
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

IC-386 Compiler
User’s Guide

07-0577-01
December 1999

ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 1999 by RadiSys Corporation

All rights reserved

iC-386 Compiler User's Guide iii

Quick Contents

Chapter 1. Overview

Chapter 2. Compiling and Binding

Chapter 3. Compiler Controls

Chapter 4. Segmentation Memory Models

Chapter 5. Listing Files

Chapter 6. Processor-specific Facilities

Chapter 7. Assembler Header File

Chapter 8. Function-calling Conventions

Chapter 9. Subsystems

Chapter 10. Language Implementation

Chapter 11. Messages

Glossary

Index

iv

Notational Conventions
The iC-386 Compiler User's Guide uses the following notational conventions:

italics Italics indicate a symbol that is replaced with an identifier, an
expression, or a value.

monospace type Type of this style represents syntax, filenames, program
examples, or computer output.

iC-386 Compiler User’s Guide Contents v

Contents

1 Overview
Software Development With iC-386 ...1

Using the Run-time Libraries ...2
Debugging ..2
Optimizing..4
Using the Utilities...4
Programming for Embedded ROM Systems ..5

Compiler Capabilities ..5
Compatibility With Other Development Tools..6
About This Manual ..7

Related Publications ...7

2 Compiling and Binding
Using Files and Directories ...9
Invoking the iC-386 Compiler ...10

Invocation Syntax on iRMX Systems...10
Invocation Syntax on DOS Systems...11
Sign-on and Sign-off Messages ..12

Files That the Compiler Uses ..13
Work Files ..14
Object File ..14
Listing Files..14

Using Submit, Batch and Command Files ...17
Using iRMX Submit Files ..17
Using DOS Batch Files for DOSRMX Systems...................................18
Using DOS Command Files in DOSRMX Systems20

Binding Object Files ..22
Choosing the Files to Bind ...22
Examples of Binding ..24

BND386 Example on DOS Systems ...24
In-line Functions..25
Compiling at Different Optimization Levels ...27

Contentsvi

Results at Optimization Level 0 ...27
Results at Optimization Level 1 ...31
Results at Optimization Level 2 ...33
Results at Optimization Level 3 ...35

3 Compiler Controls
How Controls Affect the Compilation...39
Where to Use Controls ..40
Alphabetical Reference of Controls...44
align | noalign ..45
code | nocode ...51
codesegment ..53
compact ...54
cond | nocond...56
datasegment...57
debug | nodebug...58
define...60
diagnostic ..62
eject ...64
extend | noextend...65
fixedparams ...66
include ...69
interrupt ...71
line | noline ..72
list | nolist ..73
listexpand | nolistexpand..75
listinclude | nolistinclude ...76
long64 | nolong64 ..78
mod486 | nomod486 ..79
modulename ..81
object | noobject...82
optimize...84
pagelength ...88
pagewidth ..89
preprint | nopreprint ...90
print | noprint ...92
ram | rom ...94
searchinclude | nosearchinclude...96
signedchar | nosignedchar..98
srclines | nosrclines..99
subsys .. 100
symbols | nosymbols.. 102

iC-386 Compiler User’s Guide Contents vii

tabwidth ...103
title...104
translate | notranslate ...105
type | notype...106
varparams ..108
xref | noxref ...111

4 Segmentation Memory Models
How the Binder Combines Segments ..113

Combining iC-386 Segments With BND386......................................114
How Subsystems Extend Segmentation..114

Compact Segmentation Memory Model ..115
Compact Model ..116

Using near and far ...118
Addressing Under the Segmentation Models......................................119
Using far and near in Declarations ...120
Examples Using far ..121

5 Listing Files
Preprint File ...125

Macros..126
Include Files ...127
Conditional Compilation ..128
Propagated Directives...128

Print File ..129
Print File Contents..129
Page Header..130
Compilation Heading..130
Source Text Listing ..131
Remarks, Warnings, and Errors..132
Pseudo-assembly Listing ..132
Symbol Table and Cross-reference...133
Compilation Summary..133

6 Processor-specific Facilities
Making Selectors, Far Pointers, and Near Pointers....................................138
Using Special Control Functions ...139
Examining and Modifying the FLAGS Register..140
Examining and Modifying the Input/Output Ports.....................................144
Enabling and Causing Interrupts..146

Contentsviii

Interrupt Handlers .. 146
Protected Mode Features of Intel386 and Higher Processors 148

Manipulating System Address Registers .. 148
Manipulating the Machine Status Word ... 150
Accessing Descriptor Information.. 152
Adjusting Requested Privilege Level ... 158

Manipulating the Control, Test, and Debug Registers of Intel386™, Intel486™, and
Pentium Processors .. 159

Managing the Features of the Intel486 and Pentium Processors................ 162
Manipulating the Numeric Coprocessor .. 163

Tag Word ... 165
Control Word.. 166
Status Word.. 168
Intel387™ Numeric Coprocessor, and Intel486 or Pentium Processor FPU Data

Pointer and Instruction Pointer ... 172
Saving and Restoring the Numeric Coprocessor State 173

7 Assembler Header File
Macro Selection... 175
Flag Macros... 181
Register Macros... 182
Segment Macros .. 183
Type Macros.. 185
Operation Macros .. 186

External Declaration Macros.. 186
Instruction Macros.. 187
Conditional Macros .. 188
Function Definition Macros ... 188

%function .. 189
%param ... 190
%param_flt .. 191
%auto... 192
%prolog ... 193
%epilog.. 194
%ret ... 195
%endf .. 196

8 Function-calling Conventions
Passing Arguments .. 199

FPL Argument Passing... 200
VPL Argument Passing .. 201

iC-386 Compiler User’s Guide Contents ix

Returning a Value..202
Saving and Restoring Registers ...203
Cleaning Up the Stack ...204

9 Subsystems
Dividing a Program into Subsystems...206
Segment Combination in Subsystems..209

Compact-model Subsystems...209
Efficient Data and Code References...210

Creating Subsystem Definitions ..211
Open and Closed Subsystems...211
Syntax...212

Example Definitions ..217
Creating Three Compact-model RAM Subsystems............................217

10 Language Implementation
Data Types...221

Scalar Types ...222
Aggregate Types...224
Void Type...224

iC-386 Support for ANSI C Features...225
Lexical Elements and Identifiers ..225
Preprocessing..225

Implementation-dependent iC-386 Features ..227
Characters...227
Integers...227
Floating-point Numbers..228
Arrays and Pointers ..228
Register Variables ..229
Structures, Unions, Enumerations, and Bit Fields229
Declarators and Qualifiers..230
Statements, Expressions, and References ...231
Virtual Symbol Table ...231

11 Messages
Fatal Error Messages ...234
Error Messages ..239
Warnings ...249
Remarks...254
Subsystem Diagnostics ..255
Internal Error Messages...256
iRMX Condition Codes in Error Messages ...256

Contentsx

Glossary 271

Index 279

iC-386 Compiler User’s Guide Contents xi

Tables
1-1. Assemblers, Compilers, Debuggers, and Utilities ... 19
1-2. Intel386, Intel486, or Pentium Processor and Tool Publications..................... 20
2-1. In-line Functions.. 38
3-1. Compiler Controls Summary ... 53
3-2. Compiler Exit Status.. 75
4-1. iC-386 Segment Definitions for Compact-model Modules 128
4-2. Segmentation Models and Default Address Sizes ... 131
5-1. iC-386 Predefined Macros... 138
5-2. Controls That Affect the Print File Format.. 141
5-3. Controls That Affect the Source Text Listing.. 144
6-1. Built-in Functions in i86.h... 148
6-2. Built-in Functions in i186.h... 148
6-3. Built-in Functions in i286.h... 149
6-4. Built-in Functions in i386.h... 149
6-5. Built-in Functions in i486.h... 149
6-6. Flag Macros... 154
6-7. Machine Status Word Macros ... 163
6-8. General Descriptor Access Rights Macros .. 167
6-9. Segment Descriptor Access Rights Macros ... 168
6-10. Special Descriptor Access Rights Macros ... 169
6-11. Control Register 0 Macros for Intel386, Intel486,

and Pentium Processors ... 174
6-12. Numeric Coprocessor Tag Word Macros .. 178
6-13. Numeric Coprocessor Control Word Macros .. 180
6-14. Intel387 Numeric Coprocessor, and Intel486 or

Pentium Processor FPU Condition Codes ... 183
6-15. Numeric Coprocessor Status Word Macros... 185
7-1. Assembler Header Controls for Macro Selection .. 190
7-2. Assembler Flag Macros Set by Header Controls ... 195
7-3. Assembler Register Macros... 196
7-4. ASM386 Segment Macro Expansion for Compact Memory Model................ 197
7-5. ASM386 Type Macro Expansion for Compact Memory Model 199
7-6. ASM386 External Declaration Macro Expansion for

Compact Memory Model ... 201
8-1. iC-386 FPL and VPL Return Register Use.. 216
8-2. iC-386 FPL and VPL Register Preservation.. 217
9-1. iC-386 Segment Definitions for Compact-model Subsystems......................... 224
9-2. Subsystems and Default Address Sizes ... 225
10-1. Intel386 Processor Scalar Data Types ... 237

Contentsxii

Figures
1-1. 32-bit Protected Mode iRMX Application Development................................ 15
2-1. Input and Output Files ... 25
2-2. Controls That Create or Suppress Files ... 27
2-3. Redirecting Input to a DOS Batch File.. 31
2-4. Choosing Libraries to Bind with iC-386 Modules... 35
2-5. Pseudo-assembly Code at Optimization Level 0 ... 40
2-6. Part of the Pseudo-assembly Code at Optimization Level 1............................ 43
2-7. Part of the Pseudo-assembly Code at Optimization Level 2............................ 45
2-8. Part of the Pseudo-assembly Code at Optimization Level 3............................ 47
3-1. Effect of iC-386 align Control on Example Structure Type 61
3-2. Effect of iC-386 noalign Control on Example Structure Type 62
4-1. Creating a Compact RAM Program .. 129
4-2. Creating a Compact ROM Program .. 130
6-1. FLAGS and EFLAGS Register ... 153
6-2. Gate Descriptor ... 159
6-3. Machine Status Word .. 162
6-4. Segment Descriptor ... 164
6-5. Special Descriptor ... 167
6-6. Selector.. 170
6-7. Control, Test, and Debug Registers of Intel386, Intel486,

and Pentium Processors ... 172
6-8. Control Register 0 of Intel386, Intel486, and Pentium Processors.................. 174
6-9. Numeric Coprocessor Stack of Numeric Data Registers 176
6-10. Intel387 Numeric Coprocessor or Intel486 and

Pentium Processor FPU Environment Registers.. 177
6-11. Numeric Coprocessor Tag Word... 178
6-12. Numeric Coprocessor Control Word... 179
6-13. Numeric Coprocessor Status Word ... 182
6-14. Intel387 Numeric Coprocessor, and Intel486=or

Pentium Processor FPU Data Pointer and Instruction Pointer..................... 186
7-1. Precedence Levels of Assembler Header Controls.. 193
8-1. Four Sections of Code for a Function Call .. 212
9-1. Subsystems Example Program Structure ... 220
9-2. Subsystems Example Program in Regular

Compact Segmentation Memory Model ... 221
9-3. Subsystems Example Program Using Small-model Subsystems 222

iC-386 Compiler User's Guide Chapter 1 1

Overview 1
This chapter provides an overview of the iC-386 compiler and run-time libraries
(referred to as iC-386) and their role in developing applications. References
throughout the chapter direct you to more detailed information. This chapter contains
information on:

• Development of an application using an iC-386 compiler and related RadiSys
development tools

• Compiler capabilities

• Compatibility with other translators and utilities

• This manual and related publications

Software Development With iC-386
The iC-386 compiler supports modular, structured development of applications.
Figure 1-1 shows the development paths using the iC-386 compiler. Some of the
tasks in developing a modular, structured iC-386 application are:

• Compile and debug application modules separately.

