscanf

cscanf

Reads formatted data from the console into the specified locations.

Syntax
#i ncl ude <coni o. h>

int cscanf (char *format [, argument] ...);
Parameters

f or mat Format-control string.

ar gument
Optional arguments; must be a pointer to a variable with atype that corresponds to a
type specifier inf or mat .

Additional Information

Thef or mat controls the interpretation of the input fields and has the same form and
function as described in scanf().

While cscanf() normally echoes the input character, it does not if the last call wasto
ungetch().

This function uses getche() to read characters.
See also: fscanf(), scanf(), sscanf()

Returns

The number of fields that were successfully converted and assigned; does not include
fields that were read but not assigned.

0if nofields were assigned.

EOF for an attempt to read at end-of-file. This may occur when keyboard input is
redirected at the operating system command-line level.

C Library Reference Chapter 3 53

_cstop

_cstop
Deletes the C resources allocated for a task.

Syntax

#i nclude <rnx_c. h>
_cstop (selector task_t);

Parameter

task_t iRMX task token; O indicates remove the current task. If the task to be removed is
not the current task, it must not be using C library functions when you remove it.

Additional Information

Applications that dynamically create and delete C tasks should call
rq_suspend_task, then _cstop() before deleting atask using rq_delete task. The
deleted C resources for the task include connections to stdin, stdout, stderr, the C
library information structure CI NFO_STRUCT, and other bookkeeping segments.

Each C task maintains its own resources. The minimum resources assigned to each
task consist of CI NFO_STRUCT and two synchronization semaphores for the task.
These are allocated on the first call to any C library function by the task. A task can
obtain the datain CI NFO_STRUCT with the get_info() function. The C task
resources also include storage space for the task's context, and atemporary storage
area for information pushed onto the stack by the C library.

Additional resources are established for atask on the first call to any stdio function.
These are:

« Additional bookkeeping areafor Cl NFO_STRUCT (about 400 bytes)

« Connectionsto stdin, stdout, and stderr, along with two /O synchronization
mailboxes and one synchronization semaphore for each mailbox

« Two 512-byte I/O buffers, one each for stdin and stdout, allocated from the job
heap using malloc()

54 Chapter 3 Functions

_cstop

Any malloc() segments and the malloc() mutual exclusion semaphore are not
deleted until the parent job is deleted, since they are global to the parent job.

Minimize the total amount of resources required by an application by dynamically
creating and deleting tasks that call stdio functions.

See also: exit(), _get_info(), malloc(), <rmx_c.h>, stat()

Returns
Nothing.

C Library Reference Chapter 3 55

cstr, udistr

cstr, udistr

Cstr converts a count-prefixed iRM X-style string to a null-terminated C-style string
and storesit. Udistr () converts a null-terminated C-style string to a count-prefixed
iRMX-style string and storesiit.

Syntax

#i ncl ude <string. h>
char *cstr (char *c_str, const char *udi _str);
char *udistr (char *udi _ptr, const char *c_ptr);

Parameters

c_str Pointer to anull-terminated (C convention) string.

udi _str
Pointer to a count-prefixed (iIRMX convention) string.

Additional Information

The string buffer for cstr () must be large enough to hold the string and the null
character \ 0 string terminator. Since count-prefixed strings are restricted to 0 to 255
characters (range of the one-byte count), plus the terminating null character, the
string buffer can be 1 to 256 bytes long.

The string buffer for udistr () must be large enough to hold the string and the leading
one-byte length field for the count. Use strlen() to determine the required length of
the destination buffer. The buffer must be one byte longer than the value returned by
strlen, since it returns the number of charactersin the string excluding the
terminating null character \ 0. The behavior of udistr () for stringslonger than 255
bytesis undefined.

Thetwo pointersc_pt r and udi _pt r normally point to separate string buffers.
However, if the arguments are identical, udistr () and cstr () still work correctly,
converting the indicated string in place.

See also: strlen(), <udi_c.h>

Returns
A pointer to the converted string.

No error return.

56 Chapter 3 Functions

ANSI, stdio ctime

ctime

Convertsatime stored asat i me_t valueto acharacter string.

Syntax
#i nclude <tine. h>

char *ctine (const time_t *timer);
Parameter

ti mer Stored time value to convert, usually obtained from acall to time().

Additional Information
The converted string contains exactly 26 characters and has thisform:
Wed Jan 02 02: 03:55 1980\ n\0

All elements have a constant width. The newline character \ n and the null character
\ 0 occupy the last two positions of the string.

A 24-hour clock is used.

Callsto the ctime() function modify the single statically allocated buffer used by the
gmtime() and the localtime() functions. Each call to one of these functions
destroys the result of the previous call.

The ctime() function also shares a static buffer with the asctime() function. Thus, a
call to ctime() destroys the results of any previous call to asctime(), localtime(), or
gmtime().

See also: asctime(), gmtime(), localtime(), time()

Returns
A pointer to the character string.

A null pointer if time represents a date before epoch time.

C Library Reference Chapter 3 57

difftime ANSI

difftime

Finds the difference between two time values.

Syntax
#i nclude <tine. h>
double difftime (time_t timerl, time_t tinmer0);
Parameters
timer0 Beginning time.
timerl Endingtime.
See also: time()

Returns
The elapsed time in seconds.

58 Chapter 3 Functions

ANSI div

div
Divides the numerator by the denominator, computing the quotient and the remainder
of two integer values.

Syntax

#i ncl ude <stdlib. h>

div_t div (int nuner, int denom;
Parameters
numer Numerator.

denom Denominator. If O, the program will terminate with an error message.
See also: [div()

Returns
A di v_t structure, described in <stdlib.h>.

The sign of the quotient is the same as that of the mathematical quotient. Its absolute
valueisthe largest integer that is less than the absolute value of the mathematical
guotient.

C Library Reference Chapter 3 59

_dos_allocmem DOS

_dos_allocmem

Allocates a block of memory.

Syntax

#i ncl ude <dos. h>
unsi gned _dos_al |l ocrem (unsi gned si ze, unsigned *seg);

Parameters
size Block sizeto alocate in paragraphs (16-byte units).

seg Pointer to where segment token is returned.

Additional Information
Allocated blocks are always paragraph aligned. The memory heap is not used.

AniRMX segment is always created. Thisappliesto all memory models, including
32-hit flat.

If the request cannot be satisfied, the maximum possible size (in paragraphs) is
returned instead.

See also: calloc(), dos freemem(), malloc()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to ENOMEM, indicating

insufficient memory.

60 Chapter 3 Functions

DOS _dos_close

_dos_close

Closes afile.

Syntax

#i ncl ude <dos. h>
unsi gned _dos_close (int handle);

Parameter

handl e Target fileto close (handl e was returned by the call that created or last opened the
file).

Additional Information

See also: close(), creat(), dos creat, dos open(), dos read(), dos write(),
dup(), open()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to EBADF, indicating an invalid
file handle.

C Library Reference Chapter 3 61

_dos_creat, _dos_creatnew

_dos_creat, dos _creatnew

These functions create and open a new file with the specified access attributes.

Syntax

#i ncl ude <dos. h>
unsi gned _dos_creat (const char *fil enane, unsigned
attrib,
i nt *handl e);
unsi gned _dos_creat new (const char *fil ename, unsigned

attrib,
i nt *handl e);
Parameters
fil ename
File pathname.

attrib Fileattributes.

handl e Pointer to handle return buffer. The new file's handle is copied into the location
handl e pointsto.

Additional Information

Thefileis opened for both read and write access. If file sharing isinstalled, the file

is opened in compatibility mode.

The _dos creat() function erases an existing file's contents and leaves its attributes

unchanged.
The _dos _creatnew() function failsif the file already exists.

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these values:

EACCES Accessdenied because the directory isfull or, for

_dos creat() only, the file exists and cannot be overwritten.

EEXIST File already exists (_dos _creatnew() only).
EMFILE Too many open file handles.

62 Chapter 3 Functions

DOS _dos_creat, _dos_creatnew

ENOENT Path or file not found.

C Library Reference Chapter 3 63

_dos_findfirst, _dos_findnext DOS

_dos_findfirst, dos_findnext

_dos findfirst finds the first file with the specified name and attributes;
_dos findnext finds the next file.

Syntax

#i ncl ude <dos. h>
unsi gned _dos_findfirst(const char *fil ename, unsigned
attrib,
struct find_t *fileinfo);
unsi gned _dos_findnext(struct find_t *fileinfo);

Parameters

fil ename
Target filename; may use wildcards* and 2.

attrib Target file attributes.

fileinfo
Pointer to file-information buffer.

Additional Information
Theattri b argument can be any of these manifest constants:
_A_NORMAL Normal. File can be read or written without restriction.

_A_RDONLY Read-only. File cannot be opened for writing, and afile with the
same name cannot be created. Returns information about normal files
aswell as about files with this attribute.

_A_SUBDIRSubdirectory. Returnsinformation about normal files aswell as about
fileswith this attribute.

Combine multiple constants with the bitwise-OR operator (|).

If theat t ri b argument to either of these functionsis_ A_RDONLY or
_A_SUBDIR, the function also returns any normal attribute files that match the
fi | ename argument; anormal file does not have aread-only or directory attribute.

Informationisreturnedinafi nd_t structure, defined in <dos.h>.

64 Chapter 3 Functions

DOS _dos_findfirst, _dos_findnext

Thetimeformat is:

Time Bits Contents

0-4 Number of 2-second increments (0-29)
5-10 Minutes (0-59)

11-15 Hours (0-23)

The date format is:

Date Bits Contents

0-4 Day of month (1-31)

5-8 Month (1-12)

9-15 Y ear (relative to 1980)

Do not alter the contents of thef i | ei nf o buffer between acall to _dos findfirst()
and all subsequent callsto the _dos_findnext() function.

The _dos findnext() function finds the next name, if any, that matches the
arguments specified in aprior call to _dos findfirst(). Thefi | ei nf o argument
must point to af i nd_t structureinitialized by aprevious call to _dos findfirst().
The contents of the structure will be altered as described if a match is found.

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to ENOENT, indicating that the

filename could not be matched.

C Library Reference Chapter 3 65

_dos_freemem DOS

_dos_freemem
Releases a block of memory previously allocated by _dos allocmem().

Syntax
#i ncl ude <dos. h>
unsi gned _dos_freenem (unsi gned seq);
Parameter
seg Block to be released, a value returned by a previous call to _dos_allocmem().

Additional Information
The freed memory can no longer be used by the application program.
See also: _dos _allocmem(), free()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to ENOMEM, indicating a bad

offset value (one that does not correspond to an offset returned by a
previous _dos allocmem() call) or invalid arena headers.

66 Chapter 3 Functions

DOS _dos_getdate

_dos_getdate
Getsthe current system date.

Syntax
#i ncl ude <dos. h>
void _dos_getdate (struct dosdate_t *date);
Parameter
date Current system date.

Additional Information
Thedateisreturned in adosdat e_t structure, defined in <dos.h>.
See also: _dos gettime(), _dos setdate(), _dos_settime(), gmtime(), localtime(
), mktime(), time()
Returns
Nothing.

C Library Reference Chapter 3 67

_dos_getftime DOS

_dos_getftime
Gets the date and time that a file was last written.

Syntax
#i ncl ude <dos. h>
unsi gned _dos_getftinme (int handl e, unsigned *date,
unsi gned *time);
Parameters
handl e Target file; the file must be opened with acall to_dos open() or _dos creat().
date Date-return buffer.

time Time-return buffer.

Additional Information

The date and time are returned in the words pointed to by dat e andti me. The
values appear in the DOS date and time format as described in _dos findfirst.

Seedso: fstat(), stat()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to EBADF, indicating that an

invalid file handle was passed.

68 Chapter 3 Functions

DOS _dos_gettime

_dos_gettime

Getsthe current system time.

Syntax
#i ncl ude <dos. h>

void _dos gettime (struct dostime_t *tinme);
Parameter

time Current systemtime.

Additional Information
Thetimeisreturned inadost i me_t structure, defined in <dos.h>.
Seealso: _dos getdate(), _dos setdate(), _dos_settime(), gmtime(), localtime(
)
Returns
Nothing.

C Library Reference Chapter 3 69

_dos_open DOS

_dos_open

Opens an existing file.

Syntax

#i ncl ude <dos. h>
#i nclude <fcntl. h>
#i ncl ude <share. h>
unsi gned _dos_open (const char *filename, unsigned node,
i nt *handl e);

Syntax

Parameters

fil ename
Path to an existing file.

mode Specifiesthe file's access, sharing, and inheritance permissions.

handl e Pointer to the handle for the opened file.

Additional Information

The node argument specifies the file's access, sharing, and inheritance modes by
combining (with the OR operator) manifest constants from the three groups shown
below. At most, one access mode and one sharing mode can be specified at atime.

Constant Mode M eaning

O_RDONLY Access Read-only

O_WRONLY Access Write-only

O_RDWR Access Both read and write
SH_COMPAT Sharing Compatibility

SH _DENYRW Sharing Deny reading and writing
SH DENYWR Sharing Deny writing
SH_DENYRD Sharing Deny reading

SH _DENYNO Sharing Deny neither

O _NOINHERIT Inheritance Fileisnot inherited by the child process
Seealso: _dos close(), dos read(), dos write()

70 Chapter 3 Functions

DOS _dos_open

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these:

E Access denied (possible reasons include specifying
adirectory or volume ID for filename,
or opening aread-only file for write
access).

E Sharing mode specified when file sharing not
installed, or access-mode valueis
invalid.

E Too many open file handles.

E Path or file not found.

C Library Reference Chapter 3 71

_dos_read DOS

_dos_read
Reads a specified number of bytes of datafrom afile.

Syntax

#i ncl ude <dos. h>
unsi gned _dos_read (int handle, void *buffer, unsigned
count,
unsi gned *actual);

Parameters

handl e Fileto read.

buf f er Pointer to buffer to receive data.

count Number of bytesto read.

act ual Pointer to the number of bytes actually read, which may be less than the number
reguested.

Additional Information

If the number of bytes actually read is 0, it means the function tried to read at end-of -
file.

See also: _dos close(), _dos open(), dos write(), read()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these:
E Access denied (handle is not open for read access).

72 Chapter 3 Functions

DOS _dos_read

E File handleisinvalid.

C Library Reference Chapter 3 73

_dos_setdate DOS

_dos_setdate
Setsthe current system date.

Syntax

#i ncl ude <dos. h>
unsi gned _dos_setdate (struct dosdate_t *date);

Parameter
date New system date.

Additional Information
Thedateis stored inthe dosdat e_t structure, defined in <dos.h>.
Seealso: _dos gettime(), _dos setdate(), _dos_settime(), gmtime(), localtime(
), mktime(), time()
Returns

Value Meaning

0 Successful

Not 0 Error occurred; the function sets errno to EINVAL, indicating an invalid
date was specified.

74 Chapter 3 Functions

DOS _dos_setftime

_dos_setftime
Sets the date and time that a file was last written.

Syntax
#i ncl ude <dos. h>
unsi gned _dos_setftine (int handle, unsigned date,
unsi gned tinme);
Parameters
handl e Target file
date Date of last write

time Timeof last write

Additional Information

Setsthedat e and t i me at which the fileidentified by handl e waslast written to.
These values appear in the DOS date and time format:

TimeBits Meaning

0-4 Number of two-second increments (0-29)

5-10 Minutes (0-59)

11-15 Hours (0-23)

DateBits Meaning

0-4 Day (1-31)

5-8 Month (1-12)

9-15 Y ear since 1980 (for example, 1989 is stored as 9)

See also: _dos _getftime(), fstat(), stat()

Returns
Value M eaning
0 Successful
Not O Not successful; function sets errno to EBADF, indicating that an

invalid file handle was passed.

C Library Reference Chapter 3 75

_dos_settime DOS

_dos_settime

Sets the current system time.

Syntax
#i ncl ude <dos. h>

unsi gned _dos_settinme (struct dostime_t *time);
Parameter

time New systemtime.

Additional Information

Sets the current system time to the value stored inthe dost i me_t structure that
ti me pointsto, as defined in <dos.h>.

See also: _dos getdate(), dos gettime(), dos setdate(), gmtime(), localtime(
), mktime()

Returns

Value Meaning
0 Successful
Not 0 Error occurred; the function sets errno to EINVAL, indicating an invalid

time was specified.

76 Chapter 3 Functions

DOS _dos_write

_dos_write

Writes a specified number of bytes from a buffer to afile.

Syntax

#i ncl ude <dos. h>
unsi gned _dos_wite (int handle, void const *buffer
unsi gned
count, unsigned *actual);

Parameters

handl e Fileto writeto.

buf f er Pointer to buffer to write from.

count Number of bytesto write.

act ual Pointer to the number of bytes actually written, which can be less than the number
reguested.

Additional Information
See also: _dos close(), _dos open(), dos read(), write()

Returns
Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these:
E Access denied (handl e references afile not open
for write access).
E Invalid file handle.

C Library Reference Chapter 3 77

dup, dup2 stdio

dup, dup?2

Dup creates a second file descriptor for an open file in the running task's file
descriptor table and dup2 reassigns a file descriptor in the table.

Syntax

#i ncl ude <io. h>
int dup (int handle);
int dup2 (int handlel, int handl e2);

Parameters

handl e, handl el
Descriptor referring to an open file.

handl e2
Any file descriptor value.
Additional Information

Operations on the file can be carried out using either the old or new file descriptor.
The type of access allowed for the file is unaffected by the creation of anew file
descriptor.

The dup2() function forces handl e2 to refer to the same fileashandl el. If
handl e2 is associated with an open file at the time of the call, that file is closed.

The C library keeps track of the number of duplications on afile connection. The
origina connection will remain valid until the last duplication is closed or deleted.

See also: close(), creat(), open()

Returns
Dup() returns the next available file descriptor for the file.
Dup2() returns O to indicate success.
Both functions return -1 if an error occurs and set errno to one of these values:
EBADF Invalid file descriptor.
EMFILE No more file descriptors available (too many open files).

78 Chapter 3 Functions

ecvt

ecvt

Converts avalue to a character string.

Syntax

#i nclude <stdlib. h>
char *ecvt (double value, int count, int *dec, int
*sign);

Parameters

val ue Vaueto convert.

count Number of digits stored asastring. The function appends a null character \ 0.

dec Points to an integer value giving the position of the decimal point with respect to the
beginning of the string. A 0 or negative integer value indicates that the decimal point
liesto the left of the first digit.

sign Pointsto aninteger indicating the sign of the converted number.

Value Meaning

0 Positive

Not O Negative
Additional Information

Only digits are stored in the string. If the number of digitsinval ue exceedscount,
the low-order digit isrounded. If there are fewer than count digits, the string is
padded with Os.

Obtain the position of the decimal point and the sign of val ue from dec and si gn
after the call.

This function uses a single statically allocated buffer for the conversion. Subsequent
calls overwrite the result.

See also: atof(), atai(), atol(), fevt(), gevt()

Returns
A pointer to the string of digits.

No error return.

C Library Reference Chapter 3 79

eof stdio

eof

Checks whether the file's current file pointer is EOF.

Syntax
#i ncl ude <io. h>
int eof (int handle);
Parameter
handl e Descriptor referring to an open file.

See dso: clearerr(), feof(), ferror(), perror()

Returns
Value Meaning
1 Current position is end-of-file
0 Current position is not end-of-file
-1 Error occurred; the function sets errno to EBADF, indicating an invalid
file descriptor

80 Chapter 3 Functions

ANSI exit, _exit

exit, _exit
Exit() terminates the calling task after cleanup and _exit() terminates it
immediately.

Syntax

#i ncl ude <process.h> /* for _exit() */
#i nclude <stdlib. h>
void exit (int status);
void _exit (int status);
Parameter
st at us Exit status.

Additional Information

Exit() performs complete C library termination procedures. It calls the functions
registered by atexit() and onexit() in LIFO order. It flushesall file buffers before
terminating the task and exits with the supplied status code.

_exit() performs quick C library termination procedures by invoking rq_exit_io_job.
It terminates the task, and informs the parent job with the supplied status code.
Typically, it setsst at us to 0 to indicate a normal exit or to some other value to
indicate an error.

_exit() does not process atexit() or onexit() functions or flush stream buffers.
See also: abort(), atexit(), onexit(),
rq_exit_io_job, System Call Reference
Returns
Nothing.

C Library Reference Chapter 3 81

exp ANSI

exp

Calculates the exponential of a double value.

Syntax
#i ncl ude <math. h>
doubl e exp (double x);
Parameter
X Value to calculate exponential for.
See also: log()

Returns
The exponentia function, eX.
HUGE_VAL on overflow, and the function sets errno to ERANGE.
0 on underflow, but the function does not set errno.

This function does not return standard ANSI domain or range errors.

82 Chapter 3 Functions

ANSI fabs

fabs

Calculates the absol ute value of a double value.

Syntax
#i ncl ude <mmt h. h>
doubl e fabs (double x);
Parameter
X Vaueto calculate absolute value for.
See also: abs(), labs(), cabs()

Returns
The absolute value.

No error return.

C Library Reference Chapter 3 83

fclose, fcloseall ANSI, stdio

fclose, fcloseall

Fclose closes a specified stream and fcloseall closes al open streams.

Syntax

#i ncl ude <stdio. h>
int fclose (FILE *strean);
int fcloseall (void);

Parameter

st r eam Pointer to FI LE structure.

Additional Information

The fcloseall (') function closes al open streams except stdin, stdout, and stderr. It
also closes and deletes any temporary files created by tmpfile().

In both functions, all buffers associated with the stream are flushed prior to closing.
System-allocated buffers are rel eased when the stream is closed. Buffers assigned by
the user with setbuf() and setvbuf() are not automatically released.

See also: close(), fdopen(), fopen(), freopen()

Returns
Fclose() returns O if successful.
Fcloseall () returns the total number of streams closed.

Both functions return EOF to indicate an error.

84 Chapter 3 Functions

fcvt

fcvt

Converts a double value to a null-terminated string, indicating the sign and decimal
point location.

Syntax

#i nclude <stdlib. h>
char *fcvt (double value, int count, int *dec, int
*sign);

Parameters

val ue Vaueto convert. Storesthe digitsof val ue asastring and appends a null character
\ 0.

count Number of digitsto store after decimal point. Excess digits are rounded off to count
places. If there are fewer than count digits, the string is padded with Os.

dec Points to an integer value, which gives the position of the decimal point with respect
to the beginning of the string. A O or negative integer value indicates that the decimal
point liesto the | eft of the first digit.

sign Pointsto aninteger indicating the sign of val ue.

Value Meaning

0 Positive

Not O Negative
Additional Information

Only digits are stored in the string. Obtain the position of the decimal point and the
sign of val ue from dec and si gn after the call.

The fevt() function uses asingle statically allocated buffer for the conversion. Each
call destroys the results of the previous call.

See also: atof(), atai(), atol(), ecvt(), gevt()

Returns
A pointer to the string of digits.

No error return.

C Library Reference Chapter 3 85

fdopen stdio

fdopen
Opens a stream associated with afile descriptor, allowing afile opened for low-level
1/0 to be buffered and formatted.

Syntax

#i ncl ude <stdi o. h>
FILE *fdopen (int handle, char *nopde);

Parameters

handl e Descriptor referring to an open file.

nmode Specifies the open mode (type of access permitted) for thefile.

Additional Information

Thislist givesthe node string, including required quotes, as used in the fopen() and
fdopen() functions. It also relates the node string and the corresponding of | ag
arguments used in the open() and sopen() functions.

Value Meaning

r Opensfor reading. If the file does not exist or cannot be found, the call
will fail. Relatesto O_RDONLY.
"w" Opens an empty file for writing. If the given file exists, its contents are

destroyed. Relatesto O WRONLY (usually O WRONLY |
O_CREAT | O_TRUNC).
"a Opens for writing at the end of the file (appending); creates the file first if
it doesn't exist. Relatesto O WRONLY | O_APPEND (usually
O WRONLY | O_CREAT | O_APPEND).

"r+" Opens for both reading and writing. The file must exist. Relatesto
O_RDWR.
"W Opens an empty file for both reading and writing. If the given file exists,

its contents are destroyed. Relatesto O RDWR (usually O_RDWR |
O_CREAT | O_TRUNC).

"at" Opens for reading and appending; creates the file first if it doesn't exist.
Relatesto O_RDWR | O_APPEND (usually O_RDWR | O_APPEND |
O_CREAT)

Usethe"w' and"w+" typeswith care, asthey can destroy existing files.

When afileis opened with the" a" or " a+" open mode, all write operations occur at
the end of thefile, even if you've repositioned the file pointer using fseek () or
rewind(). Thus, existing data cannot be overwritten.

86 Chapter 3 Functions

stdio fdopen

Whenthe"r+","w+", or "a+" open mode is specified, both reading and writing are
allowed (thefile is open for update). However, when you switch between reading
and writing, there must be an intervening rewind() operation or fsetpos() or

fseek ('), which can reposition the file pointer, if desired.

In addition to these values, one of these characters can be included after node but
between the quotation marks to specify the trandation mode for <L F> characters.
Thet and b characters correspond to the constants used in the open() and sopen()
functions, as listed below.

Value Meaning

t Open intext (trandlated) mode. <CR><LF> combinations are trandated
into single <LF> characters on input and <L F> characters are trand ated to
<CR><L F> combinations on output.

<Ctrl-Z> isinterpreted as an end-of-file character oninput. Infiles
opened for reading or for reading/writing, checks for and removes
<Ctrl-Z> if possible, because <Ctrl-Z> may cause fseek () to behave
improperly near the end of thefile. Relatesto O TEXT.

b Open in binary (untranslated) mode; the above transations are suppressed.
Relatesto O_BINARY.

