
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

iRMX®

C Library Reference

07-0698-01
December 1999

ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright  1999 by RadiSys Corporation

All rights reserved.

C Library Reference iii

Quick Contents

Chapter 1. Introduction

Chapter 2. Functional Groupings

Chapter 3. Functions

Index

iv

Notational Conventions
Descriptive text in this manual uses these notational conventions:

C library functions and macros appear like this, for example fprintf(). C functions
are indicated by the () suffix. iRMX system calls appear like this and have an rq_
prefix, for example rq_exit_io_job.

Standard C language syntax as used in your program, including constants, keywords,
identifiers, and types, appears like this. Variable names also appear like this,
for example type, member.

Filenames and book titles appear like this, for example :config:r?env, System Call
Reference. In addition, C header filenames are indicated by surrounding < >
characters.

If ANSI appears in the heading, this is an ANSI function. If stdio appears, this
function requires that the calling task has access to the standard streams. If DOS
appears in the function heading, this is a DOS function.

These abbreviations are used:

Abbreviation Meaning
ANSI American National Standard for Information Systems, C

programming language
BIOS Basic I/O system layer for the iRMX OS
<CR> Carriage-return character
C task Process (task) that uses the C library
EIOS Extended I/O system layer for the iRMX OS
Epoch time 00:00:00, January 1, 1970, GMT
GMT Greenwich mean time
HI Human Interface layer for the iRMX OS
ICU iRMX Interactive Configuration Utility
I/O Input/output
<LF> Line-feed character
stdio Indicates that access to the standard streams: stdin, stdout,

and stderr is required

C Library Reference v

Related Publications
For additional information about the C programming language and library functions

See also: C: A Reference Manual by Harbison and Steele,
The Standard C Library by P.J. Plauger

The term ANSI indicates that a function conforms to the 1989 American National
Standard for Information Systems - Programming Language C (ANSI X3.159-1989).
The C library provides a superset of ANSI functionality, with additional features
defined by the IEEE Portable Operating System Interface for Computer
Environments (POSIX).

See also: IEEE Std 1003.1-1988, IEEE Standard Portable Operating System
Interface for Computer Environments, copyright 1988, by The Institute
of Electrical and Electronics Engineers, Inc.

This standard provides locale-specific information, such as the alphabetic
international currency symbol.

See also: ISO 4217 Codes for the Representation of Currency and Funds

Various mathematics reference books provide information about the Bessel functions.

See also: Handbook of Mathematical Functions (Abramowitz and Stegun;
Washington: U.S. Government Printing Office, 1964)

For further information refer to the manuals provided with your C compiler.

Driver Programming Concepts Contents vii

Contents

1 Introduction
Shared C Library Overview... 1

Shared C Library Advantages... 2
Resources Allocated to C Tasks and Jobs... 3

Job Resources.. 3
Task Resources.. 3

Supplied C Library Files.. 5
The Cstart Module.. 5

DOS Syntax... 5
Support for Development Tools... 6

Header Files.. 7

2 Functional Groupings
Character Processing Functions... 9
Control Functions .. 10
Conversion Functions .. 11
DOS Console I/O Functions .. 12
DOS Interface Functions ... 12
File Management Functions... 13
Input/Output Functions .. 13
iRMX-specific Functions... 15
Low-level I/O Functions.. 16
Math Functions .. 16
Memory Functions... 18
Searching and Sorting Functions ... 18
Storage Allocation Functions... 19
String Processing Functions... 19
Time and Date Functions... 21
Variable Argument Functions.. 21

viii Contents

3 Functions
abort... 24
abs ... 25
acos.. 26
asctime... 27
asin .. 28
assert.. 29
atan, atan2.. 30
atexit.. 31
atof, atoi, atol... 32
Bessel Functions.. 34
bsearch... 35
cabs.. 37
calloc ... 38
ceil ... 39
cgets... 40
chmod.. 41
chsize... 43
clearerr .. 44
clock .. 45
close... 46
closedir .. 47
cos, cosh .. 48
cprintf .. 49
cputs .. 50
creat ... 51
cscanf... 53
_cstop .. 54
cstr, udistr .. 56
ctime.. 57
difftime.. 58
div.. 59
_dos_allocmem.. 60
_dos_close ... 61
_dos_creat, _dos_creatnew.. 62
_dos_findfirst, _dos_findnext .. 64
_dos_freemem ... 66
_dos_getdate .. 67
_dos_getftime .. 68
_dos_gettime ... 69
_dos_open.. 70
_dos_read .. 72

Driver Programming Concepts Contents ix

_dos_setdate .. 74
_dos_setftime... 75
_dos_settime .. 76
_dos_write ... 77
dup, dup2 ... 78
ecvt .. 79
eof.. 80
exit, _exit ... 81
exp ... 82
fabs .. 83
fclose, fcloseall .. 84
fcvt... 85
fdopen.. 86
feof .. 88
ferror.. 89
fflush.. 90
fgetc, fgetchar .. 91
fgetpos ... 92
fgets ... 93
filelength.. 94
fileno.. 95
floor ... 96
flushall ... 97
fmod .. 98
fopen.. 99
fprintf... 100
fputc, fputchar.. 101
fputs... 102
fread... 103
free... 104
freopen... 105
frexp .. 106
fscanf ... 107
fseek .. 108
fsetpos.. 110
fstat .. 111
ftell .. 112
ftoa... 113
fwrite ... 114
gcvt .. 115
_get_arguments.. 116
getc, getchar... 118
getch, getche .. 119

x Contents

getenv .. 120
_get_cs... 121
_get_ds .. 122
_get_ss... 123
_get_info.. 124
getopt... 126
getpid, getuid ... 127
_get_rmx_conn.. 128
gets .. 129
getw... 130
gmtime... 131
is Functions.. 132
isatty .. 134
itoa... 135
itoh... 136
labs .. 137
ldexp.. 138
ldiv... 139
lfind ... 140
localeconv.. 141
localtime.. 142
log, log10... 143
longjmp.. 144
lsearch ... 145
lseek... 146
ltell .. 148
ltoa... 149
ltoh... 150
ltos ... 151
malloc.. 152
matherr .. 153
mblen... 154
mbstowcs... 155
mbtowc.. 156
memccpy ... 157
memchr.. 158
memcmp.. 159
memcpy ... 160
memicmp... 161
memmove.. 162
memset .. 163
mkdir ... 164
mktemp.. 165

Driver Programming Concepts Contents xi

mktime... 167
modf .. 168
onexit ... 169
open ... 170
opendir... 172
perror ... 173
pow.. 174
printf .. 175
putc, putchar .. 182
putch .. 183
putenv .. 184
_put_rmx_conn.. 185
puts .. 186
putw... 187
qsort ... 188
raise ... 190
rand.. 192
read.. 193
readdir.. 194
realloc .. 195
rename ... 196
rewind.. 197
rewinddir ... 198
rmdir .. 199
rmtmp .. 200
sbrk .. 201
scanf .. 202
setbuf ... 207
_set_info .. 208
setjmp .. 209
setlocale ... 210
setmode.. 212
setvbuf ... 214
signal ... 215
sin, sinh.. 218
sleep... 219
sopen.. 220
sprintf .. 222
sqrt... 223
square .. 224
srand .. 225
sscanf ... 226
stat ... 227

xii Contents

strcat .. 228
strchr.. 229
strcmp, strcmpi, stricmp .. 230
strcoll... 231
strcpy ... 232
strcspn ... 233
strdup... 234
strerror ... 235
strftime .. 236
strlen.. 238
strlwr ... 239
strncat .. 240
strncmp.. 241
strncpy ... 242
strnicmp... 243
strnset .. 244
strpbrk ... 245
strrchr .. 246
strrev.. 247
strset .. 248
strspn ... 249
strstr... 250
strtod, strtol, strtoul.. 251
strtok.. 253
strupr ... 255
strxfrm... 256
swab... 257
system.. 258
tan, tanh ... 259
time.. 260
time macros, _tzset_ptr.. 261
tmpfile ... 262
tmpnam.. 263
toascii, tolower, _tolower, toupper, _toupper .. 264
tzset ... 265
ultoa, utoa .. 267
umask .. 268
ungetch .. 270
unlink... 271
utime.. 272
va_arg, va_end, va_start .. 273
vfprintf, vprintf, vsprintf.. 275
vfscanf, vscanf, vsscanf (ANSI, stdio) .. 276

Driver Programming Concepts Contents xiii

wcstombs ... 277
wctomb .. 278
write... 279

Index 281

Tables
Table 1-1. Input and Output Functions ... 4
Table 1-2. Resources Used for C Tasks and Jobs ... 4

xiv Contents

C Library Reference Chapter 1 1

Introduction 1
The shared C library includes functions and macros for applications that run in the
iRMX Operating System environment. This manual describes the iRMX shared C
library; it is intended for C program developers who are using a compiler that follows
ANSI and POSIX C language standards.

This manual assumes general knowledge of the C programming language, standard
programming techniques and the iRMX OS.

This chapter provides general information that is helpful in using the C Library
Reference:

• C library overview

• Supplied C library files

• DOS syntax

• Support for non-Intel development tools

• Overview

Shared C Library Overview
The C library is available as an iRMX OS extension job to your application in one of
two ways:

• Run-time loadable job, clib.job, loaded using the HI sysload command

• Resident first-level job, set up using the Interactive Configuration Utility (ICU)
Sub-systems and Shared C Library screens

Instead of each C application having to link to its own copy of the library, this job is a
system-wide library that can be shared by all tasks and jobs in the system. This
greatly reduces the code size of individual applications as well as decreases the time
required to bind (link), load, and execute the applications. For example, if you run
five applications that call a certain C function and each application is individually
linked to a C library, the code for that function is loaded into memory five different
times. With the shared C library, there is only one copy of the function loaded, and it
is available to all five applications.

2 Chapter 1 Introduction

You link each application to a small interface library, which provides access to the
shared C library.

Any number of tasks and jobs can share the C library. Each task can have its own
data segment; the data segment does not have to be shared. A few functions related
to signal handling, such as abort, raise, and signal, are private to each task. These
functions are in the interface library linked to the task, not in the shared C library.

The shared C library supports many standard C functions that enable a task to
perform common, OS-independent operations without making direct, iRMX
OS-dependent system calls. You can mix shared C library calls with direct iRMX
system calls in your application.

The shared C library takes care of iRMX OS-dependent operations such as
multitasking, time-of-day, signal management, and environment management; this
enables you to create portable code using standard ANSI and POSIX programming
practices.

The C Library includes floating point functions and macros and links to the standard
floating point libraries; there are no separate libraries for floating point applications.

Depending on your system configuration, the C library may not support all of the
functions mentioned in this manual.

See also: Supplied C Library Files, in this chapter
C Library, clib.job, System Configuration and Administration

Shared C Library Advantages
The C library can be shared concurrently by multiple tasks and jobs running on the
system. The advantages of the shared C library are:

Code size Only one small interface library, which provides access to the
shared C Library, is bound to the application.

Bind speed Only the application and interface library symbolic
information need to be processed.

Load speed The application which utilizes the shared C Library is much
smaller.

Execution speed Because the shared C Library is an iRMX OS extension, the
need for localized task and job management is eliminated. In
addition, many small functions are performed in the interface
library itself, rather than by the shared C library.

Each C job or task can have its own data segment; this segment does not have to be
shared with other C jobs or tasks using the library.

C Library Reference Chapter 1 3

Resources Allocated to C Tasks and Jobs
The C library automatically manages common system resources such as I/O
interfaces and memory when your code makes calls that use these common resources.

Job Resources

Each C job uses resources which count against the memory and object limits for the
job. When a C job is created, the C library allocates one private memory heap from
the job's memory pool; every C task is associated with its owner job's heap. The C
library allocates additional resources when a task in the job makes the first call to a C
library function; these resources consist of a bookkeeping segment for heap
management, exit() register, stat() directory cache, and one synchronization
semaphore for the heap manager. When the job terminates, these resources are
automatically deleted. The malloc mutual exclusion semaphore and any malloc
segments are also deleted when the job is deleted.

Task Resources

When a task makes the first C library call, some task-specific resources are
automatically allocated and maintained locally. These include data structures and
semaphores that support the task's operation in the multitasking environment.

The standard I/O functions are contained in the stdio header file. When the first call
is made to an stdio function, all of the standard streams are created, open for sharing
by all tasks. The stdio connections are cataloged using the existing :ci: as stdin, :co:
as stdout, and :term: as stderr. These connections and the memory required for them
are added to the resources allocated to the task. They also count against the memory
and object limits for the job. Thus, if a task does not make stdio calls, it consumes
fewer resources. You can minimize the total amount of resources required by an
application by having a single task that calls stdio functions, or by dynamically
creating and deleting tasks that call stdio functions.

The streams are opened using the iRMX system calls rq_s_attach_file and
rq_s_open.

4 Chapter 1 Introduction

Table 1-1 lists functions which are responsible for input and output.

Table 1-1. Input and Output Functions

chmod chsize close creat

_dup dup2 eof fclose

fcloseall fdopen fgetpos filelength

fopen freopen fstat ftell

getenv getuid isatty lseek

ltell mkdir mktemp open

putenv remove rename rmdir

stat tmpfile tmpnam tzset

unlink utime _tzset_ptr _dos_close

_dos_creat _dos_creatnew _dos_findfirst _dos_findnext

_dos_getdate _dos_getftime _dos_open _dos_setdate

_dos_setftime _tzset_ptrs

The resources associated with a C task are not automatically freed when the task is
deleted with rq_delete_task. Before you delete a C task using rq_delete_task,
delete the task's C library-specific resources using the _cstop() function.

Most resource allocations apply to each task; there are also resources allocated to
each job containing C library applications. Table 1-2 lists the resources used per task
and per job. Each connection object, mailbox, and semaphore consumes from the
object limits for the job.

Table 1-2. Resources Used for C Tasks and Jobs

Resources
Required For: Memory Semaphores Mailboxes

Connection
Objects

Each Job 600 bytes 1

Each Task 300 bytes 2

Additional for each
stdio Task

400 bytes 3 6 3

C Library Reference Chapter 1 5

Supplied C Library Files
The iRMX OS provides header (include) files containing declarations for C library
functions and definitions of related macros and data types. The shared C library
loadable job is clib.job.

32-bit interface libraries are provided, as well as cstart modules which initialize
processes and call main().

There are a variety of interface libraries supplied with the OS for the interface to C
library functions and iRMX system calls. For different Intel and non-Intel tools you
must bind (link) to different libraries.

See also: Cstart, iC-386 Compiler User's Guide,
Cstart modules to use with non-Intel compilers, Programming
Techniques,
Interface libraries, System Call References, for a complete list of
interface libraries for different compilers,
Header files for a description of the include libraries, in this chapter,
clib.job, System Configuration and Administration

The Cstart Module
Each application must link to the cstart module. This code makes library calls that
set up an internal C environment for your application. To make initialization changes
in earlier (individually linked) versions of the C library, you would change source
code for the cstart module and reassemble it before linking to your code. With the
shared C library it is rarely necessary to make initialization changes in cstart.
However, there are two configuration changes you can make.

The source code for the cstart module defines values for two literals used in parsing
of command lines. Edit and re-assemble a copy of the cstart source code to change
these values:

• _ARGV_MAX, the maximum number of command-line parameters (argv)

• _COMMAND_MAX, the maximum number of characters in a command line

DOS Syntax
You can use DOS syntax or iRMX syntax in all C library calls that require a
pathname argument. DOS backslashes are converted to iRMX forward slashes and
DOS device names are converted to iRMX logical names.

6 Chapter 1 Introduction

Support for Development Tools
You can develop applications with DOS-based development tools by using these
provided iRMX elements:

• A set of common C header files, compatible with all supported compilers.

• A custom cstart module for each supported compiler.

• An interface library to the shared clib, for each supported compiler.

• An OMF translator to convert .exe and .exp files to OMF-386.

See also: Programming Techniques for more details on third-party compilers,
System Call Reference, for information on interface libraries

The following configuration and compiler control header files control program
compilation without being compiler-specific.

<_align.h> Starts 2-byte/4-byte structure alignment (16-bit/32-bit compilers);
default header file, required to support multiple compilers

<_noalign.h> Ends multiple-byte alignment (refer to <_align.h> above);
provides compiler-independent 1-byte structure alignment (no
alignment)

<yvals.h> Standard C values and support definitions that help make the
other header files compiler-independent

<_restore.h> Returns structure alignment to the compiler default

C Library Reference Chapter 1 7

Header Files
The header files described here contain declarations for C library functions and
definitions of related macros and data types. For more complete and detailed
information, see the header files themselves.

See also: Header files, System Call Reference, for a list of iRMX OS-specific
header files

▲▲! CAUTION
For the C functions to work properly, you must use the header files,
and you must not change them.

Header File Contents
<_align.h> Starts 2-byte/4-byte alignment (16-bit/32-bit compilers); default

header file, required to support multiple compilers
<assert.h> Assert macro (diagnostic tool)
<ctype.h> Character handling functions and macros
<conio.h> DOS-specific console I/O functions
<direct.h> Directory management functions and types
<dos.h> DOS system call macros
<errno.h> Error indication macros
<fcntl.h> File access mode and status flag macros
<float.h> Floating-point types and constants
<io.h> File input/output functions
<limits.h> Ranges of integer and character types
<locale.h> Locale-specific functions, types, and macros
<math.h> Floating-point math functions and macros
<_noalign.h> Ends multiple-byte alignment (refer to <_align.h> above);

provides compiler-independent 1-byte alignment (no alignment)
<process.h> Task execution and identification functions and types
<_restore.h> Returns structure alignment to the compiler default
<rmxtypes.h> Makes iRMX PL/M data types available to C programmers
<search.h> Linear search functions
<setjmp.h> Non-local jump functions and environment structure
<share.h> Access, sharing and inheritance rights
<signal.h> Signal handling functions and signals
<stdarg.h> Variable-argument list macros
<stddef.h> Common types and macros
<stdio.h> Stream input/output functions, macros, and types
<stdlib.h> Utility functions, macros, and types

Header File Contents
<string.h> String handling functions

8 Chapter 1 Introduction

<sys/stat.h> File information functions, macros, manifest constants,
and types

<sys/types.h> File information primitive types
<sys/utime.h> utime function and type
<time.h> Date/time functions, macros, and types
<udi_c.h> iRMX UDI system calls
<unistd.h> Symbolic constants used by lseek() function
<yvals.h> Standard C values and support definitions that help make the

other header files compiler-independent

You must include the appropriate header files in order to use the functions. The
description of each function lists the required include statements.

■■ ■■ ■■

C Library Reference Chapter 2 9

Functional Groupings 2
This chapter lists all the C functions, grouped to identify the functions that are
appropriate for a specific purpose.

Character Processing Functions
These functions classify and convert characters for text manipulation.

isalnum Test for alphanumeric character.

isalpha Test for alphabetical character.

isascii Test if a character-coded integer is an ASCII code (i.e., between 0
and 0x7F inclusive).

iscntrl Test for control character.

isdigit Test for decimal digit.

isgraph Test for printable character (excluding space).

islower Test for lowercase character.

isprint Test for printable character (including space).

ispunct Test for punctuation character.

isspace Test for white space character.

isupper Test for uppercase character.

isxdigit Test for hexadecimal digit.

toascii Converts character to ASCII.

tolower Converts uppercase character to lowercase.

_tolower Converts uppercase character to lowercase if appropriate.

toupper Converts lowercase character to uppercase.

_toupper Converts lowercase character to uppercase if appropriate.

10 Chapter 2 Functional Groupings

Control Functions
These functions control and monitor task execution.

abort Aborts the current job and returns the error code.

assert Prints a diagnostic message and aborts the calling task.

atexit Processes the specified function when the calling task terminates
normally.

exit Terminates the current job after cleanup.

_exit Terminates the current job immediately.

getenv Searches the environment-variable table for a specified entry.

getpid Gets the calling task's connection token (process ID).

getuid Gets the calling task's user ID.

longjmp Restores the context previously saved by setjmp.

onexit Registers a function to be called when the task terminates
normally.

putenv Adds new environment variables or modifies the values of
existing ones.

raise Sends a signal to the executing program.

setjmp Saves the current context of the executing program and stores it
in the specified location.

signal Sets up one of several ways for a task to handle an interrupt
signal from the OS.

sleep Suspends a task for a specified number of seconds.

system Invokes the system call rq_c_send_command to execute an
iRMX command line.

C Library Reference Chapter 2 11

Conversion Functions
These functions cover a range of purposes including conversion of various data types
to strings and to wide characters.

ecvt Converts a value to a character string.

fcvt Converts a floating point value to a string.

ftoa Converts a double value to a formatted string.

gcvt Converts a double value to a string of significant digits and places
them in a specified location.

itoa Converts an integer of the specified base to a null-terminated
string of characters and stores it.

itoh Converts an integer into the equivalent null-terminated,
hexadecimal string and stores it.

ltoa Converts a long integer of the specified base to a null-terminated
string of characters and stores it.

ltoh Converts a long integer to a null-terminated hexadecimal string
and stores it.

ltos Converts a long integer to a null-terminated string of characters
and stores it; negative base values are acceptable.

mblen Gets the length and determines the validity of a multibyte
character.

mbstowcs Converts a sequence of multibyte characters to a sequence of
wide characters, as determined by the current locale; stores the
resulting wide-character string at the specified address.

strtod Converts a string to double.

strol Converts a string to long.

strtoul Converts a string to unsigned long.

ultoa Converts unsigned long to a null-terminated string and stores it
without overflow checking.

utoa Converts an integer to a null-terminated string and stores it
without overflow checking.

wcstombs Converts a sequence of wide characters to a corresponding
sequence of multibyte characters.

wctomb Converts a wide character to a corresponding multibyte
characters.

12 Chapter 2 Functional Groupings

DOS Console I/O Functions
These functions provide DOS-compatible ways for an application to get input from or
provide output to the console.

cgets Gets a character string from the console and stores it.

cprintf Formats a string and prints to the console.

cputs Writes a null-terminated string directly to the console.

cscanf Reads formatted data from the console into the specified
locations.

getch Reads a single character from the console without echoing.

getche Reads a single character and echoes the character read.

putch Writes a character directly (without buffering) to the console.

ungetch Pushes a character back to the console, causing that character to
be the next character read.

DOS Interface Functions
These functions provide a DOS-like interface for DOS program compatibility.

_dos_allocmem Allocates a block of memory.

_dos_close Closes a file.

_dos_creat,
_dos_creatnew

These functions create and open a new file with the
specified access attributes.

_dos_findfirst,
_dos_findnext

_dos_findfirst finds the first file with the specified name
and attributes; _dos_findnext finds the next file.

_dos_freemem Releases a block of memory previously allocated by
_dos_allocmem.

_dos_getdate Gets the current system date.

_dos_getftime Gets the date and time that a file was last written.

_dos_gettime Gets the current system time.

_dos_open Opens an existing file.

_dos_read Reads a specified number of bytes of data from a file.

_dos_setdate Sets the current system date.

_dos_setftime Sets the date and time that a file was last written.

_dos_settime Sets the current system time.

_dos_write Writes a specified number of bytes from a buffer to a file.

C Library Reference Chapter 2 13

File Management Functions
These functions manage the file system. This includes for making directories and
changing file attributes. This also includes functions for obtaining information about
a file’s length or a descriptor associated with a file.

chmod Changes the permission mode of a file.

chsize Extends or truncates the size of a file to the specified length.

closedir Closes a directory.

filelength Gets the length of a file in bytes.

fstat Gets information on the file associated with the specified file
descriptor.

isatty Determines whether a file descriptor is associated with a
character device: a terminal, console, printer, or serial port.

mkdir Creates a new directory with the specified ownership and access
rights.

mktemp Creates a unique temporary filename.

opendir Opens a directory.

readdir Reads a directory.

rewinddir Resets a directory.

rmdir Deletes a directory.

setmode Sets binary or text translation mode of a file.

stat Gets information on a file.

umask Sets the default file-permission mask of the current process to the
specified mode.

unlink Deletes a file.

Input/Output Functions
These functions provide ways to control the flow of an application.

clearerr Resets the error and end-of-file indicators for a stream.

fclose Closes a specified stream.

fcloseall Closes all open streams.

fdopen Opens a stream associated with a file descriptor, allowing a file
opened for low-level I/O to be buffered and formatted.

feof Tests for end-of-file on a stream.

ferror Tests for a read or write error on a stream.

14 Chapter 2 Functional Groupings

fflush Flushes a buffered stream (has no effect on an unbuffered
stream).

fgetc Reads a single character from the current position of the specified
stream and increments the file pointer to the next character.

fgetchar Reads from a single character from stdin.

fgetpos Gets a stream's file pointer position-indicator and stores it. This
function does not get the file pointer; use the ftell function instead.

fgets Reads a specified number of characters from a stream and stores
them in a string.

fileno Gets the file descriptor associated with a stream.

flushall Writes the contents of all buffers associated with open output
streams to their associated files.

fopen Opens a file with the specified open mode.

fprintf Prints formatted data to a stream.

fputc Writes a single character to an output stream at the current
position.

fputchar Writes a single character to stdout.

fputs Writes a string to the stream at the current file pointer.

fread Reads up to the specified number of items of the specified size
from the input stream and stores them in a buffer.

freopen Closes the file currently associated with a stream and reassigns a
new file to the stream.

fscanf Reads and formats character data from the current position of a
stream into the specified locations.

fseek Moves the file pointer to a specified location in a stream.

fsetpos Sets a stream's file pointer position-indicator.

ftell Gets the current position of the file pointer for a stream.

fwrite Writes a specified number of characters to a stream.

getc, getchar Getc reads a single character from a stream and increments the
associated file pointer to point to the next character;
getchar reads from stdin.

gets Gets a line from stdin and stores it in the specified location.

getw Reads the next integer from a stream and increments the
associated file pointer (if there is one) to point to the next unread
value.

C Library Reference Chapter 2 15

perror Prints an error message to stderr.

printf Prints formatted data to stdout.

putc Writes a character to a specified stream at the current position.

putchar Writes a character to stdout.

puts Writes a string to stdout, replacing the string's terminating null
character \0 with a newline character \n.

putw Writes an integer to the current position of a stream.

rename Renames a file or directory.

rewind Repositions the file pointer to the beginning of a file and clears
the end-of-file indicator.

rmtmp Removes all the temporary files that were created by tmpfile from
the current directory.

scanf Reads from stdin at current position, and formats character data.

setbuf Allows the user to control buffering for a stream.

setvbuf Controls stream buffering and buffer size.

sprintf Prints formatted data to a string.

sscanf Reads and formats character data from a string.

tmpfile Creates a temporary file, opens in it binary read/write mode, and
returns a stream pointer to it.

tmpnam Creates a temporary filename, which can open a temporary file
without overwriting an existing file.

vfprintf Formats and sends data to the file specified by stream.

vprintf Sends data to stdout.

vsprintf Sends data to the memory pointed to by buffer.

iRMX-specific Functions
These functions provide C library access to OS-specific functions.

_cstop Deletes the C resources allocated for a task.

_get_arguments Sets up the standard C command line parser.

_get_cs Returns an application’s current code segment.

_get_ds Returns an application’s current data segment.

_get_info Obtains specific C library information.

16 Chapter 2 Functional Groupings

_get_rmx_conn Translates a file descriptor to a valid iRMX connection token,
usable as a parameter in iRMX system calls.

_get_ss Returns an application’s current stack segment.

_put_rmx_conn Places an iRMX connection token into the file descriptor table and
returns a valid file descriptor, usable as an argument in C library
calls.

_set_info Modifies C library information.

Low-level I/O Functions
These functions provide low-level ways to manage file processing

creat Creates a new file or opens an existing file for writing and
truncates it to length 0, destroying the previous contents.

eof Checks whether the file's current file pointer is EOF.

lseek Moves the file pointer to a location specified as an offset from the
origin in a file.

ltell Sets the absolute position of the file pointer for the next I/O
operation.

open Opens a file and prepares it for subsequent reading or writing.

read Reads the specified number of bytes from a file into a buffer,
beginning at the current position of the file pointer.

sopen Opens a file for shared reading or writing.

write Writes data from a buffer to a file.

Math Functions
These functions provide such math functions as integer, floating point, trigonometric
operations.

abs Calculates the absolute value of an integer.

acos Calculates the arccosine of a double value.

asin Calculates the arcsine of a double value.

atan Calculates the arctangent of a double value.

atan2 Calculates the arctangent of the quotient of two doubles.

Bessel
functions

Compute the Bessel function.

cabs Calculates the absolute value of a complex number.

C Library Reference Chapter 2 17

ceil Calculates the ceiling (the smallest integer that is greater than or
equal to the value) of a double value.

cos Calculates the cosine.

cosh Calculates the hyperbolic cosine of an angle.

div Divides the numerator by the denominator, computing the
quotient and the remainder of two integer values.

exp Calculates the exponential of a double value.

fabs Calculates the absolute value of a double value.

floor Calculates the floor (largest integer that is less than or equal to a
value) of a double value.

fmod Calculates the floating-point remainder.

frexp Gets the mantissa and exponent of a double value.

labs Calculates the absolute value of a long integer.

ldexp Computes a real number from the mantissa and exponent.

ldiv Divides numerator by denominator, and computes the quotient
and remainder.

log Calculates the natural logarithm of a value.

log10 Calculates the base-10 logarithm.

matherr Processes errors generated by the functions of the math library.

modf Splits a value into fractional and integer parts, retaining the sign.

pow Computes a value raised to the power of another value.

rand Generates a pseudo-random number.

sin Calculates the sine.

sinh Calculates the hyperbolic sine of an angle.

sqrt Calculates the square root of a number.

srand Sets the starting point for generating a series of pseudo-random
integers.

square Calculates the square of a number.

tan Calculates the tangent.

tanh Calculates the hyperbolic tangent of the number.

18 Chapter 2 Functional Groupings

Memory Functions
These functions copy, compare, and set blocks of memory.

memccpy Copies characters from one buffer to another, halting when the
specified character is copied or when the specified number of
bytes have been copied.

memcpy Copies specified number of bytes from a source buffer to a
destination buffer.

memchr Finds the first occurrence of a character in a buffer and stops
when it finds the character or when it has checked the specified
number of bytes.

memcmp Compares the specified number of bytes of two buffers and
returns a value indicating their relationship.

memicmp Compares characters in two buffers byte-by-byte (case-
insensitive).

memmove Moves specified number of bytes from a source buffer to a
destination buffer.

memset Sets characters in a buffer to a specified character.

swab Copies while swapping bytes.

Searching and Sorting Functions
These functions provide efficient search and sort routines.

bsearch Performs a binary search of a sorted array.

lfind Performs a linear search for a specified key in an unsorted array.

lsearch Performs a linear search for a specified value in an unsorted
array, appending the value to the array if not found.

qsort Performs a quick sort of an array, overwriting the input array with
the sorted elements.

C Library Reference Chapter 2 19

Storage Allocation Functions
These functions provide storage allocation management.

calloc Allocates and clears an array in memory; initializes each element
to 0.

free Deallocates a memory block previously allocated by malloc.

malloc Allocates a memory block of the specified size.

realloc Changes the size of a previously allocated memory block or
allocates a new one.

sbrk Creates iRMX segments of the specified number of bytes.