• Select appropriate optimizations for the code.

• Use BND386 to bind the compiled modules and libraries to create a loadable
file. Use BLD386 to create a bootloadable file for ICU-configurable iRMX

systems.

See also: Examples of binding, in Chapter 2

• Use OH386 to prepare the code for programming into ROM.

• For ICU-configurable systems, use the interactive configuration utility (ICU) to
combine an application with the first level or I/O layer of an iRMX system.

• Use the Soft-Scope debugger to debug your application. You can also use an
ICE in-circuit emulator or the iRMX Bootstrap Loader and the iRMX System
Debugger.

2 Chapter 1 Overview

Using the Run-time Libraries
The iRMX Operating System (OS) C library and interface library support the entire
ANSI C library definition and provide a useful variety of supplementary functions
and macros. These supplementary library facilities are defined by the IEEE Std
1003.1-1988 Portable Operating System Interface for Computer Environments
(POSIX), the AT&T System V Interface Definition (SVID), or widely used
non-standard libraries.

See also: C Library Reference for description of the iC-386 libraries,
supplementary functions and macros
Library file names, binding, in Chapter 2

Correct Errors Found During Debugging

Text Editor

Source
Code

Bound
Modules

iRMX Target
System

iRMX
Target System

Load into Emulation and Analysis
Tools for Cross-hosted Debugging

Correct Errors Found During Debugging

W-3359

iRMX
Application

System with
32-bit First

Level
or I/O Job

Correct Errors Found During Translation

Create and Maintain
Libraries With

Bind Object
Files With

Translate
With

Write Source
File With

Debug Application
Software on Target

With

ASM386

iC-386

PL/M-386

Load for Cross-hosted
Symbolic Debugging With

Combine Into
iRMX III Operating

System With

Build
Application

System With

(BLD386 Automatically
Invoked by Submit File)

Fortran-386

Linkable
OMF386
Object
Code

BND386

LIB386

Soft-Scope
Debugger

Executable
iRMX®
32-bit

Program

Using
noload
Option

Using
load

Option

Load for On-target
Assembly-language

Debugging Using SDB/SDM
With

Load for On-target
Symbolic Debugging With

Submit
File

BLD386

Bootstrap
Loader

DOS

= ICU-configurable systems only.

ICU386

Bootstrap
Loader

Soft-Scope
Debugger

Soft-Scope
Debugger

Figure 1-1. 32-bit Protected Mode iRMX Application Development

Debugging
At logical stages in the application development, use a source-level symbolic
debugger such as Soft-Scope or an in-circuit emulator to debug and test the

iC-386 Compiler User's Guide Chapter 1 3

application. iC-386 supports debugging by enabling you to specify the amount of
symbolic information in the object code and to customize the output listing. Use
these controls when compiling modules for debugging:

• The preprint control creates a listing file of the code after preprocessing but
before translation.

• The type control includes function and data type definition (typedef)
information in the object file for intermodule type checking and for debuggers.

• The debug control includes symbolic information in the object file which is used
by symbolic debuggers and emulators.

• The line control includes source-line number information in the object file,
which debuggers use to associate source code with translated code.

• The code control generates a pseudo-assembly language listing of the compiled
code.

• The optimize(0) control ensures the most obvious match between the source
text and the generated object code.

• The listing selection and format controls customize the contents and appearance
of the output listings.

• The debugging information generated by the iC-386 compiler is compatible with
current versions of Soft-Scope and in-circuit emulators capable of loading the
object module format (OMF).

See also: Detailed descriptions of each control, in Chapter 3

4 Chapter 1 Overview

Optimizing
Optimized code is more compact and efficient than unoptimized code. The iC-386
compiler has several controls to adjust the level of optimization performed on your
code. These controls adjust optimization:

• The align | noalign control specifies whether to generate aligned STRUCTS
or non-aligned STRUCTS.

• The optimize control specifies the level of optimization the compiler performs
when generating object code. The iC-386 compiler provides four levels of
optimization: 0, 1, 2, and 3; the higher the number, the more extensive the
optimization. Object code generated with a higher level of optimization usually
occupies less space in memory and executes faster than the code generated with
a lower level of optimization. However, the compiler takes longer to generate
code at a high level of optimization than at a low level.

• The compact control sets the memory segmentation model.

See also: Memory segmentation model in Chapter 4, examples of code generated
at each optimization level in Chapter 2, and detailed descriptions of
each control in Chapter 3

Using the Utilities
The utilities also support modular application development. A list of all the
publications for the utilities is included in this chapter. These utilities aid in the
software development process:

• LIB386 organizes frequently used object modules into libraries.

• BND386 binds together object modules from the translators. The binder
produces a relocatable loadable module or a module for incremental binding.

• For ICU-configurable systems, BLD386 locates or builds an executable,
bootloadable system.

• OH386 converts object code into hexadecimal form for programming into ROM.

• For ICU-configurable systems, use the Interactive Configuration Utility (ICU) to
generate a submit file that builds the final application system. In iRMX
applications, the submit file automatically invokes BLD386 to assign the
absolute addresses to the application.

See also: LIB386, BND386, and OH386, Intel386 Family Utilities User's
Guide
BND386, Intel386 Family System Builder User's Guide

iC-386 Compiler User's Guide Chapter 1 5

Programming for Embedded ROM Systems
This section only applies to ICU-configurable systems.

Use the rom compiler control to locate constants with code in the object module.
Bind your object modules with startup code. Use the BLD386 utility to assign
absolute addresses to your linked application.

Absolutely located Intel OMF object code is ready to use with the Intel iPPS PROM
programming software. The OH386 utilities convert absolute or OMF386 code into
hexadecimal form for use with non-Intel PROM programming utilities.

See also: ram | rom control description in Chapter 3

Compiler Capabilities
The iC-386 compiler translates C source files and produces code for the Intel386,
Intel486 or Pentium® processors.

The executable programs can be targeted for these environments:

• An Intel386/Intel486/Pentium processor-based system running the iRMX OS

• A custom-designed Intel386/Intel486/Pentium processor-based system running
the iRMX OS

The iC-386 compiler generates floating-point instructions for the Intel387 numeric
coprocessor, and the Intel486 or Pentium microprocessor floating-point unit.

The iC-386 compiler conforms to the 1989 American National Standard for
Information Systems - Programming Language C (ANS X3.159-1989), and provides
some useful extensions enabled by the extend compiler control.

See also: extend control description in Chapter 3

6 Chapter 1 Overview

Compatibility With Other Development Tools
Table 1-1 shows the compatible Intel assemblers, compilers, debuggers, and utilities.

Table 1-1. Assemblers, Compilers, Debuggers, and Utilities

Tool
Tool Name for Each Intel386, Intel486,
or Pentium Processor

assembler ASM386

C compiler iC-386

FORTRAN compiler Fortran-386

PL/M compiler PL/M-386

Soft-Scope debugger

binder BND386

absolute locator BLD386*

librarian LIB386

cross-reference utility MAP386

object-to-hex converter OH386

* For ICU-configurable systems only

The iC-386 compiler is largely compatible with previous Intel C compilers. The
extend control enables the compilers to recognize the alien, far, and near

keywords.

See also: extend control description in Chapter 3, far and near keywords in
Chapter 4, alien keyword in Chapter 10

Modules compiled by the iC-386 compiler can refer to object modules created with
RadiSys assemblers and other RadiSys compilers. Use only RadiSys compilers or
translators to ensure compatibility with the memory segmentation model of the
application.

See also: Memory segmentation models in Chapter 4, facilities that aid
interfacing with assembler modules in Chapter 7, function-calling
conventions of iC-386 in Chapter 8

iC-386 Compiler User's Guide Chapter 1 7

About This Manual
The iC-386 Compiler User's Guide describes how to use the iC-386 compiler in the
iRMX and DOS environments. This manual applies to Versions 4.5 and later of the
iC-386 compiler.

This manual does not teach either programming techniques or the C language.

Related Publications
Table 1-2 identifies additional publications that describe the other development tools
you are most likely to use when programming with iC-386. The table also identifies
the programmer's reference manuals for the processors for which the iC-386 compiler
generates object code.

Table 1-2. Intel386, Intel486, or Pentium Processor and Tool Publications

Title Contents

ASM386 Macro Assembler Operating
Instructions

assembler operation

ASM386 Assembly Language Reference
Manual

assembly language for the Intel386 and
Intel486 processors

Intel386 Family System Builder User's Guide utility for building complete systems

Intel386 Family Utilities User's Guide utilities for binding, mapping, and
maintaining libraries

80386 System Software Writer's Guide advanced programming guidelines

386 DX Microprocessor Programmer's
Reference Manual

Intel386 DX architecture and assembly
language

387 DX Microprocessor Programmer's
Reference Manual

Intel387 DX coprocessor architecture and
numerics assembly instructions

Pentium Processor User's Manual Intel Pentium processor operation and use
(3 volume set)

See also: The Customer Literature Guide for part numbers and to identify other
appropriate user's guides and manuals

■■ ■■ ■■

8 Chapter 1 Overview

iC-386 Compiler User's Guide Chapter 2 9

Compiling and Binding 2
This chapter provides the information you need to compile and bind an iC-386
program. If you are an experienced iRMX user and have used other Intel
development tools, the most important information you need is in Invoking the
iC-386 Compiler, and in Binding Object Files. Less experienced developers can
obtain information on all of these topics:

• Invoking the compiler - syntax, compiler messages, and the files that the
compiler uses

• Using iRMX submit files

• Using DOS batch and command files

• Binding object files - general syntax, how to choose the libraries you need, and
examples

• Compiling an example at different optimization levels

See also: Various sample programs in the rmx386\demo\c\intro compiler
directory

Using Files and Directories
The iRMX OS arranges files and directories in a hierarchical structure. You can
reference a file or directory literally, by specifying the entire pathname, or indirectly,
by specifying a logical name. A logical name has the format:

:logicalname:

The logicalname is a short name that represents a full pathname.