If t or b isnot giveninthe node string, the trandation mode is defined by the
default-mode variable _f node, contained in <stdlib.h>.

Thet optionis not part of the ANSI standard for fopen() and fdopen(); do not use
it where ANSI| portability is desired.

See also: fopen(), fclose(), fcloseall (), freopen(), open()

Returns
A pointer to the open stream.

A null pointer on error, such ast or b appearing before node.

C Library Reference Chapter 3 87

feof ANSI, stdio

feof

Tests for end-of-file on a stream.

Syntax
#i ncl ude <stdi o. h>

int feof (FILE *strean);
Parameter

st r eam Pointer to FI LE structure.

Additional Information

Once end-of-file is reached, read operations return an end-of-file indicator until the
stream is closed or until rewind(), fsetpos(), fseek(), or clearerr() iscalled.
Feof() isimplemented as a macro.

See dlso: clearerr(), eof(), ferror(), perror()

Returns

Value Meaning
0 The current position is not end-of-file
Not O Thisisthefirst read operation that attempted to read past end-of-file

No error return.

88 Chapter 3 Functions

ANSI, stdio ferror

ferror

Testsfor aread or write error on a stream.

Syntax
#i ncl ude <stdi o. h>

int ferror (FILE *strean);
Parameter

st r eam Pointer to FI LE structure.

Additional Information

If an error occurred, the error indicator for the stream remains set until the stream is
closed or rewound, or until clearerr() iscalled. Ferror() isimplemented asa
macro.

See also: clearerr(), eof(), feof(), fopen(), perror()

Returns

Value Meaning
0 Successful
Not O Error occurred

C Library Reference Chapter 3 89

fflush ANSI, stdio

fflush

Flushes a buffered stream (has no effect on an unbuffered stream).

Syntax

#i ncl ude <stdio. h>
int fflush (FILE *strean);

Parameter

st r eam Pointer to FI LE structure.

Additional Information

If the file associated with st r eamis open for output, fflush() writes the contents of
the buffer to thefile. If st r eamisopen for input, fflush() clears the contents of the
buffer.

The stream remains open after the call.

Buffers are automatically flushed when they are full, when st r eamis closed, or
when a program terminates normally without closing st r eam

Seedso: fclose(), flushall(), setbuf()

Returns

Value Meaning
0 Buffer successfully flushed or
st r eamhas no buffer or
st r eamis open for reading only
EOF Error occurred

90 Chapter 3 Functions

ANSI, stdio fgetc, fgetchar

fgetc, fgetchar
Fgetc() reads a single character from the current position of the specified stream and
increments the file pointer to the next character; fgetchar () reads from stdin.
Syntax
#i ncl ude <stdio. h>
int fgetc (FILE *stream;
int fgetchar (void);
Parameter

st r eam Pointer to FI LE structure.

Additional Information
The fgetchar () functionis equivalent to
fgetc (stdin)

Fgetc() and fgetchar () areidentical to getc() and getchar (), but they are functions,
not macros.

See also: fputc(), fputchar(), getc(), getchar()

Returns
The integer value of the character read.

EOF on error or end-of-file. Since EOF isalegal integer value, use feof() or
ferror () to distinguish between an error and an end-of-file condition.

C Library Reference Chapter 3 91

fgetpos ANSI, stdio

fgetpos
Gets a stream's file pointer position-indicator and storesit. This function does not get
the file pointer; use the ftell() function instead.

Syntax

#i ncl ude <stdi o. h>
int fgetpos (FILE *stream fpos_t *pos);

Parameters

st r eam Pointer to FI LE structure.

pos File pointer position-indicator storage.

Additional Information

The file pointer position-indicator valueis stored in f pos_t format, which isused
only by the fgetpos() and fsetpos() functions. The fsetpos() function can use
information stored in pos to reset the file pointer for st r eamto its position at the
time fgetpos() was called.

See also: fsetpos()

Returns

Value Meaning
0 Successful
Not O Error occurred; the function sets errno to one of these values:
EBADF The specified stream isnot avalid file descriptor or is not
accessible.
EINVAL Thestream vaueisinvalid.

92 Chapter 3 Functions

ANSI fgets

fgets

Reads a specified number of characters from a stream and stores them in a string.

Syntax
#i ncl ude <stdio. h>

char *fgets (char *string, int n, FILE *stream;
Parameters

st ri ng Storage location for data. The newline character, if read, isincluded in the string. A
null character \ 0 is appended.

n Number of characters stored. If nis1, string isempty.

st r eam Pointer to FI LE structure.

Additional Information

Characters are read from the current stream position up to and including the first
newline character \ n, up to the end of the stream, or until the number of characters
read isn- 1, whichever comes first.

The fgets() function is similar to the gets() function; however, gets() replaces the
newline character with anull character.

See also: fputs(), gets(), puts()

Returns
Returns the string.

A null pointer on error or end-of-file. Usefeof() or ferror () to determine whether
an error occurred.

C Library Reference Chapter 3 93

filelength stdio

filelength
Getsthe length in bytes of afile.

Syntax
#i ncl ude <io. h>

long filelength (int handle);
Parameter

handl e Descriptor referring to an open file, as returned by creat() or open().

See also: chsize(), creat(), fileno(), fstat(), open(), stat()

Returns
Thefilelength in bytes.

-lonerror. Aninvalid descriptor also setserrno to EBADF.

94 Chapter 3 Functions

stdio fileno

fileno

Gets the file descriptor associated with a stream.

Syntax

#i ncl ude <stdio. h>
int fileno (FILE *strean);

Parameter

st r eam Pointer to FI LE structure.

Additional Information

This function lets you use the file descriptor 1/O calls on streams; for example,

read(), write(), and Iseek (). To mix the two I/O systems (open() vs. fopen(),
read() vs. fread(), etc.), flush al 1/0O buffers when going from the buffered system
(for example, fwrite()) to the unbuffered system (for example, write()). Otherwise,
you are likely to lose data.

Fileno() automatically flushes the I/O buffers for the given stream.
See also: fdopen(), filelength(), fopen(), freopen()

Returns

The file descriptor currently associated with the stream. The result is undefined if
st r eamdoes not specify an openfile.

No error return.

C Library Reference Chapter 3 95

floor ANSI

floor

Calculates the floor (largest integer that is less than or equal to avalue) of adouble
value.

Syntax
#i ncl ude <mmt h. h>
doubl e floor (double x);
Parameter
X Vaueto calculate the floor for.
See also: cell(), fmod()

Returns
The floor result.

No error return.

96 Chapter 3 Functions

stdio flushall

flushall
Writes the contents of all buffers associated with open output streams to their
associated files.

Syntax

#i ncl ude <stdi o. h>
int flushall (void);

Additional Information

Clears all input stream buffers of their current contents. All streams remain open
after the call. The next read operation reads new data into the buffers.

Buffers are automatically flushed when they are full, when streams are closed, or
when a program terminates normally without closing streams.

See also: fflush()

Returns
The number of open streams (input and output).

No error return.

C Library Reference Chapter 3 97

fmod ANSI

fmod

Calculates the floating-point remainder.

Syntax
#i ncl ude <math. h>
doubl e frod (doubl e x, double y);
Parameters
X,y Floating-point values.

Additional Information
Calculatesf of x / y suchthat:

Xx=1i*y+f
Where:
i An integer.
f The floating-point remainder. f hasthe same sign asx, and the

absolute value of f islessthan the absolute value of y.
See also: ceil(), fabs(), floor()

Returns
The remainder.
OifyisO.

This function does not return standard ANSI domain or range errors.

98 Chapter 3 Functions

ANSI, stdio fopen

fopen
Opens afile with the specified open mode.

Syntax

#i ncl ude <stdio. h>
FILE *fopen (const char *fil enane, const char *node);

Parameters

filenanme
Pathname of file.

mode Specifies the open mode (type of access permitted) for thefile.

Additional Information

The character string mode, with required quotes, specifies the open mode for the file,
as described in fdopen().

See also: fdopen(), fclose(), fcloseall(), ferror(), fileno(), freopen(), open(),
setmode()
Returns
A pointer to the open file.

A null pointer on error.

C Library Reference Chapter 3 99

fprintf

ANSI, stdio

fprintf

Prints formatted data to a stream.

Syntax

#i ncl ude <stdi o. h>

int fprintf (FILE *stream const char *format
[, argunent]...);

Parameters

st r eam Pointer to FI LE structure.

f or mat Formatted string consisting of ordinary characters, escape sequences, and (if

arguments follow) format specifications.

ar gunment

Optional arguments.

Additional Information

The ordinary characters and escape sequences are copied to st r eamin order of their
appearance.

Thef or mat and optional arguments have the same form and function as described in
the printf() function.

See also: fscanf(), printf(), sprintf()

Returns

100

The number of characters printed.

A negative value on output error.

Chapter 3 Functions

ANSI, stdio fputc, fputchar

fputc, fputchar
Fputc writes a single character to an output stream at the current position; fputchar
writes to stdout.
Syntax
#i ncl ude <stdio. h>
int fputc (int c, FILE *stream;
int fputchar (int c);
Parameters
c Character to be written.

st r eam Pointer to FI LE structure.

Additional Information
The fputchar () function is equivalent to
fputc (c, stdout)

Fputc() and fputchar () are similar to putc() and putchar(), but are functions
rather than macros.

See also: fgetc(), fgetchar(), putc(), putchar()

Returns
The character written.

EOF on error. Since EOF isalegal integer value, use ferror () to check for an actua
error.

C Library Reference Chapter 3 101

fputs ANSI, stdio

fputs

Writes a string to the stream at the current file pointer.

Syntax
#i ncl ude <stdio. h>

int fputs (const char *string, FILE *stream;
Parameters

st ri ng String to be output. The terminating null character \ 0 is not copied.

st r eam Pointer to FI LE structure.

Seealso: fgets(), gets(), puts()

Returns

Value Meaning
0 Successful
EOF Unsuccessful

102 Chapter 3 Functions

ANSI, stdio fread

fread
Reads up to the specified number of items of the specified size from the input stream

and stores them in a buffer.
Syntax

#i ncl ude <stdio. h>
size_t fread (void *buffer, size_ t size, size_t count,
FILE *strean);

Parameters

buf f er Storage location for data.

size Itemsizein bytes.

count Maximum number of itemsto be read.

st r eam Pointer to FI LE structure.

Additional Information

The file pointer associated with st r eam(if there is one) isincreased by the number
of bytes actually read.

If the stream is opened in text mode, <CR><LF> pairs are replaced with single <LF>
characters. The replacement has no effect on the file pointer or the return value.

Thefile pointer isindeterminate if an error occurs. The value of apartialy read item
cannot be determined.

Seeadso: fwrite(), read()

Returns

The number of full items actually read, which may be less than count if an error
occurs, if the end-of-file is encountered before reaching count , or if <CR>s were
removed.

0 and the buffer contents are unchanged if si ze or count isO.

Oon error. Usethe feof() or ferror() function to distinguish aread error from an
end-of-file condition.

C Library Reference Chapter 3 103

free ANSI

free

Deall ocates a memory block.

Syntax

#i nclude <stdlib. h>
void free (void *nenbl ock);

Parameter

menbl ock
Points to amemory block previously allocated through a call to calloc(), malloc(),
or realloc().

Additional Information

The number of bytes freed is the number of bytes specified when the block was
allocated, or reallocated, in the case of realloc(). After the call, the freed block is
available for alocation.

Attempting to free amemory block not allocated with the appropriate call (such as
the sbrk() function) may affect subsequent allocation and cause errors.

See also: calloc(), malloc(), realloc(), sbrk()

Returns
Nothing.

104 Chapter 3 Functions

ANSI, stdio freopen

freopen
Closes the file currently associated with a stream and reassigns a new file to the
stream.

Syntax

#i ncl ude <stdio. h>
FILE *freopen (const char *filenanme, const char *node,
FILE *strean);

Parameters

filenanme
Pathname of new file.

mode Open mode for the new file.

st r eam Pointer to FI LE structure.

Additional Information
The freopen() functionistypically used to redirect stdin, stdout, and stderr to user-
specified files.
The node parameter is as described in fdopen().
See also: fclose(), fcloseall(), fdopen(), fileno(), fopen(), open(), setmode()

Returns
A pointer to the newly opened file.

A null pointer value on error and the original file is closed.

C Library Reference Chapter 3 105

frexp ANSI

frexp

Gets the mantissa and exponent of a double value.

Syntax
#i ncl ude <math. h>
doubl e frexp (double x, int *expptr);
Parameters
X Value to find exponent for.

exppt r Pointer to stored integer exponent n.

Additional Information

Breaks down the value x into a mantissa mand an exponent n, such that the absolute
value of mis greater than or equal to 0.5 and lessthan 1.0, andx = m * 2N

See also: Idexp(), modf()

Returns
The mantissa value.
0 for both the mantissa and the exponent if x isO.

No error return.

106 Chapter 3 Functions

ANSI, stdio fscanf

fscanf

Reads and formats character data from the current position of a stream into the
specified locations.

Syntax

#i ncl ude <stdio. h>
int fscanf (FILE *stream const char *format [,
argunent]...);

Parameters
st r eam Pointer to FI LE structure.

f or mat Null-terminated format-control string, which controls the interpretation of the input
fields.

ar gument
Optional argument(s) specify location. Each argument must be a pointer to a variable
with atype that corresponds to a type specifier inf or mat . The resultsare
unpredictable if there are not enough arguments for the format specification. If there
are too many arguments, the extra arguments are evaluated but ignored.

Additional Information

The fscanf() function reads all charactersin st r eamup to the first whitespace
character (space, tab, or newline), or the first character that cannot be converted
accordingtof or mat .

Thef or mat parameter is as described in the scanf(') function.
See also: fprintf(), scanf(), sscanf()

Returns

The number of fields that were successfully converted and assigned, not including
fields that were read but not assigned.

EOF for an error or end-of-file on stream before the first conversion.

0if nofields were assigned.

C Library Reference Chapter 3 107

fseek ANSI, stdio

fseek

Moves the file pointer to a specified location in a stream.

Syntax

#i ncl ude <stdio. h>
int fseek (FILE *stream long offset, int origin);

Parameters
st r eam Pointer to FI LE structure.
of f set Number of bytes from origin.

ori gi n Initial position, specified as one of these, or beyond end-of-file. An attempt to
position the pointer before the beginning of the file causes an error.

Value M eaning

SEEK_CUR Current position of file pointer
SEEK_END End of file

SEEK_SET Beginning of file

Additional Information

This function clears the end-of-file indicator.

The next operation on the stream takes place at the new location. On a stream open

for update, the next operation can be either aread or awrite.

When afileis opened for appending data, the last 1/O operation determines the
current file pointer position, not where the next write would occur. If no I/O

operation has yet occurred on afile opened for appending, the file position is the start

of thefile.

For streams opened in text mode, fseek() has limited use because <CR><LF>

trand ations can cause unexpected results. The only fseek (') operations guaranteed to
work on streams opened in text mode are seeking with an offset of O relative to any
ori gi n value, or from the beginning of the file with an offset value returned by
ftell().

Results are undefined on devices incapable of seeking, like terminals and printers.
See also: ftell(), Iseek(), rewind()

Chapter 3 Functions

ANSI, stdio

fseek

Returns

Value Meaning
0 Successful
Not O Unsuccessful

C Library Reference

Chapter 3

109

fsetpos ANSI, stdio

fsetpos

Sets a stream's file pointer position-indicator.

Syntax

#i ncl ude <stdio. h>
int fsetpos (FILE *stream const fpos_t *pos);

Parameters
st r eam Pointer to FI LE structure.

pos File pointer position-indicator storage, which isobtained in a prior call to fgetpos().

Additional Information

This function clears the end-of-file indicator. After this call, the next operation on
the stream may be either input or output.

See also: fgetpos()

Returns

Value Meaning
0 Successful
Not O Error occurred; the function sets errno to one of these values:
EBADF The specified stream isnot avalid file descriptor or is not
accessible.
EINVAL Thestreamvaueisinvalid.

110 Chapter 3 Functions

stdio fstat

fstat

Gets information on the file associated with the specified file descriptor.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
int fstat (int handle, struct stat *buffer);

Parameters
handl e Descriptor referring to an open file.

buf f er Pointer to file-status structure st at .

Additional Information
The file-status structure st at isdefined in <sys/stat.h>.

If handl e refersto adevice, thesi ze andt i ne elementsin thest at structure are
not meaningful.

Fstat() invokesthe system call rq_a get file status and adds the number of
seconds between epoch time and January 1, 1978, plus the local timezone factor,
defined intzset(). This adjusts the time stamps of iRMX files to POSI X -standard
values.

This function performs atrandation of iRMX OS file ownership rightsand iRMX OS
accessrights to POSIX as described in <sys/stat.h>.

Seeaso: chmod(), filelength(), stat(), <sys/'stat.h>, tzset()

Returns
Value Meaning
0 Successful
-1 Error occurred and the function sets errno to EBADF, indicating an

invalid file descriptor

C Library Reference Chapter 3 111

ftell ANSI, stdio

ftell

Getsthe current position of the file pointer for a stream.

Syntax

#i ncl ude <stdio. h>
long ftell (FILE *strean);

Parameter

st r eam Pointer to FI LE structure.

Additional Information

When afileis opened for appending data, the last 1/0O operation determines the
current file pointer position, not where the next write would occur. For example, if a
file is opened for an append and the last operation was a read, the file position is the
point where the next read operation would start, not where the next write would start.
When afileis opened for appending, the file pointer is moved to end-of-file before
any write operation. If no I/O operation has yet occurred on afile opened for
appending, the file position is the beginning of thefile.

On devices incapable of seeking, such asterminals and printers, or when st r eam
does not refer to an open file, the return value is undefined.

Seedso: fseek(), Iseek()

Returns

The current file position expressed as an offset relative to the beginning of st r eam
The value returned may not reflect the physical byte offset for streams opened in text
mode, since text mode causes <CR><L F> trandation. Use ftell(') with the fseek()
function to return to file locations correctly.

1L on error, and the function sets errno to one of these values:

EBADF Bad file number. The stream argument is not a valid file descriptor
value or does not refer to an open file.

EINVAL Invalid argument. Aninvalid stream argument was passed to the
function.

112 Chapter 3 Functions

ftoa

ftoa

Converts a double value to a formatted string.

Syntax

#i ncl ude <stdlib. h>
char *ftoa (doubl e value, char *string, unsigned int
i pl aces,
unsi gned int fplaces);

Parameters
val ue Vaueto convert.

st ri ng Pointer to a character array where a null-terminated character string is written.

i pl aces
Desired number of significant integer digits (i i i) in the string.

f pl aces
Desired number of significant fractional digits (f f f) in the string. Aninteger
exponent (eee) also returnsin the string.

Additional Information
The converted string has this format:
[-1iii.fffE[-]eee

The value of the number istruncated, not rounded. The algorithm that ftoa() usesis
accurate to eighteen significant digits. If i pl aces plusf pl aces exceeds eighteen,
they are adjusted so that only eighteen significant digits are used.

For portability, use the sprintf() % conversion specifier. Usethe optional field
width and precision to control the number of fractional digits. The sprintf() %
conversion specifier produces a string in the format [-] d. dddE+ee, with one integer
digit left of the decimal point.

See also: sprintf()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 113

fwrite ANSI, stdio

fwrite

Writes a specified number of charactersto a stream.

Syntax

#i ncl ude <stdio. h>
size_t fwite (const void *buffer, size t size, size_t
count,
FILE *strean);

Parameters

buf f er Pointer to datato be written.

size Itemsizein bytes.

count Maximum number of itemsto be written.

st r eam Pointer to FI LE structure.

Additional Information

Thefile pointer associated with st r eam(if there is one) isincremented by the
number of bytes actually written.

If st r eamis opened in text mode, each <CR> is replaced with a <CR><LF> pair.
The replacement has no effect on the return value.

Seeadso: fread(), write()

Returns

The number of full items actually written, which may be less than count if an error
oCCurs.

On error, the file-position indicator cannot be determined.

114 Chapter 3 Functions

gcvt

gcvt
Converts a double value to a string of significant digits, and placesthemin a
specified location.

Syntax

#i ncl ude <stdlib. h>
char *gcvt (double value, int digits, char *buffer);

Parameters
val ue Vaueto convert.
di gi t s Number of significant digits stored.
buf f er Storage location for result. Should be large enough to accommodate the converted
value plus aterminating null character \ 0, which is automatically appended.
Additional Information
Thereisno provision for overflow.

The gevt() function attempts to produce significant digitsin decimal format. If this
isnot possible, it produces them in exponential format. Trailing zeros may be
suppressed in the conversion.

See also: atof(), atoi(), atol(), ecvt(), fevt()

Returns
A pointer to the string.

No error return.

C Library Reference Chapter 3 115

_get_arguments

_get_arguments

Sets up the standard C command line parser.

Syntax

#i nclude <rnx_c. h>
int _get_argunents (int *argc, char **argv, int
argv_size,
char *cnd_buf, int buf_size);

Parameters
argc Count of command line arguments.

argv Array of pointersto arguments.
argv_si ze
Size of ar gv array.
cmd_buf
Buffer containing parsed arguments pointed to by ar gv elements.
buf _si ze
Sizeof cnd_buf array.

Additional Information

This function makes successive callstorg_c_get_char to retrieve charactersone at a
time, parsing the command line into the standard ar gc/ ar gv for main().

The _get_arguments() function can be called during run-time; however, the startup
code normally invokes this function before your application calls main(). You can
modify the startup code if you have any application-specific initialization
reguirements that need to be performed before main(). Y ou can also modify the
startup code indirectly with the iRM X configuration process.

See also: Configuring the C library, System Configuration and Administration

Command Line Parsing

Since _get_argumentsusesrq_c get_char, the HI CLI isbypassed. Thisallows
UNIX-style"-x" flags to be interpreted exactly as expected by a portable C
application. Also, the case of each command line argument is preserved; the
arguments are not forced to either upper or lower case.

116 Chapter 3 Functions

_get_arguments

Apostrophe (") and quotation (") characters delimit strings on the command line.
Quoted strings permit the use of HI special characters within the string, removing the
semantics of any characters within the string. For example, if an ampersand (&) is
enclosed in quotation characters, the ampersand is no longer recognized as the
continuation character. The other special characters are the semicolon (;), the pipe
symbol (|), brackets ([and]), and the space.

Each of the pair of delimiters surrounding the string must be the same. To include
the quoting apostrophe or quotation character inside the string, you must specify the
guoting character twice, for example: "Enter the ""quoted string"" at the
pronpt ". You can achieve the same effect by using the apostrophe, for example:
"can't".

The parser reduces two successive apostrophes or quotation characters outside of
another pair of apostrophes or quotation characters to one apostrophe or quotation
character. For example, " " her e"" outside all pairs of quotation marksis reduced to
"her e". Thistakes place before parsing of the command line.

When a backdash (\) appears on the command line, the backslash is removed and the
next character is passed on to the application without interpretation. Thisis helpful in
porting programs that expect and use \ as an escape character.

See also: rq_c_get_char, System Call Reference, getopt()

Returns
0 always returns.

C Library Reference Chapter 3 117

getc, getchar ANSI, stdio

getc, getchar
Getc() reads a single character from a stream and increments the associated file
pointer to point to the next character; getchar () reads from stdin.
Syntax
#i ncl ude <stdio. h>
int getc (FILE *strean);
int getchar (void);
Parameter

st r eam Pointer to FI LE structure.

Additional Information
The getchar () macro isidentical to:
getc (stdin)

Getc() and getchar () areidentical to fgetc() and fgetchar (), but are macros rather
than functions.

See also: fgetc(), fgetchar(), putc(), putchar()

Returns
The integer value of the character read.

EOF on error or end-of-file. Since EOF isalegal integer value, use feof() or
ferror () to distinguish between an error and an end-of-file condition.

118 Chapter 3 Functions

DOS getch, getche

getch, getche

Getch() reads a single character from the console without echoing; getche() echoes
the character read.

Syntax
#i ncl ude <coni 0. h>

int getch (void);

i nt getche (void);
Additional Information

Neither function reads <Ctr|>-<C>.

When reading a function key or cursor-moving key, these functions must be called
twice; the first call returns O or 0xe0, and the second call returns the actual key code.

See also: cgets(), getchar(), ungetch()

Returns
The character read.

No error return.

C Library Reference Chapter 3 119

getenv ANSI, stdio

getenv
Searches the environment-variabl e table for a specified entry.

Syntax

#i ncl ude <stdlib. h>
char *getenv (const char *varnane);

Parameters

var nanme
Name of environment variable being sought. The var name argument should match
the case of the environment variable.

Additional Information
The getenv() function is case-sensitive.

Thefirst call to getenv() sets up an environment-variable table shared by al tasks
using the C library. A prototype for the table is contained in the file : config: r ?env.
When getenv() iscalled for the first time, the table isinitialized from : config:r?env.
Y ou can create an environment-variable file locally, : prog:r?env, that getenv() uses
in addition to :config:r?env, as abasis for the table. The maximum allowable
number of entriesin the environment-variable table is 40. Entriesin ther?env files
are of thisform:

varnanme = [ASClI| string]

A space character is required on both sides of the equal sign for fscanf() parsing.
For example, atypical entry in :config:r?env appears like this.

TZ = PST8PDT
See also: putenv(), tzset(),
Environment variables, System Configuration and Administration
Returns

A pointer to the environment-variable table entry containing the current string value
of var nane. To update the entry, pass this pointer to the putenv() call.

A null pointer if the given variable is not currently defined.

120 Chapter 3 Functions

_get_cs

_get_cs

Returns an application’s current code segment.