String Processing Functions
The following functions provide string conversion, parsing, movement and
manipulation capabilities.

atof Converts a character string to a double value.

atoi Converts to an integer value.

atol Converts to a long integer value.

cstr Converts a count-prefixed iRMX-style string to a null-terminated
C-style string and stores it.

strcmp,
strcmpi,
stricmp

Compare two null-terminated strings lexicographically.

strcat Appends a null-terminated string to another string.

strchr Searches for a character in a null-terminated string.

strcoll Compares null-terminated strings using locale-specific collating
sequences.

strcpy Copies a null-terminated string.

strcspn Finds a null-terminated substring in a string.

strdup Duplicates null-terminated strings.

strerror Gets a system error message.

strlen Gets the length of a null-terminated string.

strlwr Converts uppercase letters in a null-terminated string to
lowercase. Other characters are not affected.

strncat Appends characters to a string.

strncmp Compares substrings.

20 Chapter 2 Functional Groupings

strncpy Copies the specified number of characters from one string to
another.

strnicmp Compares substrings without regard to case.

strnset Sets the specified number of characters in a string to a character.

strpbrk Searches a string for the first occurrence of any character in the
specified character set.

strrchr Searches a string for the last occurrence of a character.

strrev Reverses the order of the characters in a string.

strset Sets all characters in a string to a specified character.

strspn Finds the first character in a string that does not belong to a set of
characters in a substring.

strstr Finds a substring within a string.

strtok Finds the next token in a string.

strup Converts any lowercase letters in a null-terminated string to
uppercase.

strxfrm Transforms a string based on locale-specific information and
stores the result.

strtod Converts a string to double.

strol Converts to long.

strtoul Converts to an unsigned long.

udistr Converts a null-terminated C-style string to a count-prefixed
iRMX-style string and stores it.

C Library Reference Chapter 2 21

Time and Date Functions
These functions provides ways to control and process the time and date

asctime Converts a time stored as a structure to a character string.

clock Measures the time used by the calling task, from when the calling
task first began execution to the current time.

ctime Converts a time stored as a time_t value to a character string.

difftime Finds the difference between two time values.

gmtime Converts a time value to a structure.

localeconv Gets detailed information on locale settings.

localtime Converts a time stored as a time_t value and corrects for the
local timezone.

mktime Converts the time/date structure into a fully-defined structure with
normalized values and then converts it to calendar time.

setlocale Sets the task's current entire locale or specified portions of it.

strftime Formats a time string.

time Gets the system time.

time macros,
_tzset_ptr

Accesses daylight, timezone, and tzname environment variables.

tzset Sets the time environment variables.

utime Sets the modification time for a file.

Variable Argument Functions
These functions provide a convenient way to access argument lists.

va_arg Retrieves current argument.

va_end Resets argument list pointer.

va_start Sets argument list pointer to first optional argument.

■■ ■■ ■■

22 Chapter 2 Functional Groupings

C Library Reference Chapter 3 23

Functions 3
This chapter presents C library function descriptions in alphabetical order. In these
descriptions, double means floating-point, double precision value.

You must include the appropriate header files in order to use the functions. The
description of each function lists the required include statements. To check the errno
value, you must include the <errno.h> header file.

Each C function (or group of related functions) contains a description with these
elements:

• Function heading

• Required #include statement(s)

• Function prototype(s)

• Description of argument(s)

• Description of behavior

• Description of successful returns followed by error returns

If ANSI appears in the function heading, this is an ANSI function. If DOS appears in
the function heading, this is a DOS function. If stdio appears, this is a stdio function,
which requires that the calling task has access to the standard streams: stdin, stdout,
and stderr, along with the necessary connections and memory requirements.

abort ANSI

24 Chapter 3 Functions

abort
Aborts the current task and returns an error code.

Syntax

#include <process.h>
#include <stdlib.h>
void abort (void);

Additional Information

Abort() does not flush stream buffers or do atexit()/onexit() processing. It does
not return control to the caller.

This function calls raise (SIGABRT); the response to the signal depends on the
action defined in a prior call to signal(). The default action is for the calling task to
terminate with an _exit() call.

This function is implemented in the C interface library (not in the shared C library)
and is private to each application.

See also: _exit(), raise(), signal()

Returns

Exit code 3 (default) to the parent job and terminates the task.

ANSI abs

C Library Reference Chapter 3 25

abs
Calculates the absolute value of an integer.

Syntax

#include <stdlib.h>
#include <math.h>
int abs (int n);

Parameter

n Integer value whose absolute value is calculated.

See also: fabs(), labs(), cabs()

Returns

The absolute value result.

No error return.

acos ANSI

26 Chapter 3 Functions

acos
Calculates the arccosine of a double value.

Syntax

#include <math.h>
double acos (double x);

Parameter

x Value whose arccosine is calculated. Must be between -1 and 1.

See also: asin(), atan(), cos(), matherr(), sin(), tan()

Returns

The arccosine result in the range 0 to πradians.

0 if x is less than -1 or greater than 1; the function sets errno to EDOM and prints a
DOMAIN error message to stderr.

This function does not return standard ANSI domain or range errors.

ANSI asctime

C Library Reference Chapter 3 27

asctime
Converts a time stored as a structure to a character string.

Syntax

#include <time.h>
char *asctime (const struct tm *timedate);

Parameter
timedate

A pointer to a tm time/date structure, usually obtained using gmtime() or
localtime().

Additional Information

The converted string contains exactly 26 characters and has this form:

Wed Jan 02 02:03:55 1980\n\0

All elements have a constant width. The newline character \n and the null character
\0 occupy the last two positions of the string.

This function uses a 24-hour clock.

The function uses a single statically allocated buffer to hold the return string. Each
call destroys the result of the previous call.

See also: Description of the tm structure elements in <time.h>,
localtime(), time(), tzset()

Returns

A pointer to the character string.

No error return.

asin ANSI

28 Chapter 3 Functions

asin
Calculates the arcsine of a double value.

Syntax

#include <math.h>
double asin (double x);

Parameter

x Value whose arcsine is calculated. Must be between -1 and 1.

See also: acos(), atan(), cos(), matherr(), sin(), tan()

Returns

The arcsine result in the range −π/2 to π/2 radians.

0 if x is less than -1 or greater than 1; function sets errno to EDOM and prints a
DOMAIN error message to stderr.

This function does not return standard ANSI domain or range errors.

ANSI, stdio assert

C Library Reference Chapter 3 29

assert
Prints a diagnostic message and aborts the calling task.

Syntax

#include <assert.h>
#include <stdio.h>
void assert (int expression);

Parameter
expression

C expression specifying assertion being tested.

Additional Information

This function calls the abort() function if expression is false (0). The diagnostic
message has this form:

Assertion failed: expression, file filename, line linenumber

Where:

filename Name of the source file.

linenumber
Line number of the assertion that failed in the source file.

No action is taken if expression is true (not 0).

Use the assert() macro in program development to identify program logic errors.
Choose expression so that it holds true only if the program is operating as
intended.

After a program has been debugged, remove assert() calls from the program using
the special identifier NDEBUG. If NDEBUG is defined by any value with a /D
command-line option or with a #define directive, the C preprocessor removes all
assert() calls from the program source.

See also: abort(), raise(), signal()

Returns

Nothing.

atan, atan2 ANSI

30 Chapter 3 Functions

atan, atan2
Atan() calculates the arctangent of a double value; atan2() calculates the arctangent
of the quotient of two doubles.

Syntax

#include <math.h>
double atan (double x);
double atan2 (double x, double y);

Parameters

x, y Any number(s) whose arctangent is calculated.

Additional Information

The atan2() function uses the signs of both arguments to determine the quadrant of
the return value.

See also: acos(), asin(), cos(), matherr(), sin(), tan()

Returns

Atan() Returns the arctangent result in the range -π/2 to π/2 radians.

Atan2() Returns the arctangent result in the range −πto πradians.
Returns 0 if both arguments are 0, sets errno to EDOM and prints a
DOMAIN error message to stderr.

This function does not return standard ANSI domain or range errors.

ANSI atexit

C Library Reference Chapter 3 31

atexit
Processes the specified function when the calling task terminates normally.

Syntax

#include <stdlib.h>
int atexit (void (_Pascal * func) (void));

Parameter

func Function(s) to be called; the called function(s) cannot take parameters. No more than
32 functions can be registered. Atexit() receives the address of func when the task
terminates normally, using the exit() function.

Additional Information

Successive calls to atexit() create a register of functions that execute in LIFO (last-
in-first-out) order.

See also: exit(), onexit()

Returns

Value Meaning
0 Successful
Not 0 Error occurred, such as 32 exit functions already defined

atof, atoi, atol ANSI

32 Chapter 3 Functions

atof, atoi, atol
Atof() converts a character string to a double value; atoi() converts to an integer
value; atol() converts to a long integer value.

Syntax

#include <math.h>
#include <stdlib.h>
double atof (const char *string);
int atoi (const char *string);
long atol (const char *string);

Parameter

string A sequence of characters that represent a numerical value of the specified type. The
maximum string size for atof() is 100 characters.

Additional Information

These functions stop reading the input string at the first character not recognizable as
part of a number. This character may be the null character \0 terminating the string.

Atof() expects string to have this form:

[whitespace] [sign] {[digits]|[.digits]} [d | D | e | E[sign]digits]

Where:

whitespace
Space and/or tab characters, which are ignored.

sign Either plus (+) or minus (-).

digits Decimal digits. If no digits appear before the decimal point, at least one
must appear after it. There may be an exponent, which is an
introductory letter (d, D, e, or E) and an optionally signed integer.

ANSI atof, atoi, atol

C Library Reference Chapter 3 33

Atoi() and atol() do not recognize decimal points or exponents. The string
argument for these functions has this form:

[whitespace] [sign] [digits]

Where whitespace, sign, and digits are as described for atof().

Results are undefined on overflow.

See also: ecvt(), fcvt(), gcvt()

Returns

The converted value.

0 for atoi(), 0L for atol(), and 0.0 for atof(), if the input cannot be converted to a
value of the specified type.

Bessel Functions

34 Chapter 3 Functions

Bessel Functions
Compute the Bessel function.

Syntax

#include <math.h>
double j0 (double x);
double j1 (double x);
double jn (int n, double x);
double y0 (double x);
double y1 (double x);
double yn (int n, double x);

Parameters

x Value must be positive for y0(), y1(), and yn().

n Integer order.

Additional Information

These functions are commonly used in the mathematics of electromagnetic wave
theory.

See also: Mathematics reference books, such as the Handbook of Mathematical
Functions (Abramowitz and Stegun; Washington: U.S. Government
Printing Office, 1964), matherr()

Returns

J0(), j1(), and jn() return the result of Bessel functions of the first kind: orders 0,
1, and n, respectively.

Y0(), y1(), and yn() return the result of Bessel functions of the second kind: orders
0, 1, and n, respectively. If x is negative, functions set errno to EDOM, print a
DOMAIN error message to stderr, and return -HUGE_VAL.

This function does not return standard ANSI domain or range errors.

ANSI bsearch

C Library Reference Chapter 3 35

bsearch
Performs a binary search of a sorted array.

Syntax

#include <stdlib.h>
#include <search.h>
void *bsearch (const void *key, const void *base, size_t

num,size_t width, int (*compare) (const
void

*elem1, const void *elem2));

Parameters

key Value being sought.

base Pointer to base of array to be searched.

num Number of elements in the array.

width Width of elements in bytes.

compare
Pointer to a user-supplied routine that compares two array elements, elem1 and
elem2, and returns a value specifying their relationship:

Value Meaning
< 0 elem1 less than elem2
= 0 elem1 identical to elem2
> 0 elem1 greater than elem2

elem1 Pointer to the key for the search.

elem2 Pointer to the array element to be compared with the key.

Additional Information

The function calls the compare routine one or more times during the search, passing
pointers to two array elements on each call.

If the array you are searching is not in ascending sort order, bsearch() does not work
properly. If the array contains duplicate records with identical keys, there is no way
to predict which of the duplicate records will be located by bsearch().

See also: lfind(), lsearch(), qsort()

bsearch ANSI

36 Chapter 3 Functions

Returns

A pointer to the first occurrence of key in the array pointed to by base.

A null pointer if a match is not found.

ANSI cabs

C Library Reference Chapter 3 37

cabs
Calculates the absolute value of a complex number.

Syntax

#include <math.h>
double_cabs(struct_complex z):

Parameter

z Complex number.

Additional Information

The complex number z must be a structure of type _complex. The structure z is
composed of a real component x and an imaginary component y. A call to cabs is
equivalent to:

sqrt(z.x*z.x + z.y*z.y)

See also: abs(), fabs(), labs()

Returns

On overflow, this function calls matherr(), returns HUGE_VAL, and sets errno to
ERANGE.

calloc ANSI

38 Chapter 3 Functions

calloc
Allocates and clears an array in memory; initializes each element to 0.

Syntax

#include <stdlib.h>
void *calloc (size_t num, size_t size);

Parameters

num Number of elements to allocate storage space for.

size Length in bytes of each element.

Additional Information

The allocated memory is guaranteed to be suitably aligned for storage of any type of
object. To get a pointer to a type other than void, use a type cast on the return value.

See also: free(), malloc(), realloc()

Returns

A pointer to the allocated space.

ANSI ceil

C Library Reference Chapter 3 39

ceil
Calculates the ceiling (the smallest integer that is greater than or equal to the value)
of a double value.

Syntax

#include <math.h>
double ceil (double x);

Parameter

x Value to calculate ceiling for.

See also: floor(), fmod()

Returns

The ceiling result.

No error return.

cgets DOS

40 Chapter 3 Functions

cgets
Gets a character string from the console and stores it.

Syntax

#include <conio.h>
char *cgets (char *buffer);

Parameter
buffer

Storage location for data. Must be a pointer to a character array. The first element of
the array, buffer[0], must contain the maximum length in characters of the string
to be read. The array must contain enough elements to hold the string, a terminating
null character \0, and two additional bytes.

Additional Information

This function continues to read characters until it reads a carriage-return line-feed
(<CR><LF>) combination, or the specified number of characters. If it reads a
<CR><LF> combination, it replaces the <CR><LF> with a null character \0 before
storage. The cgets() function then stores the actual length of the string in the second
array element, buffer[1].

See also: getch(), getche()

Returns

A pointer to the start of the string, at buffer[2].

No error return.

chmod

C Library Reference Chapter 3 41

chmod
Changes the permission mode of a file.

Syntax

#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
int chmod (const char *filename, mode_t pmode);

Parameters
filename

Pathname of existing file.

pmode New permission mode for file, which controls file ownership and access rights.

Additional Information

Pmode contains one or more of the manifest constants defined in <sys/stat.h>. The
meaning of pmode is:

Value Meaning
S_IRGRP Read permission bit for POSIX file group
S_IROTH Read permission bit for POSIX World owner
S_IRUSR Read permission bit for POSIX file owner
S_IRWXG Mask for POSIX file group
S_IRWXO Mask for POSIX World (other) owner
S_IRWXU Mask for POSIX file owner
S_ISGID Set group ID on execution
S_ISUID Set user ID on execution
S_IWGRP Write permission bit for POSIX file group
S_IWOTH Write permission bit for POSIX World owner
S_IWUSR Write permission bit for POSIX file owner
S_IXGRP Execute or search permission bit for POSIX file group
S_IXOTH Execute or search permission bit for POSIX World owner
S_IXUSR Execute or search permission bit for POSIX file owner

Join more than one constant with the bitwise-OR operator (|).

chmod

42 Chapter 3 Functions

This function translates POSIX file ownership rights this way:

POSIX Owner iRMX Owner
Owner Owner 1 (first accessor)
Group Owner 2 (second accessor)
World (other) World

This function also translates POSIX access rights to the iRMX OS equivalent this
way:

POSIX Access Rights iRMX Access Rights
Read Read
Write Delete, Append, and Update
Execute Ignored (no iRMX OS equivalent)

See also: creat(), fstat(), open(), stat()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to ENOENT, indicating that the

specified file could not be found.

stdio chsize

C Library Reference Chapter 3 43

chsize
Extends or truncates the size of a file to the specified length.

Syntax

#include <io.h>
int chsize (int handle, long size);

Parameters

handle Descriptor referring to an open file. The file must be open in a mode that permits
writing.

size New length of file in bytes.

Additional Information

If the file is extended, null characters \0 are appended. If the file is truncated, all
data from the end of the shortened file to the original length of the file is lost.

The directory update is done when a file is closed. Consequently, while a program is
running, requests to determine the amount of free disk space may receive inaccurate
results.

See also: close(), creat(), open()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these values:

EACCES Specified file is locked against access.

EBAD Specified file is read-only or an invalid file descriptor.
ENOSPC No space is left on device.

clearerr ANSI, stdio

44 Chapter 3 Functions

clearerr
Resets the error and end-of-file indicators for a stream.

Syntax

#include <stdio.h>
void clearerr (FILE *stream);

Parameter

stream Pointer to FILE structure.

Additional Information

Once the error indicator for a specified stream is set, operations on that stream
continue to return an error value. Invoke clearerr() to reset the error indicator. You
can also call fseek(), fsetpos(), or rewind() to do the same thing.

See also: eof(), feof(), ferror(), fseek(), fsetpos(), perror(), rewind()

Returns

Nothing.

ANSI clock

C Library Reference Chapter 3 45

clock
Measures the time used by the calling task, from when the calling task first began
execution to the current time.

Syntax

#include <time.h>
clock_t clock (void);

Additional Information

In the multitasking iRMX OS environment, this does not tell how much processor
time has been used by the calling task.

See also: difftime(), time()

Returns

The product of the time in seconds and the value of the CLOCKS_PER_SEC
constant. Divide the return value by the CLOCKS_PER_SEC constant to obtain the
actual time.

-1, cast as clock_t, if unsuccessful.

close ANSI

46 Chapter 3 Functions

close
Closes a file.

Syntax

#include <io.h>
int close (int handle);

Parameter

handle Descriptor referring to an open file.

See also: chsize(), creat(), dup(), dup2(), open(), unlink()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to EBADF, indicating an invalid

file descriptor argument.

stdio closedir

C Library Reference Chapter 3 47

closedir
Closes the directory stream associated with the directory. The directory stream
descriptor directory is not available after this call.

Syntax

#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dir);

Returns

The closedir() function returns 0 on success or -1 on failure.

EBADF Invalid directory stream descriptor dir.

See also: close(2), opendir(3), readdir(3), rewinddir(3)

cos, cosh ANSI

48 Chapter 3 Functions

cos, cosh
Cos calculates the cosine and cosh calculates the hyperbolic cosine of an angle.

Syntax

#include <math.h>
double cos (double x);
double cosh (double x);

Parameter

x Angle in radians.

See also: acos(), asin(), atan(), matherr(), sin(), tan()

Returns

The cosine or hyperbolic cosine.

Cos() Returns a PLOSS error if x is large and a partial loss of significance in
the result occurs; function sets errno to ERANGE.

Prints a TLOSS message to stderr and returns 0 if x is so large that
significance in the result is completely lost; function sets errno to
ERANGE.

Cosh() Returns HUGE_VAL and sets errno to ERANGE if the result is too
large.

This function does not return standard ANSI domain or range errors.

DOS cprintf

C Library Reference Chapter 3 49

cprintf
Formats a string and prints to the console.

Syntax

#include <conio.h>
int cprintf (char *format [, argument] ...);

Parameters

format Format-control string.

argument
Optional arguments.

Additional Information

This function uses the putch() function to output characters.

Each argument (if any) is converted and output according to the corresponding
format specification.

The format argument has the form and function described in the printf() function.

Cprintf() does not translate line-feed characters into carriage-return line-feed
combinations on output, unlike the fprintf(), printf(), and sprintf() functions.

See also: fprintf(), printf(), sprintf(), vprintf()

Returns

The number of characters printed.

cputs DOS

50 Chapter 3 Functions

cputs
Writes a null-terminated string directly to the console.

Syntax

#include <conio.h>
int cputs (char *string);

Parameter

string Output string; must be null-terminated. A carriage-return line-feed (<CR><LF>)
combination is not automatically appended.

See also: putch()

Returns

Value Meaning
0 Successful
EOF Unsuccessful

stdio creat

C Library Reference Chapter 3 51

creat
Creates a new file and opens it for writing in the specified permission mode or opens
an existing file for writing and truncates it to length 0, destroying the previous
contents.

Syntax

#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
int creat (const char *filename, mode_t pmode);

Parameters
filename

Pathname of file to be opened for writing.

pmode Permission mode, one or more of the manifest constants described in chmod(). Join
multiple constants with the bitwise-OR operator (|). Applies to newly created files
only.

Additional Information

The creat() function applies the default file-permission mask (set with the umask()
function) to pmode before setting the permissions. A new file receives the specified
ownership and access rights after it is closed for the first time.

By default, files opened by this function are sharable by all tasks. If O_EXCL is
ORed with pmode, the file is opened with share-with-none permission, like UNIX.

This function translates POSIX file ownership rights and access rights as described in
chmod().

See also: chmod(), chsize(), close(), dup(), dup2(), open(), sopen(), umask()

Returns

A descriptor for the created file.

-1 and sets errno to one of these values if unsuccessful:

EACCES Pathname specifies an existing read-only file or specifies a directory
instead of a file.

EMFILE No more file descriptors available (too many open files).

creat stdio

52 Chapter 3 Functions

ENOENT Pathname not found.

DOS cscanf

C Library Reference Chapter 3 53

cscanf
Reads formatted data from the console into the specified locations.

Syntax

#include <conio.h>
int cscanf (char *format [, argument] ...);

Parameters

format Format-control string.

argument
Optional arguments; must be a pointer to a variable with a type that corresponds to a
type specifier in format.

Additional Information

The format controls the interpretation of the input fields and has the same form and
function as described in scanf().

While cscanf() normally echoes the input character, it does not if the last call was to
ungetch().

This function uses getche() to read characters.

See also: fscanf(), scanf(), sscanf()

Returns

The number of fields that were successfully converted and assigned; does not include
fields that were read but not assigned.

0 if no fields were assigned.

EOF for an attempt to read at end-of-file. This may occur when keyboard input is
redirected at the operating system command-line level.

_cstop

54 Chapter 3 Functions

_cstop
Deletes the C resources allocated for a task.

Syntax

#include <rmx_c.h>
_cstop (selector task_t);

Parameter

task_t iRMX task token; 0 indicates remove the current task. If the task to be removed is
not the current task, it must not be using C library functions when you remove it.

Additional Information

Applications that dynamically create and delete C tasks should call
rq_suspend_task, then _cstop() before deleting a task using rq_delete_task. The
deleted C resources for the task include connections to stdin, stdout, stderr, the C
library information structure CINFO_STRUCT, and other bookkeeping segments.

Each C task maintains its own resources. The minimum resources assigned to each
task consist of CINFO_STRUCT and two synchronization semaphores for the task.
These are allocated on the first call to any C library function by the task. A task can
obtain the data in CINFO_STRUCT with the _get_info() function. The C task
resources also include storage space for the task's context, and a temporary storage
area for information pushed onto the stack by the C library.

Additional resources are established for a task on the first call to any stdio function.
These are:

• Additional bookkeeping area for CINFO_STRUCT (about 400 bytes)

• Connections to stdin, stdout, and stderr, along with two I/O synchronization
mailboxes and one synchronization semaphore for each mailbox

• Two 512-byte I/O buffers, one each for stdin and stdout, allocated from the job
heap using malloc()

_cstop

C Library Reference Chapter 3 55

Any malloc() segments and the malloc() mutual exclusion semaphore are not
deleted until the parent job is deleted, since they are global to the parent job.

Minimize the total amount of resources required by an application by dynamically
creating and deleting tasks that call stdio functions.

See also: exit(), _get_info(), malloc(), <rmx_c.h>, stat()

Returns

Nothing.

cstr, udistr

56 Chapter 3 Functions

cstr, udistr
Cstr converts a count-prefixed iRMX-style string to a null-terminated C-style string
and stores it. Udistr() converts a null-terminated C-style string to a count-prefixed
iRMX-style string and stores it.

Syntax

#include <string.h>
char *cstr (char *c_str, const char *udi_str);
char *udistr (char *udi_ptr, const char *c_ptr);

Parameters

c_str Pointer to a null-terminated (C convention) string.

udi_str
Pointer to a count-prefixed (iRMX convention) string.

Additional Information

The string buffer for cstr() must be large enough to hold the string and the null
character \0 string terminator. Since count-prefixed strings are restricted to 0 to 255
characters (range of the one-byte count), plus the terminating null character, the
string buffer can be 1 to 256 bytes long.

The string buffer for udistr() must be large enough to hold the string and the leading
one-byte length field for the count. Use strlen() to determine the required length of
the destination buffer. The buffer must be one byte longer than the value returned by
strlen, since it returns the number of characters in the string excluding the
terminating null character \0. The behavior of udistr() for strings longer than 255
bytes is undefined.

The two pointers c_ptr and udi_ptr normally point to separate string buffers.
However, if the arguments are identical, udistr() and cstr() still work correctly,
converting the indicated string in place.

See also: strlen(), <udi_c.h>

Returns

A pointer to the converted string.

No error return.

ANSI, stdio ctime

C Library Reference Chapter 3 57

ctime
Converts a time stored as a time_t value to a character string.

Syntax

#include <time.h>
char *ctime (const time_t *timer);

Parameter

timer Stored time value to convert, usually obtained from a call to time().

Additional Information

The converted string contains exactly 26 characters and has this form:

Wed Jan 02 02:03:55 1980\n\0

All elements have a constant width. The newline character \n and the null character
\0 occupy the last two positions of the string.

A 24-hour clock is used.

Calls to the ctime() function modify the single statically allocated buffer used by the
gmtime() and the localtime() functions. Each call to one of these functions
destroys the result of the previous call.

The ctime() function also shares a static buffer with the asctime() function. Thus, a
call to ctime() destroys the results of any previous call to asctime(), localtime(), or
gmtime().

See also: asctime(), gmtime(), localtime(), time()

Returns

A pointer to the character string.

A null pointer if time represents a date before epoch time.

difftime ANSI

58 Chapter 3 Functions

difftime
Finds the difference between two time values.

Syntax

#include <time.h>
double difftime (time_t timer1, time_t timer0);

Parameters

timer0 Beginning time.

timer1 Ending time.

See also: time()

Returns

The elapsed time in seconds.

ANSI div

C Library Reference Chapter 3 59

div
Divides the numerator by the denominator, computing the quotient and the remainder
of two integer values.

Syntax

#include <stdlib.h>
div_t div (int numer, int denom);

Parameters

numer Numerator.

denom Denominator. If 0, the program will terminate with an error message.

See also: ldiv()

Returns

A div_t structure, described in <stdlib.h>.

The sign of the quotient is the same as that of the mathematical quotient. Its absolute
value is the largest integer that is less than the absolute value of the mathematical
quotient.

_dos_allocmem DOS

60 Chapter 3 Functions

_dos_allocmem
Allocates a block of memory.

Syntax

#include <dos.h>
unsigned _dos_allocmem (unsigned size, unsigned *seg);

Parameters

size Block size to allocate in paragraphs (16-byte units).

seg Pointer to where segment token is returned.

Additional Information

Allocated blocks are always paragraph aligned. The memory heap is not used.

An iRMX segment is always created. This applies to all memory models, including
32-bit flat.

If the request cannot be satisfied, the maximum possible size (in paragraphs) is
returned instead.

See also: calloc(), _dos_freemem(), malloc()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to ENOMEM, indicating

insufficient memory.

DOS _dos_close

C Library Reference Chapter 3 61

_dos_close
Closes a file.

Syntax

#include <dos.h>
unsigned _dos_close (int handle);

Parameter

handle Target file to close (handle was returned by the call that created or last opened the
file).

Additional Information

See also: close(), creat(), _dos_creat, _dos_open(), _dos_read(), _dos_write(),
dup(), open()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to EBADF, indicating an invalid

file handle.

_dos_creat, _dos_creatnew DOS

62 Chapter 3 Functions

_dos_creat, _dos_creatnew
These functions create and open a new file with the specified access attributes.

Syntax

#include <dos.h>
unsigned _dos_creat (const char *filename, unsigned
attrib,

int *handle);
unsigned _dos_creatnew (const char *filename, unsigned
attrib,

int *handle);

Parameters
filename

File pathname.

attrib File attributes.

handle Pointer to handle return buffer. The new file's handle is copied into the location
handle points to.

Additional Information

The file is opened for both read and write access. If file sharing is installed, the file
is opened in compatibility mode.

The _dos_creat() function erases an existing file's contents and leaves its attributes
unchanged.

The _dos_creatnew() function fails if the file already exists.

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these values:

EACCES Access denied because the directory is full or, for
_dos_creat() only, the file exists and cannot be overwritten.

EEXIST File already exists (_dos_creatnew() only).

EMFILE Too many open file handles.

DOS _dos_creat, _dos_creatnew

C Library Reference Chapter 3 63

ENOENT Path or file not found.

_dos_findfirst, _dos_findnext DOS

64 Chapter 3 Functions

_dos_findfirst, _dos_findnext
_dos_findfirst finds the first file with the specified name and attributes;
_dos_findnext finds the next file.

Syntax

#include <dos.h>
unsigned _dos_findfirst(const char *filename, unsigned
attrib,

struct find_t *fileinfo);
unsigned _dos_findnext(struct find_t *fileinfo);

Parameters
filename

Target filename; may use wildcards * and ?.

attrib Target file attributes.

fileinfo
Pointer to file-information buffer.

Additional Information

The attrib argument can be any of these manifest constants:

_A_NORMAL Normal. File can be read or written without restriction.

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Returns information about normal files
as well as about files with this attribute.

_A_SUBDIRSubdirectory. Returns information about normal files as well as about
files with this attribute.

Combine multiple constants with the bitwise-OR operator (|).

If the attrib argument to either of these functions is _A_RDONLY or
_A_SUBDIR, the function also returns any normal attribute files that match the
filename argument; a normal file does not have a read-only or directory attribute.

Information is returned in a find_t structure, defined in <dos.h>.

DOS _dos_findfirst, _dos_findnext

C Library Reference Chapter 3 65

The time format is:

Time Bits Contents
0-4 Number of 2-second increments (0-29)
5-10 Minutes (0-59)
11-15 Hours (0-23)

The date format is:

Date Bits Contents
0-4 Day of month (1-31)
5-8 Month (1-12)
9-15 Year (relative to 1980)

Do not alter the contents of the fileinfo buffer between a call to _dos_findfirst()
and all subsequent calls to the _dos_findnext() function.

The _dos_findnext() function finds the next name, if any, that matches the
arguments specified in a prior call to _dos_findfirst(). The fileinfo argument
must point to a find_t structure initialized by a previous call to _dos_findfirst().
The contents of the structure will be altered as described if a match is found.

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to ENOENT, indicating that the

filename could not be matched.

_dos_freemem DOS

66 Chapter 3 Functions

_dos_freemem
Releases a block of memory previously allocated by _dos_allocmem().

Syntax

#include <dos.h>
unsigned _dos_freemem (unsigned seg);

Parameter

seg Block to be released, a value returned by a previous call to _dos_allocmem().

Additional Information

The freed memory can no longer be used by the application program.

See also: _dos_allocmem(), free()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to ENOMEM, indicating a bad

offset value (one that does not correspond to an offset returned by a
previous _dos_allocmem() call) or invalid arena headers.

DOS _dos_getdate

C Library Reference Chapter 3 67

_dos_getdate
Gets the current system date.