See also: Logical names, Command Reference

Chapter 2 Compiling and Binding10

Invoking the iC-386 Compiler
This section describes the syntax for invoking the iC-386 compiler, the messages that
the compiler displays on the screen, and the files that the compiler uses.

Invocation Syntax on iRMX Systems
On iRMX systems, the iC-386 compiler invocation command has the format:

ic386 sfile [controls]

Where:

ic386 is an alias used to invoke the compiler. Case is not significant. The
alias is:

run86 :lang:ic386

sfile is the name of the primary source file; compilation starts with this file.
This source file can cause other files to be included by using the
#include preprocessor directive.

controls are the compiler controls. Separate consecutive controls with at least
one space. Case is not significant in controls; however, case is
significant in some control arguments.

See also: Syntax of individual controls in Chapter 3

If you do not specify a logical name or pathname for the directory containing the
compiler, the iRMX system searches through a list of directories. The search path is
set at system configuration time. The :lang: directory is included in the default
search path.

See also: iRMX directory structure, Installation and Startup
search path, Command Reference

This invocation line causes the iRMX system to expand the iC-386 alias and find the
compiler in the directory specified by the iC-386 alias:

- ic386 demo.c

To continue an invocation command on another screen line, type the ampersand
continuation character (&) at the end of each line, press <Enter>, and continue typing
on the next screen line.

iC-386 Compiler User's Guide Chapter 2 11

iRMX limits the invocation line to 80 characters. If your screen width is less than 80
characters, an invocation command longer than the screen width automatically wraps
to the next screen line. If you want to force an invocation line to continue on another
screen line, type the ampersand continuation character (&) at the end of the first line,
press <Enter>, and continue typing at the ** prompt on the next screen line.

For example, this command on an iRMX system invokes the iC-386 compiler to
compile the contents of the file myprog.c in the current directory (:$:) and print the
title Example Program on each page of the listing:

- ic386 myprog.c &

** title("Example Program")

Invocation Syntax on DOS Systems
On DOS, the iC-386 compiler invocation has the format:

ic386 sfile [controls]

Where:

sfile is the name of the primary source file; compilation starts with this file.
This source file can cause other files to be included by using the
#include preprocessor directive.

controls are the compiler controls. Separate consecutive controls with at least
one space. Case is not significant in controls; however, case is
significant in some control arguments.

See also: Syntax of individual controls in Chapter 3

DOS limits the invocation line to 128 characters. If your screen width is less than
128 characters, an invocation command longer than the screen width automatically
wraps to the next screen line.

Names of DOS directories and files are limited to eight characters preceding the
optional period, plus a three-character extension. DOS truncates longer names from
the right.

Chapter 2 Compiling and Binding12

Sign-on and Sign-off Messages
The compiler writes information to the screen at the beginning and the end of
compilation. On invocation, the compiler displays a message similar to this:

system-id iC-386 COMPILER Vx.y

Intel Corporation Proprietary Software

Where:

system-id
identifies your host system.

Vx.y identifies the version of the compiler.

On normal completion, the compiler displays this message if the diagnostic level is 0:

iC-386 COMPILATION COMPLETE. x REMARKS, y WARNINGS, z ERRORS

Where:

x, y, and z indicate how many remarks, warnings, and non-fatal error messages,
respectively, the compiler generated. If the diagnostic level is 1
(default), the message does not identify the number of remarks. If the
notranslate control is in effect, the message does not appear.

See also: diagnostic and notranslate control descriptions in
Chapter 3

On abnormal termination, the compiler displays the message:

iC-386 FATAL ERROR --

message

COMPILATION TERMINATED

Where:

message describes the condition causing the fatal error.

The print file lists the error that ended the compilation. If the noprint control is in
effect, the compiler does not generate a print file, and the console displays any
diagnostics.

iC-386 Compiler User's Guide Chapter 2 13

Files That the Compiler Uses
Output from the compiler usually consists of one object file and zero, one, or two
listing files according to the compiler controls in effect. Figure 2-1 shows the input
and output for files that the compiler uses. The compiler also uses temporary work
files during the compilation process. For DOSRMX systems, the DOS config.sys

file, files specification controls the maximum number of files that DOS allows
open at the same time.

See also: preprint and include control descriptions in Chapter 3, for
information on how many files the compiler has open at one time

The installation utility for the compiler identifies necessary changes to your system
configuration.

Primary
Source

File

Preprint
File

Print
File

Input

Output

Subsystem
Definition

File(s)

Included
File(s)

Object
File

iC-386
Compiler

W-3360

Figure 2-1. Input and Output Files

Chapter 2 Compiling and Binding14

Work Files
The compiler creates and deletes temporary work files during compilation. The
compiler puts the work files either in the root directory of the C: drive or in the
directory specified by the :work: DOS environment variable. To specify a RAM
disk or specific directory for the compiler work files, set :work: to point to the
specific path location. Using a RAM disk can decrease compilation time. For
example, this command directs the temporary files to the root directory on the d:
drive:

C:> set :work:=d:

Be certain not to enter a space between the equals sign (=) and the DOS path
designation, d: in this example. If your host system loses power or some other
abnormal event prevents the compiler from deleting its work files, you can delete the
work files that remain. Such files have a filename consisting of a series of digits and
no extension.

See also: Your DOS documentation for information on RAM disks and
environment variables

Object File
By default, the compiler produces an object file. Use the noobject control or the
notranslate control to suppress creation of an object file.

See also: noobject and notranslate control descriptions in Chapter 3

The default name for the object file is the same as the primary source filename with
the .obj extension substituted. By default, the compiler places the object file in the
directory containing the source file. If a file with the same name already exists, the
compiler writes over it. To override the defaults, use the object control.

The object file contains the compiled object module, which is the relocatable code
and data resulting from successful compilation. Compiler controls and preprocessor
directives specify the information content and configuration of the object module.

Listing Files
The compiler can produce two listing files: a preprint file and a print file. The
preprint file contains the source text after preprocessing. The print file can contain
the source text and pseudo-assembly language code listings, messages, symbol table
information, and summary information about the compilation.

See also: Preprint and print files in Chapter 6;
preprint and print control descriptions in Chapter 3

iC-386 Compiler User's Guide Chapter 2 15

Figure 2-2 summarizes the controls that create or suppress files.

Start

translate
?

No

Preprocess

preprint
?

object
?

print
?

No

No

Compile

Stop

Object
File

Preprint
File

Preprint
File

Preprocess

Yes (Default)

Yes

No
(Default)

Yes (Default)

W3361

Print
File

DCL and
Interactive?

Yes Yes

No Specify Print

Figure 2-2. Controls That Create or Suppress Files

Chapter 2 Compiling and Binding16

The compiler generates the preprint file only when the preprint or notranslate
control is specified. The default name for the preprint file is the same as the primary
source filename with the .i extension substituted. By default, the compiler places
the preprint file in the directory containing the source file. If a file with the same
name already exists, the compiler writes over it. To override the defaults, use the
preprint control.

The preprint file contains an expanded source text listing. The preprint file is
especially useful for observing the results of macro expansion, conditional
compilation, and file inclusion. Compiling the preprint file produces the same results
as compiling the source file, assuming the compiler can expand any macros without
errors.

The compiler generates the print file by default. Use the noprint control to
suppress the print file. The default name for the print file is the same as the primary
source filename with the .lst extension substituted. By default, the compiler places
the print file in the directory containing the source file. If a file with the same name
already exists, the compiler writes over it. To override the defaults, use the print
control.

iC-386 Compiler User's Guide Chapter 2 17

Using Submit, Batch and Command Files
An iRMX submit file contains one or more commands that the iRMX system
executes sequentially. On iRMX systems, use a submit file to invoke the compiler.

DOS offers two ways to invoke a series of commands automatically: batch files and
command files.

Using iRMX Submit Files
Using submit files lets you consistently repeat complex commands without having to
retype the entire command sequence each time. You can create a submit file with
any text editor.

To invoke a submit file, use the submit command as follows:

submit filename

The filename can be a simple name for a submit file in the current directory, or it
can be a pathname to a submit file in a different directory.

To save the console output of the submit file to a file named csave.out, enter:

- submit filename over csave.out echo

Commands in a submit file can contain continuation lines. To continue a command
over two or more lines in a submit file, place an ampersand (&) at the end of each line
to be continued, the same as when typing the command at the system prompt.

You can pass arguments to a command in a submit file by putting parameters as
arguments to the command in the submit file. A parameter in a submit file takes the
form:

%number

Where number indicates the position of the argument in the submit command
invoking the submit file.

In this iRMX example, the parameter %0 contains the value hello.

- submit /intel/gen/bind (hello)

Chapter 2 Compiling and Binding18

Using DOS Batch Files for DOSRMX Systems
A DOS batch file contains one or more commands that DOS executes consecutively.
Batch file commands are valid at the DOS command-line prompt and include special
commands that are valid only within a batch file. All batch files must have the .bat
extension.

You can pass arguments to a DOS batch file. In this example, the 386c.bat batch
file contains a command invoking the iC-386 compiler. Any primary source file with
the .c extension can be the argument for 386c.bat. The batch file contains one
line:

C:\Intel\bin\ic386 %1.c

DOS replaces the %1 parameter with the prog1 argument in this example. To
invoke the batch file, type the pathname of the batch file without its .bat extension
followed by the name of the primary source file without its .c extension. For
example:

C:> 386c prog1

When 386c.bat executes, DOS replaces the %1 parameter by prog1, resulting in
the command:

C:\Intel\bin\ic386 prog1.c

DOS batch files have several other useful features, such as if, goto, for, and call

commands.

See also: Your DOS documentation for explanation of these and other batch file
commands

Consider these characteristics when developing a batch file for the iC-386 compiler:

• An enhancement available in DOS V3.30 and successive versions enables one
batch file to call another batch file and enables control to return to the original
batch file. Use the call filename command.

In earlier versions of DOS, control passes to the called batch file but does not
return to the calling batch file. Place at most one direct batch file invocation as
the last line in a batch file.

• Batch files can contain command labels and control flow commands such as if
and goto. For example, in this command the result of program execution from
the previously executed batch file determines at which label the current batch file
continues execution:

if errorlevel n goto label

iC-386 Compiler User's Guide Chapter 2 19

The value of n is the error code that the last program returned. If the error code
is the same or greater than the value of n, control transfers to the line
immediately after label. The label is any alphanumeric string significant up to
eight characters, on its own line, and prepended by a colon.

See also: diagnostic control description in Chapter 3 for more information
on errorlevel values

• Although a batch file can contain multiple DOS commands, each command must
fit on a single line (128 characters). You cannot use continuation lines in batch
files. To process a longer line, specify a command to redirect input from a file
containing the remainder of the line. The redirected file can contain continuation
lines.