Syntax
#i nclude <rnx_c. h>

sel ector _get_cs (void);
Additional Information

Use this function for obtaining an application’s code segment. This function can be
used for all memory models, i.e., compact and large, and it is the only function which
can used for accessing a flat model application’s code segment.

See also: _get_ds(), _get_ss() commands

Returns

The current value of the code segment register.

C Library Reference Chapter 3 121

_get_ds

_get _ds

Returns an application’s current data segment.

Syntax
#i nclude <rnx_c. h>

sel ector _get_ds (void);

Additional Information

Use this function for obtaining an application’s data segment. This function can be
used for all memory models, i.e., compact and large, and it is the only function which
can used for accessing a flat model application’s data segment.

See also: _get_cs(), _get_ss() commands

Returns
The current value of the data segment register.

122 Chapter 3 Functions

_get_ss

_get_ss
Returns an application’s current stack segment.

Syntax
#i nclude <rnx_c. h>
sel ector _get_ss (void);

Additional Information

Use this function for obtaining an application’s stack segment. This function can be
used for all memory models, i.e., compact and large, and it is the only function which
can used for accessing a flat model application’s stack segment.

See also: _get_cs(), _get_ds() commands

Returns
The current value of the stack segment register.

C Library Reference Chapter 3 123

_get_info

_get_info
Obtains the C library information CI NFO_STRUCT for the calling task.

Syntax

#i nclude <rnx_c. h>
int _get_info (unsigned int count, CINFO STRUCT *ci nfo);

Parameters
count Number of elementsto be returned in Cl NFO_STRUCT.
ci nfo Pointer to Cl NFO_STRUCT.

Additional Information

The CI NFO_STRUCT, part of the resources allocated to each task that usesthe C
library, contains these elements:

Element Description

int num_eios bufs Number of EIOS buffers per open file connection
allocated on behalf of the calling task. Thisisused inthe
call torq_s open made by the fopen() or open()

functions.
unsigned long * Pointer to an array containing a counter for each
accounting configured function in the C library. The C library uses

this array to keep track of the number of times afunction
has been called since the library was loaded, and to
indicate whether or not afunction is configured.

unsigned short Size of the accounting array.

num_accounting

int num_clib_functs Number of functionsimplemented in this version of the C
Library.

unsigned char *flags One entry per function indicating whether the functionis
configured.

124 Chapter 3 Functions

_get_info

|:| Note

For flat model applications only, treat the accounting and flags
parameters as two separate fields each in the structure. The first
field has the parameter name listed above and is a near pointer.

The second field has the same name with _seg appended at the end.

It is a segment selector for the pointer. For example, accounting is
apointer and accounting_seg is the selector toit.

See also: _cstop(), <rmx_c.h>, set_info()

Returns
Value Meaning
0 Successful
-1 Unsuccessful

C Library Reference Chapter 3

125

getopt stdio

getopt

Gets the next argument option letter that matches recognized option letters.

Syntax

#i ncl ude <udi std. h>
char getopt (int argc, char **argv, char optstring);
char *optarg /* G obal variables affected by getopt() */
int optind

Parameters

argc, argv
Standard command line arguments passed to main().

optstring
A string of recognized option letters.
Additional Information

This function compares command line arguments found in ar gv with opt st ri ng.
The found argument isindicated in the global variables opt ar g and opt i nd, where
opt ar g points to the argument, and opt i nd is set to the ar gv index of the next
argument on the command line. On return from get opt , opt ar g is set to point to
the start of the option argument, if any.

If aletter inopt st ri ng isfollowed by acolon, the option is expected to have an
argument that may be separated by white space in the command line.

See also: _get_arguments

Returns
The next letter in ar gv that matches aletter in opt st ri ng.

EOF when all options have been processed.

126 Chapter 3 Functions

getpid, getuid

getpid, getuid
Getpid gets the calling task's connection token (process ID); getuid gets the calling
task's user ID.

Syntax

#i ncl ude <process. h>
pidt getpid (void);
uid t getuid (void);

Additional Information
Getuid() invokes the system callsrqg_get_default_user and rq_inspect_user.
See also: rq_get default_user, rq_inspect_user, System Call Reference,

mktemp()
Returns

No error return.

C Library Reference Chapter 3 127

_get_rmx_conn stdio

_get_rmx_conn

Trandates afile descriptor to avalid iRM X connection token, usable as a parameter
iniRMX system calls.

Syntax

#i nclude <rnx_c. h>
sel ector _get_rmx_conn (int handle);

Parameter

handl e Descriptor referring to an open file.

Additional Information

Use this function in code that mixes C library functions with direct IRMX system
cals.

File descriptors are maintained on a per-task basis. When afileis opened, asmall,
non-negative file descriptor is returned as specified by POSIX. Thefile descriptor is
not an iRM X connection; it isan index into an internal table of iIRM X connections.

|:| Note

C string tokens are char values separated by delimiter characters;
aniRMX connection tokenisasel ect or value. Do not confuse
the C concept of a character string token with the iIRMX connection
token.

See also: _put_rmx_conn, <rmx_c.h>

Returns
A valid iIRMX connection token.

-1 if unsuccessful.

128 Chapter 3 Functions

ANSI, stdio gets

gets

Getsaline from stdin and stores it in the specified location.

Syntax
#i ncl ude <stdio. h>
char *gets (char *buffer);
Parameter
buf f er Storage location for input string.

Additional Information

Theline consists of all characters up to and including the first newline character \ n.
The gets() function replaces the newline character with anull character \ 0 before
returning the line.

The fgets() function retains the newline character.
Seedso: fgets(), fputs(), puts()

Returns
Returns its argument if successful.

A null pointer on error or end-of-file. Useferror() or feof() to determine which one
has occurred.

C Library Reference Chapter 3 129

getw stdio

getw
Reads the next integer from a stream and increments the associated file pointer (if
there is one) to point to the next unread value.

Syntax

#i ncl ude <stdi o. h>
int getw (FILE *strean);

Parameter

st r eam Pointer to FI LE structure.

Additional Information
The getw() function does not assume any specia alignment of itemsin the stream.

The getw() function is provided primarily for compatibility with previous libraries.
Portability problems may occur with getw(), since the integer size and byte ordering
can differ across systems.

See also: putw()

Returns
The integer value read.

EOF on error or end-of-file. Since the EOF valueis also alegitimate integer value,
use feof () or ferror () to verify an end-of-file or error condition.

130 Chapter 3 Functions

ANSI gmtime

gmtime

Converts atime value to a structure.

Syntax

#i nclude <tine. h>
struct tm*gntime (const tine_t *tiner);

Parameter

ti mer Pointer to stored t mstructure, which represents the seconds elapsed since epoch time.
Thisvalueis usually obtained from a call to the time() function.

Additional Information

The gmtime() function breaks down thet i ner value and storesit in at mstructure.
The structure result reflects GMT, not local time.

The gmtime(), mktime(), and localtime() functions use a single statically allocated
structure to hold the result. Subsequent calls to these functions destroy the result of
any previous call.

See also: asctime(), localtime(), time(), <time.h> for description of t m
structure
Returns
A pointer to thet m structure.

No error return.

C Library Reference Chapter 3 131

is Functions

ANSI

iIs Functions

Test integers representing ASCII characters for specified conditions.

isxdigit (int c);

Syntax

#i ncl ude <ctype. h>
int isalnum (i
int isalpha (i
int isascii (i
int iscntrl (i
int isdigit (i
int isgraph (i
int islower (i
int isprint (i
int ispunct (i
int isspace (i
int isupper (i
i nt

Parameter

c Integer to be tested.

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

Additional Information

These functions are implemented as functions and macros. The test conditions are:

Function
isalnum()
isalpha()
isascii()
iscntrl()
isdigit()
isgraph()
islower()
isprint()
ispunct()
isspace()
isupper()
isxdigit()

132 Chapter 3

Test Conditions

Alphanumeric (A-Z, a-z, or 0-9)

Letter (A-Z or a-2)

ASCII character (0x00-0x7F)

Control character (0x00-0x1F or OX7F)
Digit (0-9)

Printable character except space
Lowercase letter (a-2)

Printable character (0x20-0x7E)
Punctuation character

White-space character (0x09-0x0D or 0x20)
Uppercase letter (A-2)

Hexadecimal digit (A-F, af, or 0-9)

Functions

ANSI is Functions

All of these functions except isascii() produce a defined result only for integer values
corresponding to the ASCII character set, or for the nonASCII value EOF.

See also: toascii(), tolower(), toupper()

Returns
Value M eaning
Not 0 Theinteger satisfies the test condition.
0 It does not.

C Library Reference Chapter 3 133

isatty stdio

Isatty
Determines whether afile descriptor is associated with a character device: a
terminal, console, printer, or seria port.

Syntax

#i ncl ude <io. h>
int isatty (int handle);

Parameter

handl e Descriptor referring to device to be tested.

Returns

Value Meaning

Not 0 The deviceis acharacter device.

0 Itisnot. If handl e isaninvalid file descriptor, the function also sets
errno to EBADF.

134 Chapter 3 Functions

itoa

itoa
Converts an integer of the specified base to a null-terminated string of characters and
storesit.

Syntax
#i nclude <stdlib. h>
char *itoa (int value, char *string, int radix);
Parameters
val ue Number to convert.

st ri ng String result, up to 17 bytes.
radi x Specifiesthe base of val ue; must be in the range 2-36.

Additional Information

If radi x equals 10 and val ue is negative, the first character of the stored st ri ng is
theminussign (-).

If radi x isgreater than 10, digitsin the converted string representing values 10
through 35 are the characters a through z.

See also: Itoa(), ultoa()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 135

itoh

itoh
Converts an integer into the equivalent null-terminated, hexadecimal string and stores
it.

Syntax

#i ncl ude <stdlib. h>
char *itoh (int n, char *buffer);

Parameters

n Integer to convert.

buf f er Pointer to astring. The buffer must be large enough to hold the largest integer on the
target system.

Additional Information

Theitoh() function converts all non-numeric hexadecimal charactersto lower case.
This function also does not place aleading O character in the buffer.

For portability, use the sprintf() % x conversion specifier.
See also: sprintf()

Returns
A pointer to the converted string.

No error return.

136 Chapter 3 Functions

ANSI

labs

labs

Calculates the absolute value of along integer.

Syntax
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
long Iabs (long n);
Parameter

n Long integer to calculate absolute value for.
See also: abs(), fabs(), cabs()

Returns
The absolute value result.

No error return.

C Library Reference

Chapter 3

137

Idexp ANSI

ldexp

Computes a real number from the mantissa and exponent.

Syntax

#i ncl ude <math. h>
doubl e I dexp (double x, int exp);

Parameters
X Mantissa value.
exp Integer exponent.

See also: frexp(), modf()

Returns
Returnsx * 2€XP,

+HUGE_VAL (depending on the sign of x) on overflow, and the function sets errno
to ERANGE.

This function does not return standard ANSI domain or range errors.

138 Chapter 3 Functions

ANSI Idiv

Idiv
Divides numerator by denominator, and computes the quotient and remainder.

Syntax

#i ncl ude <stdlib. h>
Idiv_t Idiv (long int numer, long int denom;

Parameters

numer Numerator.

denom Denominator. If the denominator is O, the program will terminate with an error
message.

Additional Information

The sign of the quotient is the same as that of the mathematical quotient. Its absolute
valueisthe largest integer that is less than the absolute value of the mathematical
quotient.

Theldiv() function is similar to the div() function, except that the arguments and the
members of the returned structure are long integers.

See also: div()

Returns

Al di v_t structure, comprising both the quotient and the remainder, defined in
<stdlib.h>.

C Library Reference Chapter 3 139

Ifind

Ifind

Performs alinear search for a specified key in an unsorted array.

Syntax

#i ncl ude <search. h>
char *Ifind (const void *key, const void *base,
unsi gned int *num unsigned int w dth,
int (*conmpare) (const void *el end,
const void *elen));

Parameters

key Value being sought.

base Pointer to base of the array to be searched.
num Number of elementsin the array.

wi dt h Width of elementsin bytes.

conpar e
Pointer to a user-supplied routine that compares two array elements, el eml and
el en?, and returns a value specifying their relationship.

el enl Pointer to the key for the search.
el en2 Pointer to the array element to be compared with the key.

Additional Information

Thelfind() function calls the conpar e routine one or more times during the search,
passing pointersto two array elements on each call. This routine must compare the
elements, then return anon-0 value if the elements are different, or 0 if the elements
areidentical.

See also: bsearch(), Isearch(), gsort()

Returns
A pointer to the array element that matches key.

A null pointer if amatch is not found.

140 Chapter 3 Functions

ANSI localeconv

localeconv
Gets detailed information on local e settings.

Syntax
#i ncl ude <l ocal e. h>

struct | conv *local econv (void);
Additional Information

Thisinformationisstored in al conv structure, defined in <locale.h>. Subsequent
callsto setlocale() with category valuesof LC_ALL, LC_MONETARY, or
LC _NUMERIC will overwrite the contents of this structure.

See also: <locale.h>, setlocale(), streoll(), strftime(), strxfrm()

Returns

A pointer to an| conv structure.

C Library Reference Chapter 3 141

localtime ANSI, stdio

localtime

Convertsatime stored asat i me_t value and corrects for the local timezone.

Syntax

#i nclude <tine. h>
struct tm*localtime (const time_t *timer);

Parameter

ti mer Pointer to stored time, which represents the seconds elapsed since epoch time; this
value is usually obtained from the time() function.

Additional Information

The localtime() function makes corrections for the local timezone if the user first
sets the environment variable TZ. Then, three other environment variables
(ti mezone, dayl i ght , andt znane) are automatically set aswell.

See also: Description of these variablesin tzset()
TZ isnot part of the ANSI standard definition of localtime().

The gmtime(), mktime(), and localtime() functions use a single statically allocated
t m structure for the conversion. Each call to one of these functions destroys the
result of the previous call.

See also: asctime(), ctime(), gmtime(), time()

Returns

A pointer to thet mstructure, which has the integer elements described in <time.h>.

142 Chapter 3 Functions

ANSI log, log10

log, log10
Log() calculates the natural logarithm of avalue and log10() calculates the base-10
logarithm.

Syntax

#i ncl ude <math. h>
doubl e I og (double x);
doubl e 10g10 (double x);
Parameter
X Value to find logarithm for.

See also: exp(), matherr(), pow()

Returns
The logarithm of the argument x.

-HUGE_VAL if x is negative; the function printsa DOMAIN error message to stderr
and setserrno to EDOM.

-HUGE_VAL if x is0; the function prints a SING error message to stderr and sets
errno to ERANGE.

These functions do not return standard ANSI domain or range errors.

C Library Reference Chapter 3 143

longjmp ANSI

longjmp
Restores the context, previously saved by setjmp().

Syntax

#i ncl ude <setjnp. h>
void longjnmp (jnmp_buf context, int value);

Parameters

cont ext
Context previously stored by setjmp().

val ue Vaueto be returned to setjmp(); must be non-0. If O, the value 1 isreturned to the
previous setjmp() call.

Additional Information

The previous call to setjmp(') causesthe current context to be saved incont ext . A
subsequent call to longjmp() restores the context and returns control to the point
immediately following the corresponding setjmp() call. Execution resumes asif
val ue had just been returned by setjmp().

The values of al local variables (except register variables) that are accessible to the
routine receiving control contain the values they had when longjmp() was called.
The values of register variables are unpredictable.

Observe these restrictions when using longjmp():

« Do not assume that the values of the register variables will remain the same.
The values of register variables in the routine calling setjmp() may not be
restored to the proper values after longjmp() is executed.

« Do not use longjmp() to transfer control out of an interrupt-handling routine.

See also: setimp()

Returns
Nothing.

144 Chapter 3 Functions

Isearch

Isearch

Performs a linear search for a specified value in an unsorted array, appending the
valueto the array if not found.

Syntax

#i ncl ude <search. h>
char *|search (const void *key, const void *base
unsi gned i nt
*num unsigned int width, int (*conpare)
(const void *eleml, const void *elenmR));

Parameters
key Value being sought.
base Pointer to base of the array to be searched.

num Number of elementsin the array.

wi dt h Width of elementsin bytes.

conpar e
Pointer to a user-supplied routine that compares two array elements, el eml and
el en?, and returns a value specifying their relationship.

el enl Pointer to the key for the search.
el en2 Pointer to the array element to be compared with the key.

Additional Information

Thelsear ch() function calls the conpar e routine one or more times during the
search, passing pointers to two array elements on each call. This routine must
compare the elements, then return a non-0 value if the elements are different, or O if
the elements are identical.

See also: bsearch(), Ifind()

Returns
A pointer to the array element that matches key.

A pointer to the newly added element in the array if amatch is not found.

C Library Reference Chapter 3 145

Iseek stdio

Iseek

Moves the file pointer to alocation specified as an offset from the originin afile.

Syntax

#i ncl ude <io. h>
#i ncl ude <uni std. h>
off _t Iseek (int handle, off_t offset, int origin);

| ong64 _| seek64(int handle, 1ong64 offset, int origin);

Parameters

handl e Descriptor referring to an open file.

of f set Number of bytesfrom ori gi n, specified as one of these constants, or beyond end-of-
file.

Value .

Meaning
SEEK_SET Beginning of file
SEEK_CUR Current position of file pointer
SEEK_END End of file

ori gi n Initial position.

Additional Information
The next operation on the file occurs at the new location.

The lseek () function can reposition the pointer anywhere in afile and beyond the end
of thefile. An attempt to position the pointer before the beginning of the file causes
an error.

Results are undefined on devices incapable of seeking, like terminals and printers.

The _Iseek64() function allows the use of 64-bit offsets used with the extended
iRMX filesystems.

Seeadso: fseek()

Returns
The offset, in bytes, of the new position from the beginning of the file.

-1L on error, and the function sets errno to one of these values:

146 Chapter 3 Functions

stdio Iseek

EBADF Invalid file descriptor.

EINVAL Invalid valuefor ori gi n, or position specified by of f set isbefore the
beginning of thefile.

C Library Reference Chapter 3 147

Itell stdio

[tell

Returns the absolute position of the file pointer for the next 1/0 operation.

Syntax

#i ncl ude <io. h>
long Itell (int handle);

long64 _Itell64 (int handle);

Parameter

handl e Descriptor referring to an open file.

Additional Information
Thisfunctionis equivalent to:
| seek (handl e, OL, SEEK CUR)

The _tell64() function returns the offset as a 64-bit offset, for use with the extended
iRMX filesystems.

Seedso: Iseek()

Returns
The absolute position of the next bytein the file.
-1 with errno set to EBADF if unsuccessful.

148 Chapter 3 Functions

Iltoa

ltoa
Converts along integer of the specified base to a null-terminated string of characters
and storesit.

Syntax

#i ncl ude <stdlib. h>
char *lItoa (long value, char *string, int radix);

Parameters
val ue Number to convert.
st ri ng String result, up to 34 bytes.

radi x Baseof val ue; must be in the range 2-36.

Additional Information

If radi x equals 10 and val ue is negative, the first character of the stored string is
the minussign (-).

If radi x isgreater than 10, digitsin the converted string representing values 10
through 35 are the characters a through z.

See also: itoa(), Itos(), utoa()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 149

Itoh

[toh

Converts along integer to a null-terminated hexadecimal string and storesiit.

Syntax

#i ncl ude <stdlib. h>
char *ltoh (unsigned |long val ue, char *string);

Parameters

val ue Integer to convert.

st ri ng String result, up to 34 bytes.

Additional Information
This function does not place leading O characters in the result.

This function produces hexadecimal charactersin lower case (a- f). For portability,
use the sprintf() %Ix conversion specifier.

See also: sprintf()

Returns
A pointer to the converted string.

No error return.

150 Chapter 3 Functions

Itos

ltos
Converts along integer to a null-terminated string of characters and storesiit;
negative base values are acceptable.

Syntax

#i ncl ude <stdlib. h>
char *ltos (long value, char *string, int radix);

Parameters
val ue Number to convert.
st ri ng String result, up to 34 bytes.

radi x Baseof val ue; must be in the range 2 to 36 or -2 to -36.

Additional Information
The absolute value of r adi x is passed to this function as the number base.

Digitsin the converted string representing values 10 through 35 are the charactersa
through z.

Seedso: Itoa(), ltoh()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 151

malloc ANSI

malloc
Allocates a memory block of the specified size.

Syntax
#i nclude <stdlib. h>
void *malloc (size_t size);
Parameter
size Bytestoalocate.

Additional Information

The allocated block may be larger than the specified size, including space required
for alignment and maintenance information. The memory is suitably aligned for
storage of any type of object.

Always examine the return from malloc(), even if the amount of memory requested
issmall.

See also: calloc(), free(), realloc()

Returns

A pointer to the allocated space. To get a pointer to atype other than voi d, usea
type cast on the return value.

For asize of 0 bytes, malloc() returnsa NULL.
If unsuccessful, it returnsa NULL pointer.

|:| Note

For asize of 0 bytes, the NULL returned by malloc() isa
non-standard i mplementation.

152 Chapter 3 Functions

matherr

matherr

Processes errors generated by the functions of the math library.

Syntax

#i ncl ude <math. h>
int matherr (struct exception *except);

Parameter

except Pointer to an exception structure.

Additional Information

When an error occursin amath function, matherr () is called with a pointer to the
except i on structure defined in <math.h>.

See also: acog(), asin(), atan(), Bessel functions, cos(), exp(), log(), pow(),
sin(), sart(), tan()
Returns

Value Meaning
Not O Successful
0 Error occurred

C Library Reference Chapter 3 153

mblen ANSI

mblen
Gets the length and determines the validity of a multibyte character.

Syntax
#i ncl ude <stdlib. h>

int mblen (const char *nbstr, size_t count);
Parameters
mbstr A pointer to a sequence of bytes (a multibyte character) to check.
count The number of bytesto check.

See also: mbstowcs(), mbtowc(), westombs(), wetomb()

Returns
Thelength, in bytes, of the multibyte character.
0if nbst r isanull pointer or the object that it points to is the wide-character null.

-1if the object that nbst r points to does not form a valid multibyte character within
thefirst count characters, upto MB_CUR_MAX.

154 Chapter 3 Functions

ANSI mbstowcs

mbstowcs

Converts a sequence of multibyte characters to a sequence of wide characters, as
determined by the current locale; stores the resulting wide-character string at the
specified address.

Syntax

#i nclude <stdlib. h>
size_t mbstowcs (wchar _t *wcstr, const char *1nmbstr,
size_t count);

Parameters
westr The address of a sequence of wide characters.
mbstr The address of a sequence of multibyte characters.

count The number of multibyte charactersto convert.

Additional Information

If mbstowcs() encounters the null character \ 0 either before or when count occurs,
it converts the null character to awide-character null and stops. Thus, the wide-
character string at west r isnull-terminated only if it encounters anull character
during conversion.

If the sequences pointed to by west r and mbst r overlap, the behavior is undefined.
Theresult is similar to a series of callsto mbtowc().
Seealso: mblen(), mbtowc(), westombs(), wetomb()

Returns

The number of converted multibyte characters or count if the wide-character string
is not null-terminated.

-1 on encountering an invalid multibyte character.

C Library Reference Chapter 3 155

mbtowc ANSI

mbtowc

Converts a multibyte character to a corresponding wide character.

Syntax

#i nclude <stdlib. h>
int mbtowc (wchar_t *wchar, const char *nbchar, size_t
count);

Parameters
wchar A pointer to the wide character produced.
mbchar A pointer to a sequence of bytes (a multibyte character).

count The number of bytesto check.

Additional Information
M btowc() will not examine more than MB_CUR_MAX bytes.
Seealso: mblen(), mbstowcs(), westombs(), wetomb()

Returns
Thelength in bytes of the multibyte character.
0if nbchar isanull pointer or the object that it pointsto is a wide-character null.

-1if the object that nbchar pointsto does not form avalid multibyte character within
thefirst count characters.

156 Chapter 3 Functions

memccpy

memccpy
Copies characters from one buffer to another, halting when the specified character is
copied or when the specified number of bytes have been copied.

Syntax

#i ncl ude <string. h>
void * menccpy (void *dest, void *src, int c,

unsi gned int count);

Parameters

dest Pointer to destination buffer.

src Pointer to source buffer.

c Last character to copy.

count Number of characters.

See also: memchr(), memcmp(), memcpy(), memset()

Returns
A pointer to the bytein dest that immediately follows the character c.
A null pointer if unsuccessful.

C Library Reference Chapter 3 157

memchr ANSI

memchr
Finds the first occurrence of a character in a buffer and stops when it finds the
character or when it has checked the specified number of bytes.
Syntax
#i ncl ude <string. h>
void *nmenchr (const void *buf, int c, size_t count);
Parameters
buf Pointer to buffer.
c Character to look for.
count Number of charactersto check for.

See also: memccpy(), memcmp(), memcpy(), memset(), strchr()

Returns
A pointer to the first location of ¢ in buf .
A null pointer if unsuccessful.

158 Chapter 3 Functions

ANSI memcmp

memcmp
Compares the specified number of bytes of two buffers and returns a value indicating
their relationship.

Syntax

#i ncl ude <string. h>
int mencnp (const void *bufl, const void *buf2, size_t
count);

Parameters

buf1 First buffer.

buf2 Second buffer.

count Number of characters.

See also: memccpy(), memchr(), memcpy(), memset(), strcmp(), strncmp()

Returns
Value Meaning
<0 buf1 less than buf2
=0 buf1 identical to buf2
>0 buf1 greater than buf2

C Library Reference Chapter 3 159

memcpy ANSI

memcpy

Copies specified number of bytes from a source buffer to a destination buffer.