Syntax

#include <dos.h>
void _dos_getdate (struct dosdate_t *date);

Parameter

date Current system date.

Additional Information

The date is returned in a dosdate_t structure, defined in <dos.h>.

See also: _dos_gettime(), _dos_setdate(), _dos_settime(), gmtime(), localtime(
), mktime(), time()

Returns

Nothing.

_dos_getftime DOS

68 Chapter 3 Functions

_dos_getftime
Gets the date and time that a file was last written.

Syntax

#include <dos.h>
unsigned _dos_getftime (int handle, unsigned *date,

unsigned *time);

Parameters

handle Target file; the file must be opened with a call to _dos_open() or _dos_creat().

date Date-return buffer.

time Time-return buffer.

Additional Information

The date and time are returned in the words pointed to by date and time. The
values appear in the DOS date and time format as described in _dos_findfirst.

See also: fstat(), stat()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to EBADF, indicating that an

invalid file handle was passed.

DOS _dos_gettime

C Library Reference Chapter 3 69

_dos_gettime
Gets the current system time.

Syntax

#include <dos.h>
void _dos_gettime (struct dostime_t *time);

Parameter

time Current system time.

Additional Information

The time is returned in a dostime_t structure, defined in <dos.h>.

See also: _dos_getdate(), _dos_setdate(), _dos_settime(), gmtime(), localtime(
)

Returns

Nothing.

_dos_open DOS

70 Chapter 3 Functions

_dos_open
Opens an existing file.

Syntax

#include <dos.h>
#include <fcntl.h>
#include <share.h>
unsigned _dos_open (const char *filename, unsigned mode,

int *handle);

Syntax

Parameters
filename

Path to an existing file.

mode Specifies the file's access, sharing, and inheritance permissions.

handle Pointer to the handle for the opened file.

Additional Information

The mode argument specifies the file's access, sharing, and inheritance modes by
combining (with the OR operator) manifest constants from the three groups shown
below. At most, one access mode and one sharing mode can be specified at a time.

Constant Mode Meaning
O_RDONLY Access Read-only
O_WRONLY Access Write-only
O_RDWR Access Both read and write
SH_COMPAT Sharing Compatibility
SH_DENYRW Sharing Deny reading and writing
SH_DENYWR Sharing Deny writing
SH_DENYRD Sharing Deny reading
SH_DENYNO Sharing Deny neither
O_NOINHERIT Inheritance File is not inherited by the child process

See also: _dos_close(), _dos_read(), _dos_write()

DOS _dos_open

C Library Reference Chapter 3 71

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these:

E Access denied (possible reasons include specifying
a directory or volume ID for filename,
or opening a read-only file for write
access).

E Sharing mode specified when file sharing not
installed, or access-mode value is
invalid.

E Too many open file handles.

E Path or file not found.

_dos_read DOS

72 Chapter 3 Functions

_dos_read
Reads a specified number of bytes of data from a file.

Syntax

#include <dos.h>
unsigned _dos_read (int handle, void *buffer, unsigned
count,

unsigned *actual);

Parameters

handle File to read.

buffer Pointer to buffer to receive data.

count Number of bytes to read.

actual Pointer to the number of bytes actually read, which may be less than the number
requested.

Additional Information

If the number of bytes actually read is 0, it means the function tried to read at end-of-
file.

See also: _dos_close(), _dos_open(), _dos_write(), read()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these:

E Access denied (handle is not open for read access).

DOS _dos_read

C Library Reference Chapter 3 73

E File handle is invalid.

_dos_setdate DOS

74 Chapter 3 Functions

_dos_setdate
Sets the current system date.

Syntax

#include <dos.h>
unsigned _dos_setdate (struct dosdate_t *date);

Parameter

date New system date.

Additional Information

The date is stored in the dosdate_t structure, defined in <dos.h>.

See also: _dos_gettime(), _dos_setdate(), _dos_settime(), gmtime(), localtime(
), mktime(), time()

Returns

Value Meaning
0 Successful
Not 0 Error occurred; the function sets errno to EINVAL, indicating an invalid

date was specified.

DOS _dos_setftime

C Library Reference Chapter 3 75

_dos_setftime
Sets the date and time that a file was last written.

Syntax

#include <dos.h>
unsigned _dos_setftime (int handle, unsigned date,

unsigned time);

Parameters

handle Target file

date Date of last write

time Time of last write

Additional Information

Sets the date and time at which the file identified by handle was last written to.
These values appear in the DOS date and time format:

Time Bits Meaning
0-4 Number of two-second increments (0-29)
5-10 Minutes (0-59)
11-15 Hours (0-23)
Date Bits Meaning
0-4 Day (1-31)
5-8 Month (1-12)
9-15 Year since 1980 (for example, 1989 is stored as 9)

See also: _dos_getftime(), fstat(), stat()

Returns

Value Meaning
0 Successful
Not 0 Not successful; function sets errno to EBADF, indicating that an

invalid file handle was passed.

_dos_settime DOS

76 Chapter 3 Functions

_dos_settime
Sets the current system time.

Syntax

#include <dos.h>
unsigned _dos_settime (struct dostime_t *time);

Parameter

time New system time.

Additional Information

Sets the current system time to the value stored in the dostime_t structure that
time points to, as defined in <dos.h>.

See also: _dos_getdate(), _dos_gettime(), _dos_setdate(), gmtime(), localtime(
), mktime()

Returns

Value Meaning
0 Successful
Not 0 Error occurred; the function sets errno to EINVAL, indicating an invalid

time was specified.

DOS _dos_write

C Library Reference Chapter 3 77

_dos_write
Writes a specified number of bytes from a buffer to a file.

Syntax

#include <dos.h>
unsigned _dos_write (int handle, void const *buffer,
unsigned

count, unsigned *actual);

Parameters

handle File to write to.

buffer Pointer to buffer to write from.

count Number of bytes to write.

actual Pointer to the number of bytes actually written, which can be less than the number
requested.

Additional Information

See also: _dos_close(), _dos_open(), _dos_read(), write()

Returns

Value Meaning
0 Successful
-1 Error occurred; the function sets errno to one of these:

E Access denied (handle references a file not open
for write access).

E Invalid file handle.

dup, dup2 stdio

78 Chapter 3 Functions

dup, dup2
Dup creates a second file descriptor for an open file in the running task's file
descriptor table and dup2 reassigns a file descriptor in the table.

Syntax

#include <io.h>
int dup (int handle);
int dup2 (int handle1, int handle2);

Parameters
handle, handle1

Descriptor referring to an open file.

handle2
Any file descriptor value.

Additional Information

Operations on the file can be carried out using either the old or new file descriptor.
The type of access allowed for the file is unaffected by the creation of a new file
descriptor.

The dup2() function forces handle2 to refer to the same file as handle1. If
handle2 is associated with an open file at the time of the call, that file is closed.

The C library keeps track of the number of duplications on a file connection. The
original connection will remain valid until the last duplication is closed or deleted.

See also: close(), creat(), open()

Returns

Dup() returns the next available file descriptor for the file.

Dup2() returns 0 to indicate success.

Both functions return -1 if an error occurs and set errno to one of these values:

EBADF Invalid file descriptor.

EMFILE No more file descriptors available (too many open files).

ecvt

C Library Reference Chapter 3 79

ecvt
Converts a value to a character string.

Syntax

#include <stdlib.h>
char *ecvt (double value, int count, int *dec, int
*sign);

Parameters

value Value to convert.

count Number of digits stored as a string. The function appends a null character \0.

dec Points to an integer value giving the position of the decimal point with respect to the
beginning of the string. A 0 or negative integer value indicates that the decimal point
lies to the left of the first digit.

sign Points to an integer indicating the sign of the converted number.

Value Meaning
0 Positive
Not 0 Negative

Additional Information

Only digits are stored in the string. If the number of digits in value exceeds count,
the low-order digit is rounded. If there are fewer than count digits, the string is
padded with 0s.

Obtain the position of the decimal point and the sign of value from dec and sign

after the call.

This function uses a single statically allocated buffer for the conversion. Subsequent
calls overwrite the result.

See also: atof(), atoi(), atol(), fcvt(), gcvt()

Returns

A pointer to the string of digits.

No error return.

eof stdio

80 Chapter 3 Functions

eof
Checks whether the file's current file pointer is EOF.

Syntax

#include <io.h>
int eof (int handle);

Parameter

handle Descriptor referring to an open file.

See also: clearerr(), feof(), ferror(), perror()

Returns

Value Meaning
1 Current position is end-of-file
0 Current position is not end-of-file
-1 Error occurred; the function sets errno to EBADF, indicating an invalid

file descriptor

ANSI exit, _exit

C Library Reference Chapter 3 81

exit, _exit
Exit() terminates the calling task after cleanup and _exit() terminates it
immediately.

Syntax

#include <process.h> /* for _exit() */
#include <stdlib.h>
void exit (int status);
void _exit (int status);

Parameter

status Exit status.

Additional Information

Exit() performs complete C library termination procedures. It calls the functions
registered by atexit() and onexit() in LIFO order. It flushes all file buffers before
terminating the task and exits with the supplied status code.

_exit() performs quick C library termination procedures by invoking rq_exit_io_job.
It terminates the task, and informs the parent job with the supplied status code.
Typically, it sets status to 0 to indicate a normal exit or to some other value to
indicate an error.

_exit() does not process atexit() or onexit() functions or flush stream buffers.

See also: abort(), atexit(), onexit(),
rq_exit_io_job, System Call Reference

Returns

Nothing.

exp ANSI

82 Chapter 3 Functions

exp
Calculates the exponential of a double value.

Syntax

#include <math.h>
double exp (double x);

Parameter

x Value to calculate exponential for.

See also: log()

Returns

The exponential function, ex.

HUGE_VAL on overflow, and the function sets errno to ERANGE.

0 on underflow, but the function does not set errno.

This function does not return standard ANSI domain or range errors.

ANSI fabs

C Library Reference Chapter 3 83

fabs
Calculates the absolute value of a double value.

Syntax

#include <math.h>
double fabs (double x);

Parameter

x Value to calculate absolute value for.

See also: abs(), labs(), cabs()

Returns

The absolute value.

No error return.

fclose, fcloseall ANSI, stdio

84 Chapter 3 Functions

fclose, fcloseall
Fclose closes a specified stream and fcloseall closes all open streams.

Syntax

#include <stdio.h>
int fclose (FILE *stream);
int fcloseall (void);

Parameter

stream Pointer to FILE structure.

Additional Information

The fcloseall() function closes all open streams except stdin, stdout, and stderr. It
also closes and deletes any temporary files created by tmpfile().

In both functions, all buffers associated with the stream are flushed prior to closing.
System-allocated buffers are released when the stream is closed. Buffers assigned by
the user with setbuf() and setvbuf() are not automatically released.

See also: close(), fdopen(), fopen(), freopen()

Returns

Fclose() returns 0 if successful.

Fcloseall() returns the total number of streams closed.

Both functions return EOF to indicate an error.

fcvt

C Library Reference Chapter 3 85

fcvt
Converts a double value to a null-terminated string, indicating the sign and decimal
point location.

Syntax

#include <stdlib.h>
char *fcvt (double value, int count, int *dec, int
*sign);

Parameters

value Value to convert. Stores the digits of value as a string and appends a null character
\0.

count Number of digits to store after decimal point. Excess digits are rounded off to count

places. If there are fewer than count digits, the string is padded with 0s.

dec Points to an integer value, which gives the position of the decimal point with respect
to the beginning of the string. A 0 or negative integer value indicates that the decimal
point lies to the left of the first digit.

sign Points to an integer indicating the sign of value.

Value Meaning
0 Positive
Not 0 Negative

Additional Information

Only digits are stored in the string. Obtain the position of the decimal point and the
sign of value from dec and sign after the call.

The fcvt() function uses a single statically allocated buffer for the conversion. Each
call destroys the results of the previous call.

See also: atof(), atoi(), atol(), ecvt(), gcvt()

Returns

A pointer to the string of digits.

No error return.

fdopen stdio

86 Chapter 3 Functions

fdopen
Opens a stream associated with a file descriptor, allowing a file opened for low-level
I/O to be buffered and formatted.

Syntax

#include <stdio.h>
FILE *fdopen (int handle, char *mode);

Parameters

handle Descriptor referring to an open file.

mode Specifies the open mode (type of access permitted) for the file.

Additional Information

This list gives the mode string, including required quotes, as used in the fopen() and
fdopen() functions. It also relates the mode string and the corresponding oflag

arguments used in the open() and sopen() functions.

Value Meaning
"r" Opens for reading. If the file does not exist or cannot be found, the call

will fail. Relates to O_RDONLY.
"w" Opens an empty file for writing. If the given file exists, its contents are

destroyed. Relates to O_WRONLY (usually O_WRONLY |
O_CREAT | O_TRUNC).

"a" Opens for writing at the end of the file (appending); creates the file first if
it doesn't exist. Relates to O_WRONLY | O_APPEND (usually
O_WRONLY | O_CREAT | O_APPEND).

"r+" Opens for both reading and writing. The file must exist. Relates to
O_RDWR.

"w+" Opens an empty file for both reading and writing. If the given file exists,
its contents are destroyed. Relates to O_RDWR (usually O_RDWR |
O_CREAT | O_TRUNC).

"a+" Opens for reading and appending; creates the file first if it doesn't exist.
Relates to O_RDWR | O_APPEND (usually O_RDWR | O_APPEND |
O_CREAT)

Use the "w" and "w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or "a+" open mode, all write operations occur at
the end of the file, even if you've repositioned the file pointer using fseek() or
rewind(). Thus, existing data cannot be overwritten.

stdio fdopen

C Library Reference Chapter 3 87

When the "r+", "w+", or "a+" open mode is specified, both reading and writing are
allowed (the file is open for update). However, when you switch between reading
and writing, there must be an intervening rewind() operation or fsetpos() or
fseek(), which can reposition the file pointer, if desired.

In addition to these values, one of these characters can be included after mode but
between the quotation marks to specify the translation mode for <LF> characters.
The t and b characters correspond to the constants used in the open() and sopen()
functions, as listed below.

Value Meaning
t Open in text (translated) mode. <CR><LF> combinations are translated

into single <LF> characters on input and <LF> characters are translated to
<CR><LF> combinations on output.

<Ctrl-Z> is interpreted as an end-of-file character on input. In files
opened for reading or for reading/writing, checks for and removes
<Ctrl-Z> if possible, because <Ctrl-Z> may cause fseek() to behave
improperly near the end of the file. Relates to O_TEXT.

b Open in binary (untranslated) mode; the above translations are suppressed.
Relates to O_BINARY.

If t or b is not given in the mode string, the translation mode is defined by the
default-mode variable _fmode, contained in <stdlib.h>.

The t option is not part of the ANSI standard for fopen() and fdopen(); do not use
it where ANSI portability is desired.

See also: fopen(), fclose(), fcloseall(), freopen(), open()

Returns

A pointer to the open stream.

A null pointer on error, such as t or b appearing before mode.

feof ANSI, stdio

88 Chapter 3 Functions

feof
Tests for end-of-file on a stream.

Syntax

#include <stdio.h>
int feof (FILE *stream);

Parameter

stream Pointer to FILE structure.

Additional Information

Once end-of-file is reached, read operations return an end-of-file indicator until the
stream is closed or until rewind(), fsetpos(), fseek(), or clearerr() is called.
Feof() is implemented as a macro.

See also: clearerr(), eof(), ferror(), perror()

Returns

Value Meaning
0 The current position is not end-of-file
Not 0 This is the first read operation that attempted to read past end-of-file

No error return.

ANSI, stdio ferror

C Library Reference Chapter 3 89

ferror
Tests for a read or write error on a stream.

Syntax

#include <stdio.h>
int ferror (FILE *stream);

Parameter

stream Pointer to FILE structure.

Additional Information

If an error occurred, the error indicator for the stream remains set until the stream is
closed or rewound, or until clearerr() is called. Ferror() is implemented as a
macro.

See also: clearerr(), eof(), feof(), fopen(), perror()

Returns

Value Meaning
0 Successful
Not 0 Error occurred

fflush ANSI, stdio

90 Chapter 3 Functions

fflush
Flushes a buffered stream (has no effect on an unbuffered stream).

Syntax

#include <stdio.h>
int fflush (FILE *stream);

Parameter

stream Pointer to FILE structure.

Additional Information

If the file associated with stream is open for output, fflush() writes the contents of
the buffer to the file. If stream is open for input, fflush() clears the contents of the
buffer.

The stream remains open after the call.

Buffers are automatically flushed when they are full, when stream is closed, or
when a program terminates normally without closing stream.

See also: fclose(), flushall(), setbuf()

Returns

Value Meaning
0 Buffer successfully flushed or

stream has no buffer or
stream is open for reading only

EOF Error occurred

ANSI, stdio fgetc, fgetchar

C Library Reference Chapter 3 91

fgetc, fgetchar
Fgetc() reads a single character from the current position of the specified stream and
increments the file pointer to the next character; fgetchar() reads from stdin.

Syntax

#include <stdio.h>
int fgetc (FILE *stream);
int fgetchar (void);

Parameter

stream Pointer to FILE structure.

Additional Information

The fgetchar() function is equivalent to

fgetc (stdin)

Fgetc() and fgetchar() are identical to getc() and getchar(), but they are functions,
not macros.

See also: fputc(), fputchar(), getc(), getchar()

Returns

The integer value of the character read.

EOF on error or end-of-file. Since EOF is a legal integer value, use feof() or
ferror() to distinguish between an error and an end-of-file condition.

fgetpos ANSI, stdio

92 Chapter 3 Functions

fgetpos
Gets a stream's file pointer position-indicator and stores it. This function does not get
the file pointer; use the ftell() function instead.

Syntax

#include <stdio.h>
int fgetpos (FILE *stream, fpos_t *pos);

Parameters

stream Pointer to FILE structure.

pos File pointer position-indicator storage.

Additional Information

The file pointer position-indicator value is stored in fpos_t format, which is used
only by the fgetpos() and fsetpos() functions. The fsetpos() function can use
information stored in pos to reset the file pointer for stream to its position at the
time fgetpos() was called.

See also: fsetpos()

Returns

Value Meaning
0 Successful
Not 0 Error occurred; the function sets errno to one of these values:

EBADF The specified stream is not a valid file descriptor or is not
accessible.

EINVAL The stream value is invalid.

ANSI fgets

C Library Reference Chapter 3 93

fgets
Reads a specified number of characters from a stream and stores them in a string.

Syntax

#include <stdio.h>
char *fgets (char *string, int n, FILE *stream);

Parameters

string Storage location for data. The newline character, if read, is included in the string. A
null character \0 is appended.

n Number of characters stored. If n is 1, string is empty.

stream Pointer to FILE structure.

Additional Information

Characters are read from the current stream position up to and including the first
newline character \n, up to the end of the stream, or until the number of characters
read is n-1, whichever comes first.

The fgets() function is similar to the gets() function; however, gets() replaces the
newline character with a null character.

See also: fputs(), gets(), puts()

Returns

Returns the string.

A null pointer on error or end-of-file. Use feof() or ferror() to determine whether
an error occurred.

filelength stdio

94 Chapter 3 Functions

filelength
Gets the length in bytes of a file.

Syntax

#include <io.h>
long filelength (int handle);

Parameter

handle Descriptor referring to an open file, as returned by creat() or open().

See also: chsize(), creat(), fileno(), fstat(), open(), stat()

Returns

The file length in bytes.

-1 on error. An invalid descriptor also sets errno to EBADF.

stdio fileno

C Library Reference Chapter 3 95

fileno
Gets the file descriptor associated with a stream.

Syntax

#include <stdio.h>
int fileno (FILE *stream);

Parameter

stream Pointer to FILE structure.

Additional Information

This function lets you use the file descriptor I/O calls on streams; for example,
read(), write(), and lseek(). To mix the two I/O systems (open() vs. fopen(),
read() vs. fread(), etc.), flush all I/O buffers when going from the buffered system
(for example, fwrite()) to the unbuffered system (for example, write()). Otherwise,
you are likely to lose data.

Fileno() automatically flushes the I/O buffers for the given stream.

See also: fdopen(), filelength(), fopen(), freopen()

Returns

The file descriptor currently associated with the stream. The result is undefined if
stream does not specify an open file.

No error return.

floor ANSI

96 Chapter 3 Functions

floor
Calculates the floor (largest integer that is less than or equal to a value) of a double
value.

Syntax

#include <math.h>
double floor (double x);

Parameter

x Value to calculate the floor for.

See also: ceil(), fmod()

Returns

The floor result.

No error return.

stdio flushall

C Library Reference Chapter 3 97

flushall
Writes the contents of all buffers associated with open output streams to their
associated files.

Syntax

#include <stdio.h>
int flushall (void);

Additional Information

Clears all input stream buffers of their current contents. All streams remain open
after the call. The next read operation reads new data into the buffers.

Buffers are automatically flushed when they are full, when streams are closed, or
when a program terminates normally without closing streams.

See also: fflush()

Returns

The number of open streams (input and output).

No error return.

fmod ANSI

98 Chapter 3 Functions

fmod
Calculates the floating-point remainder.

Syntax

#include <math.h>
double fmod (double x, double y);

Parameters

x, y Floating-point values.

Additional Information

Calculates f of x / y such that:

x = i * y + f

Where:

i An integer.

f The floating-point remainder. f has the same sign as x, and the
absolute value of f is less than the absolute value of y.

See also: ceil(), fabs(), floor()

Returns

The remainder.

0 if y is 0.

This function does not return standard ANSI domain or range errors.

ANSI, stdio fopen

C Library Reference Chapter 3 99

fopen
Opens a file with the specified open mode.

Syntax

#include <stdio.h>
FILE *fopen (const char *filename, const char *mode);

Parameters
filename

Pathname of file.

mode Specifies the open mode (type of access permitted) for the file.

Additional Information

The character string mode, with required quotes, specifies the open mode for the file,
as described in fdopen().

See also: fdopen(), fclose(), fcloseall(), ferror(), fileno(), freopen(), open(),
setmode()

Returns

A pointer to the open file.

A null pointer on error.

fprintf ANSI, stdio

100 Chapter 3 Functions

fprintf
Prints formatted data to a stream.

Syntax

#include <stdio.h>
int fprintf (FILE *stream, const char *format

[, argument]...);

Parameters

stream Pointer to FILE structure.

format Formatted string consisting of ordinary characters, escape sequences, and (if
arguments follow) format specifications.

argument
Optional arguments.

Additional Information

The ordinary characters and escape sequences are copied to stream in order of their
appearance.

The format and optional arguments have the same form and function as described in
the printf() function.

See also: fscanf(), printf(), sprintf()

Returns

The number of characters printed.

A negative value on output error.

ANSI, stdio fputc, fputchar

C Library Reference Chapter 3 101

fputc, fputchar
Fputc writes a single character to an output stream at the current position; fputchar
writes to stdout.

Syntax

#include <stdio.h>
int fputc (int c, FILE *stream);
int fputchar (int c);

Parameters

c Character to be written.

stream Pointer to FILE structure.

Additional Information

The fputchar() function is equivalent to

fputc (c, stdout)

Fputc() and fputchar() are similar to putc() and putchar(), but are functions
rather than macros.

See also: fgetc(), fgetchar(), putc(), putchar()

Returns

The character written.

EOF on error. Since EOF is a legal integer value, use ferror() to check for an actual
error.

fputs ANSI, stdio

102 Chapter 3 Functions

fputs
Writes a string to the stream at the current file pointer.

Syntax

#include <stdio.h>
int fputs (const char *string, FILE *stream);

Parameters

string String to be output. The terminating null character \0 is not copied.

stream Pointer to FILE structure.

See also: fgets(), gets(), puts()

Returns

Value Meaning
0 Successful
EOF Unsuccessful

ANSI, stdio fread

C Library Reference Chapter 3 103

fread
Reads up to the specified number of items of the specified size from the input stream
and stores them in a buffer.

Syntax

#include <stdio.h>
size_t fread (void *buffer, size_t size, size_t count,

FILE *stream);

Parameters

buffer Storage location for data.

size Item size in bytes.

count Maximum number of items to be read.

stream Pointer to FILE structure.

Additional Information

The file pointer associated with stream (if there is one) is increased by the number
of bytes actually read.

If the stream is opened in text mode, <CR><LF> pairs are replaced with single <LF>
characters. The replacement has no effect on the file pointer or the return value.

The file pointer is indeterminate if an error occurs. The value of a partially read item
cannot be determined.

See also: fwrite(), read()

Returns

The number of full items actually read, which may be less than count if an error
occurs, if the end-of-file is encountered before reaching count, or if <CR>s were
removed.

0 and the buffer contents are unchanged if size or count is 0.

0 on error. Use the feof() or ferror() function to distinguish a read error from an
end-of-file condition.

free ANSI

104 Chapter 3 Functions

free
Deallocates a memory block.

Syntax

#include <stdlib.h>
void free (void *memblock);

Parameter
memblock

Points to a memory block previously allocated through a call to calloc(), malloc(),
or realloc().

Additional Information

The number of bytes freed is the number of bytes specified when the block was
allocated, or reallocated, in the case of realloc(). After the call, the freed block is
available for allocation.

Attempting to free a memory block not allocated with the appropriate call (such as
the sbrk() function) may affect subsequent allocation and cause errors.

See also: calloc(), malloc(), realloc(), sbrk()

Returns

Nothing.

ANSI, stdio freopen

C Library Reference Chapter 3 105

freopen
Closes the file currently associated with a stream and reassigns a new file to the
stream.

Syntax

#include <stdio.h>
FILE *freopen (const char *filename, const char *mode,

FILE *stream);

Parameters
filename

Pathname of new file.

mode Open mode for the new file.

stream Pointer to FILE structure.

Additional Information

The freopen() function is typically used to redirect stdin, stdout, and stderr to user-
specified files.

The mode parameter is as described in fdopen().

See also: fclose(), fcloseall(), fdopen(), fileno(), fopen(), open(), setmode()

Returns

A pointer to the newly opened file.

A null pointer value on error and the original file is closed.

frexp ANSI

106 Chapter 3 Functions

frexp
Gets the mantissa and exponent of a double value.

Syntax

#include <math.h>
double frexp (double x, int *expptr);

Parameters

x Value to find exponent for.

expptr Pointer to stored integer exponent n.

Additional Information

Breaks down the value x into a mantissa m and an exponent n, such that the absolute
value of m is greater than or equal to 0.5 and less than 1.0, and x = m * 2n.

See also: ldexp(), modf()

Returns

The mantissa value.

0 for both the mantissa and the exponent if x is 0.

No error return.

ANSI, stdio fscanf

C Library Reference Chapter 3 107

fscanf
Reads and formats character data from the current position of a stream into the
specified locations.

Syntax

#include <stdio.h>
int fscanf (FILE *stream, const char *format [,
argument]...);

Parameters

stream Pointer to FILE structure.

format Null-terminated format-control string, which controls the interpretation of the input
fields.

argument
Optional argument(s) specify location. Each argument must be a pointer to a variable
with a type that corresponds to a type specifier in format. The results are
unpredictable if there are not enough arguments for the format specification. If there
are too many arguments, the extra arguments are evaluated but ignored.

Additional Information

The fscanf() function reads all characters in stream up to the first whitespace
character (space, tab, or newline), or the first character that cannot be converted
according to format.

The format parameter is as described in the scanf() function.

See also: fprintf(), scanf(), sscanf()

Returns

The number of fields that were successfully converted and assigned, not including
fields that were read but not assigned.

EOF for an error or end-of-file on stream before the first conversion.

0 if no fields were assigned.

fseek ANSI, stdio

108 Chapter 3 Functions

fseek
Moves the file pointer to a specified location in a stream.

Syntax

#include <stdio.h>
int fseek (FILE *stream, long offset, int origin);

Parameters

stream Pointer to FILE structure.

offset Number of bytes from origin.

origin Initial position, specified as one of these, or beyond end-of-file. An attempt to
position the pointer before the beginning of the file causes an error.

Value Meaning
SEEK_CUR Current position of file pointer
SEEK_END End of file
SEEK_SET Beginning of file

Additional Information

This function clears the end-of-file indicator.

The next operation on the stream takes place at the new location. On a stream open
for update, the next operation can be either a read or a write.

When a file is opened for appending data, the last I/O operation determines the
current file pointer position, not where the next write would occur. If no I/O
operation has yet occurred on a file opened for appending, the file position is the start
of the file.

For streams opened in text mode, fseek() has limited use because <CR><LF>
translations can cause unexpected results. The only fseek() operations guaranteed to
work on streams opened in text mode are seeking with an offset of 0 relative to any
origin value, or from the beginning of the file with an offset value returned by
ftell().

Results are undefined on devices incapable of seeking, like terminals and printers.

See also: ftell(), lseek(), rewind()

ANSI, stdio fseek

C Library Reference Chapter 3 109

Returns

Value Meaning
0 Successful
Not 0 Unsuccessful

fsetpos ANSI, stdio

110 Chapter 3 Functions

fsetpos
Sets a stream's file pointer position-indicator.

Syntax

#include <stdio.h>
int fsetpos (FILE *stream, const fpos_t *pos);

Parameters

stream Pointer to FILE structure.

pos File pointer position-indicator storage, which is obtained in a prior call to fgetpos().

Additional Information

This function clears the end-of-file indicator. After this call, the next operation on
the stream may be either input or output.

See also: fgetpos()

Returns

Value Meaning
0 Successful
Not 0 Error occurred; the function sets errno to one of these values:

EBADF The specified stream is not a valid file descriptor or is not
accessible.

EINVAL The stream value is invalid.

stdio fstat

C Library Reference Chapter 3 111

fstat
Gets information on the file associated with the specified file descriptor.

Syntax

#include <sys/types.h>
#include <sys/stat.h>
int fstat (int handle, struct stat *buffer);

Parameters

handle Descriptor referring to an open file.

buffer Pointer to file-status structure stat.

Additional Information

The file-status structure stat is defined in <sys/stat.h>.

If handle refers to a device, the size and time elements in the stat structure are
not meaningful.

Fstat() invokes the system call rq_a_get_file_status and adds the number of
seconds between epoch time and January 1, 1978, plus the local timezone factor,
defined in tzset(). This adjusts the time stamps of iRMX files to POSIX-standard
values.

This function performs a translation of iRMX OS file ownership rights and iRMX OS
access rights to POSIX as described in <sys/stat.h>.

See also: chmod(), filelength(), stat(), <sys/stat.h>, tzset()

Returns

Value Meaning
0 Successful
-1 Error occurred and the function sets errno to EBADF, indicating an

invalid file descriptor

ftell ANSI, stdio

112 Chapter 3 Functions

ftell
Gets the current position of the file pointer for a stream.

Syntax

#include <stdio.h>
long ftell (FILE *stream);

Parameter

stream Pointer to FILE structure.

Additional Information

When a file is opened for appending data, the last I/O operation determines the
current file pointer position, not where the next write would occur. For example, if a
file is opened for an append and the last operation was a read, the file position is the
point where the next read operation would start, not where the next write would start.
When a file is opened for appending, the file pointer is moved to end-of-file before
any write operation. If no I/O operation has yet occurred on a file opened for
appending, the file position is the beginning of the file.

On devices incapable of seeking, such as terminals and printers, or when stream

does not refer to an open file, the return value is undefined.