This example shows how to redirect additional input from another file, how to use
parameters, and how to call another batch file in DOS 3.30. Figure 2-3 shows the
relationships between the 386c1.bat batch file, the 386c1.1tx file of filenames,
and the make_map.bat batch file. The example demonstrates the use of redirection
and calling a batch file, and is not a functional example of how to compile and bind
an iC-386 program.

make_map.bat

386cl.ltx

Execute
Second
Batch File
if Linking
is Successful
and Return

386cl.bat

ic386 %1.c

bnd386 %1.obj, & < %0.ltx

IF ERRORLEVEL 1 GOTO FAIL

CALL make_map %1

ECHO. Success

GOTO STOP

:FAIL

ECHO. Failure

:STOP

prog0.obj, &

\intel\lib\cifc32.lib

\intel\bin\map386 %1.bnd

W3362

Redirect Input to
Get Filenames to

Complete
Invocation
of BND386

Figure 2-3. Redirecting Input to a DOS Batch File

Chapter 2 Compiling and Binding20

The DOS batch file %0 parameter always represents the name of the batch file itself
(without the .bat extension). In the preceding example, since 386c1.bat and
386c1.1tx have identical names except for the extension, 386c1.bat can refer to
386c1.1tx as 0%.1tx.

To execute the 386c1.bat batch file and pass prog1 as an argument, at the DOS
command prompt type:

C:> 386c1 prog1

When 386c1.bat executes, it invokes the iC-386 compiler to compile prog1.c,
then invokes BND386 to bind the resulting object module, prog1.obj, to another
object module and a library specified in 386c1.1tx. If the binding is successful, the
make_map.bat file produces a map file named prog1.map.

Using DOS Command Files in DOSRMX Systems
You can invoke the DOS command processor, command.com, with input redirected
from a file called a command file. A DOS command file contains a sequence of
DOS commands and exit as the final command. Be certain that a <CR> follows the
exit command, not an end-of-file character.

See also: DOS command and exit commands, in your DOS documentation

For example, the exemakec.cmd command file contains these commands (not a
functional example of how to compile and bind an iC-386 program):

ic386 prog0.c

ic386 prog1.c

bnd386 prog0.obj, prog1.obj, &

progxs.lib

exit

To sequentially execute the commands in the command file, redirect exemakec.cmd
to command.com by typing, at the DOS prompt:

C:> command < exemakec.cmd

iC-386 Compiler User's Guide Chapter 2 21

Consider these characteristics when developing a command file for the iC-386
compiler:

• This method of redirecting commands works for a command file containing a
fixed sequence of commands only. You cannot pass arguments to a command
file.

• The flow of control is always sequential, from top to bottom of the command
file. Command files do not allow conditional commands such as if or goto.

• You can nest command files. If a command file reinvokes command.com with a
secondary command file, control returns to the primary command file when the
secondary command file exits. To invoke a second command file, insert a line in
the first command file such as:

command < comfile2.cmd

The secondary command file must contain exit as its final command followed
by a <CR>. If it does not, control does not return to the primary command file
until you enter exit at the DOS prompt. Control returns to the point in the
primary file immediately following the point from which the secondary file was
invoked.

• Unlike batch files, command files can contain continuation lines.

If you invoke a command file with output redirected to a file, the command-line
interpreter records all commands from the first line of the command file through the
command exit and all console input and output to the file. For example, this
command invokes the exemakec.cmd command file and creates a log file named
exemakec.log containing a record of all commands:

C:> command < exemakec.cmd > exemakec.log

Chapter 2 Compiling and Binding22

Binding Object Files
The iC-386 compiler supports modular, structured development of applications. You
can compile and debug application modules separately, then bind them together to
create an application. Use the BND386 binder utility for iC-386 modules.

The binder can perform type checking and resolve intermodule references. The
binder can automatically select modules from specified libraries to resolve
references.

This is the general syntax (without device and path designations) for BND386:

bnd386 input_file_list [controls]

Where:

input_file_list is one or more names of linkable files separated by commas.
A linkable file is generated from a high-level language
translator or assembler, or is an incrementally linked module.

controls are the binder controls separated by spaces.

See also: BND386, Intel386 Family System Builder User's Guide

Choosing the Files to Bind
An iC-386 application can consist of many separately translated modules. The
application can call functions from libraries. To create an executable file, you must
use a binder to bind all translated code and libraries together. The iRMX OS includes
the cifc32.lib C interface library; you can include other libraries.

See also: C Library Reference for more information on the C interface library

The iRMX C interface library supports only the compact memory segmentation
model.

The library's segmentation model must be compatible with the application's
segmentation model and whether you compiled with the ram or rom control.

See also: compact, ram, and rom compiler control descriptions in Chapter 3;
segmentation model for iC-386 in Chapter 4

iC-386 Compiler User's Guide Chapter 2 23

Figure 2-4 shows how to select libraries for binding with iC-386 modules.

Optional
User

Libraries

Yes

Program
Object

Modules

iC-386
Start

udiifc32.lib

iC-386
Stop

No

Startup Code

rmxifc32.lib

UDI

iRMX

W3363

cifc32.lib

Figure 2-4. Choosing Libraries to Bind with iC-386 Modules

Chapter 2 Compiling and Binding24

Examples of Binding
You can bind applications for iRMX systems in several different ways to accomplish
several different objectives. This section lists examples of binding modules for
different purposes.

See also: Various sample programs in the rmx386\demo\c\intro compiler
directory

BND386 Example on DOS Systems

The demo.c example is cross-compiled to run under the iRMX OS.

See also: makefile sample code in rmx386\demo\c\intro compiler directory for
demo.c example, invocation and binder parameters

The BND386 invocation links the object modules with the startup code and libraries
and creates a loadable file named demo.

First, the binder invocation list must specify the object module for the C startup code
and the application routines, in that order. Next, the binder links in the C interface
library. Last, the binder links in the iRMX OS interface library.

The renameseg control ensures all library module code segments are named
CODE32, for combining with iC-386 code segments. The rconfigure control
causes BND386 to produce a single-task loadable module that can be loaded by the
iRMX loader. The object control names the executable file demo instead of the
default demo.bnd.

The iRMX C interface library is included with iC-386 for use with applications
written for the iRMX OS. The iRMX system interface library is part of the iRMX
OS.

The application uses the near version of the common elementary functions library.
Because the application runs in the compact segmentation memory model, function
calls are near calls.

See also: compact control description in Chapter 3 and segmentation memory
models in Chapter 4 of this manual
C Library Reference for more information on cstart startup code

iC-386 Compiler User's Guide Chapter 2 25

In-line Functions
The compiler generates in-line machine code by default for several run-time library
functions. The 1989 ANSI C standard specifies that the header file containing the
function declaration can additionally contain a macro definition; the compiler uses
this feature to define in-line versions of some functions. Using the in-line versions of
the functions produces more efficient code. To use the in-line functions, simply
include the appropriate header file.

For example, the stdlib.h header file contains this declaration for the abs absolute
value function:

int abs(int value); /* function prototype declaration */

#pragma _builtin_("_abs_"=33) /* tell compiler about the in-line version */

int _abs_(int value); /* prototype for the in-line version */

#define abs(x) _abs_(x) /* use the in-line version when the abs() */

/* function is called */

Taking advantage of the in-line versions of the functions is transparent within the
program. A fragment of code such as this uses the in-line abs function:

#include <stdlib.h> /* including the appropriate header */

int main (int argc, char * argv[])

{

int i,j;

/* assume that j holds an appropriate value */

i = abs(j); /* uses the in-line function */

}

You can use either of two methods to override the in-line version of the function, and
call the actual function instead: enclose the function name in parentheses when it is
called, or use the #undef preprocessing directive to remove the macro definition that
maps the function to the in-line version. This example calls the function but allows
other calls to use the in-line version:

#include <stdlib.h>

int main (int argc, char * argv[])

{

int i,j;

/* assume that j holds an appropriate value */

i = (abs)(j); /* function call */

}

Chapter 2 Compiling and Binding26

This example un-defines the macro and thus disables the in-line version for the
remainder of the module:

#include <stdlib.h>

#undef abs

int main (int argc, char * argv[])

{

int i,j;

/* assume that j holds an appropriate value */

i = abs(j); /* function call */

}

Table 2-1 lists the iC-386 in-line functions, the header file in which each is defined,
and a brief description of each.

Table 2-1. In-line Functions

Header File Function Description

<string.h> memcpy copies specified number of bytes

memcmp compares specified number of bytes

memset fills memory area with a byte value

strcpy1 copies a constant string

strcmp1 compares to a constant string

<stdlib.h> abs absolute value of integer

labs absolute value of long integer

<math.h> fabs absolute value of floating-point

sqrt non-negative square root

log2 natural logarithm

log102 base 10 logarithm

cos2 cosine of angle in radians

sin2 sine of angle in radians

tan2 tangent of angle in radians

acos2 arc cosine of angle in radians

asin2 arc sine of angle in radians

atan2 arc tangent of angle in radians

atan22 principal value of arc tangent of angle in radians
1 The compiler issues in-line instructions for these functions only if the appropriate arguments are constant

values.
2 This in-line function is provided by the iC-386 compiler only.

iC-386 Compiler User's Guide Chapter 2 27

✏ Note
In-line functions perform no range or domain checking; this
checking is particularly important for floating-point functions. Use
the library function if your application needs such checking.

Compiling at Different Optimization Levels
The optimize control specifies the compiler's optimization level. The compiler has
four optimization levels: 0, 1, 2, and 3, where 0 provides the least optimization and 3
provides the most optimization. Each level performs all the optimizations of the
lower levels.

The optimiz.c example provides source text that demonstrates optimization at each
level. Figures 2-5 through 2-8 show the significant results of compiling with iC-386
at different optimization levels.

See also: optimize control description in Chapter 3, which includes an
explanation of each type of optimization
Sample code in rmx386\demo\c\intro compiler directory for optimiz.c
example

Results at Optimization Level 0
Figure 2-5 shows the iC-386 pseudo-assembly language code for optimization level
0. At this level, constant-folding occurs in statement #10 and operator strength
reduction occurs in statement #15.