Syntax

#i ncl ude <string. h>
void *nmencpy (void *dest, const void *src, size_t count);

Parameters
dest Buffer to copy to.
src Buffer to copy from.

count Number of charactersto copy.

Additional Information

If the source and destination overlap, memcpy() does not ensure that the original
source bytes in the overlapping region are copied before being overwritten. Use
memmove() to handle overlapping regions.

See also: memccpy(), memchr(), memcmp(), memmove(), memset(),
strepy(), strnepy()

Returns

A pointer to dest .

160 Chapter 3 Functions

memicmp

memicmp

Compares characters in two buffers byte-by-byte (case-insensitive).

Syntax
#i ncl ude <string. h>
int memcnmp (void *bufl, void *buf2, unsigned int count);
Parameters
buf1 First buffer.
buf2 Second buffer.
count Number of charactersto compare.
See also: memccpy(), memchr(), memcmp(), memcpy(), memset(), stricmp(),
strnicmp()
Returns
The relationship of the two buffers.
Value Meaning

<0 buf1 less than buf2
=0 buf1 identical to buf2
>0 buf1 greater than buf2

C Library Reference Chapter 3 161

memmove ANSI

memmove

Moves a specified number of bytes from a source buffer to a destination buffer.

Syntax

#i ncl ude <string. h>
voi d *nmemove (void *dest, const void *src, size_t
count);

Parameters

dest Pointer to destination buffer.

src Pointer to source buffer.

count Number of charactersto copy.

Additional Information

If some regions of the source area and the destination overlap, this function ensures
that charactersin the overlapping region are copied before being overwritten.

See also: memccpy(), memcpy(), strncpy()

Returns

A pointer to dest .

162 Chapter 3 Functions

ANSI memset

memset

Sets characters in a buffer to a specified character.

Syntax
#i ncl ude <string. h>
void *nemset (void *dest, int c, size_t count);
Parameters
dest Pointer to destination.
c Character to set to.
count Number of charactersto set.

See also: memccpy(), memchr(), memcmp(), memcpy(), strnset()

Returns

A pointer to dest .

C Library Reference Chapter 3 163

mkdir

mkdir

Creates a new directory with the specified ownership and access rights.

Syntax

#i ncl ude <direct. h>
int nmkdir (const char *pathname, node_t pnode);

Parameters

pat hname
Pathname of the directory to create. Name the new directory according to the rules
for theiIRMX OS.

See also: Command Reference for rules for naming directories

pnode Permission mode: the ownership and access rights as one or more of the manifest
constants described in chmod(). Join more than one constant with the bitwise-OR
operator (|).

Additional Information

The mkdir (') function applies the default file-permission mask (set with the
umask() function) to pnode before setting the permissions.

By default, this function creates directories that all tasks can share. If O_EXCL is
ORed with prode, the file is opened with share-with-none permission, like UNIX.

This function performs atrandation of POSIX file ownership rights and POSIX
accessrightsto the iIRMX OS equivalent as described in chmod().

See also: <errno.h>, chmod(), umask()

Returns
Value Meaning
0 Successful
-1 Unsuccessful; the function sets errno to EACCES, EEXIST, ENOENT,

ENOSPC, or ENOTDIR

164 Chapter 3 Functions

mktemp

mktemp

Creates a unique temporary filename.

Syntax
#i ncl ude <i o. h>

char *nktenp (char *tenplate);

Parameter

tenpl ate
Filename template.

Additional Information

Creates a unique filename by modifying a template argument in the form:

baseXXXXXX
Where:
base Isthe part of the new filename that you supply, and the Xs are

placeholders for the part supplied by mktemp().

This function preserves base and replaces the six trailing X's with an alphanumeric
character followed by afive-digit value. The alphanumeric character is0 the first
time mktemp() is called with a given template. The five-digit valueisaunique
number based upon the calling task ID.

In subsequent calls from the same task with copies of the same template, mktemp()
checksto seeif previoudly returned names have already been used to createfiles. If
no file exists for a given name, mktemp() returns that name. If filesexist for all
previoudly returned names, mktemp() creates a new name by replacing the
alphanumeric character in the name with the next available lowercase letter. For
example, if thefirst name returned ist 012345 and this name is used to create afile,
the next name returned will bet a12345. When creating new names mktemp()
uses, in order, 0 and then the lowercase letters a through z.

Thefirst call to mktemp(') modifies the original template. If you call mktemp()
again with the same template (that is, the original one), an error returns.

The mktemp(') function does not create or open files, only filenames.

See also: fopen(), getpid(), open(), tmpnam(), tmpfile()

C Library Reference Chapter 3 165

mktemp

Returns
A pointer to the modified template.

A null pointer if thet enpl at e argument is badly formed or no more unique names
can be created from the given template.

166 Chapter 3 Functions

ANSI, stdio mktime

mktime

Converts the time/date structure into a fully defined structure with normalized values
and then convertsit to calendar time.

Syntax

#i nclude <tine. h>
time_t nktine (struct tm *tinmedate);

Parameter

ti medate
Time/date structure, t m possibly incomplete.

Additional Information

The converted time has the same encoding as the values returned by the time()
function.

The elements of the t mstructure contain the values described in <time.h>.

The original values of thet m wday andt m yday componentsint m and the original
values of the other components are not restricted to their normal ranges. 1f
successful, mktime() setsthe values of t m wday and t m yday appropriately, and
sets the other components to represent the specified calendar time, but with their
values forced to the normal ranges; the final value of t m nday is not set until

tm non andt m year are determined.

The gmtime() and localtime() functions use a single statically allocated buffer for
the conversion. If you supply this buffer to mktime(), it destroys the previous
contents.

See also: asctime(), ctime(), gmtime(), localtime(), time(), <time.h>

Returns
The specified calendar timeencoded asa ti ne_t.
-lcastastypeti me_t if the calendar time cannot be represented.

-1lif ti nedat e references a date before epoch time.

C Library Reference Chapter 3 167

modf ANSI
modf
Splitsavalueinto fractional and integer parts, retaining the sign.
Syntax
#i ncl ude <math. h>
doubl e nodf (double x, double *intptr);
Parameters
X Value to split.
i nt ptr Pointer to integer portion stored as a double value.
See also: frexp(), Idexp()
Returns
The signed fractional portion of x.
No error return.
168 Chapter 3 Functions

onexit

onexit
Registers afunction to be called when the task terminates normally.

Syntax

#i ncl ude <stdlib. h>
onexit_t onexit (onexit_t func);

Parameter

func Pointer to function(s) to be called on normal termination using exit(). The functions
passed to onexit() cannot take parameters.

Additional Information

Successive calls to onexit() create aregister of functions that execute in LIFO (last-
in, first-out) order. You can register a maximum of 32 functions.

The ANSI-standard atexit() function does the same thing as onexit(); useit instead
of onexit() when ANSI portability is desired.

See also: atexit(), exit()

Returns
A pointer to the function(s) to call.
A null pointer if the number of functions exceeds 32.

C Library Reference Chapter 3 169

onexit

open
Opens afile and preparesit for subsequent reading or writing.

Syntax

#i nclude <fcntl. h>
#i ncl ude <i 0. h>
#i ncl ude <sys/stat.h>
i nt open (const char *filenane, int oflag [, int pnode]);

Parameters

fil ename
Filename of file to open.

of ag Open mode (type of operations allowed) as an integer expression formed from one or
more of the manifest constants defined in <fentl.h>. Of | ag must contain either
O_RDONLY, O RDWR, or O WRONLY. Combine two or more of the constants
with the bitwise-OR operator (|). Thereisno default.

prode Permission mode, required when specifying O CREAT. Ignored if the file exists.
Specifies the file's ownership and access rights, which are set when the new fileis
closed for the first time. Contains one or more of the manifest constants described in
chmod().

Additional Information

The open() function applies the default file-permission mask set with the umask()
function to prode before setting the permissions.

By default, this function createsfiles that all tasks can share. If O_EXCL is ORed
with prode, the file is opened with share-with-none permission, like UNIX.

This function makes the system call rq_s_open and performs a trandlation of POSIX
file ownership rights and POSI X access rights to the iRM X OS equivalent as
described in chmod().

See also: chmod(), close(), creat(), dup(), dup2(), <fcntl.h>, fopen(),
<syg/stat.h>, sopen(), umask(), in this manual
rq_s open, System Call Reference

170 Chapter 3 Functions

onexit

Returns
A file descriptor for the opened file.
-1 on error, and the function sets errno to one of these values:

EACCES Given pathnameisadirectory; or
an attempt was made to open a read-only file for writing; or
asharing violation occurred (the file's share mode does not allow the
specified operations).

EEXIST The O_CREAT and O_EXCL flags are specified, but the named file
already exists.

EINVAL Aninvalid of | ag or pnode argument was given.
EMFILE No more file descriptors available (too many open files).
ENOENT File or pathname not found.

C Library Reference Chapter 3 171

opendir stdio

opendir
Opens adirectory stream that corresponds to the directory name, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.
Syntax

#i ncl ude <sys/types. h>
#i nclude <dirent. h>

DI R *opendir (const char *nane);

Parameters

nanme
Name of directory to open.

Returns

The opendir() function returns a pointer to the directory stream or NULL if an error
occurred.

EACCES Permission denied.

EMFILE Too many file descriptorsin use by process.
ENFILE Too many files are currently open in the system.
ENOENT Directory does not exist, or name is an empty string.
ENOMEM Insufficient memory to complete the operation.
ENOTDIR Nameisnot adirectory.

See also: open(2), readdir(3), closedir(3), rewinddir(3)

172 Chapter 3 Functions

ANSI, stdio perror

perror

Prints an error message to stderr.

Syntax

#i ncl ude <stdio. h>
void perror (const char *string);

Parameter
stri ng Messageto print.

Additional Information

The st ri ng argument printsfirst, followed by a colon, the system error message for
thelast library call that produced the error, and a newline character.

If stringisanull pointer or apointer to anull string, perror () prints only the
system error message.

The actual error number is stored in the variable errno. The system error messages
are accessed through sys_err | i st, an array of messages ordered by error number.
The perror () function prints the appropriate error message by using the errno value
asanindextosys_errlist. Thevaueof thevariablesys nerr isdefined asthe
maximum number of elementsinthesys_errli st array.

To produce accurate results, call perror () immediately after an error occurs.
Otherwise, the errno value may be overwritten by subsequent calls.

See also: clearerr(), <errno.h>, ferror(), strerror()

Returns
Nothing.

C Library Reference Chapter 3 173

pow ANSI

pow

Computes a value raised to the power of another value.

Syntax

#i ncl ude <math. h>
doubl e pow (doubl e x, double y);

Parameters
X Number to be raised.
y Power to raise x to.

Additional Information

The pow() function does not recognize integral double values greater than 264, such
as 1.0E100.

Seealso: exp(), log(), sart()

Returns
The value of xV.
lifxisnot0.0andy isO0.0.
0, and the function setserrno to EDOM if x is0.0 and y is negative.

0 ,and the function sets errno to EDOM and prints a DOMAIN error message to
stderr if both x andy are 0.0, or if x isnegativeand y isnot an integer.

+HUGE_VAL, and setserrno to ERANGE if an overflow results. No messageis
printed on overflow or underflow.

This function does not return standard ANSI domain or range errors.

174 Chapter 3 Functions

ANSI, stdio printf

printf

Prints formatted data to stdout.

Syntax

#i ncl ude <stdio. h>
int printf (const char *format [, argument]...);

Parameters

f or mat Formatted string consisting of ordinary characters, escape sequences, and (if
arguments follow) format specifications that determine the output format for the
arguments.

ar gument
Optional arguments.

Additional Information

The ordinary characters and escape sequences are copied to stdout in order of their
appearance. For example, theline:

printf("Line one\n\t\tLine tw\n");
produces the output:

Li ne one
Li ne two

Format specifications always begin with a percent sign (%9 and are read left to right.
When printf() encountersthe first format specification, it converts and outputs the
value of the first argument after f or mat . The second format specification causes
printf() to convert and output the second argument, and so on. If there are more
arguments than format specifications, printf() ignores the extra arguments. The
results are undefined if there are fewer arguments than format specifications.

C Library Reference Chapter 3 175

printf

ANSI, stdio

Format Specification

A format specification, consisting of optional and required elements, has the form:

%flags] [width] [.precision] [F| N| h|] I | L] type

Each element of the format specification is a single character or number signifying a
particular format option. The optional ar gunent list provides values for thewi dt h
and pr eci si on fields. The simplest format specification contains only the percent
sign and at ype character (for example, %). The optional fields, appearing before
therequired t ype character, control other aspects of the formatting.

These are the fieldsin aprintf() format specification:

Field
flags

width
precision

F.N

h I L

type

Description

Optional character or characters that control output justification and

sign printing, blanks, decimal points, and octal and hexadecimal

prefixes. More than one flag can appear in aformat specification.

See also: Flag Directives

Optional number that specifies minimum number of output characters.

Optiona number that specifies maximum number of characters printed

for al or part of the output field, or minimum number of digits printed

for integer values.

See also: Precision Specification

Optional prefixes that refer to the distance to the object being printed

(near or far). Fand N are not part of the ANSI definition for printf().

Optional prefixes that determine the size of the argument expected, as

shown below:

h Used with the integer typesd, i, 0, X, and X to specify that the
argument is short integer, or with u to specify short unsigned
int. 1f used with %p, it indicates a 16-bit pointer, which is
ignored.

I Used with d, i, 0, X, and X types to specify that the argument
islong integer, or with u to specify long unsigned integer;
also used with g, E, f, g, and G types to specify double rather
than float. If used with %p, it indicates a 32-bit pointer.

L Used with e, E, f, g, and G types to specify long double. Also
used with d, i, 0, X, and b types to specify 64-hit integer.

Required character that determines whether the associated argument is

interpreted as a character, a string, or a number.

See also: Type Field Characters

If apercent sign isfollowed by a character that has no meaning as aformat field, the
character is copied to stdout. For example, to print a percent-sign character, use %%

176 Chapter 3 Functions

ANSI, stdio

printf

Flag Directives

Thesef | ag directives may appear in aformat specification:

Flag

blank

M eaning

L eft justify the result within the given field
width.

Prefix the output value with a+ or - sign if the
output value is of asigned type.

If width is prefixed with 0, Os are added until
the minimum width is reached. If 0 and -
appear, the O isignored. If Ois specified with
an integer format (i, u, x, X, o, d), theOis
ignored.

Prefix the output value with ablank if the

output value is signed and positive; the blank
isignored if both the blank and + flags appear.

When used with the o, X, or X format, the #
flag prefixes any non-0 output value with O,
0x, or OX, respectively.

When used with the e, E, or f format, the #

flag forces the output value to contain a
decimal point in all cases.

When used with the g or G format, the # flag
forces the output value to contain a decimal
point in all cases and prevents the truncation
of trailing Os.

Ignored when used with ¢, d, i, u, or s.

Width Specification

Default
Right justify.

- sign appears only
for negative signed
values.

No padding.

No blank appears.

No blank appears.

Decimal point
appearsonly if digits
follow it.

Decimal point
appearsonly if digits
follow it. Trailing Os
are truncated.

C Library Reference

Thewi dt h specification is a non-negative decimal integer that controls the minimum
number of printed characters. If the number of charactersin the output valueisless
than the specified width, blanks are added to the | eft or the right of the values,
depending on whether the - flag is specified until the minimum width isreached. If
width is prefixed with O, printf() adds 0s until the minimum width is reached (not
useful for left-justified numbers).

The width specification never causes a value to be truncated. 1f the number of
charactersin the output value is greater than the specified width, or wi dt h is not
given, al characters of the value are printed, subject to the precision specification.

The width specification may be an asterisk (*), in which case an integer argument
fromthe ar gunent list suppliesthe value. The width specification must precede the

Chapter 3 177

ANSI, stdio

value being formatted in the ar gunent list. A nonexistent or small field width does
not truncate afield; if the result of a conversion iswider than the field width, the field
expands to contain the conversion result.

Precision Specification

The pr eci si on specification specifies a non-negative decimal integer, preceded by
aperiod (.), which specifies the number of charactersto print, the number of decimal
places, or the number of significant digits. The precision specification can cause
truncation of the output value, or rounding in the case of adouble value. If printf()
specifies preci si on is0 and the value to convert is 0, the result is no characters
output, as shown below:

printf("%0d", 0); /* No characters output */

The precision specification may be an asterisk (*), in which case an integer argument
from the argument list suppliesthe value. The precision argument must precede the
value being formatted in the argument list.

The interpretation of the precision value and the default precision (if omitted) depend
onthet ype, as shown below:

Type M eaning Default

d,i,u, 0,x,X Theprecision specifies the minimum If precisionisOor
number of digitsto print. If thenumber omitted entirely, or if
of digitsin the argument is less than the period (.) appears
precision, the output valueis padded on without a number
the left with Os. The value is not following it, the
truncated when the number of digits precision is set to 1.
exceeds precision.

e E The precision specifies the number of Default precisionis 6;

178 Chapter 3

digitsto print after the decimal point.
The last printed digit is rounded.

if precisionisO or the
period (.) appears
without a number
following it, no
decimal point is
printed.

Functions

ANSI, stdio printf

Type M eaning Default

f The precision value specifiesthe number Default precision is6;
of digits after the decimal point. If a if precisionisO, or if
decimal point appears, at least one digit the period (.) appears
appears beforeit. The valueis rounded without a number
to the appropriate number of digits. following it, no

decimal point is
printed.

0,G The precision specifies the maximum Six significant digits
number of significant digits printed. If are printed, with any
specified as O, treated as 1. trailing Os truncated.

c The precision has no effect. Character is printed.

s The precision specifies the maximum Characters are printed

number of charactersto print.
Characters in excess of precision are not
printed.

until anull character is
encountered.

If the argument corresponding to a double specifier isinfinite, indefinite, or not a
number (NAN), the printf() function gives this outpuit:

Value

+ infinity
- infinity
Indefinite

Output
1.#NFrandom-digits
-L#INFrandom-digits
digit.#INDrandom-digits

Not a number (NAN) digit #NANrandom-digits

Distance and Size Specification

The format specification fields F and N refer to the distance to the object being read
(near or far), and h and | refer to the size of the object being read (16-bit short or 32-
bit long). The F and N specifications are accepted, for compatibility with other
compilers, but they areignored. Thislist provides some example usage of F, N, h,

|, andL.

C Library Reference

Chapter 3 179

printf

ANSI, stdio

Type Field Characters

180

Program Code
printf ("%Ns");
printf ("%Fs");
printf ("%Nn");
printf ("%Fn");
printf ("%hp");
printf ("%lp");
printf ("%Nhn");
printf ("%NIn");
printf ("%Fhn");
printf ("%FIn");

Action

Print near string

Print far string

Store char count in near int
Store char count in far int

Print a 16-bit pointer (XXXXXXXX)
Print a 32-bit pointer (XXXXXXXX)
Store char count in near short int
Store char count in near long int
Store char count in far short int
Store char count in far int

The specifications" dhs" and " % s" are meaninglessto printf(). The specifications
"oNp" and " %-p" arealiasesfor " vhp" and" % p" for compatibility with earlier
compilers.

Thet ype character isthe only required format field for the printf() function. It
appears after any optional format fields and determines how the associated argument

isinterpreted.
Char Type
d int

i int

u int

o int

X int

X int

f double
e double
E double
g double

Chapter 3

Output Format

Signed decimal integer.

Signed integer.

Unsigned decimal integer.

Unsigned octal integer.

Unsigned hexadecimal integer, using abcdef.

Unsigned hexadecimal integer, using ABCDEF.

Signed value having the form [-]dddd.dddd, where dddd is
one or more decimal digits, depending upon the magnitude of
the number, and the requested precision.

Signed value having the form [-]d.dddd e [sign]ddd, where d
isasingle decimal digit, dddd is one or more decimal digits,
ddd is exactly three decimal digits, and signis+ or -.

Same as the e format, except that E introduces the exponent.
Signed value printed in f or e format (the one most compact
for the given value and precision). eisused only when the
exponent of the value isless than -4 or greater than or equal to
the precision. Trailing Os are truncated and the decimal point
appearsonly if any digitsfollow it.

Functions

ANSI, stdio printf

Char Type Output Format

G double Same as the g format, except that G introduces the exponent
(where appropriate).

c int Single character.

S string Characters printed up to the first null character \O or until the
precision value is reached.

n pointer Points to number of characters successfully written so far to
the stream or buffer; this value is stored in the integer whose
address is given as the argument.

p pointer Prints the address pointed to by the argument in aform

dependent on the memory mode!:

16-bit large or compact model caller: xxxx:yyyy
which is <segment>:<16-bit offset>

32-bit compact model caller: xxxx:yyyyyyyy
which is <segment>:<32-bit offset>

32-bit flat model caller: yyyyyyyy
which is <32-bit offset> only

See also: fprintf(), scanf(), sprintf(), vfprintf(), vprintf(), vsprintf()

Returns

The number of characters printed.

A negative value on error.

C Library Reference

Chapter 3 181

putc, putchar ANSI, stdio

putc, putchar

Putc() writes a character to a specified stream at the current position; putchar ()
writes to stdout.

Syntax

#i ncl ude <stdio. h>
int putc (int ¢, FILE *stream;
int putchar (int c);

Parameters

c Character to be written.

st r eam Pointer to FI LE structure.

Additional Information
The putchar () function isidentical to:
putc (c, stdout)
Any integer can be passed to putc(), but it only writes the lower 8 bits.
These functions are implemented as both macros and functions.
See also: fputc(), fputchar(), getc(), getchar()

Returns
The character written.

EOF on error.

182 Chapter 3 Functions

DOS putch

putch

Writes a character directly (without buffering) to the console.

Syntax
#i ncl ude <coni o. h>
int putch (int c);
Parameter
c Character to be output.
See also: getch(), getche()

Returns

Value Meaning
c Successful
EOF Unsuccessful

C Library Reference Chapter 3 183

putenv stdio

putenv

Adds new environment variables or modifies the values of existing ones.

Syntax

#i ncl ude <stdlib. h>
int putenv (const char *envstring);

Parameter

envstring
Environment-variable table entry definition, which must be a character string of this

form:
varnane = string
Where:
varnane The name of the environment variable to be added or modified.

string The variable'svalue. A space character is required on both sides of the
equal sign for fscanf() parsing.

Additional Information

Environment variables customize the environment in which atask executes. This
function affects only the current environment; it does not modify the environment-
variable table files.

If var nane isalready part of the environment, itsvalue isreplaced by st ri ng;
otherwise, the new variable is placed in the first empty slot in the environment-
variable table. If you specify avalid var name and null st ri ng, the environment
variable is removed.

There is one environment-variable table shared by all tasks using the C library. If the
table has not been initialized by a previous call to getenv(), putenv() first calls
getenv() before proceeding.

See also: getenv(), in this manual
Environment variables, System Configuration and Administration

Returns
Value Meaning
0 Successful
-1 Error occurred

184 Chapter 3 Functions

stdio _put_rmx_conn

_put_rmx_conn

Places an iRM X connection token into the file descriptor table and returns avalid file
descriptor, usable as an argument in C library calls.

Syntax

#i nclude <rnx_c. h>
int _put_rnx_conn (sel ector connection);

Parameter

connecti on
ValidiRMX file connection token.
Additional Information

Use this function in code that mixes direct iRMX system calls with C library
functions.

A file descriptor table, managed internally by the C library, is associated with each
task using the library. Thistable maps C file descriptorsto iRMX file connections.
Thetableisfixed in size. The maximum number of open files per task is 32 for
compatibility with UNIX systems process limit.

See also: <rmx_c.h>, _get_rmx_conn

Returns
A valid file descriptor for the iIRMX connection token.

-1 if unsuccessful.

C Library Reference Chapter 3 185

puts ANSI, stdio

puts
Writes a string to stdout, replacing the string's terminating null character \ 0 with a
newline character \ n.

Syntax

#i ncl ude <stdio. h>

int puts (const char *string);

Parameter
st ri ng String to be output.
See also: fputs(), gets()

Returns
A non-negative value.
EOF if unsuccessful.

186 Chapter 3 Functions

putw

putw

Writes an integer to the current position of a stream.

Syntax
#i ncl ude <stdio. h>
int putw (int binint, FILE *stream;
Parameters
bi ni nt Binary integer to be output.

st r eam Pointer to FI LE structure.

Additional Information

The putw() function does not affect the alignment of itemsin the stream, nor does it
assume any special alignment.

See also: getw()

Returns
The value written.

EOF on error. Since EOF isaso alegitimate integer value, use ferror () to verify an
error.

C Library Reference Chapter 3 187

gsort ANSI

qsort

Performs a quick sort of an array, overwriting the input array with the sorted
elements.

Syntax

#i ncl ude <stdlib. h>
#i ncl ude <search. h>
void gsort (void *base, size t num size_ t wdth,
int (*conpare)(const void *el enl,
const void *elenR));

Parameters
base Pointer to the base of the array to be sorted and overwritten.
num Array sizein number of elements.

wi dt h Element sizein bytes.

conpar e
Pointer to a user-supplied routine that compares two array elements (el enmt and
el en?) and returns a value specifying their relationship:

Value Meaning

<0 eleml less than elem2
=0 eleml equivalent to elem?2
>0 eleml greater than elem?2

el enl Pointer to the key for the sort.
el en2 Pointer to the array element to compare with the key.

Additional Information

The gsort() function calls the conpar e routine one or more times during the sort,
passing pointers to two array elements on each call:

conpare ((void *) eleml, (void *) elen?);

188 Chapter 3 Functions

ANSI qsort

The function sorts the array in ascending order, as defined by the conpar e routine.
To sort the array in descending order, reverse the sense of greater-than and less-than
in the conpar e routine.