See also: fseek(), lseek()

Returns

The current file position expressed as an offset relative to the beginning of stream.
The value returned may not reflect the physical byte offset for streams opened in text
mode, since text mode causes <CR><LF> translation. Use ftell() with the fseek()
function to return to file locations correctly.

1L on error, and the function sets errno to one of these values:

EBADF Bad file number. The stream argument is not a valid file descriptor
value or does not refer to an open file.

EINVAL Invalid argument. An invalid stream argument was passed to the
function.

ftoa

C Library Reference Chapter 3 113

ftoa
Converts a double value to a formatted string.

Syntax

#include <stdlib.h>
char *ftoa (double value, char *string, unsigned int
iplaces,

unsigned int fplaces);

Parameters

value Value to convert.

string Pointer to a character array where a null-terminated character string is written.

iplaces
Desired number of significant integer digits (iii) in the string.

fplaces
Desired number of significant fractional digits (fff) in the string. An integer
exponent (eee) also returns in the string.

Additional Information

The converted string has this format:

[-]iii.fffE[-]eee

The value of the number is truncated, not rounded. The algorithm that ftoa() uses is
accurate to eighteen significant digits. If iplaces plus fplaces exceeds eighteen,
they are adjusted so that only eighteen significant digits are used.

For portability, use the sprintf() %e conversion specifier. Use the optional field
width and precision to control the number of fractional digits. The sprintf() %e
conversion specifier produces a string in the format [-]d.dddE+ee, with one integer
digit left of the decimal point.

See also: sprintf()

Returns

A pointer to the converted string.

No error return.

fwrite ANSI, stdio

114 Chapter 3 Functions

fwrite
Writes a specified number of characters to a stream.

Syntax

#include <stdio.h>
size_t fwrite (const void *buffer, size_t size, size_t
count,

FILE *stream);

Parameters

buffer Pointer to data to be written.

size Item size in bytes.

count Maximum number of items to be written.

stream Pointer to FILE structure.

Additional Information

The file pointer associated with stream (if there is one) is incremented by the
number of bytes actually written.

If stream is opened in text mode, each <CR> is replaced with a <CR><LF> pair.
The replacement has no effect on the return value.

See also: fread(), write()

Returns

The number of full items actually written, which may be less than count if an error
occurs.

On error, the file-position indicator cannot be determined.

gcvt

C Library Reference Chapter 3 115

gcvt
Converts a double value to a string of significant digits, and places them in a
specified location.

Syntax

#include <stdlib.h>
char *gcvt (double value, int digits, char *buffer);

Parameters

value Value to convert.

digits Number of significant digits stored.

buffer Storage location for result. Should be large enough to accommodate the converted
value plus a terminating null character \0, which is automatically appended.

Additional Information

There is no provision for overflow.

The gcvt() function attempts to produce significant digits in decimal format. If this
is not possible, it produces them in exponential format. Trailing zeros may be
suppressed in the conversion.

See also: atof(), atoi(), atol(), ecvt(), fcvt()

Returns

A pointer to the string.

No error return.

_get_arguments

116 Chapter 3 Functions

_get_arguments
Sets up the standard C command line parser.

Syntax

#include <rmx_c.h>
int _get_arguments (int *argc, char **argv, int
argv_size,

char *cmd_buf, int buf_size);

Parameters

argc Count of command line arguments.

argv Array of pointers to arguments.

argv_size
Size of argv array.

cmd_buf
Buffer containing parsed arguments pointed to by argv elements.

buf_size
Size of cmd_buf array.

Additional Information

This function makes successive calls to rq_c_get_char to retrieve characters one at a
time, parsing the command line into the standard argc/argv for main().

The _get_arguments() function can be called during run-time; however, the startup
code normally invokes this function before your application calls main(). You can
modify the startup code if you have any application-specific initialization
requirements that need to be performed before main(). You can also modify the
startup code indirectly with the iRMX configuration process.

See also: Configuring the C library, System Configuration and Administration

Command Line Parsing

Since _get_arguments uses rq_c_get_char, the HI CLI is bypassed. This allows
UNIX-style "-x" flags to be interpreted exactly as expected by a portable C
application. Also, the case of each command line argument is preserved; the
arguments are not forced to either upper or lower case.

_get_arguments

C Library Reference Chapter 3 117

Apostrophe (') and quotation (") characters delimit strings on the command line.
Quoted strings permit the use of HI special characters within the string, removing the
semantics of any characters within the string. For example, if an ampersand (&) is
enclosed in quotation characters, the ampersand is no longer recognized as the
continuation character. The other special characters are the semicolon (;), the pipe
symbol (|), brackets ([and]), and the space.

Each of the pair of delimiters surrounding the string must be the same. To include
the quoting apostrophe or quotation character inside the string, you must specify the
quoting character twice, for example: "Enter the ""quoted string"" at the

prompt". You can achieve the same effect by using the apostrophe, for example:
"can't".

The parser reduces two successive apostrophes or quotation characters outside of
another pair of apostrophes or quotation characters to one apostrophe or quotation
character. For example, ""here"" outside all pairs of quotation marks is reduced to
"here". This takes place before parsing of the command line.

When a backslash (\) appears on the command line, the backslash is removed and the
next character is passed on to the application without interpretation. This is helpful in
porting programs that expect and use \ as an escape character.

See also: rq_c_get_char, System Call Reference, getopt()

Returns

0 always returns.

getc, getchar ANSI, stdio

118 Chapter 3 Functions

getc, getchar
Getc() reads a single character from a stream and increments the associated file
pointer to point to the next character; getchar() reads from stdin.

Syntax

#include <stdio.h>
int getc (FILE *stream);
int getchar (void);

Parameter

stream Pointer to FILE structure.

Additional Information

The getchar() macro is identical to:

getc (stdin)

Getc() and getchar() are identical to fgetc() and fgetchar(), but are macros rather
than functions.

See also: fgetc(), fgetchar(), putc(), putchar()

Returns

The integer value of the character read.

EOF on error or end-of-file. Since EOF is a legal integer value, use feof() or
ferror() to distinguish between an error and an end-of-file condition.

DOS getch, getche

C Library Reference Chapter 3 119

getch, getche
Getch() reads a single character from the console without echoing; getche() echoes
the character read.

Syntax

#include <conio.h>
int getch (void);
int getche (void);

Additional Information

Neither function reads <Ctrl>-<C>.

When reading a function key or cursor-moving key, these functions must be called
twice; the first call returns 0 or 0xe0, and the second call returns the actual key code.

See also: cgets(), getchar(), ungetch()

Returns

The character read.

No error return.

getenv ANSI, stdio

120 Chapter 3 Functions

getenv
Searches the environment-variable table for a specified entry.

Syntax

#include <stdlib.h>
char *getenv (const char *varname);

Parameters
varname

Name of environment variable being sought. The varname argument should match
the case of the environment variable.

Additional Information

The getenv() function is case-sensitive.

The first call to getenv() sets up an environment-variable table shared by all tasks
using the C library. A prototype for the table is contained in the file :config:r?env.
When getenv() is called for the first time, the table is initialized from :config:r?env.
You can create an environment-variable file locally, :prog:r?env, that getenv() uses
in addition to :config:r?env, as a basis for the table. The maximum allowable
number of entries in the environment-variable table is 40. Entries in the r?env files
are of this form:

varname = [ASCII string]

A space character is required on both sides of the equal sign for fscanf() parsing.
For example, a typical entry in :config:r?env appears like this.

TZ = PST8PDT

See also: putenv(), tzset(),
Environment variables, System Configuration and Administration

Returns

A pointer to the environment-variable table entry containing the current string value
of varname. To update the entry, pass this pointer to the putenv() call.

A null pointer if the given variable is not currently defined.

_get_cs

C Library Reference Chapter 3 121

_get_cs
Returns an application’s current code segment.

Syntax

#include <rmx_c.h>
selector _get_cs (void);

Additional Information

Use this function for obtaining an application’s code segment. This function can be
used for all memory models, i.e., compact and large, and it is the only function which
can used for accessing a flat model application’s code segment.

See also: _get_ds(), _get_ss() commands

Returns

The current value of the code segment register.

_get_ds

122 Chapter 3 Functions

_get_ds
Returns an application’s current data segment.

Syntax

#include <rmx_c.h>
selector _get_ds (void);

Additional Information

Use this function for obtaining an application’s data segment. This function can be
used for all memory models, i.e., compact and large, and it is the only function which
can used for accessing a flat model application’s data segment.

See also: _get_cs(), _get_ss() commands

Returns

The current value of the data segment register.

_get_ss

C Library Reference Chapter 3 123

_get_ss
Returns an application’s current stack segment.

Syntax

#include <rmx_c.h>
selector _get_ss (void);

Additional Information

Use this function for obtaining an application’s stack segment. This function can be
used for all memory models, i.e., compact and large, and it is the only function which
can used for accessing a flat model application’s stack segment.

See also: _get_cs(), _get_ds() commands

Returns

The current value of the stack segment register.

_get_info

124 Chapter 3 Functions

_get_info
Obtains the C library information CINFO_STRUCT for the calling task.

Syntax

#include <rmx_c.h>
int _get_info (unsigned int count, CINFO_STRUCT *cinfo);

Parameters

count Number of elements to be returned in CINFO_STRUCT.

cinfo Pointer to CINFO_STRUCT.

Additional Information

The CINFO_STRUCT, part of the resources allocated to each task that uses the C
library, contains these elements:

Element Description
int num_eios_bufs Number of EIOS buffers per open file connection

allocated on behalf of the calling task. This is used in the
call to rq_s_open made by the fopen() or open()
functions.

unsigned long *
accounting

Pointer to an array containing a counter for each
configured function in the C library. The C library uses
this array to keep track of the number of times a function
has been called since the library was loaded, and to
indicate whether or not a function is configured.

unsigned short
num_accounting

Size of the accounting array.

int num_clib_functs Number of functions implemented in this version of the C
Library.

unsigned char *flags One entry per function indicating whether the function is
configured.

_get_info

C Library Reference Chapter 3 125

✏ Note
For flat model applications only, treat the accounting and flags
parameters as two separate fields each in the structure. The first
field has the parameter name listed above and is a near pointer.
The second field has the same name with _seg appended at the end.
It is a segment selector for the pointer. For example, accounting is
a pointer and accounting_seg is the selector to it.

See also: _cstop(), <rmx_c.h>, _set_info()

Returns

Value Meaning
0 Successful
-1 Unsuccessful

getopt stdio

126 Chapter 3 Functions

getopt
Gets the next argument option letter that matches recognized option letters.

Syntax

#include <udistd.h>
char getopt (int argc, char **argv, char optstring);
char *optarg /* Global variables affected by getopt() */
int optind

Parameters
argc, argv

Standard command line arguments passed to main().

optstring
A string of recognized option letters.

Additional Information

This function compares command line arguments found in argv with optstring.
The found argument is indicated in the global variables optarg and optind, where
optarg points to the argument, and optind is set to the argv index of the next
argument on the command line. On return from getopt, optarg is set to point to
the start of the option argument, if any.

If a letter in optstring is followed by a colon, the option is expected to have an
argument that may be separated by white space in the command line.

See also: _get_arguments

Returns

The next letter in argv that matches a letter in optstring.

EOF when all options have been processed.

getpid, getuid

C Library Reference Chapter 3 127

getpid, getuid
Getpid gets the calling task's connection token (process ID); getuid gets the calling
task's user ID.

Syntax

#include <process.h>
pid_t getpid (void);
uid_t getuid (void);

Additional Information

Getuid() invokes the system calls rq_get_default_user and rq_inspect_user.

See also: rq_get_default_user, rq_inspect_user, System Call Reference,
mktemp()

Returns

No error return.

_get_rmx_conn stdio

128 Chapter 3 Functions

_get_rmx_conn
Translates a file descriptor to a valid iRMX connection token, usable as a parameter
in iRMX system calls.

Syntax

#include <rmx_c.h>
selector _get_rmx_conn (int handle);

Parameter

handle Descriptor referring to an open file.

Additional Information

Use this function in code that mixes C library functions with direct iRMX system
calls.

File descriptors are maintained on a per-task basis. When a file is opened, a small,
non-negative file descriptor is returned as specified by POSIX. The file descriptor is
not an iRMX connection; it is an index into an internal table of iRMX connections.

✏ Note
C string tokens are char values separated by delimiter characters;
an iRMX connection token is a selector value. Do not confuse
the C concept of a character string token with the iRMX connection
token.

See also: _put_rmx_conn, <rmx_c.h>

Returns

A valid iRMX connection token.

-1 if unsuccessful.

ANSI, stdio gets

C Library Reference Chapter 3 129

gets
Gets a line from stdin and stores it in the specified location.

Syntax

#include <stdio.h>
char *gets (char *buffer);

Parameter

buffer Storage location for input string.

Additional Information

The line consists of all characters up to and including the first newline character \n.
The gets() function replaces the newline character with a null character \0 before
returning the line.

The fgets() function retains the newline character.

See also: fgets(), fputs(), puts()

Returns

Returns its argument if successful.

A null pointer on error or end-of-file. Use ferror() or feof() to determine which one
has occurred.

getw stdio

130 Chapter 3 Functions

getw
Reads the next integer from a stream and increments the associated file pointer (if
there is one) to point to the next unread value.

Syntax

#include <stdio.h>
int getw (FILE *stream);

Parameter

stream Pointer to FILE structure.

Additional Information

The getw() function does not assume any special alignment of items in the stream.

The getw() function is provided primarily for compatibility with previous libraries.
Portability problems may occur with getw(), since the integer size and byte ordering
can differ across systems.

See also: putw()

Returns

The integer value read.

EOF on error or end-of-file. Since the EOF value is also a legitimate integer value,
use feof() or ferror() to verify an end-of-file or error condition.

ANSI gmtime

C Library Reference Chapter 3 131

gmtime
Converts a time value to a structure.

Syntax

#include <time.h>
struct tm *gmtime (const time_t *timer);

Parameter

timer Pointer to stored tm structure, which represents the seconds elapsed since epoch time.
This value is usually obtained from a call to the time() function.

Additional Information

The gmtime() function breaks down the timer value and stores it in a tm structure.
The structure result reflects GMT, not local time.

The gmtime(), mktime(), and localtime() functions use a single statically allocated
structure to hold the result. Subsequent calls to these functions destroy the result of
any previous call.

See also: asctime(), localtime(), time(), <time.h> for description of tm
structure

Returns

A pointer to the tm structure.

No error return.

is Functions ANSI

132 Chapter 3 Functions

is Functions
Test integers representing ASCII characters for specified conditions.

Syntax

#include <ctype.h>
int isalnum (int c);
int isalpha (int c);
int isascii (int c);
int iscntrl (int c);
int isdigit (int c);
int isgraph (int c);
int islower (int c);
int isprint (int c);
int ispunct (int c);
int isspace (int c);
int isupper (int c);
int isxdigit (int c);

Parameter

c Integer to be tested.

Additional Information

These functions are implemented as functions and macros. The test conditions are:

Function Test Conditions
isalnum() Alphanumeric (A-Z, a-z, or 0-9)
isalpha() Letter (A-Z or a-z)
isascii() ASCII character (0x00-0x7F)
iscntrl() Control character (0x00-0x1F or 0x7F)
isdigit() Digit (0-9)
isgraph() Printable character except space
islower() Lowercase letter (a-z)
isprint() Printable character (0x20-0x7E)
ispunct() Punctuation character
isspace() White-space character (0x09-0x0D or 0x20)
isupper() Uppercase letter (A-Z)
isxdigit() Hexadecimal digit (A-F, a-f, or 0-9)

ANSI is Functions

C Library Reference Chapter 3 133

All of these functions except isascii() produce a defined result only for integer values
corresponding to the ASCII character set, or for the nonASCII value EOF.

See also: toascii(), tolower(), toupper()

Returns

Value Meaning
Not 0 The integer satisfies the test condition.
0 It does not.

isatty stdio

134 Chapter 3 Functions

isatty
Determines whether a file descriptor is associated with a character device: a
terminal, console, printer, or serial port.

Syntax

#include <io.h>
int isatty (int handle);

Parameter

handle Descriptor referring to device to be tested.

Returns

Value Meaning
Not 0 The device is a character device.
0 It is not. If handle is an invalid file descriptor, the function also sets

errno to EBADF.

itoa

C Library Reference Chapter 3 135

itoa
Converts an integer of the specified base to a null-terminated string of characters and
stores it.

Syntax

#include <stdlib.h>
char *itoa (int value, char *string, int radix);

Parameters

value Number to convert.

string String result, up to 17 bytes.

radix Specifies the base of value; must be in the range 2-36.

Additional Information

If radix equals 10 and value is negative, the first character of the stored string is
the minus sign (-).

If radix is greater than 10, digits in the converted string representing values 10
through 35 are the characters a through z.

See also: ltoa(), ultoa()

Returns

A pointer to the converted string.

No error return.

itoh

136 Chapter 3 Functions

itoh
Converts an integer into the equivalent null-terminated, hexadecimal string and stores
it.

Syntax

#include <stdlib.h>
char *itoh (int n, char *buffer);

Parameters

n Integer to convert.

buffer Pointer to a string. The buffer must be large enough to hold the largest integer on the
target system.

Additional Information

The itoh() function converts all non-numeric hexadecimal characters to lower case.
This function also does not place a leading 0 character in the buffer.

For portability, use the sprintf() %x conversion specifier.

See also: sprintf()

Returns

A pointer to the converted string.

No error return.

ANSI labs

C Library Reference Chapter 3 137

labs
Calculates the absolute value of a long integer.

Syntax

#include <stdlib.h>
#include <math.h>
long labs (long n);

Parameter

n Long integer to calculate absolute value for.

See also: abs(), fabs(), cabs()

Returns

The absolute value result.

No error return.

ldexp ANSI

138 Chapter 3 Functions

ldexp
Computes a real number from the mantissa and exponent.

Syntax

#include <math.h>
double ldexp (double x, int exp);

Parameters

x Mantissa value.

exp Integer exponent.

See also: frexp(), modf()

Returns

Returns x * 2exp.

±HUGE_VAL (depending on the sign of x) on overflow, and the function sets errno
to ERANGE.

This function does not return standard ANSI domain or range errors.

ANSI ldiv

C Library Reference Chapter 3 139

ldiv
Divides numerator by denominator, and computes the quotient and remainder.

Syntax

#include <stdlib.h>
ldiv_t ldiv (long int numer, long int denom);

Parameters

numer Numerator.

denom Denominator. If the denominator is 0, the program will terminate with an error
message.

Additional Information

The sign of the quotient is the same as that of the mathematical quotient. Its absolute
value is the largest integer that is less than the absolute value of the mathematical
quotient.

The ldiv() function is similar to the div() function, except that the arguments and the
members of the returned structure are long integers.

See also: div()

Returns

A ldiv_t structure, comprising both the quotient and the remainder, defined in
<stdlib.h>.

lfind

140 Chapter 3 Functions

lfind
Performs a linear search for a specified key in an unsorted array.

Syntax

#include <search.h>
char *lfind (const void *key, const void *base,

unsigned int *num, unsigned int width,
int (*compare) (const void *elem1,
const void *elem2));

Parameters

key Value being sought.

base Pointer to base of the array to be searched.

num Number of elements in the array.

width Width of elements in bytes.

compare
Pointer to a user-supplied routine that compares two array elements, elem1 and
elem2, and returns a value specifying their relationship.

elem1 Pointer to the key for the search.

elem2 Pointer to the array element to be compared with the key.

Additional Information

The lfind() function calls the compare routine one or more times during the search,
passing pointers to two array elements on each call. This routine must compare the
elements, then return a non-0 value if the elements are different, or 0 if the elements
are identical.

See also: bsearch(), lsearch(), qsort()

Returns

A pointer to the array element that matches key.

A null pointer if a match is not found.

ANSI localeconv

C Library Reference Chapter 3 141

localeconv
Gets detailed information on locale settings.

Syntax

#include <locale.h>
struct lconv *localeconv (void);

Additional Information

This information is stored in a lconv structure, defined in <locale.h>. Subsequent
calls to setlocale() with category values of LC_ALL, LC_MONETARY, or
LC_NUMERIC will overwrite the contents of this structure.

See also: <locale.h>, setlocale(), strcoll(), strftime(), strxfrm()

Returns

A pointer to an lconv structure.

localtime ANSI, stdio

142 Chapter 3 Functions

localtime
Converts a time stored as a time_t value and corrects for the local timezone.

Syntax

#include <time.h>
struct tm *localtime (const time_t *timer);

Parameter

timer Pointer to stored time, which represents the seconds elapsed since epoch time; this
value is usually obtained from the time() function.

Additional Information

The localtime() function makes corrections for the local timezone if the user first
sets the environment variable TZ. Then, three other environment variables
(timezone, daylight, and tzname) are automatically set as well.

See also: Description of these variables in tzset()

TZ is not part of the ANSI standard definition of localtime().

The gmtime(), mktime(), and localtime() functions use a single statically allocated
tm structure for the conversion. Each call to one of these functions destroys the
result of the previous call.

See also: asctime(), ctime(), gmtime(), time()

Returns

A pointer to the tm structure, which has the integer elements described in <time.h>.

ANSI log, log10

C Library Reference Chapter 3 143

log, log10
Log() calculates the natural logarithm of a value and log10() calculates the base-10
logarithm.

Syntax

#include <math.h>
double log (double x);
double log10 (double x);

Parameter

x Value to find logarithm for.

See also: exp(), matherr(), pow()

Returns

The logarithm of the argument x.

-HUGE_VAL if x is negative; the function prints a DOMAIN error message to stderr
and sets errno to EDOM.

-HUGE_VAL if x is 0; the function prints a SING error message to stderr and sets
errno to ERANGE.

These functions do not return standard ANSI domain or range errors.

longjmp ANSI

144 Chapter 3 Functions

longjmp
Restores the context, previously saved by setjmp().

Syntax

#include <setjmp.h>
void longjmp (jmp_buf context, int value);

Parameters
context

Context previously stored by setjmp().

value Value to be returned to setjmp(); must be non-0. If 0, the value 1 is returned to the
previous setjmp() call.

Additional Information

The previous call to setjmp() causes the current context to be saved in context. A
subsequent call to longjmp() restores the context and returns control to the point
immediately following the corresponding setjmp() call. Execution resumes as if
value had just been returned by setjmp().

The values of all local variables (except register variables) that are accessible to the
routine receiving control contain the values they had when longjmp() was called.
The values of register variables are unpredictable.

Observe these restrictions when using longjmp():

• Do not assume that the values of the register variables will remain the same.
The values of register variables in the routine calling setjmp() may not be
restored to the proper values after longjmp() is executed.

• Do not use longjmp() to transfer control out of an interrupt-handling routine.

See also: setjmp()

Returns

Nothing.

lsearch

C Library Reference Chapter 3 145

lsearch
Performs a linear search for a specified value in an unsorted array, appending the
value to the array if not found.

Syntax

#include <search.h>
char *lsearch (const void *key, const void *base,
unsigned int

*num, unsigned int width, int (*compare)
(const void *elem1, const void *elem2));

Parameters

key Value being sought.

base Pointer to base of the array to be searched.

num Number of elements in the array.

width Width of elements in bytes.

compare
Pointer to a user-supplied routine that compares two array elements, elem1 and
elem2, and returns a value specifying their relationship.

elem1 Pointer to the key for the search.

elem2 Pointer to the array element to be compared with the key.

Additional Information

The lsearch() function calls the compare routine one or more times during the
search, passing pointers to two array elements on each call. This routine must
compare the elements, then return a non-0 value if the elements are different, or 0 if
the elements are identical.

See also: bsearch(), lfind()

Returns

A pointer to the array element that matches key.

A pointer to the newly added element in the array if a match is not found.

lseek stdio

146 Chapter 3 Functions

lseek
Moves the file pointer to a location specified as an offset from the origin in a file.

Syntax

#include <io.h>
#include <unistd.h>
off_t lseek (int handle, off_t offset, int origin);

long64 _lseek64(int handle, long64 offset, int origin);

Parameters

handle Descriptor referring to an open file.

offset Number of bytes from origin, specified as one of these constants, or beyond end-of-
file.

Value
Meaning

SEEK_SET Beginning of file
SEEK_CUR Current position of file pointer
SEEK_END End of file

origin Initial position.

Additional Information

The next operation on the file occurs at the new location.

The lseek() function can reposition the pointer anywhere in a file and beyond the end
of the file. An attempt to position the pointer before the beginning of the file causes
an error.

Results are undefined on devices incapable of seeking, like terminals and printers.

The _lseek64() function allows the use of 64-bit offsets used with the extended
iRMX filesystems.

See also: fseek()

Returns

The offset, in bytes, of the new position from the beginning of the file.

-1L on error, and the function sets errno to one of these values:

stdio lseek

C Library Reference Chapter 3 147

EBADF Invalid file descriptor.

EINVAL Invalid value for origin, or position specified by offset is before the
beginning of the file.

ltell stdio

148 Chapter 3 Functions

ltell
Returns the absolute position of the file pointer for the next I/O operation.

Syntax

#include <io.h>
long ltell (int handle);

long64 _ltell64 (int handle);

Parameter

handle Descriptor referring to an open file.

Additional Information

This function is equivalent to:

lseek (handle, 0L, SEEK_CUR)

The _tell64() function returns the offset as a 64-bit offset, for use with the extended
iRMX filesystems.

See also: lseek()

Returns

The absolute position of the next byte in the file.

-1 with errno set to EBADF if unsuccessful.

ltoa

C Library Reference Chapter 3 149

ltoa
Converts a long integer of the specified base to a null-terminated string of characters
and stores it.

Syntax

#include <stdlib.h>
char *ltoa (long value, char *string, int radix);

Parameters

value Number to convert.

string String result, up to 34 bytes.

radix Base of value; must be in the range 2-36.

Additional Information

If radix equals 10 and value is negative, the first character of the stored string is
the minus sign (-).

If radix is greater than 10, digits in the converted string representing values 10
through 35 are the characters a through z.

See also: itoa(), ltos(), utoa()

Returns

A pointer to the converted string.

No error return.

ltoh

150 Chapter 3 Functions

ltoh
Converts a long integer to a null-terminated hexadecimal string and stores it.

Syntax

#include <stdlib.h>
char *ltoh (unsigned long value, char *string);

Parameters

value Integer to convert.

string String result, up to 34 bytes.

Additional Information

This function does not place leading 0 characters in the result.

This function produces hexadecimal characters in lower case (a-f). For portability,
use the sprintf() %lx conversion specifier.

See also: sprintf()

Returns

A pointer to the converted string.

No error return.

ltos

C Library Reference Chapter 3 151

ltos
Converts a long integer to a null-terminated string of characters and stores it;
negative base values are acceptable.

Syntax

#include <stdlib.h>
char *ltos (long value, char *string, int radix);

Parameters

value Number to convert.

string String result, up to 34 bytes.

radix Base of value; must be in the range 2 to 36 or -2 to -36.

Additional Information

The absolute value of radix is passed to this function as the number base.

Digits in the converted string representing values 10 through 35 are the characters a
through z.

See also: ltoa(), ltoh()

Returns

A pointer to the converted string.

No error return.

malloc ANSI

152 Chapter 3 Functions

malloc
Allocates a memory block of the specified size.

Syntax

#include <stdlib.h>
void *malloc (size_t size);

Parameter

size Bytes to allocate.

Additional Information

The allocated block may be larger than the specified size, including space required
for alignment and maintenance information. The memory is suitably aligned for
storage of any type of object.

Always examine the return from malloc(), even if the amount of memory requested
is small.

See also: calloc(), free(), realloc()

Returns

A pointer to the allocated space. To get a pointer to a type other than void, use a
type cast on the return value.

For a size of 0 bytes, malloc() returns a NULL.

If unsuccessful, it returns a NULL pointer.

✏ Note
For a size of 0 bytes, the NULL returned by malloc() is a
non-standard implementation.

matherr

C Library Reference Chapter 3 153

matherr
Processes errors generated by the functions of the math library.

Syntax

#include <math.h>
int matherr (struct exception *except);

Parameter

except Pointer to an exception structure.

Additional Information

When an error occurs in a math function, matherr() is called with a pointer to the
exception structure defined in <math.h>.

See also: acos(), asin(), atan(), Bessel functions, cos(), exp(), log(), pow(),
sin(), sqrt(), tan()

Returns

Value Meaning
Not 0 Successful
0 Error occurred

mblen ANSI

154 Chapter 3 Functions

mblen
Gets the length and determines the validity of a multibyte character.

Syntax

#include <stdlib.h>
int mblen (const char *mbstr, size_t count);

Parameters

mbstr A pointer to a sequence of bytes (a multibyte character) to check.

count The number of bytes to check.

See also: mbstowcs(), mbtowc(), wcstombs(), wctomb()

Returns

The length, in bytes, of the multibyte character.

0 if mbstr is a null pointer or the object that it points to is the wide-character null.

-1 if the object that mbstr points to does not form a valid multibyte character within
the first count characters, up to MB_CUR_MAX.

ANSI mbstowcs

C Library Reference Chapter 3 155

mbstowcs
Converts a sequence of multibyte characters to a sequence of wide characters, as
determined by the current locale; stores the resulting wide-character string at the
specified address.

Syntax

#include <stdlib.h>
size_t mbstowcs (wchar_t *wcstr, const char *1mbstr,

size_t count);

Parameters

wcstr The address of a sequence of wide characters.

mbstr The address of a sequence of multibyte characters.

count The number of multibyte characters to convert.

Additional Information

If mbstowcs() encounters the null character \0 either before or when count occurs,
it converts the null character to a wide-character null and stops. Thus, the wide-
character string at wcstr is null-terminated only if it encounters a null character
during conversion.

If the sequences pointed to by wcstr and mbstr overlap, the behavior is undefined.

The result is similar to a series of calls to mbtowc().

See also: mblen(), mbtowc(), wcstombs(), wctomb()

Returns

The number of converted multibyte characters or count if the wide-character string
is not null-terminated.

-1 on encountering an invalid multibyte character.

mbtowc ANSI

156 Chapter 3 Functions

mbtowc
Converts a multibyte character to a corresponding wide character.

Syntax

#include <stdlib.h>
int mbtowc (wchar_t *wchar, const char *mbchar, size_t
count);

Parameters

wchar A pointer to the wide character produced.

mbchar A pointer to a sequence of bytes (a multibyte character).

count The number of bytes to check.

Additional Information

Mbtowc() will not examine more than MB_CUR_MAX bytes.

See also: mblen(), mbstowcs(), wcstombs(), wctomb()

Returns

The length in bytes of the multibyte character.

0 if mbchar is a null pointer or the object that it points to is a wide-character null.

-1 if the object that mbchar points to does not form a valid multibyte character within
the first count characters.

memccpy

C Library Reference Chapter 3 157

memccpy
Copies characters from one buffer to another, halting when the specified character is
copied or when the specified number of bytes have been copied.

Syntax

#include <string.h>
void * memccpy (void *dest, void *src, int c,

unsigned int count);

Parameters

dest Pointer to destination buffer.

src Pointer to source buffer.

c Last character to copy.

count Number of characters.

See also: memchr(), memcmp(), memcpy(), memset()

Returns

A pointer to the byte in dest that immediately follows the character c.

A null pointer if unsuccessful.

memchr ANSI

158 Chapter 3 Functions

memchr
Finds the first occurrence of a character in a buffer and stops when it finds the
character or when it has checked the specified number of bytes.