Chapter 2 Compiling and Binding28

iC-386 COMPILER Optimization Level 0 mm/dd/yy hh:mm:ss PAGE 2

ASSEMBLY LISTING OF OBJECT CODE

; STATEMENT # 9

main PROC NEAR

00000000 55 PUSH EBP

00000001 8BEC MOV EBP,ESP

@1:

; STATEMENT # 10

00000003 8B0504000000 MOV EAX,j

00000009 81C002000000 ADD EAX,2H

0000000F 890500000000 MOV i,EAX

; STATEMENT # 11

00000015 C7050800000003000000

MOV k,3H

; STATEMENT # 12

0000001F 8B0508000000 MOV EAX,k

00000025 81C003000000 ADD EAX,3H

0000002B 890504000000 MOV j,EAX

; STATEMENT # 13

00000031 8B0508000000 MOV EAX,k

00000037 81C003000000 ADD EAX,3H

0000003D 890500000000 MOV i,EAX

; STATEMENT # 15

00000043 8B0500000000 MOV EAX,i

00000049 D1E0 SAL EAX,1

0000004B 0F8416000000 JZ @2

; STATEMENT # 16

00000051 FF3500000000 PUSH i ; 1

00000057 E800000000 CALL isquare

0000005C 890500000000 MOV i,EAX

00000062 E911000000 JMP @3

; STATEMENT # 17

@2:

Figure 2-5. Pseudo-assembly Code at Optimization Level 0

iC-386 Compiler User's Guide Chapter 2 29

; STATEMENT # 18

00000067 FF3504000000 PUSH j ; 1

0000006D E800000000 CALL isquare

00000072 890500000000 MOV i,EAX

@3:

; STATEMENT # 19

00000078 833D0800000000 CMP k,0H

0000007F 0F840A000000 JZ @4

; STATEMENT # 20

00000085 E90F000000 JMP l1

0000008A E90A000000 JMP @5

; STATEMENT # 21

@4:

; STATEMENT # 22

0000008F C7050800000064000000

MOV k,64H

@5:

; STATEMENT # 24

l1:

00000099 E900000000 JMP l2

; STATEMENT # 25

l2:

0000009E C7050400000064000000

MOV j,64H

; STATEMENT # 26

000000A8 8B050C000000 MOV EAX,a

000000AE C700C8000000 MOV [EAX],0C8H

; STATEMENT # 27

000000B4 8B0504000000 MOV EAX,j

000000BA 890500000000 MOV i,EAX

; STATEMENT # 28

000000C0 5D POP EBP

000000C1 C20800 RET 8H

; STATEMENT # 30

000000C4 C70508000000C8000000

MOV k,0C8H

; STATEMENT # 31

main ENDP

; STATEMENT # 31

Figure 2-5 Pseudo-assembly Code at Optimization Level 0 (continued)

Chapter 2 Compiling and Binding30

MODULE INFORMATION:

CODE AREA SIZE = 000000CEH 206D

CONSTANT AREA SIZE = 00000000H 0D

DATA AREA SIZE = 00000010H 16D

MAXIMUM STACK SIZE = 00000014H 20D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Figure 2-5. Pseudo-assembly Code at Optimization Level 0 (continued)

iC-386 Compiler User's Guide Chapter 2 31

Results at Optimization Level 1
Figure 2-6 shows the changes in statements #12 through #16 when the invocation
uses optimization level 1. The code area size decreases from 208 bytes at
optimization level 0 to 182 bytes at optimization level 1.

iC-386 COMPILER Optimization Level 1 mm/dd/yy hh:mm:ss PAGE 2

ASSEMBLY LISTING OF OBJECT CODE

.

.

.

; STATEMENT # 12

0000001F B803000000 MOV EAX,3H

00000024 D1E0 SHL EAX,1

00000026 890504000000 MOV j,EAX

; STATEMENT # 13

0000002C 890500000000 MOV i,EAX

; STATEMENT # 15

00000032 D1E0 SAL EAX,1

00000034 0F8416000000 JZ @2

; STATEMENT # 16

0000003A FF3500000000 PUSH i ; 1

00000040 E800000000 CALL isquare

00000045 890500000000 MOV i,EAX

0000004B E911000000 JMP @3

; STATEMENT # 17

@2:

; STATEMENT # 18

00000050 FF3504000000 PUSH j ; 1

00000056 E800000000 CALL isquare

0000005B 890500000000 MOV i,EAX

@3:

; STATEMENT # 19

00000061 833D0800000000 CMP k,0H

00000068 0F840A000000 JZ @4

; STATEMENT # 20

0000006E E90F000000 JMP l1

00000073 E90A000000 JMP @5

; STATEMENT # 21

@4:

Figure 2-6. Part of the Pseudo-assembly Code at Optimization Level 1

Chapter 2 Compiling and Binding32

; STATEMENT # 22

00000078 C7050800000064000000

MOV k,64H

@5:

; STATEMENT # 24

l1:

00000082 E900000000 JMP l2

; STATEMENT # 25

l2:

00000087 C7050400000064000000

MOV j,64H

.

.

.

Figure 2-6. Part of the Pseudo-assembly Code at Optimization Level 1 (continued)

iC-386 Compiler User's Guide Chapter 2 33

Results at Optimization Level 2
Figure 2-7 shows the changes in statements #16 through #24 and #30 when the
invocation uses optimization level 2. Labels also change on several instructions. The
code area size decreases from 182 bytes at optimization level 1 to 123 bytes at
optimization level 2.

iC-386 COMPILER Optimization Level 2 mm/dd/yy hh:mm:ss PAGE 2

ASSEMBLY LISTING OF OBJECT CODE

.

.

.

; STATEMENT # 16

0000002F FF3500000000 PUSH i ; 1

00000035 EB06 JMP @1

; STATEMENT # 17

@2:

; STATEMENT # 18

00000037 FF3504000000 PUSH j ; 1

@1:

0000003D E800000000 CALL isquare

00000042 A300000000 MOV i,EAX

; STATEMENT # 19

00000047 833D0800000000 CMP k,0H

0000004E 750A JNZ l1

; STATEMENT # 20

; STATEMENT # 21

; STATEMENT # 22

00000050 C7050800000064000000

MOV k,64H

; STATEMENT # 24

l1:

; STATEMENT # 25

l2:

Figure 2-7. Part of the Pseudo-assembly Code at Optimization Level 2

Chapter 2 Compiling and Binding34

0000005A C7050400000064000000

MOV j,64H

; STATEMENT # 26

00000064 A10C000000 MOV EAX,a

00000069 C700C8000000 MOV [EAX],0C8H

; STATEMENT # 27

0000006F A104000000 MOV EAX,j

00000074 A300000000 MOV i,EAX

; STATEMENT # 28

00000079 5D POP EBP

0000007A C20800 RET 8H

; STATEMENT # 30

; STATEMENT # 31

main ENDP

; STATEMENT # 31

MODULE INFORMATION:

CODE AREA SIZE = 0000007DH 125D

CONSTANT AREA SIZE = 00000000H 0D

DATA AREA SIZE = 00000010H 16D

MAXIMUM STACK SIZE = 00000014H 20D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Figure 2-7. Part of the Pseudo-assembly Code at Optimization Level 2 (continued)

iC-386 Compiler User's Guide Chapter 2 35

Results at Optimization Level 3
Figure 2-8 shows the change in statement #27 when the invocation uses optimization
level 3. In this case, because a pointer is aliasing a variable, the change introduces an
error. The code area size stays the same from optimization level 2, but one assembly
instruction substitutes for two in statement #27.

iC-386 COMPILER Optimization Level 3 mm/dd/yy hh:mm:ss PAGE 2

ASSEMBLY LISTING OF OBJECT CODE

.

.

.

; STATEMENT # 12

0000001A B803000000 MOV EAX,3H

0000001F D1E0 SHL EAX,1

00000021 A304000000 MOV j,EAX

; STATEMENT # 13

00000026 A300000000 MOV i,EAX

; STATEMENT # 15

0000002B D1E0 SAL EAX,1

0000002D 7408 JZ @2

; STATEMENT # 16

0000002F FF3500000000 PUSH i ; 1

00000035 EB06 JMP @1

; STATEMENT # 17

@2:

; STATEMENT # 18

00000037 FF3504000000 PUSH j ; 1

@1:

0000003D E800000000 CALL isquare

00000042 A300000000 MOV i,EAX

; STATEMENT # 19

00000047 833D0800000000 CMP k,0H

0000004E 750A JNZ l1

Figure 2-8. Part of the Pseudo-assembly Code at Optimization Level 3

Chapter 2 Compiling and Binding36

; STATEMENT # 20

; STATEMENT # 21

; STATEMENT # 22

00000050 C7050800000064000000

MOV k,64H

; STATEMENT # 24

l1:

; STATEMENT # 25

l2:

0000005A C7050400000064000000

MOV j,64H

; STATEMENT # 26

00000064 A10C000000 MOV EAX,a

00000069 C700C8000000 MOV [EAX],0C8H

; STATEMENT # 27

0000006F C7050000000064000000

MOV i,64H

; STATEMENT # 28

00000079 5D POP EBP

0000007A C20800 RET 8H

; STATEMENT # 30

; STATEMENT # 31

main ENDP

; STATEMENT # 31

MODULE INFORMATION:

CODE AREA SIZE = 0000007DH 125D

CONSTANT AREA SIZE = 00000000H 0D

DATA AREA SIZE = 00000010H 16D

MAXIMUM STACK SIZE = 00000014H 20D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

Figure 2-8. Part of the Pseudo-assembly Code
at Optimization Level 3 (continued)

iC-386 Compiler User's Guide Chapter 2 37

When you cast a floating point number to an integer, the compiler rounds the result at
Optimization level 3, instead of truncating it as it does at levels 0, 1, and 2. For
example, this code produces different results at different levels:

void main()
{
float f=3.67;
int i;
i = (int)f;
}

Under optimization levels 0, 1, and 2, the compiler truncates the variable i and sets it
equal to 3. At optimization level 3, the compiler rounds it and sets it to 4.

If you want floating point variables to be truncated when they are cast to an integer,
use an optimization level other than 3.

■■ ■■ ■■

Chapter 2 Compiling and Binding38

iC-386 Compiler User's Guide Chapter 3 39

Compiler Controls 3
The compiler controls specify compiler options such as the location of source text
files, the amount of debugging information in the object module, and the format and
location of the output listings. You need not use any controls when you invoke the
compiler. Most of the controls have default settings. Table 3-1 provides default
settings and a brief description of each control.

This chapter contains these topics:

• How controls affect the compilation

• Where to use controls

• Alphabetical reference of controls

How Controls Affect the Compilation
Each control affects the compilation in one of three ways:

Source-processing
controls

specify the names and locations of input files or define macros
at compile time.

Object-file-content
controls

determine the internal configuration of the object file.

Listing controls specify the names, locations, and contents of the output listing
files.

Chapter 3 Compiler Controls40

Where to Use Controls
You can use a compiler control once, multiple times, or only on invocation,
depending on which kind of control it is:

Primary controls apply to the entire module. Specify a primary control in the
compiler invocation or in a #pragma preprocessor directive.
A primary control in a #pragma preprocessor directive must
precede the first executable statement or data definition
statement in the source text. A primary control in the
invocation line overrides any contradictory control specified
in a #pragma.

General controls can change freely within a module. Specify a general control
as often as necessary in the compiler invocation and in
#pragma preprocessor directives anywhere in the source text.

Invocation-only
controls

must never appear in a #pragma preprocessor directive.
Specify an invocation-only control as often as necessary in the
invocation line.

Case is not significant in control names, though it can be significant in arguments to
controls. The iRMX system preserves the case of arguments to controls. DOS
requires quotation marks (") around arguments to controls to preserve case.