See also: bsearch(), Isearch()

Returns
Nothing.

C Library Reference Chapter 3 189

raise

ANSI

raise

Sends a signal to the executing program.

Syntax

#i ncl ude <signal. h>

int raise (int sig);

Parameter

sig Signal to send.

Additional Information

If asignal-handling routine for si g has been installed by aprior call to signal(),
raise() causes that routine to execute. Signal-handling is maintained locally to the

calling task, not globally to all tasks using the C library.

If no handler routine has been installed for a particular signal, the default signal-

handling is as follows:

Signal
SIGABRT
SIGALLOC
SIGBREAK
SIGFPE
SIGFREE
SIGILL
SIGINT
SIGREAD
SIGSEGV
SIGTERM
SIGUSR1
SIGUSR2
SIGUSR3
SIGWRITE

See also:

Meaning

Abnormal termination
Memory allocation failure
<Ctrl-Break> signa
Floating-point exception
Bad free pointer

Illegal instruction
Interactive attention
Read error

Segment violation
Termination request
User-defined
User-defined
User-defined

Write error

abort(), _exit(), signal()

Default Action
Calls_exit(3)
Returns without error
Ignored

Calls_exit(3)
Calls_exit(3)
Calls_exit(3)
Calls_exit(3)
Ignored

Sets errno to EDOM and returns
Calls_exit(3)
Ignored

Ignored

Ignored

Ignored

This function isimplemented in the C interface library (not in the shared C library),
and is private to each application.

190 Chapter 3

Functions

ANSI

raise

Returns

Value Meaning
0 Successful
Not O Unsuccessful

C Library Reference

Chapter 3

191

rand ANSI

rand

Generates a pseudo-random number.

Syntax

#i ncl ude <stdlib. h>
int rand (void);

Additional Information

Use the srand() function to seed the pseudo-random-number generator before
caling rand().

See also: srand()

Returns
A pseudo-random integer in the range 0 to RAND_MAX.

No error return.

192 Chapter 3 Functions

ANSI read
read
Reads the specified number of bytes from afile into a buffer, beginning at the current
position of the file pointer.
Syntax

#i ncl ude <i o. h>

int read (int handle, char *buffer, unsigned int count);

Parameters

handl e Descriptor referring to an open file.

buf f er

count

Storage location for data.
Maximum number of bytesto read.

Additional Information

After the read operation, the file pointer points to the next unread character.

In text mode, each <CR><LF> pair isreplaced with asingle <LF> character. Only
the single <LF> character is counted in the return value. The replacement does not
affect the file pointer.

See also: creat(), fread(), open(), write()

Returns

The number of bytes actually read, usually count . Lessthan count if there are
fewer than count bytesleft in the file, or if the file was opened in text mode.

0 indicates an attempt to read at end-of-file.

-lindicates an error, and the function sets errno to EBADF, indicating that the given
descriptor isinvalid, the file is not open for reading, or the file islocked.

C Library Reference Chapter 3 193

readdir

readdir

Reads a directory and then returns a pointer to a dirent structure representing the
next directory entry in the directory stream pointed to be dir. It returns NULL on
reaching the end-of-file or if an error occurred.

The datareturned by this call is overwritten by subsequent calls to readdir() for the
same directory stream.

According to POSIX, the dirent structure contains afield, char d_name][], of

unspecified size, with at most NAME_MAX characters preceding the terminating

null character. Use of other fields will harm the portability of your programs.
Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

struct dirent *readdir(DIR *dir);

Returns

Returns a pointer to adirent structure, or NULL if an error occurs or end-of-fileis
reached.

EBADF Invalid directory stream descriptor dir.
See also: read(2), opendir(3), closedir(3), rewinddir(3)

194 Chapter 3 Functions

ANSI realloc

realloc

Changes the size of a previoudly allocated memory block or allocates a new one.

Syntax

#i ncl ude <stdlib. h>
void *realloc (void *menbl ock, size_ t size);

Parameters

nmenbl ock
Pointer to the beginning of the previously allocated memory block or to a block that
has been freed, as long as there has been no intervening call to the corresponding
calloc(), malloc(), or realloc() function.

size New sizeinbytes.

Additional Information

If menbl ock isanull pointer, realloc() functionsin the same way as malloc() and
allocates anew block of si ze bytes. If menbl ock isnot anull pointer, it should be a
pointer returned by calloc(), malloc(), or aprior call to realloc().

The contents of the block are unchanged up to the shorter of the new and old sizes,
although the new block may be in a different location.

The storage space pointed to by the return value is guaranteed to be suitably aligned
for storage of any type of object. To get a pointer to atype other than voi d, use a
type cast on the return value.

See also: calloc(), free('), malloc()

Returns

A void pointer to the reallocated (and possibly moved) memory block. The
reall ocated block is marked in use.

A null pointer if si ze is0 and the nenbl ock argument is not anull pointer, or if
there is not enough available memory to expand the block to the given size. Inthe
first case, the original block isfreed. In the second, the original block is unchanged.

C Library Reference Chapter 3 195

rename ANSI

rename

Renames afile or directory.

Syntax

#i ncl ude <stdio. h>
#i ncl ude <i 0. h>
int rename (const char *ol dname, const char *newnane);

Parameters

ol dnane
Pathname of an existing file or directory to change.

newnane
Pathname of anew file or directory.

Additional Information

This function invokes the system call rq_s rename fileto renamethefile or
directory to the new name.

See also: rq_s rename file, System Call Reference

Returns

Value Meaning
0 Successful
Not 0 Unsuccessful and the function sets errno to one of these values:

EACCES Fileor directory specified by newname already exists or could
not be created (invalid path); or

oldname is a directory and newname specifies a different path.
ENOENT File or pathname specified by oldname not found.

EXDEV Attempt to move afile to a different device.

196 Chapter 3 Functions

ANS| rename

rewind
Repositions the file pointer to the beginning of afile and clears the end-of-file
indicator.

Syntax

#i ncl ude <stdio. h>
void rewind (FILE *stream;

Parameter

st r eam Pointer to FI LE structure.

Additional Information
A cal torewind() isnearly equivalent to:
(void) fseek (stream OL, SEEK SET);

Rewind() clearsthe error indicators for the st r eant fseek () does not. Fseek()
returns a value that indicates whether the pointer was successfully moved; rewind()
does not.

You can use the rewind() function to clear the keyboard buffer. Specify stdin,
associated with the keyboard by default, asst r eam

Returns
Nothing.

C Library Reference Chapter 3 197

rewind ANSI, stdio

rewinddir
Resets the position of the directory stream to the beginning of the directory.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

void rewinddir(DIR *dir);

Returns
Nothing.
See also: opendir(3), readdir(3), closedir(3)

198 Chapter 3 Functions

rmdir

rmdir
Deletes a directory.

Syntax

#i ncl ude <direct. h>
int rndir (const char *dirnane);

Parameter

di r nane
Pathname of the directory to be removed. The directory must be empty, and it must
not be the current working directory or the root directory.

See also: mkdir ()

Returns
Value Meaning
0 Successful
-1 Unsuccessful and the function sets errno to one of these values:
E The given pathname is not a directory; or
the directory is not empty; or
the directory is the current working directory or the
root directory.
E Pathname not found.

C Library Reference Chapter 3 199

rmtmp stdio

rmtm P
Removes all the temporary files that were created by tmpfile() from the current
directory.

Syntax

#i ncl ude <stdio. h>

int rntnp (void);

Additional Information
Use rmtmp() only in the same directory in which the temporary files were created.

See also: flushall ('), tmpfile(), tmpnam()

Returns
The number of temporary files closed and del eted.

200 Chapter 3 Functions

sbrk

sbrk

CreatesiRM X segments of the specified number of bytes.

Syntax

#i ncl ude <stdlib. h>
void *sbrk (unsigned segsize);

Parameter
segsi ze

Number of bytes to be acquired; must be greater than 0.
Additional Information

For non-flat model applications, this function uses the system call
rq_create segment. To return segments acquired by sbrk() to the memory pool,
use the system call rg_delete_segment.

For flat model applications, sbrk() usesthe system call rqv_allocate instead of
rq_create segment. Also, you should userqv_free, instead of rq_delete_segment,
to delete segments acquired by sbrk().

To return the created segment to the heap using free() or realloc(), use malloc() to
get memory instead of sbrk().

See also: free(), malloc(), realloc(), in this manual
rq_create_segment, rq_delete_segment, System Call Reference
Returns
The address of the acquired memory area.

A null pointer if the allocation request cannot be satisfied.

C Library Reference Chapter 3 201

scanf ANSI, stdio

scanf

Reads from stdin at current position, and formats character data.

Syntax

#i ncl ude <stdio. h>
int scanf (const char *format [,argunent]...);

Parameters

f or mat Null-terminated format-control string, which determines the interpretation of the
input field. Can contain whitespace and nonwhitespace characters, and format
specifications.

ar gurent
Optional argument(s), which may include the location to read to; must be a pointer to
avariable corresponding to atype specified in the f or mat argument. If there are too
many arguments for the given f or mat , the extra arguments are evaluated but
ignored. The results are unpredictable if there are not enough arguments.

Additional Information

The scanf(') function reads all charactersin stdin up to the first whitespace character
(space, tab, or newline), or the first character that cannot be converted according to
f or mat ; thisistheinput field.

The format string isread from left to right. A whitespace character inf or mat causes
scanf() to read, but not store, all consecutive whitespace charactersin the input field
up to the next nonwhitespace character. A nonwhitespace character in f or mat

causes scanf() to read, but not store, all matching characters. A format specification
causes scanf() to read and convert applicable characters in the input field into values
of aparticular type, to be stored in the optional arguments as they are read from stdin.

Format specifications aways have a preceding percent sign (%) followed by aformat-
control character. Additional optional format-control characters may also appear. |If
%is followed by a character that has no meaning as a format-control character, that
character and these characters (up to the next %9 are treated as an ordinary sequence
of charactersthat is, a sequence of characters that must match the input. For
example, to specify a percent-sign character to be input, use %%

An asterisk (*) following the %suppresses storage of the next input field that is
interpreted as afield of the specified type. Thefield is scanned but not stored.

202 Chapter 3 Functions

ANSI, stdio

scanf

If acharacter in stdin conflicts with the format specification, scanf() terminates.
The character isleft in stdin asif it had not been read.

Here are some example scanf() statements:

Statement Meaning

scanf("%Ns", &x); Read a string into memory

scanf("%Fs', &Xx); Read a string into memory

scanf("%Nd", &x); Read an int into memory

scanf("%Fd", &Xx); Read an int into memory

scanf("%NId", &x); Read along int into memory
scanf("%Fd", &x); Read along int into memory
scanf("%Nhp", &x); Read a 16-bit pointer into memory
scanf("%NIp", &x); Read a 32-bit pointer into memory
scanf("%Fhp", &x); Read a 16-bit pointer into memory
scanf("%Fp", &x); Read a 32-bit pointer into memory

Format Specification
A format specification, which consists of optional and required fields, has this form:

% *]

[width] [{F | N] [{h | I}]type

Each field of the format specification is a single character or number signifying a
particular format option. The optional fields appear before the required t ype
character. These arethefieldsin ascanf() format specification:

Field
width

F.N

C Library Reference

Description

A positive decimal integer controlling the maximum number of
characters to be read from stdin. No more than width characters are
converted and stored at the corresponding argument. Fewer than
width characters may be read if a white-space character (space, tab, or
newline) or a character that cannot be converted according to the given
format occurs before width is reached.

The optional F and N prefixes are accepted for compatibility with
other compilers, but they areignored. F and N refer to the distance to
the object being read in (far or near). The Fand N prefixes are not
part of the ANSI definition for scanf() and should not be used when
ANSI portability is desired.

Chapter 3 203

scanf ANSI, stdio

Field Description

h I, L Optional prefixes that determine the type required for the argument
expected (I and h are ignored if specified for any other type), as shown
below:

h Used with theinteger typesd, i, 0, X, and X to specify that the
argument is short integer, or with u to specify short unsigned int.
If used with %p, it indicates a 16-bit pointer, which isignored.

I Used with d, i, 0, X, and X type characters to specify that the
argument is long integer, or with u to specify long unsigned
integer; also used with e, E, f, g, and G types to specify double
rather than float. If used with %p, it indicates a 32-bit pointer.

L Usedwithe E,f, g, and G typesto specify long double. Also
used with integer types to specify that the argument is a 64-bit

data type.
type Required character that determines the required type for the associated
argument.

Type Field Characters

These are thet ype characters and their meanings:

Character Input Type Argument Type

d Decimal integer Pointer to int.

0 Octal integer Pointer to int.

X Hex integer Pointer to int. Since the input for
%x format specifier isaways
interpreted as a hexadecimal

number, the input should not
include aleading Ox. (If Ox is
included, the O isinterpreted asa
hexadecimal input value.)

i Decimal, hexadecimal, or octal Pointer to int.

integer.
u Unsigned decimal integer Pointer to unsigned int.
U Unsigned decimal integer Pointer to unsigned int.

204 Chapter 3 Functions

ANSI, stdio scanf
Character Input Type Argument Type
e E,f,0,G Double. Value consisting of an Pointer to double.
optional sign (+ or -), a series of
one or more digits containing a
decimal point, and an optiona
exponent (e or E) followed by an
optionally signed integer value.
1c Character. Whitespace characters Pointer to char.
that are ordinarily skipped are
read when c is specified; to read
the next nonwhitespace character,
use %ls.
S String. Pointer to character array large
enough for input field plus a
terminating null character \0,
which is automatically appended.
n No input read. Pointer to int, into which the
number of characters
successfully read is stored.
p Addressin aform dependent on Pointer to pointer to void.

C Library Reference

the memory model:

16-bit large or compact model caller: xxxx:yyyy

which is <segment>:<16-hit offset>

32-bit compact model caller: xxxx:yyyyyyyy

which is <segment>:<32-bit offset>
32-hit flat model caler: yyyyyyyy

which is <32-bit offset>

Chapter 3 205

scanf ANSI, stdio

Additional Information

To read strings not delimited by space characters, substitute a set of charactersin
brackets ([1) for the s (string) type character. The corresponding input field isread
up to the first character that does not appear in the bracketed character set. If thefirst
character in the set is a caret ("), the effect isreversed: the input field is read up to the
first character that does appear in the rest of the character set.

The format specifications % a- z] and % z- a] are interpreted as equivalent to
% abcde. . . z] . Thisisnot required by the ANSI specification.

To store a string without storing a terminating null character \ 0, use the specification
% c, wheren isadecimal integer. Thenthec t ype character indicates that the
argument is a pointer to a character array. The next n characters are read from the
input stream into the specified location, and no null character \ 0 isappended. If n is
not specified, the default value for it is 1.

See also: fscanf(), printf(), sscanf(), vfprintf(), vprintf(), vsprintf()

Returns

The number of fields converted and assigned, which may be less than the number
requested. Does not include fields that were read but not assigned.

EOF if the end-of-file is encountered in the first attempt to read a character.

206 Chapter 3 Functions

ANSI, stdio setbuf

setbuf

Allows the user to control buffering for a stream.

Syntax

#i ncl ude <stdio. h>
voi d setbuf (FILE *stream char *buffer);

Parameters

st r eam Pointer to FI LE structure; must refer to an open stream file that has not been read or
written.

buf f er User-allocated buffer.

Additional Information

If the buf f er argument isanull pointer, the stream is unbuffered. If not, the buffer
must point to a character array of length BUFSIZ. This user-specified buffer is used
for 1/0 buffering instead of the default system-allocated buffer for the given stream.

The stderr stream is unbuffered by default, but may be assigned buffers with
setbuf().

Use the setvbuf() function for new code; setbuf() isretained for compatibility with
existing code.

See also: fclose(), fopen(), setvbuf()

Returns
Nothing.

C Library Reference Chapter 3 207

_set_info

_set_info

Modifiesthe num ei os_buf s (number of EIOS buffers per open file connection)
field for atask in the C library information structure CI NFO_STRUCT.

Syntax

#i nclude <rnx_c. h>
int _set_info (unsigned int count, CINFO STRUCT *ci nfo);

Parameters
count Number of elementsin CI NFO_STRUCT, obtained from cinfo_count constant.

ci nfo Pointer to Cl NFO_STRUCT for atask.

Additional Information
All of the other fieldsin CI NFO_STRUCT are read-only.
Verify the change using the _get_info() function.
See also: _get_info(), <rmx_c.h>

Returns
Value Meaning
0 Successful
-1 Unsuccessful

208 Chapter 3 Functions

ANSI setimp

setjimp
Saves the current context of the executing program and storesiit in the specified
location.

Syntax

#i ncl ude <setjnp. h>
int setjnmp (jnp_buf context);

Parameter

cont ext
Structure in which the current context is stored.

Additional Information

Thejmp_buf structure is usable only as an argument for the subsequent longjmp()
call; jmp_buf is defined internally to the C library.

Used together, setjmp() and longjmp() provide away to execute anonlocal goto.
They typically pass execution control to error-handling or recovery codein a
previoudly called routine without using the normal calling or return conventions.

A subsequent call to longjmp() restores the context and resumes execution at the
point setimp() was called. All local variables except register variables, accessible to
the routine receiving control, contain the values they had when setjmp() was called.
Global variables are unaffected.

See also: longjmp(), <setjmp.h>

Returns
0 after saving the context of the executing program.

When setjmp() returns as aresult of alongjmp() cal, it returnsthe val ue
argument of longjmp() or returns 1 if the val ue argument of longimp() isO.

No error return.

C Library Reference Chapter 3 209

setlocale ANSI

setlocale

Setsthe task's current entire locale or specified portions of it.

Syntax

#i ncl ude <l ocal e. h>
char *setlocale (int category, const char *|ocale);

Parameters

cat egory
Specifies which portion of atask's locale information to use.

| ocal e Pointer to a string containing the name of the locale for which certain aspects of your
program can be customized. C specifies the minimal ANSI-conforming locale for C
trandation. If | ocal e pointsto an empty string, the locale is the implementation-
defined native locale.

Additional Information

Some local e-dependent aspects include the formatting of dates and the display format
for monetary values.

These are the manifest constants used for the cat egor y argument and the parts of

the program affected:

Value Program Parts Affected

LC ALL All categories listed below.

LC COLLATE The streoll() and strxfrm() functions.

LC CTYPE The character-handling functions except for isdigit() and

isxdigit(), which are unaffected.

LC_MONETARY Monetary formatting information returned by the localeconv()
function.

LC_NUMERIC Decimal point character for the formatted output functions
such as printf(), for the data conversion functions, and for the
nonmonetary formatting information returned by the
localeconv() function.

LC TIME The strftime() function.

See also: localeconv(), strcoll(), stritime(), strxfrm()

210 Chapter 3 Functions

ANSI setlocale

Returns
One of these:

- A pointer to the string associated with the specified category for the new locale.
Use the pointer in subsequent calls to restore that part of the program's locale
information. Later callsto setlocale() will overwrite the string.

« A pointer to the string associated with the category of the program'slocale. It

does not change the program'’s current locale setting if the | ocal e argument isa
null pointer.

« A null pointer. It does not change the program's current locale settings if the
locale or category isinvalid.

C Library Reference Chapter 3 211

setmode

stdio

setmode

Sets binary or text trandation mode of afile.

Syntax

#i nclude <fcntl. h>
#i ncl ude <i 0. h>
int setnode (int handle, int node);

Parameters

handl e Descriptor referring to an open file.

node New trandation mode.

Additional Information
The node must be one of these manifest constants:

Value M eaning

O TEXT Setstext (trandated) mode. <CR><LF> combinations are

trandated into asingle <L F> character on input. <LF>

characters are trandlated into <CR><L F> combinations on

outpui.

O_BINARY Sets binary (untrandated) mode and suppresses the above

trand ations.

The setmode() function is typically used to modify the default translation mode of

stdin, stdout, and stderr, but can be used on any file.

|:| Note

If multiple tasks or jobs are collecting data from the samefile or
stream, use binary mode. Otherwise, the task or job receives

scrambled data.

Do not try to change a stream's mode while the stream buffer is

active. Call fflush() first.
See also: creat(), fopen(), open()

212 Chapter 3

Functions

stdio setmode

Returns
The previous trang ation mode.
-1 on error, and the function sets errno to one of these values:
EBADF Invalid file descriptor.
EINVAL Invalid mode argument (neither O_TEXT nor O_BINARY).

C Library Reference Chapter 3 213

setvbuf ANSI, stdio

setvbuf

Controls stream buffering and buffer size.

Syntax
#i ncl ude <stdio. h>
int setvbuf (FILE *stream char *buffer, int node,
size_t size);
Parameters

st r eam Pointer to FI LE structure; must refer to an open stream file that has not been read
from or written to since it was opened.

buf f er Pointer to a user-allocated character array used for buffering. If anull pointer
references buf f er , abuffer of si ze bytesisautomatically allocated.

nmode Buffering mode.

Value M eaning
_|IOFBF Full buffering; that is, buffer is used as the buffer and size is used as the size of
the buffer.

_|IONBF No buffer is used, regardless of buffer or size.
size Sizeof buffer. Legal values are greater than 0 and lessthan INT_MAX.
See also: fclose(), fopen(), <limits.h>, setbuf()

Returns

Value Meaning
0 Successful
Not 0 Anillegal type or buffer size was specified

214 Chapter 3 Functions

ANSI signal

signal

Sets up one of several ways for atask to handle an interrupt signal from the OS.

Syntax
#i ncl ude <signal. h>
void (*signal (int sig, void (*func)(int sig [,int
subcode])))
(int sig);

Parameters

sig Signal value. Must be one of the manifest constants defined in <signal.h>

func Specifieswhat action istaken. Must be either a function address or one of the
manifest constants defined in <signal.h>.

subcode
Optional subcode to the signal number.

Additional Information

This function isimplemented in the shared C library interface library (not in the
shared C library), and is private to each application.

Thesi g argument must be one of these manifest constants:

Value M eaning

SIGABRT Abnormal termination
SIGALLOC Memory allocation failure
SIGBREAK <Citrl-Break> signa

SIGFPE Floating-point exception
SIGFREE Bad free pointer

SIGILL Illegal instruction
SIGINT Interactive attention
SIGREAD Read error

SIGSEGV Segment violation
SIGTERM Termination request
SIGUSR1 User-defined

SIGUSR2 User-defined

SIGUSR3 User-defined

SIGWRITE Write error

C Library Reference Chapter 3 215

signal ANSI

The f unc must be either afunction address or one of these manifest constants:

Value M eaning

SIG_DFL Uses system-default response. The system-default response for al signals
except SIGUSR1, SIGUSR2, and SIGUSR3 isto abort the calling program
using _exit(). The default response for SIGUSR1, SIGUSR2, and SIGUSR3 is
toignore the signal.

SIG_IGN Ignores interrupt signal. This value should never be given for SIGFPE, since
the floating-point state of the process isleft undefined.

Function Installs the specified function as the handler for the given signal.

address

Additional Information

For all signals except SIGFPE and SIGUSRX, the function is passed the si g
argument and executed.

For SIGFPE, the function pointed to by f unc is passed two arguments, SIGFPE and
an integer error subcode, FPE_xxx; then the function is executed. The value of f unc
is not reset upon receiving the signal. To recover from floating-point exceptions, use
setjmp() in conjunction with longjmp(). If the function returns, the calling task
resumes execution with the floating-point state of the process left undefined.

If the function returns, the calling task resumes execution immediately following the
point at which it received the interrupt signal. Thisistrue regardless of the type of
signal or operating mode.

Before the specified function is executed, the value of f unc issetto SIG_ DFL. The
next interrupt signal is treated as described above for SIG_DFL, unless an intervening
call to signal() specifies otherwise. This allows the program to reset signalsin the
called function.

Since signal-handler routines are normally called asynchronously when an interrupt
occurs, it is possible that your signal-handler function will assume control when an
operation isincomplete and in an unknown state. Certain restrictions therefore apply
to the C functions used in your signal-handler routine:

« Do not issue low-level or standard I/O functions, for example, printf(), read(),
write(), and fread().

« Do not cal heap routines or any function that uses the heap routines, for
example, malloc(), strdup(), or putenv().

« Do not use the longjmp() function.
See also: abort(), raise(), _exit(), <signal.h>

216 Chapter 3 Functions

ANSI signal

Returns

The previous value of f unc. For example, if the previous value of f unc was
SI G_I G\, thereturn value will be SIG_IGN.

-lonerror suchasinvalid si g or f unc values, and the function setserrno to
EINVAL.

C Library Reference Chapter 3 217

sin, sinh ANSI

sin, sinh

Sin calculates the sine and sinh calculates the hyperbolic sine of an angle.

Syntax

#i ncl ude <mat h. h>
doubl e sin (double x);
doubl e sinh (double x);

Parameter
X Anglein radians.

See also: acog(), asin(), atan(), cos(), tan()

Returns
Sin() Returns the sine of x.

Generatesa PLOSS error if x islarge and partial loss of significancein
the result occurs; function sets errno to ERANGE.

Prints a TLOSS message to stderr and returns O if x is so large that
significance is completely lost; function sets errno to ERANGE.

Sinh() Returns the hyperbolic sine of x.

Returns tHUGE_V AL, and the function sets errno to ERANGE if the
result istoo large.

These functions do not return standard ANSI domain or range errors.

218 Chapter 3 Functions

sleep

sleep
Suspends atask for a specified number of seconds.

Syntax
#i ncl ude <process. h>

unsi gned int sleep (unsigned int seconds);

Parameter

seconds
Number of seconds to suspend a task.

Additional Information
This function invokes the system call rq_sleep.
See also: rq_sleep, System Call Reference

Returns
Always returns 0.