Syntax

#include <string.h>
void *memchr (const void *buf, int c, size_t count);

Parameters

buf Pointer to buffer.

c Character to look for.

count Number of characters to check for.

See also: memccpy(), memcmp(), memcpy(), memset(), strchr()

Returns

A pointer to the first location of c in buf.

A null pointer if unsuccessful.

ANSI memcmp

C Library Reference Chapter 3 159

memcmp
Compares the specified number of bytes of two buffers and returns a value indicating
their relationship.

Syntax

#include <string.h>
int memcmp (const void *buf1, const void *buf2, size_t
count);

Parameters

buf1 First buffer.

buf2 Second buffer.

count Number of characters.

See also: memccpy(), memchr(), memcpy(), memset(), strcmp(), strncmp()

Returns

Value Meaning
< 0 buf1 less than buf2
= 0 buf1 identical to buf2
> 0 buf1 greater than buf2

memcpy ANSI

160 Chapter 3 Functions

memcpy
Copies specified number of bytes from a source buffer to a destination buffer.

Syntax

#include <string.h>
void *memcpy (void *dest, const void *src, size_t count);

Parameters

dest Buffer to copy to.

src Buffer to copy from.

count Number of characters to copy.

Additional Information

If the source and destination overlap, memcpy() does not ensure that the original
source bytes in the overlapping region are copied before being overwritten. Use
memmove() to handle overlapping regions.

See also: memccpy(), memchr(), memcmp(), memmove(), memset(),
strcpy(), strncpy()

Returns

A pointer to dest.

memicmp

C Library Reference Chapter 3 161

memicmp
Compares characters in two buffers byte-by-byte (case-insensitive).

Syntax

#include <string.h>
int memicmp (void *buf1, void *buf2, unsigned int count);

Parameters

buf1 First buffer.

buf2 Second buffer.

count Number of characters to compare.

See also: memccpy(), memchr(), memcmp(), memcpy(), memset(), stricmp(),
strnicmp()

Returns

The relationship of the two buffers.

Value Meaning
< 0 buf1 less than buf2
= 0 buf1 identical to buf2
> 0 buf1 greater than buf2

memmove ANSI

162 Chapter 3 Functions

memmove
Moves a specified number of bytes from a source buffer to a destination buffer.

Syntax

#include <string.h>
void *memmove (void *dest, const void *src, size_t
count);

Parameters

dest Pointer to destination buffer.

src Pointer to source buffer.

count Number of characters to copy.

Additional Information

If some regions of the source area and the destination overlap, this function ensures
that characters in the overlapping region are copied before being overwritten.

See also: memccpy(), memcpy(), strncpy()

Returns

A pointer to dest.

ANSI memset

C Library Reference Chapter 3 163

memset
Sets characters in a buffer to a specified character.

Syntax

#include <string.h>
void *memset (void *dest, int c, size_t count);

Parameters

dest Pointer to destination.

c Character to set to.

count Number of characters to set.

See also: memccpy(), memchr(), memcmp(), memcpy(), strnset()

Returns

A pointer to dest.

mkdir

164 Chapter 3 Functions

mkdir
Creates a new directory with the specified ownership and access rights.

Syntax

#include <direct.h>
int mkdir (const char *pathname, mode_t pmode);

Parameters
pathname

Pathname of the directory to create. Name the new directory according to the rules
for the iRMX OS.

See also: Command Reference for rules for naming directories

pmode Permission mode: the ownership and access rights as one or more of the manifest
constants described in chmod(). Join more than one constant with the bitwise-OR
operator (|).

Additional Information

The mkdir() function applies the default file-permission mask (set with the
umask() function) to pmode before setting the permissions.

By default, this function creates directories that all tasks can share. If O_EXCL is
ORed with pmode, the file is opened with share-with-none permission, like UNIX.

This function performs a translation of POSIX file ownership rights and POSIX
access rights to the iRMX OS equivalent as described in chmod().

See also: <errno.h>, chmod(), umask()

Returns

Value Meaning
0 Successful
-1 Unsuccessful; the function sets errno to EACCES, EEXIST, ENOENT,

ENOSPC, or ENOTDIR

mktemp

C Library Reference Chapter 3 165

mktemp
Creates a unique temporary filename.

Syntax

#include <io.h>
char *mktemp (char *template);

Parameter
template

Filename template.

Additional Information

Creates a unique filename by modifying a template argument in the form:

baseXXXXXX

Where:

base Is the part of the new filename that you supply, and the Xs are
placeholders for the part supplied by mktemp().

This function preserves base and replaces the six trailing X's with an alphanumeric
character followed by a five-digit value. The alphanumeric character is 0 the first
time mktemp() is called with a given template. The five-digit value is a unique
number based upon the calling task ID.

In subsequent calls from the same task with copies of the same template, mktemp()
checks to see if previously returned names have already been used to create files. If
no file exists for a given name, mktemp() returns that name. If files exist for all
previously returned names, mktemp() creates a new name by replacing the
alphanumeric character in the name with the next available lowercase letter. For
example, if the first name returned is t012345 and this name is used to create a file,
the next name returned will be ta12345. When creating new names mktemp()
uses, in order, 0 and then the lowercase letters a through z.

The first call to mktemp() modifies the original template. If you call mktemp()
again with the same template (that is, the original one), an error returns.

The mktemp() function does not create or open files, only filenames.

See also: fopen(), getpid(), open(), tmpnam(), tmpfile()

mktemp

166 Chapter 3 Functions

Returns

A pointer to the modified template.

A null pointer if the template argument is badly formed or no more unique names
can be created from the given template.

ANSI, stdio mktime

C Library Reference Chapter 3 167

mktime
Converts the time/date structure into a fully defined structure with normalized values
and then converts it to calendar time.

Syntax

#include <time.h>
time_t mktime (struct tm *timedate);

Parameter
timedate

Time/date structure, tm, possibly incomplete.

Additional Information

The converted time has the same encoding as the values returned by the time()
function.

The elements of the tm structure contain the values described in <time.h>.

The original values of the tm_wday and tm_yday components in tm, and the original
values of the other components are not restricted to their normal ranges. If
successful, mktime() sets the values of tm_wday and tm_yday appropriately, and
sets the other components to represent the specified calendar time, but with their
values forced to the normal ranges; the final value of tm_mday is not set until
tm_mon and tm_year are determined.

The gmtime() and localtime() functions use a single statically allocated buffer for
the conversion. If you supply this buffer to mktime(), it destroys the previous
contents .

See also: asctime(), ctime(), gmtime(), localtime(), time(), <time.h>

Returns

The specified calendar time encoded as a time_t.

-1 cast as type time_t if the calendar time cannot be represented.

-1 if timedate references a date before epoch time.

modf ANSI

168 Chapter 3 Functions

modf
Splits a value into fractional and integer parts, retaining the sign.

Syntax

#include <math.h>
double modf (double x, double *intptr);

Parameters

x Value to split.

intptr Pointer to integer portion stored as a double value.

See also: frexp(), ldexp()

Returns

The signed fractional portion of x.

No error return.

onexit

C Library Reference Chapter 3 169

onexit
Registers a function to be called when the task terminates normally.

Syntax

#include <stdlib.h>
onexit_t onexit (onexit_t func);

Parameter

func Pointer to function(s) to be called on normal termination using exit(). The functions
passed to onexit() cannot take parameters.

Additional Information

Successive calls to onexit() create a register of functions that execute in LIFO (last-
in, first-out) order. You can register a maximum of 32 functions.

The ANSI-standard atexit() function does the same thing as onexit(); use it instead
of onexit() when ANSI portability is desired.

See also: atexit(), exit()

Returns

A pointer to the function(s) to call.

A null pointer if the number of functions exceeds 32.

onexit

170 Chapter 3 Functions

open
Opens a file and prepares it for subsequent reading or writing.

Syntax

#include <fcntl.h>
#include <io.h>
#include <sys/stat.h>
int open (const char *filename, int oflag [, int pmode]);

Parameters
filename

Filename of file to open.

oflag Open mode (type of operations allowed) as an integer expression formed from one or
more of the manifest constants defined in <fcntl.h>. Oflag must contain either
O_RDONLY, O_RDWR, or O_WRONLY. Combine two or more of the constants
with the bitwise-OR operator (|). There is no default.

pmode Permission mode, required when specifying O_CREAT. Ignored if the file exists.
Specifies the file's ownership and access rights, which are set when the new file is
closed for the first time. Contains one or more of the manifest constants described in
chmod().

Additional Information

The open() function applies the default file-permission mask set with the umask()
function to pmode before setting the permissions.

By default, this function creates files that all tasks can share. If O_EXCL is ORed
with pmode, the file is opened with share-with-none permission, like UNIX.

This function makes the system call rq_s_open and performs a translation of POSIX
file ownership rights and POSIX access rights to the iRMX OS equivalent as
described in chmod().

See also: chmod(), close(), creat(), dup(), dup2(), <fcntl.h>, fopen(),
<sys/stat.h>, sopen(), umask(), in this manual
rq_s_open, System Call Reference

onexit

C Library Reference Chapter 3 171

Returns

A file descriptor for the opened file.

-1 on error, and the function sets errno to one of these values:

EACCES Given pathname is a directory; or
an attempt was made to open a read-only file for writing; or
a sharing violation occurred (the file's share mode does not allow the
specified operations).

EEXIST The O_CREAT and O_EXCL flags are specified, but the named file
already exists.

EINVAL An invalid oflag or pmode argument was given.

EMFILE No more file descriptors available (too many open files).

ENOENT File or pathname not found.

opendir stdio

172 Chapter 3 Functions

opendir
Opens a directory stream that corresponds to the directory name, and returns a pointer
to the directory stream. The stream is positioned at the first entry in the directory.

Syntax

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);

Parameters
name

Name of directory to open.

Returns

The opendir() function returns a pointer to the directory stream or NULL if an error
occurred.

EACCES Permission denied.

EMFILE Too many file descriptors in use by process.

ENFILE Too many files are currently open in the system.

ENOENT Directory does not exist, or name is an empty string.

ENOMEM Insufficient memory to complete the operation.

ENOTDIR Name is not a directory.

See also: open(2), readdir(3), closedir(3), rewinddir(3)

ANSI, stdio perror

C Library Reference Chapter 3 173

perror
Prints an error message to stderr.

Syntax

#include <stdio.h>
void perror (const char *string);

Parameter

string Message to print.

Additional Information

The string argument prints first, followed by a colon, the system error message for
the last library call that produced the error, and a newline character.

If string is a null pointer or a pointer to a null string, perror() prints only the
system error message.

The actual error number is stored in the variable errno. The system error messages
are accessed through sys_errlist, an array of messages ordered by error number.
The perror() function prints the appropriate error message by using the errno value
as an index to sys_errlist. The value of the variable sys_nerr is defined as the
maximum number of elements in the sys_errlist array.

To produce accurate results, call perror() immediately after an error occurs.
Otherwise, the errno value may be overwritten by subsequent calls.

See also: clearerr(), <errno.h>, ferror(), strerror()

Returns

Nothing.

pow ANSI

174 Chapter 3 Functions

pow
Computes a value raised to the power of another value.

Syntax

#include <math.h>
double pow (double x, double y);

Parameters

x Number to be raised.

y Power to raise x to.

Additional Information

The pow() function does not recognize integral double values greater than 264, such
as 1.0E100.

See also: exp(), log(), sqrt()

Returns

The value of xy.

1 if x is not 0.0 and y is 0.0.

0, and the function sets errno to EDOM if x is 0.0 and y is negative.

0 ,and the function sets errno to EDOM and prints a DOMAIN error message to
stderr if both x and y are 0.0, or if x is negative and y is not an integer.

±HUGE_VAL, and sets errno to ERANGE if an overflow results. No message is
printed on overflow or underflow.

This function does not return standard ANSI domain or range errors.

ANSI, stdio printf

C Library Reference Chapter 3 175

printf
Prints formatted data to stdout.

Syntax

#include <stdio.h>
int printf (const char *format [, argument]...);

Parameters

format Formatted string consisting of ordinary characters, escape sequences, and (if
arguments follow) format specifications that determine the output format for the
arguments.

argument
Optional arguments.

Additional Information

The ordinary characters and escape sequences are copied to stdout in order of their
appearance. For example, the line:

printf("Line one\n\t\tLine two\n");

produces the output:

Line one

Line two

Format specifications always begin with a percent sign (%) and are read left to right.
When printf() encounters the first format specification, it converts and outputs the
value of the first argument after format. The second format specification causes
printf() to convert and output the second argument, and so on. If there are more
arguments than format specifications, printf() ignores the extra arguments. The
results are undefined if there are fewer arguments than format specifications.

printf ANSI, stdio

176 Chapter 3 Functions

Format Specification
A format specification, consisting of optional and required elements, has the form:

%[flags] [width] [.precision] [F | N | h | l | L] type

Each element of the format specification is a single character or number signifying a
particular format option. The optional argument list provides values for the width
and precision fields. The simplest format specification contains only the percent
sign and a type character (for example, %s). The optional fields, appearing before
the required type character, control other aspects of the formatting.

These are the fields in a printf() format specification:

Field Description
flags Optional character or characters that control output justification and

sign printing, blanks, decimal points, and octal and hexadecimal
prefixes. More than one flag can appear in a format specification.
See also: Flag Directives

width Optional number that specifies minimum number of output characters.
precision Optional number that specifies maximum number of characters printed

for all or part of the output field, or minimum number of digits printed
for integer values.
See also: Precision Specification

F, N Optional prefixes that refer to the distance to the object being printed
(near or far). F and N are not part of the ANSI definition for printf().

h, l, L Optional prefixes that determine the size of the argument expected, as
shown below:
h Used with the integer types d, i, o, x, and X to specify that the

argument is short integer, or with u to specify short unsigned
int. If used with %p, it indicates a 16-bit pointer, which is
ignored.

l Used with d, i, o, x, and X types to specify that the argument
is long integer, or with u to specify long unsigned integer;
also used with e, E, f, g, and G types to specify double rather
than float. If used with %p, it indicates a 32-bit pointer.

L Used with e, E, f, g, and G types to specify long double. Also
used with d, i, o, x, and b types to specify 64-bit integer.

type Required character that determines whether the associated argument is
interpreted as a character, a string, or a number.
See also: Type Field Characters

If a percent sign is followed by a character that has no meaning as a format field, the
character is copied to stdout. For example, to print a percent-sign character, use %%.

ANSI, stdio printf

C Library Reference Chapter 3 177

Flag Directives

These flag directives may appear in a format specification:

Flag Meaning Default

- Left justify the result within the given field
width.

Right justify.

+ Prefix the output value with a + or - sign if the
output value is of a signed type.

- sign appears only
for negative signed
values.

0 If width is prefixed with 0, 0s are added until
the minimum width is reached. If 0 and -
appear, the 0 is ignored. If 0 is specified with
an integer format (i, u, x, X, o, d), the 0 is
ignored.

No padding.

blank Prefix the output value with a blank if the
output value is signed and positive; the blank
is ignored if both the blank and + flags appear.

No blank appears.

When used with the o, x, or X format, the
flag prefixes any non-0 output value with 0,
0x, or 0X, respectively.

No blank appears.

When used with the e, E, or f format, the #
flag forces the output value to contain a
decimal point in all cases.

Decimal point
appears only if digits
follow it.

When used with the g or G format, the # flag
forces the output value to contain a decimal
point in all cases and prevents the truncation
of trailing 0s.

Decimal point
appears only if digits
follow it. Trailing 0s
are truncated.

Ignored when used with c, d, i, u, or s.

Width Specification

The width specification is a non-negative decimal integer that controls the minimum
number of printed characters. If the number of characters in the output value is less
than the specified width, blanks are added to the left or the right of the values,
depending on whether the - flag is specified until the minimum width is reached. If
width is prefixed with 0, printf() adds 0s until the minimum width is reached (not
useful for left-justified numbers).

The width specification never causes a value to be truncated. If the number of
characters in the output value is greater than the specified width, or width is not
given, all characters of the value are printed, subject to the precision specification.

The width specification may be an asterisk (*), in which case an integer argument
from the argument list supplies the value. The width specification must precede the

printf ANSI, stdio

178 Chapter 3 Functions

value being formatted in the argument list. A nonexistent or small field width does
not truncate a field; if the result of a conversion is wider than the field width, the field
expands to contain the conversion result.

Precision Specification

The precision specification specifies a non-negative decimal integer, preceded by
a period (.), which specifies the number of characters to print, the number of decimal
places, or the number of significant digits. The precision specification can cause
truncation of the output value, or rounding in the case of a double value. If printf()
specifies precision is 0 and the value to convert is 0, the result is no characters
output, as shown below:

printf("%.0d", 0); /* No characters output */

The precision specification may be an asterisk (*), in which case an integer argument
from the argument list supplies the value. The precision argument must precede the
value being formatted in the argument list.

The interpretation of the precision value and the default precision (if omitted) depend
on the type, as shown below:

Type Meaning Default

d, i, u, o, x, X The precision specifies the minimum
number of digits to print. If the number
of digits in the argument is less than
precision, the output value is padded on
the left with 0s. The value is not
truncated when the number of digits
exceeds precision.

If precision is 0 or
omitted entirely, or if
the period (.) appears
without a number
following it, the
precision is set to 1.

e, E The precision specifies the number of
digits to print after the decimal point.
The last printed digit is rounded.

Default precision is 6;
if precision is 0 or the
period (.) appears
without a number
following it, no
decimal point is
printed.

ANSI, stdio printf

C Library Reference Chapter 3 179

Type Meaning Default

f The precision value specifies the number
of digits after the decimal point. If a
decimal point appears, at least one digit
appears before it. The value is rounded
to the appropriate number of digits.

Default precision is 6;
if precision is 0, or if
the period (.) appears
without a number
following it, no
decimal point is
printed.

g, G The precision specifies the maximum
number of significant digits printed. If
specified as 0, treated as 1.

Six significant digits
are printed, with any
trailing 0s truncated.

c The precision has no effect. Character is printed.

s The precision specifies the maximum
number of characters to print.
Characters in excess of precision are not
printed.

Characters are printed
until a null character is
encountered.

If the argument corresponding to a double specifier is infinite, indefinite, or not a
number (NAN), the printf() function gives this output:

Value Output
+ infinity 1.#INFrandom-digits
- infinity -1.#INFrandom-digits
Indefinite digit.#INDrandom-digits
Not a number (NAN) digit.#NANrandom-digits

Distance and Size Specification

The format specification fields F and N refer to the distance to the object being read
(near or far), and h and l refer to the size of the object being read (16-bit short or 32-
bit long). The F and N specifications are accepted, for compatibility with other
compilers, but they are ignored. This list provides some example usage of F, N, h,
l, and L.

printf ANSI, stdio

180 Chapter 3 Functions

Program Code Action
printf ("%Ns"); Print near string
printf ("%Fs"); Print far string
printf ("%Nn"); Store char count in near int
printf ("%Fn"); Store char count in far int
printf ("%hp"); Print a 16-bit pointer (xxxxxxxx)
printf ("%lp"); Print a 32-bit pointer (xxxxxxxx)
printf ("%Nhn"); Store char count in near short int
printf ("%Nln"); Store char count in near long int
printf ("%Fhn"); Store char count in far short int
printf ("%Fln"); Store char count in far int

The specifications "%hs" and "%ls" are meaningless to printf(). The specifications
"%Np" and "%Fp" are aliases for "%hp" and "%lp" for compatibility with earlier
compilers.

Type Field Characters

The type character is the only required format field for the printf() function. It
appears after any optional format fields and determines how the associated argument
is interpreted.

Char Type Output Format
d int Signed decimal integer.
i int Signed integer.
u int Unsigned decimal integer.
o int Unsigned octal integer.
x int Unsigned hexadecimal integer, using abcdef.
X int Unsigned hexadecimal integer, using ABCDEF.
f double Signed value having the form [-]dddd.dddd, where dddd is

one or more decimal digits, depending upon the magnitude of
the number, and the requested precision.

e double Signed value having the form [-]d.dddd e [sign]ddd, where d
is a single decimal digit, dddd is one or more decimal digits,
ddd is exactly three decimal digits, and sign is + or -.

E double Same as the e format, except that E introduces the exponent.
g double Signed value printed in f or e format (the one most compact

for the given value and precision). e is used only when the
exponent of the value is less than -4 or greater than or equal to
the precision. Trailing 0s are truncated and the decimal point
appears only if any digits follow it.

ANSI, stdio printf

C Library Reference Chapter 3 181

Char Type Output Format
G double Same as the g format, except that G introduces the exponent

(where appropriate).
c int Single character.
s string Characters printed up to the first null character \0 or until the

precision value is reached.
n pointer Points to number of characters successfully written so far to

the stream or buffer; this value is stored in the integer whose
address is given as the argument.

p pointer Prints the address pointed to by the argument in a form
dependent on the memory model:

16-bit large or compact model caller: xxxx:yyyy
which is <segment>:<16-bit offset>

32-bit compact model caller: xxxx:yyyyyyyy
which is <segment>:<32-bit offset>

32-bit flat model caller: yyyyyyyy
which is <32-bit offset> only

See also: fprintf(), scanf(), sprintf(), vfprintf(), vprintf(), vsprintf()

Returns

The number of characters printed.

A negative value on error.

putc, putchar ANSI, stdio

182 Chapter 3 Functions

putc, putchar
Putc() writes a character to a specified stream at the current position; putchar()
writes to stdout.

Syntax

#include <stdio.h>
int putc (int c, FILE *stream);
int putchar (int c);

Parameters

c Character to be written.

stream Pointer to FILE structure.

Additional Information

The putchar() function is identical to:

putc (c, stdout)

Any integer can be passed to putc(), but it only writes the lower 8 bits.

These functions are implemented as both macros and functions.

See also: fputc(), fputchar(), getc(), getchar()

Returns

The character written.

EOF on error.

DOS putch

C Library Reference Chapter 3 183

putch
Writes a character directly (without buffering) to the console.

Syntax

#include <conio.h>
int putch (int c);

Parameter

c Character to be output.

See also: getch(), getche()

Returns

Value Meaning
c Successful
EOF Unsuccessful

putenv stdio

184 Chapter 3 Functions

putenv
Adds new environment variables or modifies the values of existing ones.

Syntax

#include <stdlib.h>
int putenv (const char *envstring);

Parameter
envstring

Environment-variable table entry definition, which must be a character string of this
form:

varname = string

Where:

varname The name of the environment variable to be added or modified.

string The variable's value. A space character is required on both sides of the
equal sign for fscanf() parsing.

Additional Information

Environment variables customize the environment in which a task executes. This
function affects only the current environment; it does not modify the environment-
variable table files.

If varname is already part of the environment, its value is replaced by string;
otherwise, the new variable is placed in the first empty slot in the environment-
variable table. If you specify a valid varname and null string, the environment
variable is removed.

There is one environment-variable table shared by all tasks using the C library. If the
table has not been initialized by a previous call to getenv(), putenv() first calls
getenv() before proceeding.

See also: getenv(), in this manual
Environment variables, System Configuration and Administration

Returns

Value Meaning
0 Successful
-1 Error occurred

stdio _put_rmx_conn

C Library Reference Chapter 3 185

_put_rmx_conn
Places an iRMX connection token into the file descriptor table and returns a valid file
descriptor, usable as an argument in C library calls.

Syntax

#include <rmx_c.h>
int _put_rmx_conn (selector connection);

Parameter
connection

Valid iRMX file connection token.

Additional Information

Use this function in code that mixes direct iRMX system calls with C library
functions.

A file descriptor table, managed internally by the C library, is associated with each
task using the library. This table maps C file descriptors to iRMX file connections.
The table is fixed in size. The maximum number of open files per task is 32 for
compatibility with UNIX systems process limit.

See also: <rmx_c.h>, _get_rmx_conn

Returns

A valid file descriptor for the iRMX connection token.

-1 if unsuccessful.

puts ANSI, stdio

186 Chapter 3 Functions

puts
Writes a string to stdout, replacing the string's terminating null character \0 with a
newline character \n.

Syntax

#include <stdio.h>
int puts (const char *string);

Parameter

string String to be output.

See also: fputs(), gets()

Returns

A non-negative value.

EOF if unsuccessful.

putw

C Library Reference Chapter 3 187

putw
Writes an integer to the current position of a stream.

Syntax

#include <stdio.h>
int putw (int binint, FILE *stream);

Parameters

binint Binary integer to be output.

stream Pointer to FILE structure.

Additional Information

The putw() function does not affect the alignment of items in the stream, nor does it
assume any special alignment.

See also: getw()

Returns

The value written.

EOF on error. Since EOF is also a legitimate integer value, use ferror() to verify an
error.

qsort ANSI

188 Chapter 3 Functions

qsort
Performs a quick sort of an array, overwriting the input array with the sorted
elements.

Syntax

#include <stdlib.h>
#include <search.h>
void qsort (void *base, size_t num, size_t width,

int (*compare)(const void *elem1,
const void *elem2));

Parameters

base Pointer to the base of the array to be sorted and overwritten.

num Array size in number of elements.

width Element size in bytes.

compare
Pointer to a user-supplied routine that compares two array elements (elem1 and
elem2) and returns a value specifying their relationship:

Value Meaning
< 0 elem1 less than elem2
= 0 elem1 equivalent to elem2
> 0 elem1 greater than elem2

elem1 Pointer to the key for the sort.

elem2 Pointer to the array element to compare with the key.

Additional Information

The qsort() function calls the compare routine one or more times during the sort,
passing pointers to two array elements on each call:

compare ((void *) elem1, (void *) elem2);

ANSI qsort

C Library Reference Chapter 3 189

The function sorts the array in ascending order, as defined by the compare routine.
To sort the array in descending order, reverse the sense of greater-than and less-than
in the compare routine.

See also: bsearch(), lsearch()

Returns

Nothing.

raise ANSI

190 Chapter 3 Functions

raise
Sends a signal to the executing program.

Syntax

#include <signal.h>
int raise (int sig);

Parameter

sig Signal to send.

Additional Information

If a signal-handling routine for sig has been installed by a prior call to signal(),
raise() causes that routine to execute. Signal-handling is maintained locally to the
calling task, not globally to all tasks using the C library.

If no handler routine has been installed for a particular signal, the default signal-
handling is as follows:

Signal Meaning Default Action
SIGABRT Abnormal termination Calls _exit(3)
SIGALLOC Memory allocation failure Returns without error
SIGBREAK <Ctrl-Break> signal Ignored
SIGFPE Floating-point exception Calls _exit(3)
SIGFREE Bad free pointer Calls _exit(3)
SIGILL Illegal instruction Calls _exit(3)
SIGINT Interactive attention Calls _exit(3)
SIGREAD Read error Ignored
SIGSEGV Segment violation Sets errno to EDOM and returns
SIGTERM Termination request Calls _exit(3)
SIGUSR1 User-defined Ignored
SIGUSR2 User-defined Ignored
SIGUSR3 User-defined Ignored
SIGWRITE Write error Ignored

See also: abort(), _exit(), signal()

This function is implemented in the C interface library (not in the shared C library),
and is private to each application.

ANSI raise

C Library Reference Chapter 3 191

Returns

Value Meaning
0 Successful
Not 0 Unsuccessful

rand ANSI

192 Chapter 3 Functions

rand
Generates a pseudo-random number.

Syntax

#include <stdlib.h>
int rand (void);

Additional Information

Use the srand() function to seed the pseudo-random-number generator before
calling rand().

See also: srand()

Returns

A pseudo-random integer in the range 0 to RAND_MAX.

No error return.

ANSI read

C Library Reference Chapter 3 193

read
Reads the specified number of bytes from a file into a buffer, beginning at the current
position of the file pointer.

Syntax

#include <io.h>
int read (int handle, char *buffer, unsigned int count);

Parameters

handle Descriptor referring to an open file.

buffer Storage location for data.

count Maximum number of bytes to read.

Additional Information

After the read operation, the file pointer points to the next unread character.

In text mode, each <CR><LF> pair is replaced with a single <LF> character. Only
the single <LF> character is counted in the return value. The replacement does not
affect the file pointer.

See also: creat(), fread(), open(), write()

Returns

The number of bytes actually read, usually count. Less than count if there are
fewer than count bytes left in the file, or if the file was opened in text mode.

0 indicates an attempt to read at end-of-file.

-1 indicates an error, and the function sets errno to EBADF, indicating that the given
descriptor is invalid, the file is not open for reading, or the file is locked.

readdir

194 Chapter 3 Functions

readdir
Reads a directory and then returns a pointer to a dirent structure representing the
next directory entry in the directory stream pointed to be dir. It returns NULL on
reaching the end-of-file or if an error occurred.

The data returned by this call is overwritten by subsequent calls to readdir() for the
same directory stream.

According to POSIX, the dirent structure contains a field, char d_name[], of
unspecified size, with at most NAME_MAX characters preceding the terminating
null character. Use of other fields will harm the portability of your programs.

Syntax

#include <sys/types.h>

#include <dirent.h>

struct dirent *readdir(DIR *dir);

Returns

Returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is
reached.

EBADF Invalid directory stream descriptor dir.

See also: read(2), opendir(3), closedir(3), rewinddir(3)

ANSI realloc

C Library Reference Chapter 3 195

realloc
Changes the size of a previously allocated memory block or allocates a new one.

Syntax

#include <stdlib.h>
void *realloc (void *memblock, size_t size);

Parameters
memblock

Pointer to the beginning of the previously allocated memory block or to a block that
has been freed, as long as there has been no intervening call to the corresponding
calloc(), malloc(), or realloc() function.

size New size in bytes.

Additional Information

If memblock is a null pointer, realloc() functions in the same way as malloc() and
allocates a new block of size bytes. If memblock is not a null pointer, it should be a
pointer returned by calloc(), malloc(), or a prior call to realloc().

The contents of the block are unchanged up to the shorter of the new and old sizes,
although the new block may be in a different location.

The storage space pointed to by the return value is guaranteed to be suitably aligned
for storage of any type of object. To get a pointer to a type other than void, use a
type cast on the return value.

See also: calloc(), free(), malloc()

Returns

A void pointer to the reallocated (and possibly moved) memory block. The
reallocated block is marked in use.

A null pointer if size is 0 and the memblock argument is not a null pointer, or if
there is not enough available memory to expand the block to the given size. In the
first case, the original block is freed. In the second, the original block is unchanged.

rename ANSI

196 Chapter 3 Functions

rename
Renames a file or directory.

Syntax

#include <stdio.h>
#include <io.h>
int rename (const char *oldname, const char *newname);

Parameters
oldname

Pathname of an existing file or directory to change.

newname
Pathname of a new file or directory.

Additional Information

This function invokes the system call rq_s_rename_file to rename the file or
directory to the new name.

See also: rq_s_rename_file, System Call Reference

Returns

Value Meaning
0 Successful
Not 0 Unsuccessful and the function sets errno to one of these values:

EACCES File or directory specified by newname already exists or could
not be created (invalid path); or

oldname is a directory and newname specifies a different path.

ENOENT File or pathname specified by oldname not found.

EXDEV Attempt to move a file to a different device.

ANSI rename

C Library Reference Chapter 3 197

rewind
Repositions the file pointer to the beginning of a file and clears the end-of-file
indicator.

Syntax

#include <stdio.h>
void rewind (FILE *stream);

Parameter

stream Pointer to FILE structure.