Table 3-1 lists the controls with descriptions, defaults, precedence, effects, and usage
classes. Some controls optionally use one or more arguments, indicated by [a].
Some controls require one or more arguments, indicated by a. Certain controls
override other controls, even if stated explicitly. Table 3-1 summarizes such
precedence.

iC-386 Compiler User's Guide Chapter 3 41

Table 3-1. Compiler Controls Summary

Control Description, Default, and Precedence Effect Usage

align [a]
noalign [a]

Aligns or suppresses aligning all structures
of a type to specified byte boundaries.
Default: 4-byte boundaries

Object General

code
nocode

Generates or suppresses pseudo-assembly
object code in the print file.
Default: nocode.

Listing
content

General

codesegment a Names the iC-386 code segment.
Default: CODE32.

Object Primary

compact Specifies segment allocation and segment
register addressing in object module.
Default: small.

Object Primary

cond
nocond

Includes or suppresses uncompiled
conditional code in the print file.
Default: nocond.

Listing
content

General

datasegment a Names the iC-386 data segment.
Default: DATA.

Object Primary

debug
nodebug

Includes or suppresses debug information in
the object module.
Default: nodebug.
nodebug overrides line.

Object Primary

define a Defines a macro. Source Invocation

diagnostic a Specifies the level of diagnostic messages.
Default: diagnostic level 1.

Listing
content

Primary

eject Inserts form feed in print file. Listing
format

General

extend
noextend

Recognizes or suppresses Intel extensions.
Default: noextend.

Source General

fixedparams [a]
varparams [a]

Specifies the FPL or VPL function-calling
convention.
Default:fixedparams for all functions.

Object General

continued

Chapter 3 Compiler Controls42

Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage

include a Specifies a file to process before the primary Source Invocation
source file

interrupt a Specifies a function to be an interrupt
handler.

Object General

line
noline

Generates or suppresses source line number
debug information in the object file.
Default: line if debug or noline if nodebug.

Object Primary

list
nolist

Includes or suppresses source code in the
print file.
Default: list.
nolist overrides cond, listexpand, listinclude.

Listing
content

General

listexpand
nolistexpand

Includes or suppresses macro expansion in
the print file.
Default: nolistexpand.

Listing
content

General

listinclude
nolistinclude

Includes or suppresses text of include files in
the print file.
Default: nolistinclude. nolistinclude overrides
listexpand and cond for include files.

Listing
content

General

long64
nolong64

Sets the size for objects declared with the
long data type.
Default: nolong64.

Object Primary

mod486
nomod486

Uses the Intel486 processor instructions, or
restricts to the Intel386 processor instruction
set.
Default: nomod486.

Object Primary

modulename a Names object module.
Default: sourcename.

Object Primary

object [a]
noobject

Generates and names or suppresses the
object file.
Default: object named sourcename.obj.
noobject overrides all object controls except
as affects the print file.

Object Primary

optimize a Specifies the level of optimization.
Default: optimization level 1.

Object Primary

continued

iC-386 Compiler User's Guide Chapter 3 43

Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage

pagelength a Specifies the number of lines per page in the
print file.
Default: 60

Listing
format

Primary

pagewidth a Specifies the number of characters per line in
the print file.
Default: 120

Listing
format

Primary

preprint [a]
nopreprint

Generates and names or suppresses the
preprint file.
Default: nopreprint if translate or preprint
sourcename if notranslate.

Listing
content

Invocation

print [a]
noprint

Generates and names or suppresses the
print file.
Default: print file named sourcename.lst.
noprint overrides all listing controls except
preprint.

Listing
content

Primary

ram
rom

Puts constants in the data segment or in the
code segment.
Default: ram (constants in data segment).

Object Primary

searchinclude a
nosearchinclude

Specifies a path to prepend to include files or
limits the path to the source directory plus
the :include: path.
Default: nosearchinclude.

Source General

signedchar
nosignedchar

Sign-extends or zero-extends char objects
when promoted.
Default: signedchar.

Object Primary

subsys a Reads a subsystem specification file. Object Primary

symbols
nosymbols

Generates or suppresses the identifier list in
the print file.
Default: nosymbols.

Listing
content

Primary

tabwidth a Specifies the number of characters between
tabstops in the print file.
Default: 4.

Listing
format

Primary

title "a" Places a title on each page of the print file.
Default: "modulename".

Listing
format

Primary

continued

Chapter 3 Compiler Controls44

Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage

translate
notranslate

Compiles or suppresses compilation after
preprocessing.
Default: translate. notranslate overrides all
object and listing controls. notranslate
implies preprint.

Source Invocation

type
notype

Generates or suppresses type information in
the object module.
Default: type.

Object Primary

xref
noxref

Adds or suppresses identifier cross-reference
information in the print file.
Default: noxref xref overrides nosymbols

Listing
content

Primary

Alphabetical Reference of Controls
The entries in this section describe in detail the syntax and function of each compiler
control.

Square brackets ([]) enclose optional arguments for controls. If you do not specify
optional arguments for a particular control, do not use an empty pair of parentheses
either.

Some controls use an optional list of arguments. Separate multiple argument
definitions with commas. Brackets surrounding a comma and an ellipsis ([,...])
indicate an optional list with entries separated by commas.

Enclose a control argument in quotation marks (") if the argument contains spaces or
any of these characters:

, = # ! % ' \ ~ + - ; & | [] < >

Enter all other punctuation as shown, for example, pound signs (#) and equals
signs (=).

General control align | noalign

iC-386 Compiler User's Guide Chapter 3 45

align | noalign
Aligns structures on a specified boundary.

Syntax

align [(structure_tag[=size] [,...])]

noalign [(structure_tag [,...])]

#pragma align [(structure_tag[=size] [,...])]

#pragma noalign [(structure_tag [,...])]

Where:

structure_tag
is a structure tag defined in the source text (not a structure identifier).

size is the number of bytes. The size can be 1 for unaligned (byte
alignment), 2 for alignment to byte addresses evenly divisible by 2, or 4
for alignment to byte addresses evenly divisible by 4.

Abbreviation

[no]al

Default

For iRMX applications, use noalign. The default is align. Data structures
supplied for the iRMX OSs are all unaligned. Use the noalign control for each
structure individually, instead of globally.

The default value for size is 4 bytes for iC-386. The compiler attempts to place
structure components so that they do not cross 4-byte (iC-386) boundaries.

align | noalign General control

Chapter 3 Compiler Controls46

Discussion

Use the align control to minimize the number of alignment boundaries a structure
component can cross. The compiler allocates memory for an aligned-structure
component on the next alignment boundary if the component would otherwise span
that boundary. If a structure component is larger than the space between alignment
boundaries, the component starts on an alignment boundary and still crosses one or
more boundaries. Use the noalign control or the align control with a size of 1 to
allocate structure components on adjacent bytes, leaving no unused bytes.

The processor can require less time to access aligned structures. However, aligned
structures can occupy more space than unaligned structures in memory. The
compiler attaches no symbol or value to holes. The third example shows a map of
how the compiler allocates memory for an aligned structure. The fourth example
shows a map of how the compiler allocates memory for an unaligned structure.

Bit fields smaller than one byte cannot cross byte boundaries regardless of alignment.
Although an unaligned structure cannot contain any unused bytes, it can contain
undefined bits.

To specify 4-byte alignment (iC-386 default) for all structures, use the align control
without arguments. To specify byte alignment for all structures, use the noalign
control without arguments. To specify alignment for all structures of a given type,
identify them by structure_tag. Do not specify structure or type definition
identifiers. To ensure alignment, specify the alignment for the structure tag before
defining the actual structure.

The notranslate control overrides the align and noalign controls. The
noobject control overrides the align and noalign controls except for their effect
on the print file.

General control align | noalign

iC-386 Compiler User's Guide Chapter 3 47

Examples

These examples show different uses of the align and noalign controls.

1. In this example, only structures of the type in argument_list are unaligned;
all other structures in the subsequent source text are aligned on 4-byte boundaries
for iC-386. Use this in the compiler invocation:

noalign (argument_list)

Or use this in the source text:

#pragma noalign (argument_list)

2. This example aligns all structures of the types in the argument list on the
specified boundaries; all other structures in the subsequent source text are
allocated regardless of word boundaries. Use this in the compiler invocation:

noalign align (argument_list)

Or, use this in the source text:

#pragma noalign

#pragma align (argument_list)

3. This example aligns components of a structure on even-byte boundaries. The
structure is declared as follows:

struct std_struct

{

unsigned char m1a;

unsigned char m1b;

unsigned long m4a;

unsigned m2a;

unsigned mba:5;

unsigned mbb:7;

unsigned mbc:6;

double m8a;

};

align | noalign General control

Chapter 3 Compiler Controls48

To align all structures of a particular type, use a type definition:

typedef struct std_struct

{

unsigned char m1a;

unsigned char m1b;

unsigned long m4a;

unsigned m2a;

unsigned mba:5;

unsigned mbb:7;

unsigned mbc:6;

double m8a;

} std_struct_id;

In either case, specify the structure_tag, not a type identifier, in the align
control:

align (std_struct=2)

Figure 3-1 shows how the iC-386 compiler allocates a std_struct structure,
assuming the nolong64 control is in effect.

m4a

mbb mba

mbc

18

16

14

12

10

byte 0

2

4

6

8

m8a

XXXXXXXXXXXXXXXXXXX

XXXXXXX

m2a

m1b m1a

7 70 0

m8a (Continued)

m8a (Continued)

m8a (Continued)

m4a (Continued)

20

W-3365

m2a (Continued)

Figure 3-1. Effect of iC-386 align Control on Example Structure Type

4. This example aligns the components of the structure in the previous example on
1-byte (unaligned) boundaries. Use this control in the compiler invocation:

General control align | noalign

iC-386 Compiler User's Guide Chapter 3 49

noalign (std_struct)

(The align (std_struct=1) control achieves the same alignment.)

align | noalign General control

Chapter 3 Compiler Controls50

Figure 3-2 shows how the iC-386 compiler allocates a std_struct structure,
assuming the nolong64 control is in effect.

m4a

m2a

mbc mbb mba

m8a mbcXXXXXXXXXXX

18

16

14

12

10

byte 0

2

4

6

8

7 70 0

m1b m1a

m4a (Continued)

m8a (Continued)

m8a (Continued)

m8a (Continued)

m8a (Continued)

m2a (Continued)

20

W-3366

Figure 3-2. Effect of iC-386 noalign Control on Example Structure Type

Cross-references

long64 | nolong64

object | noobject

translate | notranslate

General control code | nocode

iC-386 Compiler User's Guide Chapter 3 51

code | nocode
Generates or suppresses pseudo-assembly language code in a listing.