C Library Reference Chapter 3 219

sopen

sopen
Opens afile for shared reading or writing.

Syntax

#i nclude <fcntl. h>
#i ncl ude <share. h>
#i ncl ude <sys/stat.h>
#i ncl ude <io. h>
int sopen (const char *filename, int oflag, int shflag,
i nt pnode);

Parameters

fil ename
Filename to be opened.

of l ag Type of operations allowed (open mode). Combine one or more of the manifest
constants described in open() with the bitwise-OR operator (|).

shf | ag Type of sharing allowed (share mode).

pnode Permission mode, which specifies the file's ownership and access rights; required
only when O_CREAT is specified. Otherwise, argument isignored. The manifest
constants are described in chmod(). Join them with the bitwise-OR operator (]).

Additional Information
Shf | ag must be one of these manifest constants.

Value M eaning

SH DENYRW Deniesread and write access tofile.
SH DENYWR Denieswrite accessto file.

SH DENYRD Deniesread accessto file.

SH DENYNO Permits read and write access.

Ownership and access rights are set when the new file is closed for the first time.

The sopen() function applies the default file-permission mask (set with the umask()

function) to pnode before setting the permissions.

This function performs atrandation of POSIX file ownership rights and POSI X
access rightsto the iIRMX OS equivalent as described in chmod().

See also: close(), creat(), fopen(), open(), umask()

220 Chapter 3 Functions

sopen

Returns
A descriptor for the opened file.
-1 indicates an error, and the function sets errno to one of these values:

EACCES Given pathnameisadirectory; or
Thefileis read-only but an open for writing was attempted; or
A sharing violation occurred because the file's share mode does not
allow the specified operations.

EEXIST The O_CREAT and O_EXCL flags are specified, but the named file
already exists.

EINVAL Aninvalidof | ag or shf | ag argument was given.
EMFILE No more file descriptors available (too many open files).
ENOENT File or pathname not found.

C Library Reference Chapter 3 221

sprintf ANSI

sprintf

Prints formatted data to a string.

Syntax

#i ncl ude <stdio. h>
int sprintf (char *buffer, const char *format [,
argunent]...);

Parameters
buf f er Output string.

f or mat Formatted string consisting of ordinary characters, escape sequences, and, if
arguments appear, format specifications. Thef or mat and optional arguments have
the same form and function as the printf() function.

ar gument
Optional arguments.
Additional Information

The ordinary characters and escape sequences are copied to buf f er in order of their
appearance.

A null character \ 0 is appended to the end of the characters written.
See also: fprintf(), printf(), sscanf()

Returns

The number of characters stored in buf f er, not counting the terminating null
character.

222 Chapter 3 Functions

ANSI sqrt
sqrt
Calculates the square root of a number.
Syntax
#i ncl ude <math. h>
doubl e sqgrt (double x);
Parameter
X Nonnegative value to calculate root for.
See also: exp(), log(), matherr(), pow()
Returns
The square-root result.
0if x isnegative, printsa DOMAIN error message to stderr and setserrnoto
EDOM.
This function does not return standard ANSI domain or range errors.
C Library Reference Chapter 3 223

square

square
Calculates the square of a number.

Syntax
#i ncl ude <math. h>
doubl e square (double x);
Parameter
X Number to be squared.
See also: exp(), log(), matherr(), pow()

Returns
The square resullt.

This function does not return standard ANSI domain or range errors.

224 Chapter 3 Functions

ANSI srand

srand

Sets the starting point for generating a series of pseudorandom integers.

Syntax
#i nclude <stdlib. h>

void srand (unsigned int seed);
Parameter

seed Starting point for random-number generation. Use 1 to reinitialize the generator.

Additional Information

Therand() function retrieves pseudorandom numbers. Calling rand() before any
call to srand() generates the same sequence as calling srand() with seed passed as
1

See also: rand()

Returns
Nothing.

C Library Reference Chapter 3 225

sscanf ANSI, stdio

sscanf
Reads and formats character data from a string.

Syntax

#i ncl ude <stdio. h>
i nt sscanf (const char *buffer, const char *format
[, argunent]...);

Parameters
buf f er Source string.

f or mat Null-terminated format-control string which controls the interpretation of the input
fields and has the same form and function asthe f or mat argument asin the scanf()
function.

ar gument
Optional argument. Must be a pointer to a variable with atype that correspondsto a
type specifier inf or mat .

Additional Information
Reads data from buf f er into the locations given by ar gunent (if any).

The sscanf(') function reads all charactersin buf f er up to the first whitespace
character (space, tab, or newline), or the first character that f or mat cannot convert.
If there are too many arguments for the given f or mat , the extra arguments are
evaluated but ignored. The results are unpredictable if there are not enough
arguments for the format specification.

See also: fscanf(), scanf(), sprintf()

Returns

The number of fields that were successfully converted and assigned, but not fields
that were read but not assigned.

0if nofields were assigned.
EOF if the attempted read was at end-of-string.

226 Chapter 3 Functions

stdio Sstat

stat

Getsinformation on a file.

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
int stat (const char *filenane, struct stat *buffer);

Parameters

fil ename
Pathname of an open file to get information on.

buf f er Pointer to file-status structure st at . Thefields of st at are described in
<syd/stat.h>.

Additional Information

Stat() invokesthe system call rq_a _get_file status and adds the number of seconds
between epoch time and January 1, 1978, plus the local timezone factor, an
environment variable described in tzset(). This adjusts the time stamps of iRM X
filesto POSIX-standard values.

Stat() caches up to two directory connections and the associated pathnames to
provide a performance boost for tasks that make repeated callsto stat() for files
under either of the two cached directories. The cache reduces the overhead incurred
while parsing along pathname and attaching each directory along the way. If the
directory is not in the cache, a connection is obtained through a call to
rq_attach_file, and entered into the cache. The oldest entry in the two-deep cacheis
then deleted. The cacheis part of the single C library environment; required memory
isalocated on the first use of stat().

This function performs atrandation of iRMX OS file ownership rightsand iRMX OS
access rights to POSIX as described in <sys/stat.h>.

See also: chmod(), filelength(), fstat(), <sys/stat.h>

Returns
Value Meaning
0 File-status information is obtained
-1 Error occurred; the function sets errno to EBADF, indicating an invalid
filename

C Library Reference Chapter 3 227

strcat ANSI

strcat
Appends a null-terminated string to another string.

Syntax

#i ncl ude <string. h>
char *strcat (char *stringl, const char *string2);

Parameters

stringl
Destination string; must contain a null character marking the end of the string.

string2
Source string appended to st ri ng1; must contain anull character marking the end of
the string.

Additional Information

Terminates the resulting string with anull character \ 0. No overflow checking is
performed when strings are appended.

See also: strncat(), strncmp(), strncpy(), strnicmp(), strrchr(), strspn()

Returns
A pointer to the concatenated string.

228 Chapter 3 Functions

ANSI strchr

strchr

Searches for a character in a null-terminated string.

Syntax
#i ncl ude <string. h>

char *strchr (const char *string, int c);
Parameters

st ri ng String to search; must contain a null character \ 0 marking the end of the string; the
terminating null character isincluded in the search.

c Character to be located.
See also: strespn(), strneat(), strnemp(), strncpy(), strnicmp(), strpbrk(),
strrchr(), strspn(), strstr()
Returns

A pointer to the first occurrence of c in the string. The character may be the null
character \ 0.

A null pointer if the character is not found.

C Library Reference Chapter 3 229

strcmp, strecmpi, stricmp ANSI

strcmp, strcmpi, stricmp
Compare two null-terminated strings lexicographically.

Syntax

#i ncl ude <string. h>
int strcnp (const char *stringl, const char *string2);
int strcnmpi (const char *stringl, const char *string2);
int stricmp (const char *stringl, const char *string2);

Parameters
stringl, string2

Strings to compare; must contain null characters\ 0 marking the end of the strings.
Additional Information

The strempi() and stricmp() functions are case-insensitive versions of strecmp().
They work identically in all other respects.

See also: memcmp(), memicmp(), strncat(), strncmp(), strnepy(), strnicmp(),
strrchr(), strspn()
Returns
A value indicating the relationship:
Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

230 Chapter 3 Functions

ANSI strcoll

strcoll

Compares null-terminated strings using local e-specific collating sequences.

Syntax
#i ncl ude <string. h>

int strcoll (const char *stringl, const char *string2);

Parameters

stringl, string2
Strings to compare; must contain null characters\ 0 marking the end of the strings.

See also: localeconv(), setlocale(), stremp(), strnemp(), strxfrm()

Returns
A value indicating the relationship:
Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

C Library Reference Chapter 3 231

strcopy ANSI

strcpy

Copies a null-terminated string.

Syntax

#i ncl ude <string. h>
char *strcpy (char *stringl, const char *string2);

Parameters

stringl
Destination string; must contain anull character \ 0 marking the end of the string.

string2

Source string, including the terminating null character.
Additional Information

No overflow checking is performed when strings are copied.

See also: streat(), stremp(), strncat(), strnemp(), strnepy(), strnicmp(),
strrchr(), strspn()

Returns

Returnsstri ngl.

232 Chapter 3 Functions

ANSI strcspn

strcspn

Finds a null-terminated substring in a string.

Syntax

#i ncl ude <string. h>
size_t strcspn (const char *stringl, const char
*string2);

Parameters

stringl
Source string; must contain anull character \ 0 marking the end of the string.
string2
Character set to search for; must contain a null character \ 0 marking the end of the
string.
Additional Information
Terminating null characters are not considered in the search.

See also: strncat(), strncmp(), strncpy(), strnicmp(), strrchr(), strspn()

Returns

Theindex of the first character in st ri ngl belonging to the set of characters
specified by st ri ng2. Thisvaueis equivaent to the length of the initial substring
of stringl consisting entirely of charactersnotinst ri ng2.

0if st ri ngl beginswith acharacter from st ri ng2.

C Library Reference Chapter 3 233

strdup

strdup

Duplicates null-terminated strings.

Syntax
#i ncl ude <string. h>

char *strdup (const char *string);
Parameter

st ri ng Source string; must contain anull character \ 0 marking the end of the string.

Additional Information

The function allocates storage space from the heap for a copy of string, using
malloc().

See also: streat(), stremp(), strncat(), strnemp(), strnepy(), strnicmp(),
strrchr(), strspn()

Returns
A pointer to the storage space containing the copied string.
A null pointer if storage cannot be allocated.

234 Chapter 3 Functions

ANS| strerror

strerror
Gets a system error message.

Syntax
#i ncl ude <string. h>
char *strerror (int errnunj;
char *_strerror (const char *string);

Parameter

er r num Error number to map to an error-message string.

Additional Information

The function itself does not actually print the message. To send or print the message,
use an output function such asperror ().

See also: clearerr(), ferror(), perror()

Returns
A pointer to the error-message string.

C Library Reference Chapter 3 235

strftime ANSI, stdio

strftime

Formats atime string.

Syntax

#i nclude <tine. h>
size_t strftime (char *string, size_t maxsize, const char
*format, const struct tm *tinmedate);

Parameters
st ri ng Output string.

nmaxsi ze
Maximum length of string.

f or mat Format control string; normal charactersand format specifications.
ti nedate

Time/date structure, t m
Additional Information

Format specifications have a preceding percent sign (%); preceding characters are
copied unchanged to st ri ng. The LC_TIME category of the current locale affects
the output formatting of strftime().

The format specifications are:

Format Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time representation appropriate for the locale
%d Day of the month as a decimal number (01 - 31)

%H Hour in 24-hour format (00 - 23)

%l Hour in 12-hour format (01 - 12)

%j Day of the year as adecimal number (001 - 366)

%m Month as a decimal number (01 - 12)

%M Minute as adecimal number (00 - 59)

%p Current locale's AM/PM indicator for a 12-hour clock
%S Second as a decimal number (00 - 61)

236 Chapter 3 Functions

ANSI, stdio strftime

Format Description

%U Week of year as decimal number; Sunday isfirst day of week (00 - 53)
%ow Weekday as adecimal number (0 - 6; Sunday is 0)

%W Week of year as decimal number; Monday isfirst day of week (00 - 53)
%X Date representation for current locale

%X Time representation for current locale

%y Y ear without the century as a decimal number (00 - 99)

%Y Y ear with the century as a decimal number

%z Timezone name or abbreviation; no charactersif timezone is unknown
%% Percent sign

See also: asctime(), localeconv(), setlocale(), strxfrm()

Returns

The number of charactersplaced inst ri ng if the total number of resulting
characters, including the terminating null, is not more than maxsi ze.

0 and the contents of the string are indeterminate if the result is larger than maxsi ze.

C Library Reference Chapter 3 237

strlen ANSI

strlen
Gets the length of a null-terminated string.

Syntax

#i nclude <string.h
size_t strlen (const char *string);

Parameter
st ri ng String to find length of.

Returns

The string length in bytes of st ri ng, not including the terminating null character \ 0.

No error return.

238 Chapter 3 Functions

striwr

striwr

Converts uppercase lettersin a null-terminated string to lowercase. Other characters
are not affected.

Syntax
#i ncl ude <string. h>
char *strlw (char *string);
Parameter
st ri ng String to convert.

See also: strupr()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 239

strncat ANSI

strncat
Appends charactersto a string.

Syntax

#i ncl ude <string. h>
char *strncat (char *stringl, const char *string2 size_t
count);

Parameters

stringl
Destination string.

string2
Source string.

count Number of charactersto be appended.

Additional Information

Appends at most the first count charactersof stri ng2 tost ri ngl and terminates
the resulting string with anull character. If count isgreater than the length of
string2,thelength of string2isusedin place of count .

See dso; strcat(), stremp(), strepy(), strncmp(), strncpy(), strnicmp(),
strrchr(), strset(), strspn()

Returns
A pointer to the concatenated string.

240 Chapter 3 Functions

ANSI strncmp

strncmp

Compares substrings.

Syntax

#i ncl ude <string. h>
int strncmp (const char *stringl, const char *string2,
size_t count);

Parameters

stringl, string2
Strings to compare.

count Number of characters compared.

Additional Information

Lexicographically compares the first count charactersof st ri ngl and st ri ng2.

The strnicmp() function is a case-insensitive version of strncmp.
See also: streat(), stremp(), strepy(), strncat(), strncpy(), strrchr(), strset(),
strspn()
Returns
A value indicating the relationship between the substrings:
Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

C Library Reference Chapter 3

241

strncopy

ANSI

strncpy

Copies the specified number of characters from one string to another.

Syntax

#i ncl ude <string. h>
char *strncpy (char *stringl, const char *string2,
size_t count);

Parameters

stringl
Destination string.

string2
Source string.

count Number of characters copied.

Additional Information

Copiescount charactersof string2tostringl.

If count islessthan thelength of st ri ng2, anull character \ 0 is not appended
automatically to the copied string. If count isgreater than the length of st ri ng2,

thest ri ngl result is padded with null characters up to length count .

The behavior of strncpy() isundefined if the address ranges of the source and

destination strings overlap.

See also: streat(), stremp(), strepy(), strncat(), strnemp(), strnicmp(),

strrchr(), strset(), strspn()

Returns

Returnsstri ngl.

242 Chapter 3

Functions

strnicmp

strnicmp

Compares substrings without regard to case.

Syntax

#i ncl ude <string. h>
int strnicnp (const char *stringl, const char *string2,
size_t count);

Parameters

stringl, string2
Strings to compare.

count Number of characters compared.

Additional Information
Lexicographically compares the first count characters of st ri ngl and st ri ng2.
The strnicmp() function is a case-insensitive version of strncmp().
See also: streat(), stremp(), strepy(), strncat(), strncpy(), strrchr(), strset(),
strspn()
Returns
A value indicating the relationship:
Value Meaning

<0 stringl less than string2
=0 stringl identical to string2
>0 stringl greater than string2

C Library Reference Chapter 3 243

strnset

strnset

Sets the specified number of charactersin a string to a character.

Syntax
#i ncl ude <string. h>
char *strnset (char *string, int c, size_t count);
Parameters
string String to be set.
c Character to set the string to.

count Maximum number of charactersto set.

Additional Information

If count isgreater than the length of st ri ng, thelength of st ri ng isusedin place
of count.

See also: streat(), stremp(), strepy(), strset()

Returns
A pointer to the altered string.

244 Chapter 3 Functions

ANSI strpbrk

strpbrk
Searches a string for the first occurrence of any character in the specified character
Set.

Syntax

#i ncl ude <string. h>

char *strpbrk (const char *stringl, const char *string2);

Parameters

stringl
String to search.

string2
Character set to search for.
Additional Information

The terminating null character \ 0 is not included in the search.
See also: strchr(), strrchr()

Returns
A pointer to the found character.

A null pointer if st ri ngl and st ri ng2 have no charactersin common.

C Library Reference Chapter 3 245

strrchr ANSI

strrchr

Searches a string for the last occurrence of a character.

Syntax

#i ncl ude <string. h>
char *strrchr (const char *string, int c);

Parameters

string String to search.

c Character to find.

Additional Information
The string's terminating null character \ 0 isincluded in the search.
Use strchr () to find the first occurrence of ¢ inst ri ng.
See also: strchr(), strespn(), strncat(), strnemp(), strncpy(), strnicmp(),
strpbrk(), strspn()
Returns
A pointer to the last occurrence of the character in the string.

A null pointer if the character is not found.

246 Chapter 3 Functions

strrev

strrev

Reverses the order of the charactersin a string.

Syntax

#i ncl ude <string. h>
char *strrev (char *string);

Parameter
string String to be reversed.

Additional Information

The terminating null character \ 0 remainsin place.

See also: strcpy, strset

Returns
A pointer to the altered string.

No error return.

C Library Reference

Chapter 3

247

strset

strset
Sets all charactersin a string to a specified character.

Syntax
#i ncl ude <string. h>
char *strset (char *string, int c);
Parameters
string String to be set.
c Character to set the string to.

Additional Information
Does not set the terminating null character \ 0 toc.

See also: memset(), strcat(), stremp(), strepy(), strnset()

Returns
A pointer to the altered string.

No error return.

248 Chapter 3

Functions

ANSI strspn

strs pn
Finds the first character in a string that does not belong to a set of charactersin a
substring.

Syntax

#i ncl ude <string. h>

size_t strspn (const char *stringl, const char *string2);

Parameters

stringl
String to search.

string2
Character set.
Additional Information

The null character \ 0 terminating st ri ng2 is not considered in the matching
process.

See also: strespn(), strneat(), strncmp(), strnepy(), strnicmp(), strrchr()

Returns

An integer value specifying the length of the segment in st ri ngl consisting entirely
of charactersinstring2.

0if st ri ngl beginswith acharacter not inst ri ng2.

C Library Reference Chapter 3 249

strstr ANSI

strstr

Finds a substring within a string.

Syntax

#i ncl ude <string. h>
char *strstr (const char *stringl, const char *string2);

Parameters

stringl
String to search.

string2
String to search for.

See also: strespn(), strneat(), strnemp(), strncpy(), strnicmp(), strpbrk(),
strrchr(), strspn()
Returns
A pointer to the first occurrence of string2in stringl.

A null pointer if the string is not found.

250 Chapter 3 Functions

ANSI strtod, strtol, strtoul

strtod, strtol, strtoul

Strtod converts a string to double; strtol convertsto long; strtoul convertsto
unsigned long.
Syntax

#i ncl ude <stdlib. h>
doubl e strtod (const char *nptr, char **endptr);
long strtol (const char *nptr, char **endptr, int base);
unsi gned long strtoul (const char *nptr, char **endptr,
i nt base);

Parameters

nptr String to convert; a sequence of characters that can be interpreted as a numerical
value of the specified type.

endpt r End of scan.

base Number baseto use.

Additional Information

The strtod() function expects npt r to point to a string with this form:

[whitespace] [sign] [digits] [.digits] [d| D| e | E[sign] digits]

The first character that does not fit this form stops the scan.

The strtol() function expects npt r to point to a string with this form:
[whitespace] [sign] [0] [x| X] [digits]

The strtoul() function expects npt r to point to a string with this form:
[whitespace] [+ | - 1 [O] [x| X1 [digits]

These functions stop reading the string at the first character they cannot recognize as
part of anumber. This may be the null character \ 0 at the end of the string. With
strtol() or strtoul(), this terminating character can also be the first numeric
character greater than or equal to base. If endpt r isnot anull pointer, a pointer to
the character that stopped the scan is stored at the location pointed to by endpt r .

If no conversion can be performed (no valid digits are found or an invalid base is
specified), the value of npt r isstored at the location pointed to by endpt r .

Base M eaning

C Library Reference Chapter 3 251

strtod, strtol, strtoul ANSI

Between 2 and 36 Base used as the base of the number.

0 Theinitial characters of the string pointed to by nptr
determine the base.

1st char = 0 and The string isinterpreted as an octal integer; otherwise, it

2nd char not = x or X isinterpreted as a decimal number.

1st char = 0 and The string is interpreted as a hexadecimal integer.

2nd char = x or X
1st char = 1 through 9 The string isinterpreted as a decimal integer.
athrough z or Are assigned the values 10 through 35; only letters

A through Z

whose assigned values are less than base are permitted.

The strtoul() function allows a plus (+) or minus (-) sign prefix; aleading minus
sign indicates that the return value is negated.

See also:

Returns
Strtod()

Strtol()

Strtoul()

atof(), atol()

Returns the converted value.

Returns tHUGE_V AL when the representation would cause an
overflow.

Returns 0 if no conversion could be performed or an underflow
occurred.

Returns the converted value.

Returns LONG_MAX or LONG_MIN when the representation would
cause an overflow.

Returns 0 if no conversion could be performed.
Returns the converted value, if any.
Returns 0 if no conversion can be performed.

Returns ULONG_MAX on overflow.

252 Chapter 3 Functions

ANSI strtok

strtok

Finds the next token in a string.

Syntax

#i ncl ude <string. h>
char *strtok (char *stringl, const char *string2);

Parameters

stringl
String containing token(s); may be separated by one or more of the delimiters from
string2.

string2
Set of delimiter characters.

Additional Information

Thisfunctionreads st ri ngl as aseries of zero or moretokensand st ri ng2 asthe
set of characters serving as delimiters of the tokensin st ri ng1.

Use aseries of callsto strtok() to break out tokensfrom st ri ngl. Inthefirst cal,
strtok() searchesfor thefirst tokeninstri ngl, skipping leading delimiters. To
read the next token from st ri ng1, call strtok() with anull pointer value for the
stringl argument. The null pointer argument causes strtok() to search for the next
token in the previous token string. The set of delimiters may vary from call to call,
sostring2 cantake any value.

Callsto thisfunction will modify st ri ngl, since each time strtok () iscalled it
insertsanull character \ 0 after thetokeninstri ngil.

See also: _get_rmx_conn(), strespn(), strspn()

|:| Note

C string tokens are char values separated by delimiter characters;
aniRMX connection tokenisasel ect or value obtained from a
call to_get_rmx_conn() or iRMX system calls. Do not confuse
the C concept of a character string token with the iIRMX connection
token.

C Library Reference Chapter 3 253

strtok ANSI

Returns

A pointer to thefirst tokenin st ri ngl thefirst time strtok() iscalled. All tokens
are null-terminated.

A pointer to the next token in the string on subsequent calls with the same token
string.

A null pointer means there are no more tokens.

254 Chapter 3 Functions

strupr

strupr

Converts any lowercase letters in a null-terminated string to uppercase.

Syntax
#i ncl ude <string. h>

char *strupr (char *string);

Parameter
string String to be capitalized.

Additional Information
Does not affect characters other than lowercase.
See also: striwr ()

Returns
A pointer to the converted string.

No error return.

C Library Reference Chapter 3 255

strxfrm ANSI

strxfrm

Transforms a string based on local e-specific information and stores the result.

Syntax

#i ncl ude <string. h>
size_t strxfrm (char *stringl, const char *string2,
size_t count);

Parameters

stringl
String to which transformed version of st ri ng2 isreturned.

string2
String to transform.

count Maximum number of charactersto be placedinstri ngl.

Additional Information

The transformation is made using the information in the local e-specific
LC_COLLATE macro.

The value of this expression is the size of the array needed to hold the transformation
of the source string:

1 + strxfrm (NULL, string, 0);

The C libraries support the C locale only; thus strxfrm() is equivalent to these
commands:

strncpy (_stringl, _string2, _count);
return (strlen (_string2));

After the transformation, a call to strcmp() with the two transformed strings will
yield identical resultsto acall to strcoll() applied to the original two strings.

See also: localeconv(), setlocale(), strnemp()

Returns
The length of the transformed string, not counting the terminating null character.

If the return value is greater than or equal to count , the contents of st ri ngl are
unpredictable.

256 Chapter 3 Functions

DOS swab

swab
Copies while swapping bytes.

Syntax
#i ncl ude <stdlib. h>
void swab (const char *src, char *dest, int n);
Parameters
src Points to the source buffer.

dest Pointsto abuffer to which the source buffer is copied, with each pair of bytes
swapped.

n The number of bytesto be copied.

Additional Information

Use swab to copy n bytes from the sr ¢ buffer while swapping each pair of adjacent
bytes.

If n isodd, the last byteis copied directly from the sr ¢ buffer to the dest buffer,
with no byte swapping.

Returns
Nothing.

C Library Reference Chapter 3 257

system stdio

system

Invokes the system call rg_c_send_command to execute an iRMX command line.

Syntax

#i ncl ude <stdlib. h>
i nt system (const char *conmand);

Parameter

conmand
Command to be executed; it can be any valid HI command, user program, or alias.
Additional Information

The system(') function may be invoked multiple times with an ampersand (&) in the
last character of command, to extend the command line. The connection is
maintained until system(') isinvoked without an &.