Additional Information

A call to rewind() is nearly equivalent to:

(void) fseek (stream, 0L, SEEK_SET);

Rewind() clears the error indicators for the stream; fseek() does not. Fseek()
returns a value that indicates whether the pointer was successfully moved; rewind()
does not.

You can use the rewind() function to clear the keyboard buffer. Specify stdin,
associated with the keyboard by default, as stream.

Returns

Nothing.

rewind ANSI, stdio

198 Chapter 3 Functions

rewinddir
Resets the position of the directory stream to the beginning of the directory.

Syntax

#include <sys/types.h>

#include <dirent.h>

void rewinddir(DIR *dir);

Returns

Nothing.

See also: opendir(3), readdir(3), closedir(3)

rmdir

C Library Reference Chapter 3 199

rmdir
Deletes a directory.

Syntax

#include <direct.h>
int rmdir (const char *dirname);

Parameter
dirname

Pathname of the directory to be removed. The directory must be empty, and it must
not be the current working directory or the root directory.

See also: mkdir()

Returns

Value Meaning
0 Successful
-1 Unsuccessful and the function sets errno to one of these values:

E The given pathname is not a directory; or

the directory is not empty; or

the directory is the current working directory or the
root directory.

E Pathname not found.

rmtmp stdio

200 Chapter 3 Functions

rmtmp
Removes all the temporary files that were created by tmpfile() from the current
directory.

Syntax

#include <stdio.h>
int rmtmp (void);

Additional Information

Use rmtmp() only in the same directory in which the temporary files were created.

See also: flushall(), tmpfile(), tmpnam()

Returns

The number of temporary files closed and deleted.

sbrk

C Library Reference Chapter 3 201

sbrk
Creates iRMX segments of the specified number of bytes.

Syntax

#include <stdlib.h>
void *sbrk (unsigned segsize);

Parameter
segsize

Number of bytes to be acquired; must be greater than 0.

Additional Information

For non-flat model applications, this function uses the system call
rq_create_segment. To return segments acquired by sbrk() to the memory pool,
use the system call rq_delete_segment.

For flat model applications, sbrk() uses the system call rqv_allocate instead of
rq_create_segment. Also, you should use rqv_free, instead of rq_delete_segment,
to delete segments acquired by sbrk().

To return the created segment to the heap using free() or realloc(), use malloc() to
get memory instead of sbrk().

See also: free(), malloc(), realloc(), in this manual
rq_create_segment, rq_delete_segment, System Call Reference

Returns

The address of the acquired memory area.

A null pointer if the allocation request cannot be satisfied.

scanf ANSI, stdio

202 Chapter 3 Functions

scanf
Reads from stdin at current position, and formats character data.

Syntax

#include <stdio.h>
int scanf (const char *format [,argument]...);

Parameters

format Null-terminated format-control string, which determines the interpretation of the
input field. Can contain whitespace and nonwhitespace characters, and format
specifications.

argument
Optional argument(s), which may include the location to read to; must be a pointer to
a variable corresponding to a type specified in the format argument. If there are too
many arguments for the given format, the extra arguments are evaluated but
ignored. The results are unpredictable if there are not enough arguments.

Additional Information

The scanf() function reads all characters in stdin up to the first whitespace character
(space, tab, or newline), or the first character that cannot be converted according to
format; this is the input field.

The format string is read from left to right. A whitespace character in format causes
scanf() to read, but not store, all consecutive whitespace characters in the input field
up to the next nonwhitespace character. A nonwhitespace character in format

causes scanf() to read, but not store, all matching characters. A format specification
causes scanf() to read and convert applicable characters in the input field into values
of a particular type, to be stored in the optional arguments as they are read from stdin.

Format specifications always have a preceding percent sign (%) followed by a format-
control character. Additional optional format-control characters may also appear. If
% is followed by a character that has no meaning as a format-control character, that
character and these characters (up to the next %) are treated as an ordinary sequence
of characters that is, a sequence of characters that must match the input. For
example, to specify a percent-sign character to be input, use %%.

An asterisk (*) following the % suppresses storage of the next input field that is
interpreted as a field of the specified type. The field is scanned but not stored.

ANSI, stdio scanf

C Library Reference Chapter 3 203

If a character in stdin conflicts with the format specification, scanf() terminates.
The character is left in stdin as if it had not been read.

Here are some example scanf() statements:

Statement Meaning
scanf("%Ns", &x); Read a string into memory
scanf("%Fs", &x); Read a string into memory
scanf("%Nd", &x); Read an int into memory
scanf("%Fd", &x); Read an int into memory
scanf("%Nld", &x); Read a long int into memory
scanf("%Fld", &x); Read a long int into memory
scanf("%Nhp", &x); Read a 16-bit pointer into memory
scanf("%Nlp", &x); Read a 32-bit pointer into memory
scanf("%Fhp", &x); Read a 16-bit pointer into memory
scanf("%Flp", &x); Read a 32-bit pointer into memory

Format Specification
A format specification, which consists of optional and required fields, has this form:

%[*] [width] [{F | N}] [{h | l}]type

Each field of the format specification is a single character or number signifying a
particular format option. The optional fields appear before the required type

character. These are the fields in a scanf() format specification:

Field Description
width A positive decimal integer controlling the maximum number of

characters to be read from stdin. No more than width characters are
converted and stored at the corresponding argument. Fewer than
width characters may be read if a white-space character (space, tab, or
newline) or a character that cannot be converted according to the given
format occurs before width is reached.

F, N The optional F and N prefixes are accepted for compatibility with
other compilers, but they are ignored. F and N refer to the distance to
the object being read in (far or near). The F and N prefixes are not
part of the ANSI definition for scanf() and should not be used when
ANSI portability is desired.

scanf ANSI, stdio

204 Chapter 3 Functions

Field Description
h, l, L Optional prefixes that determine the type required for the argument

expected (l and h are ignored if specified for any other type), as shown
below:

h Used with the integer types d, i, o, x, and X to specify that the
argument is short integer, or with u to specify short unsigned int.
If used with %p, it indicates a 16-bit pointer, which is ignored.

l Used with d, i, o, x, and X type characters to specify that the
argument is long integer, or with u to specify long unsigned
integer; also used with e, E, f, g, and G types to specify double
rather than float. If used with %p, it indicates a 32-bit pointer.

L Used with e, E, f, g, and G types to specify long double. Also
used with integer types to specify that the argument is a 64-bit
data type.

type Required character that determines the required type for the associated
argument.

Type Field Characters

These are the type characters and their meanings:

Character Input Type Argument Type

d Decimal integer Pointer to int.

o Octal integer Pointer to int.

x Hex integer Pointer to int. Since the input for
%x format specifier is always
interpreted as a hexadecimal
number, the input should not
include a leading 0x. (If 0x is
included, the 0 is interpreted as a
hexadecimal input value.)

i Decimal, hexadecimal, or octal
integer.

Pointer to int.

u Unsigned decimal integer Pointer to unsigned int.

U Unsigned decimal integer Pointer to unsigned int.

ANSI, stdio scanf

C Library Reference Chapter 3 205

Character Input Type Argument Type

e, E, f, g, G Double. Value consisting of an
optional sign (+ or -), a series of
one or more digits containing a
decimal point, and an optional
exponent (e or E) followed by an
optionally signed integer value.

Pointer to double.

1c Character. Whitespace characters
that are ordinarily skipped are
read when c is specified; to read
the next nonwhitespace character,
use %1s.

Pointer to char.

s String. Pointer to character array large
enough for input field plus a
terminating null character \0,
which is automatically appended.

n No input read. Pointer to int, into which the
number of characters
successfully read is stored.

p Address in a form dependent on
the memory model:

Pointer to pointer to void.

16-bit large or compact model caller: xxxx:yyyy
which is <segment>:<16-bit offset>

32-bit compact model caller: xxxx:yyyyyyyy
which is <segment>:<32-bit offset>

32-bit flat model caller: yyyyyyyy
which is <32-bit offset>

scanf ANSI, stdio

206 Chapter 3 Functions

Additional Information

To read strings not delimited by space characters, substitute a set of characters in
brackets ([]) for the s (string) type character. The corresponding input field is read
up to the first character that does not appear in the bracketed character set. If the first
character in the set is a caret (^), the effect is reversed: the input field is read up to the
first character that does appear in the rest of the character set.

The format specifications %[a-z] and %[z-a] are interpreted as equivalent to
%[abcde...z]. This is not required by the ANSI specification.

To store a string without storing a terminating null character \0, use the specification
%nc, where n is a decimal integer. Then the c type character indicates that the
argument is a pointer to a character array. The next n characters are read from the
input stream into the specified location, and no null character \0 is appended. If n is
not specified, the default value for it is 1.

See also: fscanf(), printf(), sscanf(), vfprintf(), vprintf(), vsprintf()

Returns

The number of fields converted and assigned, which may be less than the number
requested. Does not include fields that were read but not assigned.

EOF if the end-of-file is encountered in the first attempt to read a character.

ANSI, stdio setbuf

C Library Reference Chapter 3 207

setbuf
Allows the user to control buffering for a stream.

Syntax

#include <stdio.h>
void setbuf (FILE *stream, char *buffer);

Parameters

stream Pointer to FILE structure; must refer to an open stream file that has not been read or
written.

buffer User-allocated buffer.

Additional Information

If the buffer argument is a null pointer, the stream is unbuffered. If not, the buffer
must point to a character array of length BUFSIZ. This user-specified buffer is used
for I/O buffering instead of the default system-allocated buffer for the given stream.

The stderr stream is unbuffered by default, but may be assigned buffers with
setbuf().

Use the setvbuf() function for new code; setbuf() is retained for compatibility with
existing code.

See also: fclose(), fopen(), setvbuf()

Returns

Nothing.

_set_info

208 Chapter 3 Functions

_set_info
Modifies the num_eios_bufs (number of EIOS buffers per open file connection)
field for a task in the C library information structure CINFO_STRUCT.

Syntax

#include <rmx_c.h>
int _set_info (unsigned int count, CINFO_STRUCT *cinfo);

Parameters

count Number of elements in CINFO_STRUCT, obtained from cinfo_count constant.

cinfo Pointer to CINFO_STRUCT for a task.

Additional Information

All of the other fields in CINFO_STRUCT are read-only.

Verify the change using the _get_info() function.

See also: _get_info(), <rmx_c.h>

Returns

Value Meaning
0 Successful
-1 Unsuccessful

ANSI setjmp

C Library Reference Chapter 3 209

setjmp
Saves the current context of the executing program and stores it in the specified
location.

Syntax

#include <setjmp.h>
int setjmp (jmp_buf context);

Parameter
context

Structure in which the current context is stored.

Additional Information

The jmp_buf structure is usable only as an argument for the subsequent longjmp()
call; jmp_buf is defined internally to the C library.

Used together, setjmp() and longjmp() provide a way to execute a nonlocal goto.
They typically pass execution control to error-handling or recovery code in a
previously called routine without using the normal calling or return conventions.

A subsequent call to longjmp() restores the context and resumes execution at the
point setjmp() was called. All local variables except register variables, accessible to
the routine receiving control, contain the values they had when setjmp() was called.
Global variables are unaffected.

See also: longjmp(), <setjmp.h>

Returns

0 after saving the context of the executing program.

When setjmp() returns as a result of a longjmp() call, it returns the value
argument of longjmp() or returns 1 if the value argument of longjmp() is 0.

No error return.

setlocale ANSI

210 Chapter 3 Functions

setlocale
Sets the task's current entire locale or specified portions of it.

Syntax

#include <locale.h>
char *setlocale (int category, const char *locale);

Parameters
category

Specifies which portion of a task's locale information to use.

locale Pointer to a string containing the name of the locale for which certain aspects of your
program can be customized. C specifies the minimal ANSI-conforming locale for C
translation. If locale points to an empty string, the locale is the implementation-
defined native locale.

Additional Information

Some locale-dependent aspects include the formatting of dates and the display format
for monetary values.

These are the manifest constants used for the category argument and the parts of
the program affected:

Value Program Parts Affected
LC_ALL All categories listed below.
LC_COLLATE The strcoll() and strxfrm() functions.
LC_CTYPE The character-handling functions except for isdigit() and

isxdigit(), which are unaffected.
LC_MONETARY Monetary formatting information returned by the localeconv()

function.
LC_NUMERIC Decimal point character for the formatted output functions

such as printf(), for the data conversion functions, and for the
nonmonetary formatting information returned by the
localeconv() function.

LC_TIME The strftime() function.

See also: localeconv(), strcoll(), strftime(), strxfrm()

ANSI setlocale

C Library Reference Chapter 3 211

Returns

One of these:

• A pointer to the string associated with the specified category for the new locale.
Use the pointer in subsequent calls to restore that part of the program's locale
information. Later calls to setlocale() will overwrite the string.

• A pointer to the string associated with the category of the program's locale. It
does not change the program's current locale setting if the locale argument is a
null pointer.

• A null pointer. It does not change the program's current locale settings if the
locale or category is invalid.

setmode stdio

212 Chapter 3 Functions

setmode
Sets binary or text translation mode of a file.

Syntax

#include <fcntl.h>
#include <io.h>
int setmode (int handle, int mode);

Parameters

handle Descriptor referring to an open file.

mode New translation mode.

Additional Information

The mode must be one of these manifest constants:

Value Meaning
O_TEXT Sets text (translated) mode. <CR><LF> combinations are

translated into a single <LF> character on input. <LF>
characters are translated into <CR><LF> combinations on
output.

O_BINARY Sets binary (untranslated) mode and suppresses the above
translations.

The setmode() function is typically used to modify the default translation mode of
stdin, stdout, and stderr, but can be used on any file.

✏ Note
If multiple tasks or jobs are collecting data from the same file or
stream, use binary mode. Otherwise, the task or job receives
scrambled data.

Do not try to change a stream's mode while the stream buffer is
active. Call fflush() first.

See also: creat(), fopen(), open()

stdio setmode

C Library Reference Chapter 3 213

Returns

The previous translation mode.

-1 on error, and the function sets errno to one of these values:

EBADF Invalid file descriptor.

EINVAL Invalid mode argument (neither O_TEXT nor O_BINARY).

setvbuf ANSI, stdio

214 Chapter 3 Functions

setvbuf
Controls stream buffering and buffer size.

Syntax

#include <stdio.h>
int setvbuf (FILE *stream, char *buffer, int mode,

size_t size);

Parameters

stream Pointer to FILE structure; must refer to an open stream file that has not been read
from or written to since it was opened.

buffer Pointer to a user-allocated character array used for buffering. If a null pointer
references buffer, a buffer of size bytes is automatically allocated.

mode Buffering mode.

Value Meaning
_IOFBF Full buffering; that is, buffer is used as the buffer and size is used as the size of

the buffer.
_IONBF No buffer is used, regardless of buffer or size.

size Size of buffer. Legal values are greater than 0 and less than INT_MAX.

See also: fclose(), fopen(), <limits.h>, setbuf()

Returns

Value Meaning
0 Successful
Not 0 An illegal type or buffer size was specified

ANSI signal

C Library Reference Chapter 3 215

signal
Sets up one of several ways for a task to handle an interrupt signal from the OS.

Syntax

#include <signal.h>
void (*signal (int sig, void (*func)(int sig [,int
subcode])))

(int sig);

Parameters

sig Signal value. Must be one of the manifest constants defined in <signal.h>

func Specifies what action is taken. Must be either a function address or one of the
manifest constants defined in <signal.h>.

subcode
Optional subcode to the signal number.

Additional Information

This function is implemented in the shared C library interface library (not in the
shared C library), and is private to each application.

The sig argument must be one of these manifest constants:

Value Meaning
SIGABRT Abnormal termination
SIGALLOC Memory allocation failure
SIGBREAK <Ctrl-Break> signal
SIGFPE Floating-point exception
SIGFREE Bad free pointer
SIGILL Illegal instruction
SIGINT Interactive attention
SIGREAD Read error
SIGSEGV Segment violation
SIGTERM Termination request
SIGUSR1 User-defined
SIGUSR2 User-defined
SIGUSR3 User-defined
SIGWRITE Write error

signal ANSI

216 Chapter 3 Functions

The func must be either a function address or one of these manifest constants:

Value Meaning
SIG_DFL Uses system-default response. The system-default response for all signals

except SIGUSR1, SIGUSR2, and SIGUSR3 is to abort the calling program
using _exit(). The default response for SIGUSR1, SIGUSR2, and SIGUSR3 is
to ignore the signal.

SIG_IGN Ignores interrupt signal. This value should never be given for SIGFPE, since
the floating-point state of the process is left undefined.

Function
address

Installs the specified function as the handler for the given signal.

Additional Information

For all signals except SIGFPE and SIGUSRx, the function is passed the sig
argument and executed.

For SIGFPE, the function pointed to by func is passed two arguments, SIGFPE and
an integer error subcode, FPE_xxx; then the function is executed. The value of func
is not reset upon receiving the signal. To recover from floating-point exceptions, use
setjmp() in conjunction with longjmp(). If the function returns, the calling task
resumes execution with the floating-point state of the process left undefined.

If the function returns, the calling task resumes execution immediately following the
point at which it received the interrupt signal. This is true regardless of the type of
signal or operating mode.

Before the specified function is executed, the value of func is set to SIG_DFL. The
next interrupt signal is treated as described above for SIG_DFL, unless an intervening
call to signal() specifies otherwise. This allows the program to reset signals in the
called function.

Since signal-handler routines are normally called asynchronously when an interrupt
occurs, it is possible that your signal-handler function will assume control when an
operation is incomplete and in an unknown state. Certain restrictions therefore apply
to the C functions used in your signal-handler routine:

• Do not issue low-level or standard I/O functions, for example, printf(), read(),
write(), and fread().

• Do not call heap routines or any function that uses the heap routines, for
example, malloc(), strdup(), or putenv().

• Do not use the longjmp() function.

See also: abort(), raise(), _exit(), <signal.h>

ANSI signal

C Library Reference Chapter 3 217

Returns

The previous value of func. For example, if the previous value of func was
SIG_IGN, the return value will be SIG_IGN.

-1 on error such as invalid sig or func values, and the function sets errno to
EINVAL.

sin, sinh ANSI

218 Chapter 3 Functions

sin, sinh
Sin calculates the sine and sinh calculates the hyperbolic sine of an angle.

Syntax

#include <math.h>
double sin (double x);
double sinh (double x);

Parameter

x Angle in radians.

See also: acos(), asin(), atan(), cos(), tan()

Returns

Sin() Returns the sine of x.

Generates a PLOSS error if x is large and partial loss of significance in
the result occurs; function sets errno to ERANGE.

Prints a TLOSS message to stderr and returns 0 if x is so large that
significance is completely lost; function sets errno to ERANGE.

Sinh() Returns the hyperbolic sine of x.

Returns ±HUGE_VAL, and the function sets errno to ERANGE if the
result is too large.

These functions do not return standard ANSI domain or range errors.

sleep

C Library Reference Chapter 3 219

sleep
Suspends a task for a specified number of seconds.

Syntax

#include <process.h>
unsigned int sleep (unsigned int seconds);

Parameter
seconds

Number of seconds to suspend a task.

Additional Information

This function invokes the system call rq_sleep.

See also: rq_sleep, System Call Reference

Returns

Always returns 0.

sopen

220 Chapter 3 Functions

sopen
Opens a file for shared reading or writing.

Syntax

#include <fcntl.h>
#include <share.h>
#include <sys/stat.h>
#include <io.h>
int sopen (const char *filename, int oflag, int shflag,

int pmode);

Parameters
filename

Filename to be opened.

oflag Type of operations allowed (open mode). Combine one or more of the manifest
constants described in open() with the bitwise-OR operator (|).

shflag Type of sharing allowed (share mode).

pmode Permission mode, which specifies the file's ownership and access rights; required
only when O_CREAT is specified. Otherwise, argument is ignored. The manifest
constants are described in chmod(). Join them with the bitwise-OR operator (|).

Additional Information

Shflag must be one of these manifest constants:

Value Meaning
SH_DENYRW Denies read and write access to file.
SH_DENYWR Denies write access to file.
SH_DENYRD Denies read access to file.
SH_DENYNO Permits read and write access.

Ownership and access rights are set when the new file is closed for the first time.

The sopen() function applies the default file-permission mask (set with the umask()
function) to pmode before setting the permissions.

This function performs a translation of POSIX file ownership rights and POSIX
access rights to the iRMX OS equivalent as described in chmod().

See also: close(), creat(), fopen(), open(), umask()

sopen

C Library Reference Chapter 3 221

Returns

A descriptor for the opened file.

-1 indicates an error, and the function sets errno to one of these values:

EACCES Given pathname is a directory; or
The file is read-only but an open for writing was attempted; or
A sharing violation occurred because the file's share mode does not
allow the specified operations.

EEXIST The O_CREAT and O_EXCL flags are specified, but the named file
already exists.

EINVAL An invalid oflag or shflag argument was given.

EMFILE No more file descriptors available (too many open files).

ENOENT File or pathname not found.

sprintf ANSI

222 Chapter 3 Functions

sprintf
Prints formatted data to a string.

Syntax

#include <stdio.h>
int sprintf (char *buffer, const char *format [,
argument]...);

Parameters

buffer Output string.

format Formatted string consisting of ordinary characters, escape sequences, and, if
arguments appear, format specifications. The format and optional arguments have
the same form and function as the printf() function.

argument
Optional arguments.

Additional Information

The ordinary characters and escape sequences are copied to buffer in order of their
appearance.

A null character \0 is appended to the end of the characters written.

See also: fprintf(), printf(), sscanf()

Returns

The number of characters stored in buffer, not counting the terminating null
character.

ANSI sqrt

C Library Reference Chapter 3 223

sqrt
Calculates the square root of a number.

Syntax

#include <math.h>
double sqrt (double x);

Parameter

x Nonnegative value to calculate root for.

See also: exp(), log(), matherr(), pow()

Returns

The square-root result.

0 if x is negative, prints a DOMAIN error message to stderr and sets errno to
EDOM.

This function does not return standard ANSI domain or range errors.

square

224 Chapter 3 Functions

square
Calculates the square of a number.

Syntax

#include <math.h>
double square (double x);

Parameter

x Number to be squared.

See also: exp(), log(), matherr(), pow()

Returns

The square result.

This function does not return standard ANSI domain or range errors.

ANSI srand

C Library Reference Chapter 3 225

srand
Sets the starting point for generating a series of pseudorandom integers.

Syntax

#include <stdlib.h>
void srand (unsigned int seed);

Parameter

seed Starting point for random-number generation. Use 1 to reinitialize the generator.

Additional Information

The rand() function retrieves pseudorandom numbers. Calling rand() before any
call to srand() generates the same sequence as calling srand() with seed passed as
1.

See also: rand()

Returns

Nothing.

sscanf ANSI, stdio

226 Chapter 3 Functions

sscanf
Reads and formats character data from a string.

Syntax

#include <stdio.h>
int sscanf (const char *buffer, const char *format

[, argument]...);

Parameters

buffer Source string.

format Null-terminated format-control string which controls the interpretation of the input
fields and has the same form and function as the format argument as in the scanf()
function.

argument
Optional argument. Must be a pointer to a variable with a type that corresponds to a
type specifier in format.

Additional Information

Reads data from buffer into the locations given by argument (if any).

The sscanf() function reads all characters in buffer up to the first whitespace
character (space, tab, or newline), or the first character that format cannot convert.
If there are too many arguments for the given format, the extra arguments are
evaluated but ignored. The results are unpredictable if there are not enough
arguments for the format specification.

See also: fscanf(), scanf(), sprintf()

Returns

The number of fields that were successfully converted and assigned, but not fields
that were read but not assigned.

0 if no fields were assigned.

EOF if the attempted read was at end-of-string.

stdio stat

C Library Reference Chapter 3 227

stat
Gets information on a file.

Syntax

#include <sys/types.h>
#include <sys/stat.h>
int stat (const char *filename, struct stat *buffer);

Parameters
filename

Pathname of an open file to get information on.

buffer Pointer to file-status structure stat. The fields of stat are described in
<sys/stat.h>.

Additional Information

Stat() invokes the system call rq_a_get_file_status and adds the number of seconds
between epoch time and January 1, 1978, plus the local timezone factor, an
environment variable described in tzset(). This adjusts the time stamps of iRMX
files to POSIX-standard values.

Stat() caches up to two directory connections and the associated pathnames to
provide a performance boost for tasks that make repeated calls to stat() for files
under either of the two cached directories. The cache reduces the overhead incurred
while parsing a long pathname and attaching each directory along the way. If the
directory is not in the cache, a connection is obtained through a call to
rq_attach_file, and entered into the cache. The oldest entry in the two-deep cache is
then deleted. The cache is part of the single C library environment; required memory
is allocated on the first use of stat().

This function performs a translation of iRMX OS file ownership rights and iRMX OS
access rights to POSIX as described in <sys/stat.h>.

See also: chmod(), filelength(), fstat(), <sys/stat.h>

Returns

Value Meaning
0 File-status information is obtained
-1 Error occurred; the function sets errno to EBADF, indicating an invalid

filename

strcat ANSI

228 Chapter 3 Functions

strcat
Appends a null-terminated string to another string.

Syntax

#include <string.h>
char *strcat (char *string1, const char *string2);

Parameters
string1

Destination string; must contain a null character marking the end of the string.

string2
Source string appended to string1; must contain a null character marking the end of
the string.

Additional Information

Terminates the resulting string with a null character \0. No overflow checking is
performed when strings are appended.

See also: strncat(), strncmp(), strncpy(), strnicmp(), strrchr(), strspn()

Returns

A pointer to the concatenated string.

ANSI strchr

C Library Reference Chapter 3 229

strchr
Searches for a character in a null-terminated string.

Syntax

#include <string.h>
char *strchr (const char *string, int c);

Parameters

string String to search; must contain a null character \0 marking the end of the string; the
terminating null character is included in the search.

c Character to be located.

See also: strcspn(), strncat(), strncmp(), strncpy(), strnicmp(), strpbrk(),
strrchr(), strspn(), strstr()

Returns

A pointer to the first occurrence of c in the string. The character may be the null
character \0.

A null pointer if the character is not found.

strcmp, strcmpi, stricmp ANSI

230 Chapter 3 Functions

strcmp, strcmpi, stricmp
Compare two null-terminated strings lexicographically.

Syntax

#include <string.h>
int strcmp (const char *string1, const char *string2);
int strcmpi (const char *string1, const char *string2);
int stricmp (const char *string1, const char *string2);

Parameters
string1, string2

Strings to compare; must contain null characters \0 marking the end of the strings.

Additional Information

The strcmpi() and stricmp() functions are case-insensitive versions of strcmp().
They work identically in all other respects.

See also: memcmp(), memicmp(), strncat(), strncmp(), strncpy(), strnicmp(),
strrchr(), strspn()

Returns

A value indicating the relationship:

Value Meaning
< 0 string1 less than string2
= 0 string1 identical to string2
> 0 string1 greater than string2

ANSI strcoll

C Library Reference Chapter 3 231

strcoll
Compares null-terminated strings using locale-specific collating sequences.

Syntax

#include <string.h>
int strcoll (const char *string1, const char *string2);

Parameters
string1, string2

Strings to compare; must contain null characters \0 marking the end of the strings.

See also: localeconv(), setlocale(), strcmp(), strncmp(), strxfrm()

Returns

A value indicating the relationship:

Value Meaning
< 0 string1 less than string2
= 0 string1 identical to string2
> 0 string1 greater than string2

strcopy ANSI

232 Chapter 3 Functions

strcpy
Copies a null-terminated string.

Syntax

#include <string.h>
char *strcpy (char *string1, const char *string2);

Parameters
string1

Destination string; must contain a null character \0 marking the end of the string.

string2
Source string, including the terminating null character.

Additional Information

No overflow checking is performed when strings are copied.

See also: strcat(), strcmp(), strncat(), strncmp(), strncpy(), strnicmp(),
strrchr(), strspn()

Returns

Returns string1.

ANSI strcspn

C Library Reference Chapter 3 233

strcspn
Finds a null-terminated substring in a string.

Syntax

#include <string.h>
size_t strcspn (const char *string1, const char
*string2);

Parameters
string1

Source string; must contain a null character \0 marking the end of the string.

string2
Character set to search for; must contain a null character \0 marking the end of the
string.

Additional Information

Terminating null characters are not considered in the search.

See also: strncat(), strncmp(), strncpy(), strnicmp(), strrchr(), strspn()

Returns

The index of the first character in string1 belonging to the set of characters
specified by string2. This value is equivalent to the length of the initial substring
of string1 consisting entirely of characters not in string2.

0 if string1 begins with a character from string2.

strdup

234 Chapter 3 Functions

strdup
Duplicates null-terminated strings.

Syntax

#include <string.h>
char *strdup (const char *string);

Parameter

string Source string; must contain a null character \0 marking the end of the string.

Additional Information

The function allocates storage space from the heap for a copy of string, using
malloc().

See also: strcat(), strcmp(), strncat(), strncmp(), strncpy(), strnicmp(),
strrchr(), strspn()

Returns

A pointer to the storage space containing the copied string.

A null pointer if storage cannot be allocated.

ANSI strerror

C Library Reference Chapter 3 235

strerror
Gets a system error message.

Syntax

#include <string.h>
char *strerror (int errnum);
char *_strerror (const char *string);

Parameter

errnum Error number to map to an error-message string.

Additional Information

The function itself does not actually print the message. To send or print the message,
use an output function such as perror().

See also: clearerr(), ferror(), perror()

Returns

A pointer to the error-message string.

strftime ANSI, stdio

236 Chapter 3 Functions

strftime
Formats a time string.

Syntax

#include <time.h>
size_t strftime (char *string, size_t maxsize, const char

*format, const struct tm *timedate);

Parameters

string Output string.

maxsize
Maximum length of string.

format Format control string; normal characters and format specifications.

timedate
Time/date structure, tm.

Additional Information

Format specifications have a preceding percent sign (%); preceding characters are
copied unchanged to string. The LC_TIME category of the current locale affects
the output formatting of strftime().

The format specifications are:

Format Description
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%c Date and time representation appropriate for the locale
%d Day of the month as a decimal number (01 - 31)
%H Hour in 24-hour format (00 - 23)
%I Hour in 12-hour format (01 - 12)
%j Day of the year as a decimal number (001 - 366)
%m Month as a decimal number (01 - 12)
%M Minute as a decimal number (00 - 59)
%p Current locale's AM/PM indicator for a 12-hour clock
%S Second as a decimal number (00 - 61)

ANSI, stdio strftime

C Library Reference Chapter 3 237

Format Description
%U Week of year as decimal number; Sunday is first day of week (00 - 53)
%w Weekday as a decimal number (0 - 6; Sunday is 0)
%W Week of year as decimal number; Monday is first day of week (00 - 53)
%x Date representation for current locale
%X Time representation for current locale
%y Year without the century as a decimal number (00 - 99)
%Y Year with the century as a decimal number
%z Timezone name or abbreviation; no characters if timezone is unknown
%% Percent sign

See also: asctime(), localeconv(), setlocale(), strxfrm()

Returns

The number of characters placed in string if the total number of resulting
characters, including the terminating null, is not more than maxsize.

0 and the contents of the string are indeterminate if the result is larger than maxsize.

strlen ANSI

238 Chapter 3 Functions

strlen
Gets the length of a null-terminated string.

Syntax

#include <string.h
size_t strlen (const char *string);

Parameter

string String to find length of.