Syntax

[no]code

#pragma [no]code

Abbreviation

[no]co

Default

nocode

Discussion

Use the code control to produce a pseudo-assembly language listing equivalent to the
object code that the compiler generates. The compiler places this listing in the print
file following the source text listing. Use the nocode control (default) to suppress
the pseudo-assembly language listing.

The code control produces a pseudo-assembly listing even if the noobject control
is specified (suppressing the object file) but not if the notranslate control is
specified (suppressing code generation). The noprint control causes the compiler
to suppress all of the print file, including the pseudo-assembly listing, even if code is
specified.

Use the code control:

• To view the effects of different levels of optimization set by the optimize
control

• To view the difference in code the compiler generates under the mod486 and
nomod486 controls (iC-386)

• To view the differences in pointer types the compiler generates under the
extend or noextend controls

• To detect errors when debugging at the assembly-code level

See also: Chapter 5 for more information on the print file

code | nocode General control

Chapter 3 Compiler Controls52

Cross-references

extend | noextend

mod486 | nomod486

object | noobject

optimize

print | noprint

translate | notranslate

Primary control codesegment

iC-386 Compiler User's Guide Chapter 3 53

codesegment
Names the code segment.

Syntax

codesegment (code_segment_name)

#pragma codesegment (code_segment_name)

Where:

code_segment_name
is the name of the iC-386 code segment in the object module.

Abbreviation

cs

Default

The iC-386 compiler uses CODE32 or the subsystem identifier as specified in the
subsystem definition file.

Discussion

Use the iC-386 codesegment control to name the code segment in the object
module. The code segment name is used by the BND386 binder and BLD386
builder. This name also appears in output from MAP386.

This control is provided for compatibility with C-386, Intel's previous compiler for
Intel386 processor code.

✏ Note
Do not use the codesegment control in an invocation that
specifies the subsys control. The compiler issues an error or a
warning, depending on whether the subsys control is found in the
invocation line or in a #pragma preprocessor directive,
respectively.

Cross-references

datasegment

modulename

subsys

compact Primary control

Chapter 3 Compiler Controls54

compact
Specifies the compact segmentation memory model.

Syntax

compact

#pragma compact

Abbreviation

cp

Default

For iRMX applications use compact. The default is small.

Discussion

Use the compact control to specify the compact segmentation model. The compiler
produces an object module containing a code segment, a data segment, and a separate
stack segment. The binder combines the code segments for all modules into a single
code segment in memory and the data segments for all modules into a single data
segment in memory, and reserves a separate segment in memory for the stack. The
compact segmentation model is efficient in both program size and memory access,
and offers the maximum possible space for the stack.

For Intel386 processors, each segment can occupy up to 4 gigabytes of memory.

The processor addresses the compact model program's code segment relative to the
CS register, the data segment relative to the DS register, and the stack segment
relative to the SS register. Depending on whether the rom or ram control is in effect,
the compiler places constants in the code segment or data segment, respectively. All
functions have near pointers and calls. All data pointers are far pointers.

See also: extend|noextend control description in Chapter 3 for more
information about the far and near keywords

Primary control compact

iC-386 Compiler User's Guide Chapter 3 55

If notranslate is specified, the compiler does not generate object code and the
memory model control has no effect. If noobject is specified, the effect of the
memory model control on the object code can be seen in the print file, although the
compiler does not produce a final object file.

See also: Segmentation and the compact memory model in Chapter 4

Cross-references

extend | noextend

object | noobject

ram | rom

translate | notranslate

cond | nocond General control

Chapter 3 Compiler Controls56

cond | nocond
Includes or suppresses uncompiled conditional code in listing.

Syntax

[no]cond

#pragma [no]cond

Abbreviation

[no]cd

Default

nocond

Discussion

Use the cond control to include in the program listing code not compiled because of
conditional preprocessor directives. Use the nocond control (default) to suppress
listing of code eliminated by conditional compilation.

Regardless of these controls, the conditional preprocessor directives (#if, #ifdef,
#ifndef, #elif, #else, and #endif) delimiting the code appear in the source text
listing in the print file.

The nolist, notranslate, and noprint controls override the cond control. If
any of these is in effect, the compiler does not list any source text. The
nolistinclude control overrides the cond control for include files. Neither cond
nor nocond has any effect on the preprint file.

See also: Preprint and print files in Chapter 5

Cross-references

list | nolist

listinclude | nolistinclude

print | noprint

translate | notranslate

Primary control datasegment

iC-386 Compiler User's Guide Chapter 3 57

datasegment
Names the data segment.

Syntax

datasegment (data_segment_name)

#pragma datasegment (data_segment_name)

Where:

data_segment_name
is the name of the iC-386 data segment in the object module.

Abbreviation

ds

Default

The iC-386 compiler uses DATA or the subsystem identifier as specified in the
subsystem definition file.

Discussion

Use the iC-386 datasegment control to name the data segment in the object
module. The data segment name is used by the BND386 binder and BLD386 builder.
This name also appears in output from the MAP386 mapper.

This control is provided for compatibility with Intel's previous compiler for the
Intel386 processor.

✏ Note
Do not use the datasegment control in an invocation that
specifies the subsys control. The compiler issues an error or a
warning, depending on whether the subsys control is found in the
invocation line or in a #pragma preprocessor directive,
respectively.

Cross-references

codesegment

modulename

subsys

debug | nodebug Primary control

Chapter 3 Compiler Controls58

debug | nodebug
Includes or suppresses debug information in the object module.

Syntax

[no]debug

#pragma [no]debug

Abbreviation

[no]db

Default

nodebug

Discussion

Use the debug control to place symbolic debug information used by symbolic
debuggers in the object module. Use the nodebug control (default) to suppress
symbolic debug information. Suppressing symbolic debug information reduces the
size of the object module. Debug information is composed of the name, relative
address, and type of every object and function definition, and the relative address of
each source line both in the source file and in the object file.

The noobject and notranslate controls override the debug and nodebug

controls.

Choose one of these combinations of the debug or nodebug and type or notype
controls to aid debugging:

type debug to include all debug and type information (debug implies
line). This combination allows both type checking and
symbolic debugging using the Soft-Scope source-level
debugger.

type debug noline
to include debug and type information, but no source line
numbers. This combination enables linker type checking and
symbolic debugging, but not source-level debugging.

Primary control debug | nodebug

iC-386 Compiler User's Guide Chapter 3 59

type nodebug to include type definition information for external and public
symbols only. This combination allows type checking by the
binder. Use this combination to reduce the size of the object
module when you are not using a symbolic debugger.

notype nodebug to suppress all debug and type information. This combination
reduces the size of the object module by omitting information
not necessary for execution.

The optimize control can further reduce the size of the object module. However,
higher levels of optimization reduce the ability of most symbolic debuggers to
accurately correlate debug information to the source code. The line control puts
source file and object file line-number information in the object file. The symbols
control puts a listing of all identifiers and their types into the print file. The xref
control puts a cross-reference listing of all identifiers into the print file.

Cross-references

object | noobject

optimize

symbols | nosymbols

translate | notranslate

type | notype

xref | noxref

define Invocation control

Chapter 3 Compiler Controls60

define
Defines a macro.

Syntax

define (name[=body] [,...])

Where:

name is the name of a macro.

body is the text (i.e., value) of the macro. If the body contains blanks or
punctuation, surround the entire body with quotation marks (").

Abbreviation

df

Default

If the definition contains no body, the default value of the macro is 1.

Discussion

Use the define control to create an object-like macro at invocation time. The body
of an object-like macro contains no formal parameters. A macro so defined in the
compiler invocation is in effect for the entire module, until the #undef preprocessor
directive removes it. An attempt to redefine a macro in a #define preprocessor
directive causes an error.

Available memory limits the number of active macro definitions, including macros
defined in the compiler invocation and macros defined with #define in your source
text. Macros are useful when used with conditional compilation preprocessor
directives to select source text at compile time. Do not use the define control for
function-like macros; use the #define preprocessor directive in the source text
instead.

Invocation control define

iC-386 Compiler User's Guide Chapter 3 61

Examples

In this example, using the define control in the invocation determines the result of
conditional compilation. The invocation contains the control:

define (SYS)

The source text contains the lines:

#if SYS

#define PATHLENGTH 128

#else

#define PATHLENGTH 45

#endif

The value of the symbol SYS defaults to 1. PATHLENGTH gets the value 128.

diagnostic Primary control

Chapter 3 Compiler Controls62

diagnostic
Specifies the level of diagnostic messages.

Syntax

diagnostic (level)

#pragma diagnostic (level)

Where:

level is the value 0, 1, or 2. The values correspond to all diagnostic
messages, no remarks, and only errors, respectively.

Abbreviation

dn

Default

diagnostic level 1

Discussion

Use the diagnostic control to specify the level of diagnostic messages that the
compiler produces. A remark points out a questionable construct, such as using an
undeclared function name. A warning points out an erroneous construct, such as a
pointer type mismatch. An error points out a construct that is not part of the C
language, such as a syntax error.

Use the different levels of the diagnostic control:

diagnostic (0) for the compiler to issue all remarks, warnings, and errors

diagnostic (1) (the default) for the compiler to issue warnings and errors but
no remarks

diagnostic (2) for the compiler to issue only error messages

Primary control diagnostic

iC-386 Compiler User's Guide Chapter 3 63

The compiler's exit status is equal to the highest level of diagnostic reported. For
example, if the diagnostic level is 2, the compiler's exit status is 0 if the program
contains no errors but could contain remarks or warnings. At level 2, the compiler's
exit status is non-0 only if the program contains errors, as shown in Table 3-2.

Table 3-2. Compiler Exit Status

Diagnostic
Level Fatal Errors Errors Warnings Remarks Exit Status

2 no
no
yes

no
yes
yes or no

not used
not used
not used

not used
not used
not used

zero
nonzero
nonzero

1 (default) no
no
no
yes

no
no
yes
yes or no

no
yes
yes or no
yes or no

not used
not used
not used
not used

zero
nonzero
nonzero
nonzero

0 no
no
no
no
yes

no
no
no
yes
yes or no

no
no
yes
yes or no
yes or no

no
yes
yes or no
yes or no
yes or no

zero
nonzero
nonzero
nonzero
nonzero

The notranslate control causes preprocessing diagnostics to appear at the console.
The noprint control causes the compiler to display all diagnostic messages at the
console.

Cross-references

print | noprint

translate | notranslate

eject General control

Chapter 3 Compiler Controls64

eject
Causes form feed.

Syntax

eject

#pragma eject

Abbreviation

ej

Discussion

Use the eject control to cause a form feed in the print file at the point where the
control is specified. If you specify the eject control on the invocation line, the form
feed occurs before the text of any source file is listed.

The noprint and notranslate controls suppress the print file, causing the eject
control to have no effect.

The pagelength, pagewidth, tabwidth, and title controls also affect the
format of the print file.

See also: Chapter 5 for a description of the print file

The eject control is a general control. Use it as often as you like in the compiler
invocation or in #pragma preprocessor directives.