See also: rq_c_send_command, System Call Reference

Returns

Value Meaning

0 Successful; command isnot NULL and the command interpreter is
successfully started.

0 And sets errno to ENOENT, if the command interpreter is not found.

Not0 If command isNULL and the command interpreter is found.

-1 Error occurred, and the function sets errno to one of these values:
E2BIG Command line exceeds 128 bytes.

ENOMEM Oneof these:
Not enough memory is available to execute the command, or

The available memory has been corrupted, or

Aninvalid block exists, indicating that the process making
the call was not allocated properly.

258 Chapter 3 Functions

ANSI tan, tanh

tan, tanh
Tan() calculates the tangent and tanh() calculates the hyperbolic tangent of the

number.
Syntax

#i ncl ude <mat h. h>
doubl e tan (double x);
doubl e tanh (double x);

Parameter
X Angleto calculate in radians.
See also: acog(), asin(), atan(), cos(), sin()

Returns
Tan() Returns the tangent of x.

Returns a PLOSS error and sets errno to ERANGE if x islarge and a
partial loss of significance in the result may occur.

Returns O, prints a TLOSS error message to stderr, and sets errno to
ERANGE if x isso large that significance istotally lost.

Tanh() Returns the hyperbolic tangent of x.
No error return for tanh().

These functions do not return standard ANSI domain or range errors.

C Library Reference Chapter 3 259

time ANSI, stdio

time
Gets the system time.

Syntax

#i nclude <tine. h>
time_t time (time_t *timer);

Parameter

ti mer Storagelocation for the return value. This parameter may be a null pointer, in which
case the return value is not stored.

Additional Information

This function callsthe system call rq_get_time and adds an adjustment factor: the
number of seconds between epoch time and January 1, 1978, plus the local timezone
factor TZ, described intzset(). Thisadjuststhe iRMX OS time value to a POSIX-
standard value.

See also: asctime(), ctime(), gmtime(), localtime(), tzset()

Returns
The number of seconds elapsed since epoch time, according to the system clock.

No error return.

260 Chapter 3 Functions

time macros, _tzset_ptr

time macros, _tzset_ptr

Accesses daylight, timezone, and tzname environment variables.

Syntax

#i ncl ude <tine. h>
#i ncl ude <reent. h>
struct _tzset {
char *_tzname[2];
l ong _tinezone;
i nt _daylight;
}
struct _tzset *_tzset_ptr (void);
#define daylight (_tzset _ptr()->_daylight)
#define tinmezone (_tzset _ptr()->_tinmezone)
#define tzname (_tzset_ptr()->_tznane);

Additional Information
The daylight() macro accessesthe _dayl i ght flag.

Value Meaning
1 Daylight-savings-timeisin effect (default).
0 Daylight-savings-timeis not in effect.

The timezone() macro accesses the value that represents the difference in seconds
between GMT and local time.

The tzname() macro accesses a pair of pointers to the timezone name and daylight-
savings-time name. For example, t zname[0] could point to EST and t znane[1]
could point to EDT. The default strings are PST and PDT.

The _tzset ptr function usesthe _t zset structure that contains members
corresponding to tzname, timezone, and daylight. Each of these macros calls
_tzset_ptr.

See also: tzset(), <time.h>

Returns
Pointer to _t zset .

Null pointer if unsuccessful.

C Library Reference Chapter 3 261

tmpfile ANSI, stdio

tmpfile
Creates atemporary file, opensin it binary read/write mode, and returns a stream
pointer to it.

Syntax

#i ncl ude <stdi o. h>
FILE *tnpfile (void);

Additional Information

The temporary fileis automatically deleted when the file is closed, when the program
terminates normally, or when rmtmp() is called, assuming that the current working
directory does not change.

See also: rmtmp(), open(), tmpnam()

Returns
A stream pointer.

A null pointer if unsuccessful.

262 Chapter 3 Functions

ANSI tmpnam

tm pnam
Creates atemporary filename, which can open atemporary file without overwriting
an exigting file.

Syntax

#i ncl ude <stdio. h>
char *tnpnam (char *string);

Parameter

st ri ng Pointer to the temporary filename.

Additional Information

If stringisanull pointer, tmpnam() leavesthe result in an internal static buffer.
Thus any subsequent calls destroy this value.

If stringisnotanull pointer, itisassumed to reference a string buffer of at least
L_t npnambytes. The function will generate unique filenames for upto TMP_MAX
cals.

The character string that tmpnam() creates consists of the path prefix, defined by
P_t npdi r, followed by a sequence consisting of the digit characters 0 through 9; the
numerical value of this string can range from 1 to 65,535.

Changing the definitions of L_t npnamor P_t npdi r in <stdio.h> does not change
the operation of tmpnam().

See also: mktmp(), tmpfile()

Returns
A pointer to the temporary filename generated.

A null pointer if it isimpossible to create the name or the name is not unique.

C Library Reference Chapter 3 263

toascii, tolower, _tolower, toupper, _toupper ANSI

toascii, tolower, tolower, toupper, toupper

Convert single characters.

Syntax

#i ncl ude <ctype. h>
#i ncl ude <stdlib. h>
int toascii (int c);
int tolower (int c);
int _tolower (int c);
i nt toupper (int c);
int _toupper (int c);

Parameter

c Character to convert.

Additional Information

These functions are implemented both as functions and as macros. To use the
function versions, remove the macro definitions through #undef directives, or do not
include <ctype.h>.

Function
toascii()

tolower()
_tolower()

toupper()
_toupper()

See also:

Return Value

Description

Converts c to ASCII character. Thetoascii() function setsall but the
low-order 7 bits of ¢ to 0, so that the converted value represents an
ASCII character. If c already represents an ASCII character, cis
unchanged.

Converts c to lowercase if ¢ represents an uppercase letter.

Converts c to lowercase only when ¢ represents an uppercase | etter;
the result isundefined if cisnot.

Converts c to uppercase if ¢ represents alowercase | etter.

Converts c to uppercase only when ¢ represents alowercase letter; the
result is undefined if cisnot.

isfunctions

The converted character.

No error return.

264 Chapter 3 Functions

stdio tzset

tzset

Sets the time environment variables.

Syntax

#i nclude <tine. h>
void tzset (void);
int daylight /* G obal variables set by function */
| ong tinezone;
char *tzname[2]

Additional Information

This function calls getenv() to obtain the current setting of the environment variable
TZ, then assigns values to three global variables: dayl i ght ,ti mezone, and

t znanme. Thelocaltime() function uses these variables to make corrections from
GMT tolocal time, and time() uses these variables to compute GMT from system
time.

The TZ environment variable has the following syntax:

[:] <st d><st d_Of f set >[<dst >[<dst _Of fset >] [, <sdat e>[/I <sti rTE>]
, <edat e>[/ <eti me>]]]

Where:

[:1, indicates how the system clock is set. If a semi-colon is present, thetimeis set
to Loca Time. No semi-colon indicates that the POSI X-compliant setting of
Universal Constant Time (UCT) is used.

Where:

Local Time means that functions will not need to do shifts for timezone,
but will not shift for daylight savingstime. The user must reset the
system clock twice ayear by hand to account for these. All iRMX file
timestamps and CUSPs report the local time.

UCT means that functions will automatically handle timezone shifts and
daylight savingstime switches. All iRMX file timestamps arein UCT.
TheiRMX date/time CUSPs report in UCT even though the system
saysLoca Time.

C Library Reference Chapter 3 265

tzset

stdio

<st d> (Standard Time) and <dst > (Daylight Savings Time) are
_POSI X_TZNAME_MAX in length and are typically athree character string of the form
xST or xDT, such as PST.

<std_of fset>, <dset of fset>, <stinme>, and <et i me> have the format:
[+] -] <hour s>[: <mi nut es>[: <seconds>]]

The default is 2: 00: 00.

<sdat e> (DST dtart date) and <edat e> (DST end date) have the format:
<j ul'i an0>| J<j ul i an1>| M<nmont h>. <week>. <day>
Where:

<j ul i an0> is0to 365

<julianl>is1to 366

<nmont h>is1to 12

<week> is1to 5 where5isthe last week of the month
<day> is 0 (Sunday) to 6 (Saturday)

The default is implementation-specific (U.S. law since 1987 states “M4. 1. 0”
and MLO. 5. 0").

These values are assigned to the variablesdayl i ght , t i mezone, and t znane when
tzset() iscalled:

Variable Value and Meaning

dayl i ght Indicates whether daylight savingstime is observed locally (1) or not
(0). To check the state of thisvariable, call the localtime() function
and seeif thet m i sdst fieldislorO.

ti mezone Seconds west of UCT if positive or seconds east of UCT if negative.

t znane[0] String value of the timezone name from the TZ setting; default is
PST

t znane[1] String value of the daylight savings time name; default isPDT. An
empty string must appear if daylight savingstime is never in effect,
asin certain states and localities.

See also: asctime(), getenv(), gmtime(), localtime(), putenv(), time(), time
macros

Returns

266

Nothing.

Chapter 3 Functions

ultoa, utoa

ultoa, utoa

Ultoa converts unsigned long and utoa converts an integer to a null-terminated string
and stores it, without overflow checking.

Syntax

#i ncl ude <stdlib. h>
char *ultoa (unsigned | ong value, char *string, int
radi x) ;
char *utoa (unsigned int value, char *string, int radix);

Parameters
val ue Number to convert.

string String result.

radi x Baseof val ue; must be in the range 2-36.

Additional Information

Thest ri ng buffer must be large enough to accommodate the largest representation
of along integer that r adi x callsfor. For example, on aniRMX system, the largest
signed values represented in a 32-bit integer are -2,147,483,648 and +2,147,483,647.
In base 2, their binary representations are 1 and thirty-one trailing Os, and 0 and
thirty-onetrailing 1s, respectively. With the sign and terminating null character, the
minimum buffer size would be thirty-four bytes for binary representation.

For portability, use sprintf's% o, % d, or % x conversion specifiers, if r adi x is 8,
10, or 16, when calling ultoa(). Use sprintf's%e, %, or % conversion specifiers, if
radi x is8, 10, or 16, when calling utoa().

With r adi x greater than 10, digitsin the converted string representing values 10
through 35 are the characters a through z.

See also: itoa(), Itoa(), sprintf()

Returns
A pointer to the string.

No error return.

C Library Reference Chapter 3 267

umask

umask

Sets the default file-permission mask of the current process to the specified mode.

Syntax

#i ncl ude <io. h>
#i ncl ude <sys/stat.h>
#i ncl ude <sys/types. h>
node_t umask (node_t pnode);

Parameter

prode Default permission mode.

Additional Information

The file-permission mask is applied to the permission mode specified in callsto
creat(), open(), or sopen(). The permission mode determines the file's ownership
and access rights; the file-permission mask affects only accessrights. If abitinthe
mask is 1, the corresponding bit in the file's requested permission mode valueis set to
0 (disallowed). If ahitinthe mask is0, the corresponding bit is left unchanged. The
permission mode for anew fileis not set until the fileis closed for the first time.

The argument prrode is a constant expression containing one or more of the manifest
constants defined in <sys/stat.h>. Join more than one constant with the bitwise-OR
operator (|).

Value M eaning

S IRGRP Read permission hit for POSI X file group

S IROTH Read permission bit for POSIX World (other) owner

S IRUSR Read permission for POSIX file owner

S IWGRP Write permission bit for POSI X file group

S IWOTH Write permission bit for POSIX World owner

S IWUSR Write permission for POSIX file owner

S IXGRP Execute or search permission hit for POSIX file group

S IXOTH Execute or search permission bit for POSIX World owner
S IXUSR Execute or search permission for POSIX file owner

Seedso: chmod(), creat(), mkdir(), open(), <sys/stat.n>

268 Chapter 3 Functions

umask

Returns
The previous value of pnode.

No error return.

C Library Reference Chapter 3 269

ungetch DOS

ungetch
Pushes a character back to the console, causing that character to be the next character
read.

Syntax

#i ncl ude <coni o. h>
int ungetch (int c);

Parameter

c Character to be pushed; must not be EOF

Additional Information

Read the next character using getch() or getche(). Thisfunctionfailsif itiscalled
more than once before the next read.

See also: cscanf(), getch(), getche()

Returns
Value Meaning
c Successful
EOF Error

270 Chapter 3 Functions

unlink

unlink
Deletes afile.

Syntax

#i ncl ude <io. h> /* OR */
#i ncl ude <stdio. h>
int unlink (const char *fil enane);

Parameter

filenanme
Name of file to delete.

See also: close(), remove()

Returns
Value Meaning
0 Successful
-1 Error. The function sets errno to one of these values:

EACCES Pathname specifies aread-only file.
ENOENT File or pathname not found, or pathname specifies a directory.

C Library Reference Chapter 3 271

utime

utime
Sets the modification time for afile.

Syntax

#i ncl ude <sys\types. h>
#i ncl ude <sys/utinme. h>
int utinme (const char *filenanme, struct utinmbuf *times);

Parameters

fil ename
File on which to set modification time. The process must have write accessto the
file.

ti mes Pointer to stored timevalues. If ti mes isaNULL pointer, the modificationtimeis
set to the current time. Otherwise, t i mes must point to aut i mbuf structure, defined
in sysiutime.h.

Additional Information

The modification time is set from the modtime field in the ut i mbuf structure.
Although this structure contains a field for access time, only the modification timeis

Set.
See also: asctime(), ctime(), fstat(), ftime(), gmtime(), localtime(), stat(),
time()
Returns

Value Meaning

0 The file-modification time was changed

-1 Time was unchanged and the function sets errno to one of these values:
EACCES Pathname specifies directory or read-only file.
EINVAL Invalid argument; the times argument isinvalid.

EMFILE Too many open files (the file must be opened to changeits
modification time).
ENOENT Filename or pathname not found.

272 Chapter 3 Functions

ANSI va_arg, va_end, va_start

va_arg, va_end, va_start

Access variable-argument lists.

Syntax

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>
type va_arg (va_list arg_ptr, type);
void va_end (va_list arg_ptr);
void va_start (va_list arg_ptr, prev_param

Parameters

ar g_pt r
Pointer to variable-argument list.

prev_param
Parameter preceding first optional argument.

type Typeof argument to be retrieved.

Additional Information

These macros provide a portable way to access a function's arguments when the
function takes a variable number of arguments. Usetheva start() macro before

using va_arg() for thefirst time. The macros behave as follows:

Macro Description

va arg() Retrieves type parameter from the location given by arg_ptr.
Incrementsar g_pt r to point to the next argument in the list, using the
size of type parameter to determine where the next argument starts.
Use this macro multiple times to retrieve all arguments from the list.

va_end() After all arguments have been retrieved, resetsarg_ptr toanull

pointer.

va start() Setsarg_ptr tothefirst optional argument in the variable-argument
list. Thearg_ptr argument must be of theva_l i st type. The
argument pr ev_par amis the name of the required parameter
immediately preceding the first optional argument in the argument list.
If prev_par amis declared with the register storage class, the macro's

behavior is undefined.

C Library Reference Chapter 3

va_arg, va_end, va_start ANSI

The macros assume that the function takes a fixed number of required arguments,
followed by a variable-argument list.

See also: <gtdarg.h>, vfprintf(), vprintf(), vsprintf()

Returns
Va arg() returnsthe current argument.

Va start() and va_end() do not return values.

274 Chapter 3 Functions

ANSI, stdio viprintf, vprintf, vsprintf

viprintf, vprintf, vsprintf

Vfprintf() formats and sends data to the file specified by st r eam vprintf() sends
data to standard output, and vsprintf() sends data to the memory pointed to by
buffer.

Syntax

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>
int vifprintf (FILE *stream const char *formt,
va_list argptr);
int vprintf (const char *format, va_list argptr);
int vsprintf (char *buffer, const char *formt,
va_list argptr);

Parameters
st r eam Pointer to FI LE structure.
f or mat Formatted string.

ar gpt r Pointer to list of arguments.

buf f er Storage location for output.

Additional Information

These functions are similar to their counterparts fprintf(), printf(), and sprintf(),
but each accepts a pointer to a variable-argument list instead of additional arguments.

Thef or mat argument has the same form and function as for the printf() function.

Thear gpt r parameter hastype va_l i st. Thear gptr parameter pointsto alist of
arguments that are converted and output according to the corresponding format
specificationsin the f or mat argument.

See also: printf() for a description of f or mat , fprintf(), sprintf(), va arg(),
va end(), va_start()

Returns
The number of characters written, not counting the terminating null character.

A negative value if an output error occurs.

C Library Reference Chapter 3 275

viprintf, vprintf, vsprintf ANSI, stdio

viscanf, vscanf, vsscanf (ANSI, stdio)
Reads and formats character data into the specified locations.

» Vfscanf isanaogousto vfprintf and reads input from the current position of a
stream using a variable argument list of pointers (see stdarg).

» Vscanf scans avariable argument list from the standard input (stdin) and vsscanf
scans it from a string. These are analogous to the vprintf and vsprintf functions,
respectively.

Syntax
#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>
int vfscanf (FILE *stream const char *format, va_list argptr);
int vscanf (const char *format, va_ list argptr);
int vsscanf (const char *buffer, const char *format, va_list

argptr);
Parameters
st r eam Pointer to FILE structure.
f or mat Formatted string. This parameter has the same form and function asin printf.

ar gpt r Pointer to list of arguments. This parameter has type va list and pointsto alist of
arguments that are converted and output according to the corresponding format
specifications in format.

buf f er Storage location for input.

Additional Information
These functions are similar to their counterparts fscanf, scanf, and sscanf, but each
accepts a pointer to a variable-argument list instead of additional arguments.
Returns

Success The number of fields successfully converted and assigned, which may be less than
the number requested. Does not include fields read but not assigned.

Failure A negative value if an output error occurs. EOF if end-of-file is encountered on the
first attempt to read a character.

See also: va arg, va_end, va_start

276 Chapter 3 Functions

ANSI wcstombs

wcstombs

Converts a sequence of wide characters to a corresponding sequence of multibyte
characters.

Syntax

#i nclude <stdlib. h>
size_t westonbs (char *nmbstr, const wchar _t *westr,
size_t count);

Parameters
mbstr The address of a sequence of multibyte characters which have been converted.
westr The address of a sequence of wide characters to convert.

count The number of bytesto convert.

Additional Information

If westombs() encounters the wide-character null, either before or when count
occurs, it convertsit to the multibyte null character (a 16-bit 0) and stops. Thus, the
multibyte character string at nbst r is null-terminated only if westombs() encounters
awide-character null character during conversion. If the sequences pointed to by
west r and nbst r overlap, the behavior of westombs() is undefined.

See also: mblen(), mbstowcs(), mbtowc(), wetomb()

Returns

The number of converted multibyte characters, excluding the wide-character null
character.

-lcasttotypesi ze_t if awide character cannot be converted to a multibyte
character.

C Library Reference Chapter 3 277

wctomb ANSI

wctomb
Converts awide character to the corresponding multibyte character and storesitin a
specified location.

Syntax

#i ncl ude <stdlib. h>
int wetonmb (char *nbchar, wchar_t wchar);

Parameters

mbchar The address of a converted multibyte character.

wchar A wide character to convert.

See also: mblen(), mbstowcs(), westombs()

Returns

The number of bytes, never greater than MB_CUR_MAX, in the wide character.
0if wehar isthe wide-character null.

-1if the conversion is not possible in the current locale.

278 Chapter 3 Functions

stdio

write

write

Writes data from a buffer to afile.

Syntax

#i ncl ude <io. h>
int wite (int handle, const char *buffer
count);

Parameters

handl e Descriptor referring to an open file.
buf f er Datato be written.

count Number of bytes.

Additional Information

, unsigned int

Writing begins at the current file pointer position. If the fileis open for appending,

the operation begins at the end-of-file. After writing, the file
number of bytes actually written.

pointer increases by the

When writing more than 2 gigabytesto afile, the return value must be of type
unsigned integer. However, the maximum number of bytes that can be writtento a
file at onetimeis 4 gigabytes -2, since 4 gigabytes -1 (or OXFFFFFFF) is

indistinguishable from -1 and would return an error.

When write() isreceived, the file descriptor is checked for text or binary mode.

If the file was opened in text mode, the output buffer iswritten up to each <LF>
character, then a<CR><LF> pair iswritten separately. If multiple tasks are writing
to the same output, scrambling will occur in text mode; use binary mode. When
writing to files opened in text mode, the write() function treats a <Ctrl-Z> character
asthelogical end-of-file. When writing to a device, write() treats a<Ctrl-Z> in the

buffer as an output terminator.
See also: fwrite(), open(), read()

C Library Reference

Chapter 3 279

write stdio

Returns

The number of bytes actually written, not including <CR><LF> pairs. May be less
than count , aswhen disk spaceisfilled before count bytes are written.

-1 on error, and the function sets errno to one of these values:
EBADF Invalid file descriptor or file not opened for writing.
ENOSPC No space left on device.

280 Chapter 3 Functions

stdio write

C Library Reference Chapter 3 281

Index

A

abort functions, 10
abort() function, 24
aborting

task, 29
abg() function, 25
absolute value

calculating, 25, 37, 83, 137
accounting array, 124
acos() function, 26
allocating

C task resources, 54

directory cache memory, 227

memory array, 38

memory blocks, 60, 152, 195

stream buffer, 207
ANS

conforming locale, 210
ANSI function, 23
appending

array, 145

charactersto string, 240

string to string, 228
arccosine, calculating, 26
arcsine, calculating, 28
arctangent, calculating, 30
argc/argv parameters, 116
array

sorting, 188
asctime() function, 27
asin() function, 28
assert() function, 29
atan() function, 30
atan2() function, 30
atexit(') function, 31
atof() function, 32
atoi() function, 32

C Library Reference

atol () function, 32

B

Bessdl functions, computing, 34
binary
mode, 87
search, 35
trandation mode, 212
bitwise-OR operator, 42, 51, 164, 170, 220, 268
bookkeeping area, 54
bsearch() function, 35
buffering mode, 214
buffers
comparing, 159, 161
copying, 157, 160
copying while swapping bytes, 257
finding character in, 158
flushing, 97
modifying EIOS, 208
moving, 162
setting, 214
setting character, 163
setting for stream, 207
writing to file, 77
BUFSIZ, 207
bytes fromfile, reading, 72

C

C command line parser, 116

Clibrary
code segment, getting, 121
data segment, getting, 122
information structure, getting, 124
overview, 1
stack segment, getting, 123

C dtrings

converting, 56

Index 281

C task resources, 4, 54
c_info structure, 124
cabs() function, 37
cache, stat() function, 227
calculating
absolute value, 25, 37, 83, 137
arccosine, 26
arcsine, 28
arctangent, 30
ceiling, 39
cosine, 48
exponential, 82
floating-point remainder, 98
floor, 96
hyperbolic cosine, 48
hyperbolic sine, 218
hyperbolic tangent, 259
logarithms, 143
number from mantissa and exponent, 138
number raised to power, 174
quotient and remainder, 59, 139
sine, 218
square, 224
squareroot, 223
tangent, 259
caloc() function, 38
ceil() function, 39
ceiling
caculating, 39
cgets() function, 40
character
multibyte, 154, 155, 156
wide, 155, 156
character processing functions, 9
character string
getting from console, 40
character string token, 254
characters
choosing next read, 270
converting, 264
chmod() function, 41
chsize() function, 43
cifc32.lib, 5
cinfo_count, 124
cleanup at exit, 81
clearerr()) function, 44
clearing

282 Index

error and end-of-file indicators, 44
memory, 38
open output streams, 97
stream, 90
clibjob, 1
clock() function, 45
CLOCKS PER_SEC constant, 45
close() function, 46
closedir() function, 47
closing
file, 46, 61, 105
stream, 84
closing directories, 47
command line
arguments, getting, 116
executing, 258
extending, 258
option, recognizing, 126
parsing, 116
standard arguments, 126
compare routine, 35, 140, 145, 188
comparing
buffers, 159, 161
command line arguments, 126
strings, 230, 231
substrings, 241, 243
computing Bessel functions, 34
config r2env file, 120
configuring
Clibrary, 2
connection token, 128
console
writing to, 183
context of executing program, 209
control functions, 10
converting
C string to UDI string, 56
characters read from stdin, 202
charactersto ASCII, lowercase, or
uppercase, 264
integer to string, 135, 136, 267
long integer to string, 149, 150, 151, 267
multibyte to wide characters, 155, 156
number to string, 79, 85, 113, 115
string to integer, 32, 251
string to locale-specific string, 256
string to long integer, 32

string to lowercase, 239
string to number, 32, 251
string to uppercase, 255
time structureto string, 27
time structure to time_t value, 167
time_t valueto string, 57
time_t valueto time structure, 131, 142
UDI string to C string, 56
wide to multibyte characters, 277, 278
copying
buffers, 157, 160
buffers while swapping bytes, 257
file descriptor, 78
string, 232, 234, 242
cos() function, 48
cosh() function, 48
cosing, calculating, 48
cprintf(') function, 49
cputs() function, 50
creat() function, 51
creating
environment-variable file, 120
exit register, 31, 169
file descriptor, 78
files, 51
memory segments, 201
new directory, 164
temporary file, 262
temporary filename, 165, 263
cscanf() function, 53
cstart, 5
general description, 5
cstr() function, 56
ctime() function, 57