Returns

The string length in bytes of string, not including the terminating null character \0.

No error return.

strlwr

C Library Reference Chapter 3 239

strlwr
Converts uppercase letters in a null-terminated string to lowercase. Other characters
are not affected.

Syntax

#include <string.h>
char *strlwr (char *string);

Parameter

string String to convert.

See also: strupr()

Returns

A pointer to the converted string.

No error return.

strncat ANSI

240 Chapter 3 Functions

strncat
Appends characters to a string.

Syntax

#include <string.h>
char *strncat (char *string1, const char *string2 size_t

count);

Parameters
string1

Destination string.

string2
Source string.

count Number of characters to be appended.

Additional Information

Appends at most the first count characters of string2 to string1 and terminates
the resulting string with a null character. If count is greater than the length of
string2, the length of string2 is used in place of count.

See also: strcat(), strcmp(), strcpy(), strncmp(), strncpy(), strnicmp(),
strrchr(), strset(), strspn()

Returns

A pointer to the concatenated string.

ANSI strncmp

C Library Reference Chapter 3 241

strncmp
Compares substrings.

Syntax

#include <string.h>
int strncmp (const char *string1, const char *string2,

size_t count);

Parameters
string1, string2

Strings to compare.

count Number of characters compared.

Additional Information

Lexicographically compares the first count characters of string1 and string2.

The strnicmp() function is a case-insensitive version of strncmp.

See also: strcat(), strcmp(), strcpy(), strncat(), strncpy(), strrchr(), strset(),
strspn()

Returns

A value indicating the relationship between the substrings:

Value Meaning
< 0 string1 less than string2
= 0 string1 identical to string2
> 0 string1 greater than string2

strncopy ANSI

242 Chapter 3 Functions

strncpy
Copies the specified number of characters from one string to another.

Syntax

#include <string.h>
char *strncpy (char *string1, const char *string2,

size_t count);

Parameters
string1

Destination string.

string2
Source string.

count Number of characters copied.

Additional Information

Copies count characters of string2 to string1.

If count is less than the length of string2, a null character \0 is not appended
automatically to the copied string. If count is greater than the length of string2,
the string1 result is padded with null characters up to length count.

The behavior of strncpy() is undefined if the address ranges of the source and
destination strings overlap.

See also: strcat(), strcmp(), strcpy(), strncat(), strncmp(), strnicmp(),
strrchr(), strset(), strspn()

Returns

Returns string1.

strnicmp

C Library Reference Chapter 3 243

strnicmp
Compares substrings without regard to case.

Syntax

#include <string.h>
int strnicmp (const char *string1, const char *string2,

size_t count);

Parameters
string1, string2

Strings to compare.

count Number of characters compared.

Additional Information

Lexicographically compares the first count characters of string1 and string2.

The strnicmp() function is a case-insensitive version of strncmp().

See also: strcat(), strcmp(), strcpy(), strncat(), strncpy(), strrchr(), strset(),
strspn()

Returns

A value indicating the relationship:

Value Meaning
< 0 string1 less than string2
= 0 string1 identical to string2
> 0 string1 greater than string2

strnset

244 Chapter 3 Functions

strnset
Sets the specified number of characters in a string to a character.

Syntax

#include <string.h>
char *strnset (char *string, int c, size_t count);

Parameters

string String to be set.

c Character to set the string to.

count Maximum number of characters to set.

Additional Information

If count is greater than the length of string, the length of string is used in place
of count.

See also: strcat(), strcmp(), strcpy(), strset()

Returns

A pointer to the altered string.

ANSI strpbrk

C Library Reference Chapter 3 245

strpbrk
Searches a string for the first occurrence of any character in the specified character
set.

Syntax

#include <string.h>
char *strpbrk (const char *string1, const char *string2);

Parameters
string1

String to search.

string2
Character set to search for.

Additional Information

The terminating null character \0 is not included in the search.

See also: strchr(), strrchr()

Returns

A pointer to the found character.

A null pointer if string1 and string2 have no characters in common.

strrchr ANSI

246 Chapter 3 Functions

strrchr
Searches a string for the last occurrence of a character.

Syntax

#include <string.h>
char *strrchr (const char *string, int c);

Parameters

string String to search.

c Character to find.

Additional Information

The string's terminating null character \0 is included in the search.

Use strchr() to find the first occurrence of c in string.

See also: strchr(), strcspn(), strncat(), strncmp(), strncpy(), strnicmp(),
strpbrk(), strspn()

Returns

A pointer to the last occurrence of the character in the string.

A null pointer if the character is not found.

strrev

C Library Reference Chapter 3 247

strrev
Reverses the order of the characters in a string.

Syntax

#include <string.h>
char *strrev (char *string);

Parameter

string String to be reversed.

Additional Information

The terminating null character \0 remains in place.

See also: strcpy, strset

Returns

A pointer to the altered string.

No error return.

strset

248 Chapter 3 Functions

strset
Sets all characters in a string to a specified character.

Syntax

#include <string.h>
char *strset (char *string, int c);

Parameters

string String to be set.

c Character to set the string to.

Additional Information

Does not set the terminating null character \0 to c.

See also: memset(), strcat(), strcmp(), strcpy(), strnset()

Returns

A pointer to the altered string.

No error return.

ANSI strspn

C Library Reference Chapter 3 249

strspn
Finds the first character in a string that does not belong to a set of characters in a
substring.

Syntax

#include <string.h>
size_t strspn (const char *string1, const char *string2);

Parameters
string1

String to search.

string2
Character set.

Additional Information

The null character \0 terminating string2 is not considered in the matching
process.

See also: strcspn(), strncat(), strncmp(), strncpy(), strnicmp(), strrchr()

Returns

An integer value specifying the length of the segment in string1 consisting entirely
of characters in string2.

0 if string1 begins with a character not in string2.

strstr ANSI

250 Chapter 3 Functions

strstr
Finds a substring within a string.

Syntax

#include <string.h>
char *strstr (const char *string1, const char *string2);

Parameters
string1

String to search.

string2
String to search for.

See also: strcspn(), strncat(), strncmp(), strncpy(), strnicmp(), strpbrk(),
strrchr(), strspn()

Returns

A pointer to the first occurrence of string2 in string1.

A null pointer if the string is not found.

ANSI strtod, strtol, strtoul

C Library Reference Chapter 3 251

strtod, strtol, strtoul
Strtod converts a string to double; strtol converts to long; strtoul converts to
unsigned long.

Syntax

#include <stdlib.h>
double strtod (const char *nptr, char **endptr);
long strtol (const char *nptr, char **endptr, int base);
unsigned long strtoul (const char *nptr, char **endptr,

int base);

Parameters

nptr String to convert; a sequence of characters that can be interpreted as a numerical
value of the specified type.

endptr End of scan.

base Number base to use.

Additional Information

The strtod() function expects nptr to point to a string with this form:

[whitespace] [sign] [digits] [.digits] [d | D | e | E [sign] digits]

The first character that does not fit this form stops the scan.

The strtol() function expects nptr to point to a string with this form:

[whitespace] [sign] [0] [x | X] [digits]

The strtoul() function expects nptr to point to a string with this form:

[whitespace] [+ | -] [0] [x | X] [digits]

These functions stop reading the string at the first character they cannot recognize as
part of a number. This may be the null character \0 at the end of the string. With
strtol() or strtoul(), this terminating character can also be the first numeric
character greater than or equal to base. If endptr is not a null pointer, a pointer to
the character that stopped the scan is stored at the location pointed to by endptr.

If no conversion can be performed (no valid digits are found or an invalid base is
specified), the value of nptr is stored at the location pointed to by endptr.

Base Meaning

strtod, strtol, strtoul ANSI

252 Chapter 3 Functions

Between 2 and 36 Base used as the base of the number.

0 The initial characters of the string pointed to by nptr
determine the base.

1st char = 0 and
2nd char not = x or X

The string is interpreted as an octal integer; otherwise, it
is interpreted as a decimal number.

1st char = 0 and
2nd char = x or X

The string is interpreted as a hexadecimal integer.

1st char = 1 through 9 The string is interpreted as a decimal integer.

a through z or
A through Z

Are assigned the values 10 through 35; only letters
whose assigned values are less than base are permitted.

The strtoul() function allows a plus (+) or minus (-) sign prefix; a leading minus
sign indicates that the return value is negated.

See also: atof(), atol()

Returns

Strtod() Returns the converted value.

Returns ±HUGE_VAL when the representation would cause an
overflow.

Returns 0 if no conversion could be performed or an underflow
occurred.

Strtol() Returns the converted value.

Returns LONG_MAX or LONG_MIN when the representation would
cause an overflow.

Returns 0 if no conversion could be performed.

Strtoul() Returns the converted value, if any.

Returns 0 if no conversion can be performed.

Returns ULONG_MAX on overflow.

ANSI strtok

C Library Reference Chapter 3 253

strtok
Finds the next token in a string.

Syntax

#include <string.h>
char *strtok (char *string1, const char *string2);

Parameters
string1

String containing token(s); may be separated by one or more of the delimiters from
string2.

string2
Set of delimiter characters.

Additional Information

This function reads string1 as a series of zero or more tokens and string2 as the
set of characters serving as delimiters of the tokens in string1.

Use a series of calls to strtok() to break out tokens from string1. In the first call,
strtok() searches for the first token in string1, skipping leading delimiters. To
read the next token from string1, call strtok() with a null pointer value for the
string1 argument. The null pointer argument causes strtok() to search for the next
token in the previous token string. The set of delimiters may vary from call to call,
so string2 can take any value.

Calls to this function will modify string1, since each time strtok() is called it
inserts a null character \0 after the token in string1.

See also: _get_rmx_conn(), strcspn(), strspn()

✏ Note
C string tokens are char values separated by delimiter characters;
an iRMX connection token is a selector value obtained from a
call to _get_rmx_conn() or iRMX system calls. Do not confuse
the C concept of a character string token with the iRMX connection
token.

strtok ANSI

254 Chapter 3 Functions

Returns

A pointer to the first token in string1 the first time strtok() is called. All tokens
are null-terminated.

A pointer to the next token in the string on subsequent calls with the same token
string.

A null pointer means there are no more tokens.

strupr

C Library Reference Chapter 3 255

strupr
Converts any lowercase letters in a null-terminated string to uppercase.

Syntax

#include <string.h>
char *strupr (char *string);

Parameter

string String to be capitalized.

Additional Information

Does not affect characters other than lowercase.

See also: strlwr()

Returns

A pointer to the converted string.

No error return.

strxfrm ANSI

256 Chapter 3 Functions

strxfrm
Transforms a string based on locale-specific information and stores the result.

Syntax

#include <string.h>
size_t strxfrm (char *string1, const char *string2,

size_t count);

Parameters
string1

String to which transformed version of string2 is returned.

string2
String to transform.

count Maximum number of characters to be placed in string1.

Additional Information

The transformation is made using the information in the locale-specific
LC_COLLATE macro.

The value of this expression is the size of the array needed to hold the transformation
of the source string:

1 + strxfrm (NULL, string, 0);

The C libraries support the C locale only; thus strxfrm() is equivalent to these
commands:

strncpy (_string1, _string2, _count);

return (strlen (_string2));

After the transformation, a call to strcmp() with the two transformed strings will
yield identical results to a call to strcoll() applied to the original two strings.

See also: localeconv(), setlocale(), strncmp()

Returns

The length of the transformed string, not counting the terminating null character.

If the return value is greater than or equal to count, the contents of string1 are
unpredictable.

DOS swab

C Library Reference Chapter 3 257

swab
Copies while swapping bytes.

Syntax

#include <stdlib.h>
void swab (const char *src, char *dest, int n);

Parameters

src Points to the source buffer.

dest Points to a buffer to which the source buffer is copied, with each pair of bytes
swapped.

n The number of bytes to be copied.

Additional Information

Use swab to copy n bytes from the src buffer while swapping each pair of adjacent
bytes.

If n is odd, the last byte is copied directly from the src buffer to the dest buffer,
with no byte swapping.

Returns

Nothing.

system stdio

258 Chapter 3 Functions

system
Invokes the system call rq_c_send_command to execute an iRMX command line.

Syntax

#include <stdlib.h>
int system (const char *command);

Parameter
command

Command to be executed; it can be any valid HI command, user program, or alias.

Additional Information

The system() function may be invoked multiple times with an ampersand (&) in the
last character of command, to extend the command line. The connection is
maintained until system() is invoked without an &.

See also: rq_c_send_command, System Call Reference

Returns

Value Meaning
0 Successful; command is not NULL and the command interpreter is

successfully started.

0 And sets errno to ENOENT, if the command interpreter is not found.

Not 0 If command is NULL and the command interpreter is found.

-1 Error occurred, and the function sets errno to one of these values:

E2BIG Command line exceeds 128 bytes.

ENOMEM One of these:

Not enough memory is available to execute the command, or

The available memory has been corrupted, or

An invalid block exists, indicating that the process making
the call was not allocated properly.

ANSI tan, tanh

C Library Reference Chapter 3 259

tan, tanh
Tan() calculates the tangent and tanh() calculates the hyperbolic tangent of the
number.

Syntax

#include <math.h>
double tan (double x);
double tanh (double x);

Parameter

x Angle to calculate in radians.

See also: acos(), asin(), atan(), cos(), sin()

Returns

Tan() Returns the tangent of x.

Returns a PLOSS error and sets errno to ERANGE if x is large and a
partial loss of significance in the result may occur.

Returns 0, prints a TLOSS error message to stderr, and sets errno to
ERANGE if x is so large that significance is totally lost.

Tanh() Returns the hyperbolic tangent of x.

No error return for tanh().

These functions do not return standard ANSI domain or range errors.

time ANSI, stdio

260 Chapter 3 Functions

time
Gets the system time.

Syntax

#include <time.h>
time_t time (time_t *timer);

Parameter

timer Storage location for the return value. This parameter may be a null pointer, in which
case the return value is not stored.

Additional Information

This function calls the system call rq_get_time and adds an adjustment factor: the
number of seconds between epoch time and January 1, 1978, plus the local timezone
factor TZ, described in tzset(). This adjusts the iRMX OS time value to a POSIX-
standard value.

See also: asctime(), ctime(), gmtime(), localtime(), tzset()

Returns

The number of seconds elapsed since epoch time, according to the system clock.

No error return.

time macros, _tzset_ptr

C Library Reference Chapter 3 261

time macros, _tzset_ptr
Accesses daylight, timezone, and tzname environment variables.

Syntax

#include <time.h>
#include <reent.h>
struct _tzset {

char *_tzname[2];
long _timezone;
int _daylight;

}
struct _tzset *_tzset_ptr (void);
#define daylight (_tzset_ptr()->_daylight)
#define timezone (_tzset_ptr()->_timezone)
#define tzname (_tzset_ptr()->_tzname);

Additional Information

The daylight() macro accesses the _daylight flag.

Value Meaning
1 Daylight-savings-time is in effect (default).
0 Daylight-savings-time is not in effect.

The timezone() macro accesses the value that represents the difference in seconds
between GMT and local time.

The tzname() macro accesses a pair of pointers to the timezone name and daylight-
savings-time name. For example, tzname[0] could point to EST and tzname[1]

could point to EDT. The default strings are PST and PDT.

The _tzset_ptr function uses the _tzset structure that contains members
corresponding to tzname, timezone, and daylight. Each of these macros calls
_tzset_ptr.

See also: tzset(), <time.h>

Returns

Pointer to _tzset.

Null pointer if unsuccessful.

tmpfile ANSI, stdio

262 Chapter 3 Functions

tmpfile
Creates a temporary file, opens in it binary read/write mode, and returns a stream
pointer to it.

Syntax

#include <stdio.h>
FILE *tmpfile (void);

Additional Information

The temporary file is automatically deleted when the file is closed, when the program
terminates normally, or when rmtmp() is called, assuming that the current working
directory does not change.

See also: rmtmp(), open(), tmpnam()

Returns

A stream pointer.

A null pointer if unsuccessful.

ANSI tmpnam

C Library Reference Chapter 3 263

tmpnam
Creates a temporary filename, which can open a temporary file without overwriting
an existing file.

Syntax

#include <stdio.h>
char *tmpnam (char *string);

Parameter

string Pointer to the temporary filename.

Additional Information

If string is a null pointer, tmpnam() leaves the result in an internal static buffer.
Thus any subsequent calls destroy this value.

If string is not a null pointer, it is assumed to reference a string buffer of at least
L_tmpnam bytes. The function will generate unique filenames for up to TMP_MAX
calls.

The character string that tmpnam() creates consists of the path prefix, defined by
P_tmpdir, followed by a sequence consisting of the digit characters 0 through 9; the
numerical value of this string can range from 1 to 65,535.

Changing the definitions of L_tmpnam or P_tmpdir in <stdio.h> does not change
the operation of tmpnam().

See also: mktmp(), tmpfile()

Returns

A pointer to the temporary filename generated.

A null pointer if it is impossible to create the name or the name is not unique.

toascii, tolower, _tolower, toupper, _toupper ANSI

264 Chapter 3 Functions

toascii, tolower, _tolower, toupper, _toupper
Convert single characters.

Syntax

#include <ctype.h>
#include <stdlib.h>
int toascii (int c);
int tolower (int c);
int _tolower (int c);
int toupper (int c);
int _toupper (int c);

Parameter

c Character to convert.

Additional Information

These functions are implemented both as functions and as macros. To use the
function versions, remove the macro definitions through #undef directives, or do not
include <ctype.h>.

Function Description
toascii() Converts c to ASCII character. The toascii() function sets all but the

low-order 7 bits of c to 0, so that the converted value represents an
ASCII character. If c already represents an ASCII character, c is
unchanged.

tolower() Converts c to lowercase if c represents an uppercase letter.
_tolower() Converts c to lowercase only when c represents an uppercase letter;

the result is undefined if c is not.
toupper() Converts c to uppercase if c represents a lowercase letter.
_toupper() Converts c to uppercase only when c represents a lowercase letter; the

result is undefined if c is not.

See also: is functions

Return Value

The converted character.

No error return.

stdio tzset

C Library Reference Chapter 3 265

tzset
Sets the time environment variables.

Syntax

#include <time.h>
void tzset (void);
int daylight /* Global variables set by function */
long timezone;
char *tzname[2]

Additional Information

This function calls getenv() to obtain the current setting of the environment variable
TZ, then assigns values to three global variables: daylight, timezone, and
tzname. The localtime() function uses these variables to make corrections from
GMT to local time, and time() uses these variables to compute GMT from system
time.

The TZ environment variable has the following syntax:

[:]<std><std_offset>[<dst>[<dst_offset>][,<sdate>[/<stime>]

,<edate>[/<etime>]]]

Where:

[:], indicates how the system clock is set. If a semi-colon is present, the time is set
to Local Time. No semi-colon indicates that the POSIX-compliant setting of
Universal Constant Time (UCT) is used.

Where:

Local Time means that functions will not need to do shifts for timezone,
but will not shift for daylight savings time. The user must reset the
system clock twice a year by hand to account for these. All iRMX file
timestamps and CUSPs report the local time.

UCT means that functions will automatically handle timezone shifts and
daylight savings time switches. All iRMX file timestamps are in UCT.
The iRMX date/time CUSPs report in UCT even though the system
says Local Time.

tzset stdio

266 Chapter 3 Functions

<std> (Standard Time) and <dst> (Daylight Savings Time) are
_POSIX_TZNAME_MAX in length and are typically a three character string of the form
xST or xDT, such as PST.

<std_offset>, <dset_offset>, <stime>, and <etime> have the format:

[+|-]<hours>[:<minutes>[:<seconds>]]

The default is 2:00:00.

<sdate> (DST start date) and <edate> (DST end date) have the format:

<julian0>|J<julian1>|M<month>.<week>.<day>

Where:

<julian0> is 0 to 365
<julian1> is 1 to 366
<month> is 1 to 12
<week> is 1 to 5 where 5 is the last week of the month
<day> is 0 (Sunday) to 6 (Saturday)

The default is implementation-specific (U.S. law since 1987 states “M4.1.0”
and M10.5.0”).

These values are assigned to the variables daylight, timezone, and tzname when
tzset() is called:

Variable Value and Meaning
daylight Indicates whether daylight savings time is observed locally (1) or not

(0). To check the state of this variable, call the localtime() function
and see if the tm_isdst field is 1 or 0.

timezone Seconds west of UCT if positive or seconds east of UCT if negative.
tzname[0] String value of the timezone name from the TZ setting; default is

PST
tzname[1] String value of the daylight savings time name; default is PDT. An

empty string must appear if daylight savings time is never in effect,
as in certain states and localities.

See also: asctime(), getenv(), gmtime(), localtime(), putenv(), time(), time
macros

Returns

Nothing.

ultoa, utoa

C Library Reference Chapter 3 267

ultoa, utoa
Ultoa converts unsigned long and utoa converts an integer to a null-terminated string
and stores it, without overflow checking.

Syntax

#include <stdlib.h>
char *ultoa (unsigned long value, char *string, int
radix);
char *utoa (unsigned int value, char *string, int radix);

Parameters

value Number to convert.

string String result.

radix Base of value; must be in the range 2-36.

Additional Information

The string buffer must be large enough to accommodate the largest representation
of a long integer that radix calls for. For example, on an iRMX system, the largest
signed values represented in a 32-bit integer are -2,147,483,648 and +2,147,483,647.
In base 2, their binary representations are 1 and thirty-one trailing 0s, and 0 and
thirty-one trailing 1s, respectively. With the sign and terminating null character, the
minimum buffer size would be thirty-four bytes for binary representation.

For portability, use sprintf's %lo, %ld, or %lx conversion specifiers, if radix is 8,
10, or 16, when calling ultoa(). Use sprintf's %o, %d, or %x conversion specifiers, if
radix is 8, 10, or 16, when calling utoa().

With radix greater than 10, digits in the converted string representing values 10
through 35 are the characters a through z.

See also: itoa(), ltoa(), sprintf()

Returns

A pointer to the string.

No error return.

umask

268 Chapter 3 Functions

umask
Sets the default file-permission mask of the current process to the specified mode.

Syntax

#include <io.h>
#include <sys/stat.h>
#include <sys/types.h>
mode_t umask (mode_t pmode);

Parameter

pmode Default permission mode.

Additional Information

The file-permission mask is applied to the permission mode specified in calls to
creat(), open(), or sopen(). The permission mode determines the file's ownership
and access rights; the file-permission mask affects only access rights. If a bit in the
mask is 1, the corresponding bit in the file's requested permission mode value is set to
0 (disallowed). If a bit in the mask is 0, the corresponding bit is left unchanged. The
permission mode for a new file is not set until the file is closed for the first time.

The argument pmode is a constant expression containing one or more of the manifest
constants defined in <sys/stat.h>. Join more than one constant with the bitwise-OR
operator (|).

Value Meaning
S_IRGRP Read permission bit for POSIX file group
S_IROTH Read permission bit for POSIX World (other) owner
S_IRUSR Read permission for POSIX file owner
S_IWGRP Write permission bit for POSIX file group
S_IWOTH Write permission bit for POSIX World owner
S_IWUSR Write permission for POSIX file owner
S_IXGRP Execute or search permission bit for POSIX file group
S_IXOTH Execute or search permission bit for POSIX World owner
S_IXUSR Execute or search permission for POSIX file owner

See also: chmod(), creat(), mkdir(), open(), <sys/stat.h>

umask

C Library Reference Chapter 3 269

Returns

The previous value of pmode.

No error return.

ungetch DOS

270 Chapter 3 Functions

ungetch
Pushes a character back to the console, causing that character to be the next character
read.

Syntax

#include <conio.h>
int ungetch (int c);

Parameter

c Character to be pushed; must not be EOF

Additional Information

Read the next character using getch() or getche(). This function fails if it is called
more than once before the next read.

See also: cscanf(), getch(), getche()

Returns

Value Meaning
c Successful
EOF Error

unlink

C Library Reference Chapter 3 271

unlink
Deletes a file.

Syntax

#include <io.h> /* OR */
#include <stdio.h>
int unlink (const char *filename);

Parameter
filename

Name of file to delete.

See also: close(), remove()

Returns

Value Meaning
0 Successful
-1 Error. The function sets errno to one of these values:

EACCES Pathname specifies a read-only file.
ENOENT File or pathname not found, or pathname specifies a directory.

utime

272 Chapter 3 Functions

utime
Sets the modification time for a file.

Syntax

#include <sys\types.h>
#include <sys/utime.h>
int utime (const char *filename, struct utimbuf *times);

Parameters
filename

File on which to set modification time. The process must have write access to the
file.

times Pointer to stored time values. If times is a NULL pointer, the modification time is
set to the current time. Otherwise, times must point to a utimbuf structure, defined
in sys\utime.h.

Additional Information

The modification time is set from the modtime field in the utimbuf structure.
Although this structure contains a field for access time, only the modification time is
set.

See also: asctime(), ctime(), fstat(), ftime(), gmtime(), localtime(), stat(),
time()

Returns

Value Meaning
0 The file-modification time was changed
-1 Time was unchanged and the function sets errno to one of these values:

EACCES Pathname specifies directory or read-only file.
EINVAL Invalid argument; the times argument is invalid.
EMFILE Too many open files (the file must be opened to change its

modification time).
ENOENT Filename or pathname not found.

ANSI va_arg, va_end, va_start

C Library Reference Chapter 3 273

va_arg, va_end, va_start
Access variable-argument lists.

Syntax

#include <stdarg.h>
#include <stdio.h>
type va_arg (va_list arg_ptr, type);
void va_end (va_list arg_ptr);
void va_start (va_list arg_ptr, prev_param);

Parameters
arg_ptr

Pointer to variable-argument list.

prev_param
Parameter preceding first optional argument.

type Type of argument to be retrieved.

Additional Information

These macros provide a portable way to access a function's arguments when the
function takes a variable number of arguments. Use the va_start() macro before
using va_arg() for the first time. The macros behave as follows:

Macro Description
va_arg() Retrieves type parameter from the location given by arg_ptr.

Increments arg_ptr to point to the next argument in the list, using the
size of type parameter to determine where the next argument starts.
Use this macro multiple times to retrieve all arguments from the list.

va_end() After all arguments have been retrieved, resets arg_ptr to a null
pointer.

va_start() Sets arg_ptr to the first optional argument in the variable-argument
list. The arg_ptr argument must be of the va_list type. The
argument prev_param is the name of the required parameter
immediately preceding the first optional argument in the argument list.
If prev_param is declared with the register storage class, the macro's
behavior is undefined.

va_arg, va_end, va_start ANSI

274 Chapter 3 Functions

The macros assume that the function takes a fixed number of required arguments,
followed by a variable-argument list.

See also: <stdarg.h>, vfprintf(), vprintf(), vsprintf()

Returns

Va_arg() returns the current argument.

Va_start() and va_end() do not return values.

ANSI, stdio vfprintf, vprintf, vsprintf

C Library Reference Chapter 3 275

vfprintf, vprintf, vsprintf
Vfprintf() formats and sends data to the file specified by stream, vprintf() sends
data to standard output, and vsprintf() sends data to the memory pointed to by
buffer.

Syntax

#include <stdio.h>
#include <stdarg.h>
int vfprintf (FILE *stream, const char *format,

va_list argptr);
int vprintf (const char *format, va_list argptr);
int vsprintf (char *buffer, const char *format,

va_list argptr);

Parameters

stream Pointer to FILE structure.

format Formatted string.

argptr Pointer to list of arguments.

buffer Storage location for output.

Additional Information

These functions are similar to their counterparts fprintf(), printf(), and sprintf(),
but each accepts a pointer to a variable-argument list instead of additional arguments.

The format argument has the same form and function as for the printf() function.

The argptr parameter has type va_list. The argptr parameter points to a list of
arguments that are converted and output according to the corresponding format
specifications in the format argument.

See also: printf() for a description of format, fprintf(), sprintf(), va_arg(),
va_end(), va_start()

Returns

The number of characters written, not counting the terminating null character.

A negative value if an output error occurs.

vfprintf, vprintf, vsprintf ANSI, stdio

276 Chapter 3 Functions

vfscanf, vscanf, vsscanf (ANSI, stdio)
Reads and formats character data into the specified locations.

• Vfscanf is analogous to vfprintf and reads input from the current position of a
stream using a variable argument list of pointers (see stdarg).

• Vscanf scans a variable argument list from the standard input (stdin) and vsscanf
scans it from a string. These are analogous to the vprintf and vsprintf functions,
respectively.

Syntax
#include <stdio.h>

#include <stdarg.h>

int vfscanf (FILE *stream, const char *format, va_list argptr);

int vscanf (const char *format, va_list argptr);

int vsscanf (const char *buffer, const char *format, va_list

argptr);

Parameters

stream Pointer to FILE structure.

format Formatted string. This parameter has the same form and function as in printf.

argptr Pointer to list of arguments. This parameter has type va_list and points to a list of
arguments that are converted and output according to the corresponding format
specifications in format.

buffer Storage location for input.

Additional Information

These functions are similar to their counterparts fscanf, scanf, and sscanf, but each
accepts a pointer to a variable-argument list instead of additional arguments.

Returns

Success The number of fields successfully converted and assigned, which may be less than
the number requested. Does not include fields read but not assigned.

Failure A negative value if an output error occurs. EOF if end-of-file is encountered on the
first attempt to read a character.

See also: va_arg, va_end, va_start

ANSI wcstombs

C Library Reference Chapter 3 277

wcstombs
Converts a sequence of wide characters to a corresponding sequence of multibyte
characters.

Syntax

#include <stdlib.h>
size_t wcstombs (char *mbstr, const wchar_t *wcstr,

size_t count);

Parameters

mbstr The address of a sequence of multibyte characters which have been converted.

wcstr The address of a sequence of wide characters to convert.

count The number of bytes to convert.

Additional Information

If wcstombs() encounters the wide-character null, either before or when count

occurs, it converts it to the multibyte null character (a 16-bit 0) and stops. Thus, the
multibyte character string at mbstr is null-terminated only if wcstombs() encounters
a wide-character null character during conversion. If the sequences pointed to by
wcstr and mbstr overlap, the behavior of wcstombs() is undefined.

See also: mblen(), mbstowcs(), mbtowc(), wctomb()

Returns

The number of converted multibyte characters, excluding the wide-character null
character.

-1 cast to type size_t if a wide character cannot be converted to a multibyte
character.

wctomb ANSI

278 Chapter 3 Functions

wctomb
Converts a wide character to the corresponding multibyte character and stores it in a
specified location.

Syntax

#include <stdlib.h>
int wctomb (char *mbchar, wchar_t wchar);

Parameters

mbchar The address of a converted multibyte character.

wchar A wide character to convert.

See also: mblen(), mbstowcs(), wcstombs()

Returns

The number of bytes, never greater than MB_CUR_MAX, in the wide character.

0 if wchar is the wide-character null.

-1 if the conversion is not possible in the current locale.

stdio write

C Library Reference Chapter 3 279

write
Writes data from a buffer to a file.

Syntax

#include <io.h>
int write (int handle, const char *buffer, unsigned int
count);

Parameters

handle Descriptor referring to an open file.

buffer Data to be written.

count Number of bytes.

Additional Information

Writing begins at the current file pointer position. If the file is open for appending,
the operation begins at the end-of-file. After writing, the file pointer increases by the
number of bytes actually written.

When writing more than 2 gigabytes to a file, the return value must be of type
unsigned integer. However, the maximum number of bytes that can be written to a
file at one time is 4 gigabytes -2, since 4 gigabytes -1 (or 0xFFFFFFF) is
indistinguishable from -1 and would return an error.

When write() is received, the file descriptor is checked for text or binary mode.

If the file was opened in text mode, the output buffer is written up to each <LF>
character, then a <CR><LF> pair is written separately. If multiple tasks are writing
to the same output, scrambling will occur in text mode; use binary mode. When
writing to files opened in text mode, the write() function treats a <Ctrl-Z> character
as the logical end-of-file. When writing to a device, write() treats a <Ctrl-Z> in the
buffer as an output terminator.

See also: fwrite(), open(), read()

write stdio

280 Chapter 3 Functions

Returns

The number of bytes actually written, not including <CR><LF> pairs. May be less
than count, as when disk space is filled before count bytes are written.

-1 on error, and the function sets errno to one of these values:

EBADF Invalid file descriptor or file not opened for writing.

ENOSPC No space left on device.

■■ ■■ ■■

stdio write

C Library Reference Chapter 3 281

C Library Reference Index 281

Index

A
abort functions, 10
abort() function, 24
aborting

task, 29
abs() function, 25
absolute value

calculating, 25, 37, 83, 137
accounting array, 124
acos() function, 26
allocating

C task resources, 54
directory cache memory, 227
memory array, 38
memory blocks, 60, 152, 195
stream buffer, 207

ANSI
conforming locale, 210

ANSI function, 23
appending

array, 145
characters to string, 240
string to string, 228

arccosine, calculating, 26
arcsine, calculating, 28
arctangent, calculating, 30
argc/argv parameters, 116
array

sorting, 188
asctime() function, 27
asin() function, 28
assert() function, 29
atan() function, 30
atan2() function, 30
atexit() function, 31
atof() function, 32
atoi() function, 32

atol() function, 32

B
Bessel functions, computing, 34
binary

mode, 87
search, 35
translation mode, 212

bitwise-OR operator, 42, 51, 164, 170, 220, 268
bookkeeping area, 54
bsearch() function, 35
buffering mode, 214
buffers

comparing, 159, 161
copying, 157, 160
copying while swapping bytes, 257
finding character in, 158
flushing, 97
modifying EIOS, 208
moving, 162
setting, 214
setting character, 163
setting for stream, 207
writing to file, 77

BUFSIZ, 207
bytes from file, reading, 72

C
C command line parser, 116
C library

code segment, getting, 121
data segment, getting, 122
information structure, getting, 124
overview, 1
stack segment, getting, 123

C strings
converting, 56

282 Index

C task resources, 4, 54
c_info structure, 124
cabs() function, 37
cache, stat() function, 227
calculating

absolute value, 25, 37, 83, 137
arccosine, 26
arcsine, 28
arctangent, 30
ceiling, 39
cosine, 48
exponential, 82
floating-point remainder, 98
floor, 96
hyperbolic cosine, 48
hyperbolic sine, 218
hyperbolic tangent, 259
logarithms, 143
number from mantissa and exponent, 138
number raised to power, 174
quotient and remainder, 59, 139
sine, 218
square, 224
square root, 223
tangent, 259

calloc() function, 38
ceil() function, 39
ceiling

calculating, 39
cgets() function, 40
character

multibyte, 154, 155, 156
wide, 155, 156

character processing functions, 9
character string

getting from console, 40
character string token, 254
characters

choosing next read, 270
converting, 264

chmod() function, 41
chsize() function, 43
cifc32.lib, 5
cinfo_count, 124
cleanup at exit, 81
clearerr() function, 44
clearing

error and end-of-file indicators, 44
memory, 38
open output streams, 97
stream, 90

clib.job, 1
clock() function, 45
CLOCKS_PER_SEC constant, 45
close() function, 46
closedir() function, 47
closing

file, 46, 61, 105
stream, 84

closing directories, 47
command line

arguments, getting, 116
executing, 258
extending, 258
option, recognizing, 126
parsing, 116
standard arguments, 126

compare routine, 35, 140, 145, 188
comparing

buffers, 159, 161
command line arguments, 126
strings, 230, 231
substrings, 241, 243

computing Bessel functions, 34
config r?env file, 120
configuring

C library, 2
connection token, 128
console

writing to, 183
context of executing program, 209
control functions, 10
converting

C string to UDI string, 56
characters read from stdin, 202
characters to ASCII, lowercase, or

uppercase, 264
integer to string, 135, 136, 267
long integer to string, 149, 150, 151, 267
multibyte to wide characters, 155, 156
number to string, 79, 85, 113, 115
string to integer, 32, 251
string to locale-specific string, 256
string to long integer, 32

C Library Reference Index 283

string to lowercase, 239
string to number, 32, 251
string to uppercase, 255
time structure to string, 27
time structure to time_t value, 167
time_t value to string, 57
time_t value to time structure, 131, 142
UDI string to C string, 56
wide to multibyte characters, 277, 278

copying
buffers, 157, 160
buffers while swapping bytes, 257
file descriptor, 78
string, 232, 234, 242

cos() function, 48
cosh() function, 48
cosine, calculating, 48
cprintf() function, 49
cputs() function, 50
creat() function, 51
creating

environment-variable file, 120
exit register, 31, 169
file descriptor, 78
files, 51
memory segments, 201
new directory, 164
temporary file, 262
temporary filename, 165, 263

cscanf() function, 53
cstart, 5

general description, 5
cstr() function, 56
ctime() function, 57

D
data

reading, 53
date

getting, 67
setting, 74

daylight, 266
macro, 261
variable, 265

daylight-savings-time name, 266
deallocating

memory blocks, 104
debugging, 29
default <Ctrl-C> handler, 215
default action

flag directives, 177
signals, 190

default daylight, 265
default daylight-savings-time, 261
default file sharing, 51
default file-permission mask, 268
default keyboard stream, 197
default open mode, 170
default precision, 178
default share mode, 164, 170
default signal-handling, 190
default system-allocated buffer, 207
default timezone, 265
default tzname, 265
default-mode variable, 87
deleting

C task resources, 54
directories, 199
files, 271
memory segments, 201
temporary files, 84, 200

descriptor table, file, 185
diagnostic message, 29
difftime() function, 58
directories

caching, 227
closing, 47
creating, 164
deleting, 199
opening, 172
reading, 194
renaming, 196
resetting, 198
updating, 43

div() function, 59
dividing, 139
DOS function, 23
DOS interface functions, 12
dos_close() function, 61
dos_creat() function, 62
dos_creatnew() function, 62
dos_findfirst() function, 64
dos_findnext() function, 64

284 Index

dos_freeman() function, 66
dos_getdate() function, 67
dos_getftime() function, 68
dos_gettime() function, 69
dos_open() function, 70
dos_read() function, 72
dos_setdate() function, 74
dos_setftime() function, 75
dos_settime() function, 76
dos_write() function, 77
double value

converting to string, 85, 115
splitting, 168

dup() function, 78
dup2() function, 78
duplicating file connections, 78

E
ecvt() function, 79
EIOS buffers, 124, 208
end-of-file, 80

stream, 88
end-of-file indicators

resetting, 44
environment variables, 184

getting, 120
time, 265
TZ, 142

environment-variable table, 120, 184
eof() function, 80
error indicators

resetting, 44
error messages

getting, 235
writing to stderr, 173

examining
strings, 245

exception structure, math, 153
executing program

saving context, 209
signalling, 190

executing system commands, 258
exit functions, maximum number of, 31
exit() function, 81
exiting

task, 81

exp() function, 82
exponent, 138

getting, 106
exponential, calculating, 82

F
fabs() function, 83
fclose() function, 84
fcloseall() function, 84
fcvt() function, 85
fdopen() function, 86
feof() function, 88
ferror() function, 89
fflush() function, 90
fgetc() function, 91
fgetchar() function, 91
fgetpos() function, 92
fgets() function, 93
file access, setting, 62
file descriptor, 78, 128

associations, 134
getting, 95

file descriptor table, 78, 185
file files

list, 7
file information

getting, 68, 111
setting, 75

file pointers
getting position, 92, 112
moving, 108, 146, 197
setting absolute position, 148
setting position, 110

filelength() function, 94
filename

creating temporary, 165
fileno() function, 95
file-permission mask, 268
files

closing, 46, 61, 105
connection duplications, 78
creating, 51, 62
creating temporary, 262
creating temporary name, 263
deleting, 271
deleting temporary, 200

C Library Reference Index 285

finding, 64
getting information on, 227
getting length, 94
opening, 51, 62, 70, 99, 105, 170, 220
reading, 72
reading to buffer, 193
renaming, 196
setting modification time, 272
setting size, 43
sharing, 51, 170
sharing default, 164
translation mode, 212

file-status structure, 227
finding

character in buffer, 158
character in string, 229, 246
character token in string, 253
files, 64
substring in string, 233, 249, 250

first-level jobs
C library, 1

FLAT model, code segment, 121
FLAT model, data segment, 122
FLAT model, stack segment, 123
floating-point remainder, 98
floor() function, 96
flushall() function, 97
fmod() function, 98
fopen() function, 99
format specification

formatted output string, 176
scanned input, 203
time string, 236

format-control string, 202
formatted

input, 202
string, 175

formatting
character data from stdin, 202
character data from stream, 107, 202
character data from string, 226
output data, 175
time string, 236

fprintf() function, 100
fputc() function, 101
fputchar() function, 101
fputs() function, 102

fread() function, 103
free() function, 104
freopen() function, 105
fscanf() function, 107
fseek() function, 108
fsetpos() function, 110
fstat() function, 111
ftell() function, 112
ftoa() function, 113
functions, by name

_cstop(), 54
_dos_allocmem(), 60
_exit(), 81
_get_arguments(), 116
_get_cs(), 121, 122
_get_info(), 124
_get_rmx_conn(), 128
_get_ss(), 123
_put_rmx_conn(), 185
_set_info(), 208
_tolower(), 264
_toupper(), 264
abort(), 24
abs(), 25
acos(), 26
asctime(), 27
asin(), 28
assert(), 29
atan(), 30
atan2(), 30
atexit(), 31
atof(), 32
atoi(), 32
atol(), 32
Bessel, 34
bsearch(), 35
calloc(), 38
ceil(), 39
cgets(), 40
chmod(), 41
chsize(), 43
clearerr(), 44
clock(), 45
close(), 46
closedir(), 47
cos(), 48
cosh(), 48

286 Index

cprintf(), 49
cputs(), 50
creat(), 51
cscanf(), 53
cstr(), 56
ctime(), 57
difftime(), 58
div(), 59
dos_close(), 61
dos_creat(), 62
dos_creatnew(), 62
dos_findfirst(), 64
dos_findnext(), 64
dos_freemem(), 66
dos_getdate(), 67
dos_getftime(), 68
dos_gettime(), 69
dos_open(), 70
dos_read(), 72
dos_setdate(), 74
dos_settime(), 76
dos_write(), 77
dup(), 78
dup2(), 78
ecvt(), 79
eof(), 80
exit(), 81
exp(), 82
fabs(), 83
fclose(), 84
fcloseall(), 84
fcvt(), 85
fdopen(), 86
feof(), 88
ferror(), 89
fflush(), 90
fgetc(), 91
fgetchar(), 91
fgetpos(), 92
fgets(), 93
filelength(), 94
fileno(), 95
floor(), 96
flushall(), 97
fmod(), 98
fopen(), 99
fprintf(), 100

fputc(), 101
fputchar(), 101
fputs(), 102
fread(), 103
free(), 104
freopen(), 105
frexp(), 106
fscanf(), 107
fseek(), 108
fsetpos(), 110
fstat(), 111
ftell(), 112
ftoa(), 113
fwrite(), 114
gcvt(), 115
getc(), 118
getch(), 119
getchar(), 118
getche(), 119
getenv(), 120
getopt(), 126
getpid(), 127
gets(), 129
getuid(), 127
getw(), 130
gmtime(), 131
isalnum(), 132
isalpha(), 132
isascii(), 132
isatty(), 134
iscntrl(), 132
isdigit(), 132
isgraph(), 132
islower(), 132
isprint(), 132
ispunct(), 132
isspace(), 132
isupper(), 132
isxdigit(), 132
itoa(), 135
itoh(), 136
j0(), 34
j1(), 34
jn(), 34
labs(), 137
ldexp(), 138
ldiv(), 139

C Library Reference Index 287

lfind(), 140
localeconv(), 141
localtime(), 142
log(), 143
log10(), 143
longjmp(), 144
lsearch(), 145
lseek(), 146
ltell(), 148
ltoa(), 149
ltoh(), 150
ltos(), 151
malloc(), 152
matherr(), 153
mblen(), 154
mbstowcs(), 155
mbtowc(), 156
memccpy(), 157
memchr(), 158
memcmp(), 159
memcpy(), 160
memicmp(), 161
memmove(), 162
memset(), 163
mkdir(), 164
mktemp(), 165
mktime(), 167
modf(), 168
onexit(), 169
open(), 170
opendir(), 172
perror(), 173
pow(), 174
printf(), 175
putc(), 182
putch(), 183
putchar(), 182
putenv(), 184
puts(), 186
putw(), 187
qsort(), 188
raise(), 190
rand(), 192
read(), 193
readdir(), 194
realloc(), 195
rename(), 196

rewind(), 197
rewinddir(), 198
rmdir(), 199
rmtmp(), 200
sbrk(), 201
scanf(), 202
setbuf(), 207
setjmp(), 209
setlocale(), 210
setmode(), 212
setvbuf(), 214
signal(), 215
sin(), 218
sinh(), 218
sleep(), 219
sopen(), 220
sprintf(), 222
sqrt(), 223
square(), 224
srand(), 225
sscanf(), 226
stat(), 227
strcat(), 228
strchr(), 229
strcmp(), 230
strcmpi(), 230
strcoll(), 231
strcpy(), 232
strcspn(), 233
strdup(), 234
strerror(), 235
strftime(), 236
stricmp(), 230
strlen(), 238
strlwr(), 239
strncat(), 240
strncmp(), 241
strncpy(), 242
strnicmp(), 243
strnset(), 244
strpbrk(), 245
strrchr(), 246
strrev(), 247
strset(), 248
strspn(), 249
strstr(), 250
strtod(), 251

288 Index

strtok(), 253
strtol(), 251
strtoul(), 251
strupr(), 255
strxfrm(), 256
swab(), 257
system(), 258
tan(), 259
tanh(), 259
time macros, 261
time(), 260
tmpfile(), 262
tmpnam(), 263
toascii(), 264
tolower(), 264
tzset(), 265
udistr(), 56
umask(), 268
ungetch(), 270
unlink(), 271
utime(), 272
va_arg(), 273
va_end(), 273
va_start(), 273
vfprintf(), 275
vprintf(), 275
vsprintf(), 275
wcstombs(), 277
wctomb(), 278
write(), 279
y0(), 34
y1(), 34
yn(), 34

fwrite() function, 114

G
gcvt() function, 115
generating pseudo-random numbers, 192
getc() function, 118
getch() function, 119
getchar() function, 118
getche() function, 119
getenv() function, 120
getopt() function, 126
getpid() function, 127
gets() function, 129

getuid() function, 127
getw() function, 130
gmtime() function, 131
goto, 209

H
handling

signal, 190, 215
heap management, 3
hyperbolic cosine, calculating, 48
hyperbolic sine, 218
hyperbolic tangent, 259

I
information structure, C library, 124
integer

calculating absolute value, 137
converting to string, 135, 136
getting from stream, 130
test conditions, 132

interface library, C, 2, 5
interrupts

handling, 215
isalnum functions, 9
isalnum() function, 132
isalpha() function, 132
isascii() function, 132
isatty() function, 134
iscntrl() function, 132
isdigit() function, 132
isgraph() function, 132
islower() function, 132
isprint() function, 132
ispunct() function, 132
isspace() function, 132
isupper() function, 132
isxdigit() function, 132
itoa() function, 135
itoh() function, 136

J
j0() function, 34
j1() function, 34
jmp_buf structure, 209

C Library Reference Index 289

jn() function, 34
jobs

C library, 1

L
labs() function, 137
ldexp() function, 138
ldiv() function, 139
lfind() function, 140
libraries, interface, 2, 5
linear search, 140, 145
lines

getting from stdin, 129
loadable jobs

C library, 1
locale

setting task's, 210
locale settings

getting, 141
localeconv() function, 141
localtime() function, 142
log() function, 143
log10() function, 143
logarithms, 143
long integer

converting to string, 149, 150, 151
longjmp() function, 144
lsearch() function, 145
lseek() function, 146
ltell() function, 148
ltoa() function, 149
ltoh() function, 150
ltos() function, 151

M
main() function, 116
malloc() function, 152

return value, 152
mantissa, 138

getting, 106
mapping

error number to error message, 235
file descriptors to connections, 185
POSIX to iRMX file permissions, 42

math errors, 153

math exception structure, 153
matherr() function, 153
maximum

number of open files, 185
mblen() function, 154
mbstowcs() function, 155
mbtowc() function, 156
measuring time, 45
memccpy() function, 157
memchr() function, 158
memcmp() function, 159
memcpy() function, 160
memicmp() function, 161
memmove() function, 162
memory

allocating, 195
allocating array, 38
allocating blocks, 60
clearing array, 38
comparing characters, 161
copying buffers, 157, 160
creating iRMX segments, 201
moving buffers, 162
releasing blocks, 66
setting characters in buffer, 163

memory block
allocating, 152
deallocating, 104

memset() function, 163
minimizing C task resources, 55
mkdir() function, 164
mktemp() function, 165
mktime() function, 167
modf() function, 168
modification time

setting, 272
moving

buffer, 162
file pointer, 108, 146, 197
memory, 195

multibyte character
getting length, 154

N
NDEBUG, 29
nonlocal goto, 209

290 Index

num_eios_bufs, 124, 208
number

converting to string, 79

O
O_BINARY translation mode, 212
O_TEXT translation mode, 212
onexit() function, 169
open files per task, 185
open mode, 86, 99, 105, 170
open() function, 170
opendir() function, 172
opening

files, 51, 70, 99, 105, 170, 220
stream, 86

opening directories, 172
optarg, 126
optind, 126
OS extension, C library, 1

P
parsing

commands, 116
permission mode, 170, 220, 268

setting, 41
perror() function, 173
pointers

getting to type other than void, 195
getting type other than void, 38, 152

POSIX
access rights, 42
file descriptor, 128
file ownership rights, 42
permission, 51

pow() function, 174
printf() function, 175
printing

error message to stderr, 173
formatted data to stream, 100
formatted string to string, 222
to console, 49

process ID
getting, 127

prog r?env file, 120
pseudo-random integer generator seed, 225

pseudo-random numbers, generating, 192
putc() function, 182
putch() function, 183
putchar() function, 182
putenv() function, 184
puts() function, 186
putw() function, 187

Q
qsort() function, 188
quotient, 139

calculating, 59

R
r?env file, 120
raise() function, 190
rand() function, 192
read() function, 193
readdir() function, 194
reading

bytes from file, 72
character data from stdin, 118, 202
character data from stream, 91, 107, 118
character data from string, 226
character from console4-, 119
format specification, 175, 202
formatted data, 53
from file to buffer, 193
from stream to buffer, 103
integer from stream, 130
string from stream, 93

reading directories, 194
realloc() function, 195
reassigning

file descriptor, 78
file to stream, 105

redirecting
stdin, stdout and stderr, 105

register of functions, 169
releasing

memory blocks, 66
remainder, 98, 139

calculating, 59
rename() function, 196
renaming

C Library Reference Index 291

directories, 196
files, 196

resetting
error and end-of-file indicators, 44
file pointer, 92

resetting directories, 198
resident jobs, C library, 1
resources

C task, 4
for C applications, 4
for C tasks and jobs, 3

resources, stdio functions, 54
restoring

context, 144
reversing string characters, 247
rewind() function, 197
rewinddir() function, 198
rmdir() function, 199
rmtmp() function, 200
rq_a_get_file_status call, 111, 227
rq_attach_file call, 227
rq_c_get_char call, 116
rq_c_send_command call, 258
rq_catalog_object call, 3
rq_create_segment call, 201
rq_delete_segment call, 201
rq_delete_task call, 4, 54
rq_exit_io_job call, 81
rq_get_default_user call, 127
rq_get_time call, 260
rq_inspect_user call, 127
rq_logical_attach_device call, 3
rq_s_attach_file call, 3
rq_s_open call, 124
rq_s_rename_file call, 196
rq_sleep call, 219
run-time job, C library, 1

S
S_IRGRP, 41
S_IROTH, 41
S_IRUSR, 41
S_IRWXG, 41
S_IRWXO, 41
S_IRWXU, 41
S_ISGID, 41

S_ISUID, 41
S_IWGRP, 41
S_IWOTH, 41
S_IWUSR, 41
S_IXGRP, 41
S_IXOTH, 41
S_IXUSR, 41
saving

context, 209
sbrk() function, 201
scanf() function, 202
scrambled data, 279
search, binary, 35
searching

environment-variable table, 120
sorted array, 35
strings, 229, 245, 246, 249, 250, 253
unsorted array, 140, 145

SEEK_CUR, 108
SEEK_END, 108
SEEK_SET, 108
setbuf() function, 207
setjmp() function, 209
setlocale() function, 210
setmode() function, 212
setting

<Ctrl-C> handler, 215
absolute position of file pointer, 148
characters in buffer, 163
characters in string, 248
current locale, 210
date, 74
exit status, 81
file pointer, 197
file pointer position, 110
file size, 43
file-permission mask, 268
number of EIOS buffers, 208
open mode, 170, 220
permission mode, 41, 51, 164, 170, 220
pseudo-random integer generator seed, 225
share mode, 220
signal-handler, 215
stream buffering, 207, 214
string characters, 244
system date, 74
system time, 76

292 Index

time, 76
time environment variables, 265
translation mode, 212

setvbuf() function, 214
share mode, 220
shared C library

overview, 1
sharing

output stream, 279
same file, 279
standard streams, 4

SIG_DFL, 216
SIG_IGN, 216
SIGABRT, 190

default action, 24
SIGALLOC, 190
SIGBREAK, 190
SIGFPE, 190
SIGFREE, 190
SIGILL, 190
SIGINT, 190
signal handling, 2
signal() function, 215
signal-handling

control, 215
default, 190

signalling
executing program, 190

SIGREAD, 190
SIGSEGV, 190
SIGTERM, 190
SIGUSR1, 190
SIGUSR2, 190
SIGUSR3, 190
SIGWRITE, 190
sin() function, 218
sine, 218
sinh() function, 218
sleep() function, 219
sopen() function, 220
splitting double value, 168
sprintf() function, 222
sqrt() function, 223
square root, 223
square() function, 224
square, calculating, 224
srand() function, 225

sscanf() function, 226
startup code, 5, 116
stat structure, 227
stat() function, 227
stderr, 3, 54

writing to, 173
stdin, 3, 54

getting lines from, 129
reading from, 118, 202

stdio functions, 23
stdout, 3, 54

writing character to, 182
writing string to, 186
writing to, 101, 175

strcat() function, 228
strchr() function, 229
strcmp() function, 230
strcmpi() function, 230
strcoll() function, 231
strcpy() function, 232
strcspn() function, 233
strdup() function, 234
stream

clearing, 90
closing, 84
errors, 89
file descriptor, 95
file pointer position, 92
getting file pointer, 112
opening, 86
printing to, 100
reading, 91, 93
reading from, 103, 107, 118
reading integer from, 130
setting buffering, 207
setting file pointer, 110
writing character to, 182
writing integer to, 187
writing to, 102, 114

stream buffering
control, 214

strerror() function, 235
strftime() function, 236
stricmp() function, 230
string format

atof(), atoi() and atol(), 32
output string, 176

C Library Reference Index 293

string length, getting, 238
strings

appending, 228
appending characters, 240
comparing, 230, 231
comparing substrings, 241, 243
converting lowercase to uppercase, 255
converting to double, long, or unsigned

long, 251
converting to locale-specific string, 256
converting uppercase to lowercase, 239
copying, 232, 242
duplicating, 234
finding characters in, 229
finding substring in, 233, 250
finding tokens in, 253
formatting character data, 226
reading character data, 226
reversing characters, 247
searching, 245, 246, 249
setting characters in, 244, 248

strlen() function, 238
strlwr() function, 239
strncat() function, 240
strncmp() function, 241
strncpy() function, 242
strnicmp() function, 243
strnset() function, 244
strpbrk() function, 245
strrchr() function, 246
strrev() function, 247
strset() function, 248
strspn() function, 249
strstr() function, 250
strtod() function, 251
strtok() function, 253
strtol() function, 251
strtoul() function, 251
strupr() function, 255
strxfrm() function, 256
substrings

comparing, 241, 243
suspending

tasks, 219
swab function, 257
sys_errlist, 173
sys_nerr, 173

sysload command, 2
system date

getting, 67
setting, 74

system time
getting, 69, 260
setting, 76

system() function, 258

T
tan() function, 259
tangent, 259
tanh() function, 259
task ID, 127
tasks

aborting, 29
C resources, 54
current locale, 210
deleting, 4, 54
handling interrupt, 215
maximum number of open files, 185
measuring time used by, 45
modifying EIOS buffer count, 208
normal termination, 31
performance boost, 227
resources of, 124
suspending, 219
terminating, 81

temporary files
deleting, 200

terminating
calling task, 81
task, 81

testing
character device, 134
end-of-file, 80, 88
error on stream, 89
expression, 29
integers, 132
multibyte character, 154
temporary filename uniqueness, 165

text mode, 87
text translation mode, 212
time

converting to calendar, 167
converting to local, 142

294 Index

converting to structure, 131
getting, 69
getting system, 260
measuring, 45
setting, 76
values, finding difference between, 58

time environment variables, 261, 265
time string, 236

converting, 27, 57
formatting, 236

time structure, 167
time() function, 260
timezone, 266
timezone macro, 261
timezone variable, 265
tm structure, 142, 167
tmpfile() function, 262
tmpnam() function, 263
toascii() function, 264
tokens

character string, 254
tokens

getting for calling task, 127
iRMX connection, 128

tolower() function, 264
toupper() function, 264
translation

file descriptor to connection token, 128
iRMX to POSIX time stamps, 111, 227,

260
POSIX to iRMX access rights, 42
POSIX to iRMX file ownership, 42

translation mode, 87, 212
tzname, 266
tzname macro, 261
tzname variable, 265
tzset() function, 265

U
UDI string

converting, 56
udistr() function, 56
ultoa() function, 267
umask() function, 268
ungetch() function, 270
unlink() function, 271

user ID, 127
getting, 127

utime() function, 272
utoa() function, 267

V
va_arg() function, 273
va_end() function, 273
va_start() function, 273
variable-argument list, 273, 275
vfprintf() function, 275
vprintf() function, 275
vsprintf() function, 275

W
wcstombs() function, 277
wctomb() function, 278
wide characters, 155, 156

converting, 277, 278
World owner, 41
write() function, 279
writing

character to stream, 114
character to stream, stdout, 182
data to file, 279
error message to stderr, 173
formatted data to stream, 100
formatted string to stdout, 175, 275
formatted string to stream, 275
formatted string to string, 222, 275
from buffer to file, 77
integer to stream, 187
single character to stdout, 101
single character to stream, 101
string to stdout, 186
string to stream, 102
to console, 50

Y
y0() function, 34
y1() function, 34
yn() function, 34
<yvals.h> file, 20

	iRMX® C Library Reference
	Quick Contents
	Notational Conventions
	Related Publications

	Contents
	Chapter 1: Introduction
	Shared C Library Overview
	Shared C Library Advantages
	Resources Allocated to C Tasks and Jobs

	Supplied C Library Files
	The Cstart Module

	DOS Syntax
	Support for Development Tools
	Header Files

	Chapter 2: Functional Groupings
	Character Processing Functions
	Control Functions
	Conversion Functions
	DOS Console I/O Functions
	DOS Interface Functions
	File Management Functions
	Input/Output Functions
	iRMX-specific Functions
	Low-level I/O Functions
	Math Functions
	Memory Functions
	Searching and Sorting Functions
	Storage Allocation Functions
	String Processing Functions
	Time and Date Functions
	Variable Argument Functions

	Chapter 3: Functions
	abort
	abs
	acos
	asctime
	asin
	assert
	atan, atan2
	atexit
	atof, atoi, atol
	Bessel Functions
	bsearch
	cabs
	calloc
	ceil
	cgets
	chmod
	chsize
	clearerr
	clock
	close
	closedir
	cos, cosh
	cprintf
	cputs
	creat
	cscanf
	_cstop
	cstr, udistr
	ctime
	difftime
	div
	_dos_allocmem
	_dos_close
	_dos_creat, _dos_creatnew
	_dos_findfirst, _dos_findnext
	_dos_freemem
	_dos_getdate
	_dos_getftime
	_dos_gettime
	_dos_open
	_dos_read
	_dos_setdate
	_dos_setftime
	_dos_settime
	_dos_write
	dup, dup2
	ecvt
	eof
	exit, _exit
	exp
	fabs
	fclose, fcloseall
	fcvt
	fdopen
	feof
	ferror
	fflush
	fgetc, fgetchar
	fgetpos
	fgets
	filelength
	fileno
	floor
	flushall
	fmod
	fopen
	fprintf
	fputc, fputchar
	fputs
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	fstat
	ftell
	ftoa
	fwrite
	gcvt
	_get_arguments
	getc, getchar
	getch, getche
	getenv
	_get_cs
	_get_ds
	_get_ss
	_get_info
	getopt
	getpid, getuid
	_get_rmx_conn
	gets
	getw
	gmtime
	is Functions
	isatty
	itoa
	itoh
	labs
	ldexp
	ldiv
	lfind
	localeconv
	localtime
	log, log10
	longjmp
	lsearch
	lseek
	ltell
	ltoa
	ltoh
	ltos
	malloc
	matherr
	mblen
	mbstowcs
	mbtowc
	memccpy
	memchr
	memcmp
	memcpy
	memicmp
	memmove
	memset
	mkdir
	mktemp
	mktime
	modf
	onexit
	open
	opendir
	perror
	pow
	printf
	putc, putchar
	putch
	putenv
	_put_rmx_conn
	puts
	putw
	qsort
	raise
	rand
	read
	readdir
	realloc
	rename
	rewind
	rewinddir
	rmdir
	rmtmp
	sbrk
	scanf
	setbuf
	_set_info
	setjmp
	setlocale
	setmode
	setvbuf
	signal
	sin, sinh
	sleep
	sopen
	sprintf
	sqrt
	square
	srand
	sscanf
	stat
	strcat
	strchr
	strcmp, strcmpi, stricmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strftime
	strlen
	strlwr
	strncat
	strncmp
	strncpy
	strnicmp
	strnset
	strpbrk
	strrchr
	strrev
	strset
	strspn
	strstr
	strtod, strtol, strtoul
	strtok
	strupr
	strxfrm
	swab
	system
	tan, tanh
	time
	time macros, _tzset_ptr
	tmpfile
	tmpnam
	toascii, tolower, _tolower, toupper, _toupper
	tzset
	ultoa, utoa
	umask
	ungetch
	unlink
	utime
	va_arg, va_end, va_start
	vfprintf, vprintf, vsprintf
	vfscanf, vscanf, vsscanf (ANSI, stdio)
	wcstombs
	wctomb
	write

	Index