D

data

reading, 53
date

getting, 67

setting, 74
daylight, 266

macro, 261

variable, 265
daylight-savings-time name, 266
deallocating

C Library Reference

memory blocks, 104
debugging, 29
default <Ctrl-C> handler, 215
default action

flag directives, 177

signals, 190
default daylight, 265
default daylight-savings-time, 261
default file sharing, 51
default file-permission mask, 268
default keyboard stream, 197
default open mode, 170
default precision, 178
default share mode, 164, 170
default signal-handling, 190

default system-allocated buffer, 207

default timezone, 265
default tzname, 265
default-mode variable, 87
deleting
C task resources, 54
directories, 199
files, 271
memory segments, 201
temporary files, 84, 200
descriptor table, file, 185
diagnostic message, 29
difftime() function, 58
directories
caching, 227
closing, 47
creating, 164
deleting, 199
opening, 172
reading, 194
renaming, 196
resetting, 198
updating, 43
div() function, 59
dividing, 139
DOS function, 23
DOS interface functions, 12
dos_close() function, 61
dos_creat() function, 62
dos_creatnew() function, 62
dos _findfirst() function, 64
dos_findnext() function, 64

Index

283

dos_freeman() function, 66
dos_getdate() function, 67
dos_getftime() function, 68
dos_gettime() function, 69
dos_open() function, 70
dos_read() function, 72
dos_setdate() function, 74
dos_setftime() function, 75
dos_settime() function, 76
dos_write() function, 77
double value

converting to string, 85, 115

splitting, 168
dup() function, 78
dup2() function, 78
duplicating file connections, 78

E

ecvt() function, 79
EIOS buffers, 124, 208
end-of-file, 80
Sstream, 88
end-of-file indicators
resetting, 44
environment variables, 184
getting, 120
time, 265
TZ, 142
environment-variable table, 120, 184
eof () function, 80
error indicators
resetting, 44
error messages
getting, 235
writing to stderr, 173
examining
strings, 245
exception structure, math, 153
executing program
saving context, 209
signaling, 190
executing system commands, 258
exit functions, maximum number of, 31
exit() function, 81
exiting
task, 81

284 Index

exp() function, 82
exponent, 138

getting, 106
exponential, calculating, 82

F

fabg() function, 83
fclose() function, 84
fclosedll() function, 84
fevt() function, 85
fdopen() function, 86
feof() function, 88
ferror() function, 89
fflush(') function, 90
fgetc() function, 91
fgetchar() function, 91
fgetpos() function, 92
fgets() function, 93
file access, setting, 62
file descriptor, 78, 128
associations, 134
getting, 95
file descriptor table, 78, 185
filefiles
list, 7
file information
getting, 68, 111
setting, 75
file pointers
getting position, 92, 112
moving, 108, 146, 197
setting absolute position, 148
setting position, 110
filelength() function, 94
filename
creating temporary, 165
fileno() function, 95
file-permission mask, 268
files
closing, 46, 61, 105
connection duplications, 78
creating, 51, 62
creating temporary, 262
creating temporary hame, 263
deleting, 271
deleting temporary, 200

finding, 64
getting information on, 227
getting length, 94

opening, 51, 62, 70, 99, 105, 170, 220

reading, 72

reading to buffer, 193

renaming, 196

setting modification time, 272

setting size, 43

sharing, 51, 170

sharing default, 164

trandation mode, 212
file-status structure, 227
finding

character in buffer, 158

character in string, 229, 246

character token in string, 253

files, 64

substring in string, 233, 249, 250
first-level jobs

Clibrary, 1
FLAT model, code segment, 121
FLAT model, data segment, 122
FLAT model, stack segment, 123
floating-point remainder, 98
floor() function, 96
flushall() function, 97
fmod() function, 98
fopen() function, 99
format specification

formatted output string, 176

scanned input, 203

time string, 236
format-control string, 202
formatted

input, 202

string, 175
formatting

character data from stdin, 202

character data from stream, 107, 202

character data from string, 226

output data, 175

time string, 236
fprintf() function, 100
fputc() function, 101
fputchar(') function, 101
fputs() function, 102

C Library Reference

fread() function, 103
freg() function, 104
freopen() function, 105
fscanf(') function, 107
fseek() function, 108
fsetpos() function, 110
fstat() function, 111
ftell() function, 112
ftoa() function, 113
functions, by name
_cstop(), 54
_dos_alocmem(), 60
_exit(), 81
_get_arguments(), 116
_get_cg(), 121,122
_get_info(), 124
_get_rmx_conn(), 128
_get_s3(), 123
_put_rmx_conn(), 185
_set_info(), 208
_tolower(), 264
_toupper(), 264
abort(), 24
abs(), 25
acos(), 26
asctime(), 27
asin(), 28
assert(), 29
atan(), 30
atan2(), 30
atexit(), 31
atof(), 32
aoi(), 32
atol(), 32
Bessel, 34
bsearch(), 35
caloc(), 38
ceil(), 39
cgets(), 40
chmod(), 41
chsize(), 43
clearerr(), 44
clock(), 45
close(), 46
closedir(), 47
cos(), 48
cosh(), 48

Index

285

cprintf(), 49 fputc(), 101

cputs(), 50 fputchar(), 101
creat(), 51 fputs(), 102
cscanf(), 53 fread(), 103
cstr(), 56 free(), 104
ctime(), 57 freopen(), 105
difftime(), 58 frexp(), 106
div(), 59 fscanf(), 107
dos close(), 61 fseek(), 108
dos _cresat(), 62 fsetpos(), 110
dos_creatnew(), 62 fstat(), 111
dos findfirst(), 64 ftell(), 112
dos findnext(), 64 ftoa(), 113
dos_freemem(), 66 fwrite(), 114
dos_getdate(), 67 gevt(), 115
dos_getftime(), 68 getc(), 118
dos_gettime(), 69 getch(), 119
dos_open(), 70 getchar(), 118
dos read(), 72 getche(), 119
dos_setdate(), 74 getenv(), 120
dos_settime(), 76 getopt(), 126
dos_write(), 77 getpid(), 127
dup(), 78 gets(), 129
dup2(), 78 getuid(), 127
ecvt(), 79 getw(), 130
eof(), 80 gmtime(), 131
exit(), 81 isalnum(), 132
exp(), 82 isalpha(), 132
fabs(), 83 isascii(), 132
fclose(), 84 isatty(), 134
fclosedl(), 84 iscntrl(), 132
fevt(), 85 isdigit(), 132
fdopen(), 86 isgraph(), 132
feof(), 88 islower(), 132
ferror(), 89 isprint(), 132
fflush(), 90 ispunct(), 132
fgetc(), 91 isspace(), 132
fgetchar(), 91 isupper(), 132
fgetpos(), 92 isxdigit(), 132
fgets(), 93 itoa(), 135
filelength(), 94 itoh(), 136
fileno(), 95 jo(), 34
floor()), 96 j10), 34
flushall(), 97 in(), 34
fmod(), 98 labs(), 137
fopen(), 99 Idexp(), 138
fprintf(), 100 Idiv(), 139

Index

Ifind(), 140
localeconv(), 141
localtime(), 142
log(), 143
logl0(), 143
longimp(), 144
Isearch(), 145
Iseek(), 146
Itell(), 148
ltoa(), 149
[toh(), 150
ltos(), 151
malloc(), 152
matherr(), 153
mblen(), 154
mbstowcs(), 155
mbtowc(), 156
memccpy(), 157
memchr(), 158
memcmp(), 159
memcpy(), 160
memicmp(), 161
memmove(), 162
memset(), 163
mkdir(), 164
mktemp(), 165
mktime(), 167
modf(), 168
onexit(), 169
open(), 170
opendir(), 172
perror(), 173
pow(), 174
printf(), 175
putc(), 182
putch(), 183
putchar(), 182
putenv(), 184
puts(), 186
putw(), 187
gsort(), 188
raise(), 190
rand(), 192
read(), 193
readdir(), 194
realoc(), 195
rename(), 196

C Library Reference

rewind(), 197
rewinddir(), 198
rmdir(), 199
rmtmp(), 200
sbrk(), 201
scanf(), 202
setbuf(), 207
setjmp(), 209
setlocale(), 210
setmode(), 212
setvbuf(), 214
signal(), 215
sin(), 218
sinh(), 218
seep(), 219
sopen(), 220
sprintf(), 222
sort(), 223
square(), 224
srand(), 225
sscanf(), 226
stat(), 227
streat(), 228
strchr(), 229
stremp(), 230
strempi(), 230
streall(), 231
strepy(), 232
strespn(), 233
strdup(), 234
strerror(), 235
stritime(), 236
stricmp(), 230
strlen(), 238
striwr(), 239
strneat(), 240
strnemp(), 241
strnepy(), 242
strnicmp(), 243
strnset(), 244
strpbrk(), 245
strrchr(), 246
strrev(), 247
strset(), 248
strspn(), 249
strstr(), 250
strtod(), 251

Index

287

strtok(), 253
strtol (), 251
strtoul(), 251
strupr(), 255
strxfrm(), 256
swab(), 257
system(), 258
tan(), 259
tanh(), 259
time macros, 261
time(), 260
tmpfile(), 262
tmpnam(), 263
toascii(), 264
tolower(), 264
tzset(), 265
udistr(), 56
umask(), 268
ungetch(), 270
unlink(), 271
utime(), 272
va arg(), 273
va end(), 273
va start(), 273
viprintf(), 275
vprintf(), 275
vsprintf(), 275
westombs(), 277
wctomb(), 278
write(), 279
y0(), 34
yl(), 34
yn(), 34
fwrite() function, 114

G

gevt() function, 115

generating pseudo-random numbers, 192

getc() function, 118
getch() function, 119
getchar() function, 118
getche() function, 119
getenv() function, 120
getopt() function, 126
getpid() function, 127
gets() function, 129

288 Index

getuid() function, 127
getw() function, 130
gmtime() function, 131
goto, 209

H

handling
signal, 190, 215
heap management, 3
hyperbolic cosine, calculating, 48
hyperbolic sine, 218
hyperbolic tangent, 259

information structure, C library, 124
integer

calculating absolute value, 137

converting to string, 135, 136

getting from stream, 130

test conditions, 132
interface library, C, 2,5
interrupts

handling, 215
isalnum functions, 9
isalnum() function, 132
isalpha() function, 132
isascii() function, 132
isatty() function, 134
iscntrl(') function, 132
isdigit() function, 132
isgraph() function, 132
isower() function, 132
isprint() function, 132
ispunct() function, 132
isspace() function, 132
isupper() function, 132
isxdigit() function, 132
itoa() function, 135
itoh() function, 136

J

jO() function, 34
j1() function, 34
jmp_buf structure, 209

jn() function, 34
jobs
Clibrary, 1

L

labs() function, 137
Idexp() function, 138
Idiv() function, 139
Ifind() function, 140
libraries, interface, 2,5
linear search, 140, 145
lines

getting from stdin, 129
loadable jobs

Clibrary, 1
locale

setting task's, 210
locale settings

getting, 141
localeconv() function, 141
localtime() function, 142
log() function, 143
log10() function, 143
logarithms, 143
long integer

converting to string, 149, 150, 151
longjmp() function, 144
Isearch() function, 145
Iseek() function, 146
Itell() function, 148
Itoa() function, 149
Itoh() function, 150
Itog() function, 151

M

main() function, 116
malloc() function, 152
return value, 152
mantissa, 138
getting, 106
mapping
error number to error message, 235
file descriptors to connections, 185
POSIX toiRMX file permissions, 42
math errors, 153

C Library Reference

math exception structure, 153
matherr() function, 153
maximum

number of open files, 185
mblen() function, 154
mbstowcs() function, 155
mbtowc() function, 156
measuring time, 45
memccpy() function, 157
memchr() function, 158
memcmp() function, 159
memcpy() function, 160
memicmp() function, 161
memmove() function, 162
memory

alocating, 195

dlocating array, 38

alocating blocks, 60

clearing array, 38

comparing characters, 161

copying buffers, 157, 160

creating IRMX segments, 201

moving buffers, 162

releasing blocks, 66

setting charactersin buffer, 163
memory block

alocating, 152

deallocating, 104
memset() function, 163
minimizing C task resources, 55
mkdir() function, 164
mktemp() function, 165
mktime() function, 167
modf() function, 168
modification time

setting, 272
moving

buffer, 162

file pointer, 108, 146, 197

memory, 195
multibyte character

getting length, 154

N

NDEBUG, 29
nonlocal goto, 209

Index 289

num_eios bufs, 124, 208
number
converting to string, 79

O

O_BINARY trandation mode, 212
O_TEXT trandation mode, 212
onexit() function, 169
open files per task, 185
open mode, 86, 99, 105, 170
open() function, 170
opendir() function, 172
opening
files, 51, 70, 99, 105, 170, 220
stream, 86
opening directories, 172
optarg, 126
optind, 126
OS extension, Clibrary, 1

P

parsing
commands, 116
permission mode, 170, 220, 268
setting, 41
perror() function, 173
pointers
getting to type other than void, 195
getting type other than void, 38, 152
POSIX
accessrights, 42
file descriptor, 128
file ownership rights, 42
permission, 51
pow() function, 174
printf(') function, 175
printing
error message to stderr, 173
formatted datato stream, 100
formatted string to string, 222
to console, 49
process ID
getting, 127
prog r?env file, 120
pseudo-random integer generator seed, 225

290 Index

pseudo-random numbers, generating, 192
putc() function, 182

putch() function, 183
putchar() function, 182
putenv() function, 184

puts() function, 186

putw() function, 187

Q

gsort() function, 188
quotient, 139
caculating, 59

R

r?env file, 120
raise() function, 190
rand() function, 192
read() function, 193
readdir() function, 194
reading
bytes fromfile, 72
character data from stdin, 118, 202

character data from stream, 91, 107, 118

character datafrom string, 226
character from console4-, 119
format specification, 175, 202
formatted data, 53
from fileto buffer, 193
from stream to buffer, 103
integer from stream, 130
string from stream, 93
reading directories, 194
realloc() function, 195
reassigning
file descriptor, 78
fileto stream, 105
redirecting
stdin, stdout and stderr, 105
register of functions, 169
releasing
memory blocks, 66
remainder, 98, 139
caculating, 59
rename() function, 196
renaming

directories, 196
files, 196
resetting

error and end-of-file indicators, 44

file pointer, 92
resetting directories, 198
resident jobs, C library, 1
resources

Ctask, 4

for C applications, 4

for C tasksand jobs, 3
resources, stdio functions, 54
restoring

context, 144
reversing string characters, 247
rewind() function, 197
rewinddir() function, 198
rmdir() function, 199
rmtmp() function, 200
rq a get file statuscal, 111, 227
rq_attach filecal, 227
rq_c_get _char cal, 116
rq_c_send_command call, 258
rq_catalog_object call, 3
rg_create_segment call, 201
rq_delete_segment call, 201
rq_delete task cal, 4,54
rg_exit_io_jobcall, 81
rq_get default_user call, 127
rq_get_timecal, 260
rq_inspect_user call, 127
rq_logical_attach devicecdl, 3
rq s attach filecall, 3
rq s opencal, 124
rg_s rename filecal, 196
rq sleep cdll, 219
run-timejob, C library, 1

S

S IRGRP, 41
S IROTH, 41
S IRUSR, 41
S IRWXG, 41
S IRWXO, 41
S IRWXU, 41
S ISGID, 41

C Library Reference

S ISUID, 41
S IWGRP, 41
S IWOTH, 41
S IWUSR, 41
S IXGRP, 41
S IXOTH, 41
S IXUSR, 41
saving

context, 209
sbrk() function, 201
scanf() function, 202
scrambled data, 279
search, binary, 35
searching

environment-variable table, 120

sorted array, 35

strings, 229, 245, 246, 249, 250, 253

unsorted array, 140, 145

SEEK_CUR, 108
SEEK_END, 108
SEEK_SET, 108
setbuf() function, 207
setjmp() function, 209
setlocale() function, 210
setmode() function, 212
Setting

<Ctrl-C> handler, 215

absolute position of file pointer, 148

charactersin buffer, 163
charactersin string, 248

current locale, 210
date, 74

exit status, 81
file pointer, 197

file pointer position, 110

filesize, 43

file-permission mask, 268

number of EIOS buffers, 208

open mode, 170, 220

permission mode, 41, 51, 164, 170, 220

pseudo-random integer generator seed, 225

share mode, 220
signal-handler, 215
stream buffering, 207,
string characters, 244
system date, 74
systemtime, 76

214

Index

291

time, 76

time environment variables, 265

trandation mode, 212
setvbuf (') function, 214
share mode, 220
shared C library

overview, 1
sharing

output stream, 279

samefile, 279

standard streams, 4
SIG_DFL, 216
SIG_IGN, 216
SIGABRT, 190

default action, 24
SIGALLOC, 190
SIGBREAK, 190
SIGFPE, 190
SIGFREE, 190
SIGILL, 190
SIGINT, 190
signal handling, 2
signal() function, 215
signal-handling

control, 215

default, 190
signalling

executing program, 190
SIGREAD, 190
SIGSEGV, 190
SIGTERM, 190
SIGUSR1, 190
SIGUSR2, 190
SIGUSR3, 190
SIGWRITE, 190
sin() function, 218
sine, 218
sinh() function, 218
sleep() function, 219
sopen() function, 220
splitting double value, 168
sprintf() function, 222
sort() function, 223
squareroot, 223
square() function, 224
square, calculating, 224
srand() function, 225

292 Index

sscanf() function, 226
startup code, 5, 116
stat structure, 227
stat() function, 227
stderr, 3,54
writing to, 173
stdin, 3, 54
getting lines from, 129
reading from, 118, 202
stdio functions, 23
stdout, 3, 54
writing character to, 182
writing string to, 186
writing to, 101, 175
streat() function, 228
strchr() function, 229
stremp() function, 230
strempi() function, 230
streoll() function, 231
strepy() function, 232
strespn() function, 233
strdup() function, 234
stream
clearing, 90
closing, 84
errors, 89
file descriptor, 95
file pointer position, 92
getting file pointer, 112
opening, 86
printing to, 100
reading, 91, 93
reading from, 103, 107, 118
reading integer from, 130
setting buffering, 207
setting file pointer, 110
writing character to, 182
writing integer to, 187
writing to, 102, 114
stream buffering
control, 214
strerror() function, 235
stritime() function, 236
stricmp() function, 230
string format
atof(), atoi() and atol(), 32
output string, 176

string length, getting, 238
strings
appending, 228
appending characters, 240
comparing, 230, 231
comparing substrings, 241, 243
converting lowercase to uppercase, 255
converting to double, long, or unsigned
long, 251
converting to locale-specific string, 256
converting uppercase to lowercase, 239
copying, 232, 242
duplicating, 234
finding charactersin, 229
finding substring in, 233, 250
finding tokensin, 253
formatting character data, 226
reading character data, 226
reversing characters, 247
searching, 245, 246, 249
setting charactersin, 244, 248
strien() function, 238
striwr() function, 239
strneat() function, 240
strncmp() function, 241
strnepy() function, 242
strnicmp() function, 243
strnset() function, 244
strpbrk() function, 245
strrchr() function, 246
strrev() function, 247
strset() function, 248
strspn() function, 249
stratr(') function, 250
strtod() function, 251
strtok() function, 253
gtrtol () function, 251
strtoul (') function, 251
strupr() function, 255
strxfrm(') function, 256
substrings
comparing, 241, 243
suspending
tasks, 219
swab function, 257
sys errlist, 173
sys nerr, 173

C Library Reference

sysload command, 2
system date
getting, 67
setting, 74
system time
getting, 69, 260
setting, 76
system() function, 258

T

tan() function, 259

tangent, 259

tanh() function, 259

task ID, 127

tasks
aborting, 29
C resources, 54
current locale, 210
deleting, 4, 54
handling interrupt, 215
maximum number of open files, 185
measuring time used by, 45
modifying EIOS buffer count, 208
normal termination, 31
performance boost, 227
resources of, 124
suspending, 219
terminating, 81

temporary files
deleting, 200

terminating
caling task, 81
task, 81

testing
character device, 134
end-of-file, 80, 88
error on stream, 89
expression, 29
integers, 132
multibyte character, 154
temporary filename uniqueness, 165

text mode, 87

text trandation mode, 212

time
converting to calendar, 167
converting to local, 142

Index

293

converting to structure, 131
getting, 69
getting system, 260
measuring, 45
setting, 76
values, finding difference between, 58
time environment variables, 261, 265
time string, 236
converting, 27, 57
formatting, 236
time structure, 167
time() function, 260
timezone, 266
timezone macro, 261
timezone variable, 265
tm structure, 142, 167
tmpfile() function, 262
tmpnam() function, 263
toascii() function, 264
tokens
character string, 254
tokens
getting for calling task, 127
iRMX connection, 128
tolower() function, 264
toupper() function, 264
trandlation
file descriptor to connection token, 128
iRMX to POSIX time stamps, 111, 227,
260
POSIX toiRMX accessrights, 42
POSIX toiRMX file ownership, 42
trandation mode, 87, 212
tzname, 266
tzname macro, 261
tzname variable, 265
tzset() function, 265

U

UDI string

converting, 56
udistr() function, 56
ultoa() function, 267
umask() function, 268
ungetch() function, 270
unlink() function, 271

294 Index

user ID, 127

getting, 127
utime() function, 272
utoa() function, 267

Vv

va arg() function, 273
va_end() function, 273
va start() function, 273
variable-argument list, 273, 275
vfprintf() function, 275
vprintf() function, 275
vsprintf(') function, 275

w

westombs() function, 277

wctomb() function, 278

wide characters, 155, 156
converting, 277, 278

World owner, 41

write() function, 279

writing
character to stream, 114
character to stream, stdout, 182
datato file, 279
error message to stderr, 173
formatted data to stream, 100
formatted string to stdout, 175, 275
formatted string to stream, 275
formatted string to string, 222, 275
from buffer to file, 77
integer to stream, 187
single character to stdout, 101
single character to stream, 101
string to stdout, 186
string to stream, 102
to console, 50

Y

yO() function, 34
y1() function, 34
yn() function, 34
<yvals.h> file, 20

	iRMX® C Library Reference
	Quick Contents
	Notational Conventions
	Related Publications

	Contents
	Chapter 1: Introduction
	Shared C Library Overview
	Shared C Library Advantages
	Resources Allocated to C Tasks and Jobs

	Supplied C Library Files
	The Cstart Module

	DOS Syntax
	Support for Development Tools
	Header Files

	Chapter 2: Functional Groupings
	Character Processing Functions
	Control Functions
	Conversion Functions
	DOS Console I/O Functions
	DOS Interface Functions
	File Management Functions
	Input/Output Functions
	iRMX-specific Functions
	Low-level I/O Functions
	Math Functions
	Memory Functions
	Searching and Sorting Functions
	Storage Allocation Functions
	String Processing Functions
	Time and Date Functions
	Variable Argument Functions

	Chapter 3: Functions
	abort
	abs
	acos
	asctime
	asin
	assert
	atan, atan2
	atexit
	atof, atoi, atol
	Bessel Functions
	bsearch
	cabs
	calloc
	ceil
	cgets
	chmod
	chsize
	clearerr
	clock
	close
	closedir
	cos, cosh
	cprintf
	cputs
	creat
	cscanf
	_cstop
	cstr, udistr
	ctime
	difftime
	div
	_dos_allocmem
	_dos_close
	_dos_creat, _dos_creatnew
	_dos_findfirst, _dos_findnext
	_dos_freemem
	_dos_getdate
	_dos_getftime
	_dos_gettime
	_dos_open
	_dos_read
	_dos_setdate
	_dos_setftime
	_dos_settime
	_dos_write
	dup, dup2
	ecvt
	eof
	exit, _exit
	exp
	fabs
	fclose, fcloseall
	fcvt
	fdopen
	feof
	ferror
	fflush
	fgetc, fgetchar
	fgetpos
	fgets
	filelength
	fileno
	floor
	flushall
	fmod
	fopen
	fprintf
	fputc, fputchar
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	ftell
	ftoa
	fwrite
	gcvt
	_get_arguments
	getc, getchar
	getch, getche
	getenv
	_get_cs
	_get_ds
	_get_ss
	_get_info
	getopt
	getpid, getuid
	_get_rmx_conn
	gets
	getw
	gmtime
	is Functions
	isatty
	itoa
	itoh
	labs
	ldexp
	ldiv
	lfind
	localeconv
	localtime
	log, log10
	longjmp
	lsearch
	lseek
	ltell
	ltoa
	ltoh
	ltos
	malloc
	matherr
	mblen
	mbstowcs
	mbtowc
	memccpy
	memchr
	memcmp
	memcpy
	memicmp
	memmove
	memset
	mkdir
	mktemp
	mktime
	modf
	onexit
	open
	opendir
	perror
	pow
	printf
	putc, putchar
	putch
	putenv
	_put_rmx_conn
	puts
	putw
	qsort
	raise
	rand
	read
	readdir
	realloc
	rename
	rewind
	rewinddir
	rmdir
	rmtmp
	sbrk
	scanf
	setbuf
	_set_info
	setjmp
	setlocale
	setmode
	setvbuf
	signal
	sin, sinh
	sleep
	sopen
	sprintf
	sqrt
	square
	srand
	sscanf
	stat
	strcat
	strchr
	strcmp, strcmpi, stricmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strftime
	strlen
	strlwr
	strncat
	strncmp
	strncpy
	strnicmp
	strnset
	strpbrk
	strrchr
	strrev
	strset
	strspn
	strstr
	strtod, strtol, strtoul
	strtok
	strupr
	strxfrm
	swab
	system
	tan, tanh
	time
	time macros, _tzset_ptr
	tmpfile
	tmpnam
	toascii, tolower, _tolower, toupper, _toupper
	tzset
	ultoa, utoa
	umask
	ungetch
	unlink
	utime
	va_arg, va_end, va_start
	vfprintf, vprintf, vsprintf
	vfscanf, vscanf, vsscanf (ANSI, stdio)
	wcstombs
	wctomb
	write

	Index