Cross-references

pagelength

pagewidth

tabwidth

title

General control extend | noextend

iC-386 Compiler User's Guide Chapter 3 65

extend | noextend
Recognizes or suppresses Intel C extensions.

Syntax

[no]extend

#pragma [no]extend

Abbreviation

[no]ex

Default

noextend

Discussion

Use the extend control to enable the compiler to recognize the non-ANSI alien,
far, and near keywords in the source text, and to allow the dollar sign ($) to be a
non-significant character in identifiers in the source text. Use the noextend control
(default) to suppress recognition of Intel's extensions. These extensions allow
compatibility with earlier versions of Intel C.

See also: fixedparams and varparams control descriptions in Chapter 3 for
information on calling convention compatibility with earlier versions of
Intel C;
alien, far and near keywords in Chapter 10

Cross-references

fixedparams

ram | rom

varparams

fixedparams General control

Chapter 3 Compiler Controls66

fixedparams
Specifies fixed parameter list calling convention.

Syntax

fixedparams [(function [,...])]

#pragma fixedparams [(function [,...])]

Where:

function is the name of a function defined in the source text. Function-name
arguments are case-significant.

Abbreviation

fp

Default

Of the two calling convention specifications (fixedparams and varparams), the
default is fixedparams. If you specify the fixedparams control but do not supply
a function argument, the fixedparams control applies to all functions in the
subsequent source text.

Discussion

Use the fixedparams control (default) to require the specified functions to use the
fixed parameter list (FPL) calling convention. Most of Intel's non-C compilers
generate object code for function calls using the FPL calling convention. Some
earlier versions of Intel C use the variable parameter list (VPL) calling convention.

A function's calling convention dictates the sequence of instructions that the compiler
generates to manipulate the stack and registers during a call to a function. The FPL
calling convention is:

1. The calling function pushes the arguments onto the stack with the leftmost
argument pushed first before control transfers to the called function.

2. The called function removes the arguments from the stack before returning to the
calling function.

The FPL calling convention uses fewer instructions and therefore occupies less space
in memory and executes more quickly than the VPL calling convention.

General control fixedparams

iC-386 Compiler User's Guide Chapter 3 67

A calling convention specified without an argument in the compiler invocation
affects functions throughout the entire module. If a function uses a calling
convention other than the one in effect for the compilation, specify the calling
convention before declaring the function.

If FPL is in effect globally, you can use an ellipsis in a prototype or declaration to
declare a VPL function, or use the varparams control. If VPL is in effect globally,
you must use the fixedparams control in a #pragma preprocessor directive to
declare an FPL function.

If notranslate is specified, the compiler does not generate object code and the
calling convention control has no effect. If noobject is specified, the effect of the
calling convention control on the object code can be seen in the print file, although
the compiler does not produce a final object file.

✏ Note
An error occurs if a function in the source text explicitly declares a
variable parameter list and also is named in the function list for
the fixedparams control. In this example, the ellipsis in the
fvprs function prototype indicates a VPL convention for this
function. Specifying the fixedparams (fvprs) control in this
case causes a compilation error:

#include <stdarg.h>

fvprs (int a, ...);

See also: FPL and VPL calling conventions in Chapter 8,
extend|noextend control description for other information on code
compatibility with previous versions of Intel C,
varparams control description for information on the variable
parameter list calling convention

fixedparams General control

Chapter 3 Compiler Controls68

Examples

1. This combination of controls specifies the variable parameter list convention
(VPL) for all functions in the source file except those in the argument list. Use
the controls on the invocation line as follows:

varparams fixedparams (argument_list)

Or use the controls in #pragma preprocessor directives:

#pragma varparams

#pragma fixedparams (argument_list)

2. This control specifies the fixed parameter list convention (FPL) for all functions
in the source file except those in the argument list. Use the varparams control
on the invocation line to override the default for the functions in the argument
list:

varparams (argument_list)

Or use the varparams control in a #pragma preprocessor directive:

#pragma varparams (argument_list)

Cross-references

extend | noextend

object | noobject

translate | notranslate

varparams

Invocation control include

iC-386 Compiler User's Guide Chapter 3 69

include
Inserts text from specified file.

Syntax

include (filename [,...])

Where:

filename is the file specification (including a directory name or pathname, if
necessary) to be included and compiled before the primary source file.
You do not have to enclose a filename in quotation marks, even if it
contains a pathname.

Abbreviation

ic

Discussion

Use the include control to insert and compile text from files other than the primary
source file. These files are called include files. The compiler processes include files
in the order specified in the filename list before processing the primary source file.

Use the listinclude control to list the contents of the include files in the source
code listing in the print file. Use the searchinclude control to specify a search
path for include files. Use the preprint control and the notranslate control
together to view the resulting order and names of include files without compilation.

Files included by the include control on the invocation line are within the scope of
all macros defined by the define control on the invocation line, regardless of the
order of the controls. Files included by the include control on the invocation line
precede the scope of macros defined by the #define preprocessor directive in the
primary source file. If more than one include control occurs in the invocation, the
compiler includes files in the order specified in the invocation line.

The maximum number of filenames in an instance of the include control is 19. The
maximum number of files open simultaneously during compilation is system-
dependent. The maximum nesting level of include files is 10, unless the preprint
control is in effect, in which case the maximum nesting level is 7.

include Invocation control

Chapter 3 Compiler Controls70

The iC-386 compiler on DOS has two added facilities for searching for files. The
compiler maps slashes (/) in filenames to backslashes (\). When a pathname begins
with an environment variable, the compiler uses the value of the environment
variable as the directory path prefix and applies the mappings to all filenames
including prefixes specified with the searchinclude control.

See also: Example of using the include control on DOS in Chapter 3, Chapter 5
for a description of the print file

Cross-references

listinclude

preprint | nopreprint

searchinclude

General control interrupt

iC-386 Compiler User's Guide Chapter 3 71

interrupt
Specifies a function to be an interrupt handler.

Syntax

#pragma interrupt (function [,...])

Where:

function is the name of a function defined in the source text.

Abbreviation

in

Discussion

Use the interrupt control to specify a function in the source text to handle some
condition signaled by an interrupt. An interrupt-handler function must be of type
void and can neither take arguments nor return a value. The interrupt designation
must precede the function definition. The interrupt control causes the compiler to
generate prolog and epilog code to save and restore registers and return from the
interrupt.

Use the rq_set_interrupt iRMX system call to associate an interrupt function with
an interrupt number. The rq_set_interrupt call puts the address of the function into
the Interrupt Descriptor Table (IDT) for you; do not manipulate this table directly
from your code.

The notranslate control overrides the interrupt control. The noobject
control overrides the interrupt control except for its effect on the print file.

See also: interrupt control description, in Chapter 3 of this manual
Interrupts, and rq_set_interrupt, System Call Reference

Cross-references

object | noobject

translate | notranslate

line | noline Primary control

Chapter 3 Compiler Controls72

line | noline
Generates or suppresses source line number debug information.

Syntax

[no]line

#pragma [no]line

Abbreviation

[no]ln

Default

line when the debug control is in effect

noline when the nodebug control is in effect

Discussion

Use the line control (default) to generate source line number information in the
object file. Use the noline control to suppress this information, reducing the object
file size by as much as 80%. Source line number information is useful when using a
symbolic debugger for source-level debugging.

The nodebug control, the noobject control, and the notranslate control override
the line control.

Cross-references

cond | nocond

listexpand | nolistexpand

listinclude | nolistinclude

pagelength

pagewidth

print|noprint

tabwidth

title

translate | notranslate

General control list | nolist

iC-386 Compiler User's Guide Chapter 3 73

list | nolist
Specifies source text listing in the print file.

Syntax

[no]list

#pragma [no]list

Abbreviation

[no]li

Default

list

Discussion

Use the list control (default) to generate a listing of the source text. The compiler
places the source listing in the print file. Use the nolist control to suppress the
source listing.

The noprint and notranslate controls suppress the entire print file, even if list
is specified. The nolist control overrides the cond control and the listexpand
and listinclude controls.

Several other controls affect the contents of the listing:

• The code control causes pseudo-assembly code to appear after the source listing.

• The cond control causes uncompiled conditional code to appear in the listing.

• The listexpand control causes macros to be expanded in the listing.

• The listinclude control causes text from include files to appear in the listing.

The eject, pagewidth, pagelength, tabwidth, and title controls affect the
format of the print file.

See also: Chapter 5 for a description of the print file

list | nolist General control

Chapter 3 Compiler Controls74

Cross-references

cond | nocond

eject

listexpand | nolistexpand

listinclude | nolistinclude

pagelength

pagewidth

print | noprint

tabwidth

title

translate | notranslate

General control listexpand | nolistexpand

iC-386 Compiler User's Guide Chapter 3 75

listexpand | nolistexpand
Includes or suppresses macro expansion in listing.

Syntax

[no]listexpand

#pragma [no]listexpand

Abbreviation

[no]le

Default

nolistexpand

Discussion

Use the listexpand control to show the results of macro expansion in the source
text listing in the print file. Use the nolistexpand control (default) to suppress the
results of macro expansion. Neither control has any effect on the preprint file.

The compiler marks the macro expansion lines in the listing with a plus (+) in the
line-number column. Macro expansions appear only in the listing for compiled code.
If the preprocessor suppresses compilation of conditional code, the listing does not
include the expansion of any macro invocations in the suppressed code.

Use the cond control to list uncompiled conditional code.

The nolist, notranslate, and noprint controls override the listexpand
control. If any of these is in effect, the compiler does not list any source text. The
nolistinclude control overrides the listexpand control for include files.

See also: Chapter 5 for a description of the print file

Cross-references

cond | nocond

list | nolist

listinclude | nolistinclude

print | noprint

translate | notranslate

listinclude | nolistinclude General control

Chapter 3 Compiler Controls76

listinclude | nolistinclude
Includes or suppresses text from include files in listing.

Syntax

[no]listinclude

#pragma [no]listinclude

Abbreviation

[no]lc

Default

nolistinclude

Discussion

Use the listinclude control to list the text of include files in the source text listing
in the print file. Use the nolistinclude control (default) to suppress the listing of
include files. Neither control has any effect on the preprint file.

The compiler lists files included with the include control before the first line of
source listing. The compiler adds the text of files included with the #include
preprocessor directive after the line with the #include directive. The compiler lists
include files in the order they are specified.

The nolist, notranslate, and noprint controls override the listinclude
control.

When the nolistinclude control is in effect, diagnostic messages for include files
appear in the print file:

• For files included with the include control, diagnostic messages precede the
first line of source text.

• For files included with the #include preprocessor directive, diagnostic
messages appear on the lines immediately after the #include directive.

The compiler lists diagnostic messages in the order in which the associated
conditions occur. Use the diagnostic control to specify the level of messages the
compiler issues.

See also: Chapter 5 for a description of the print file

General control listinclude | nolistinclude

iC-386 Compiler User's Guide Chapter 3 77

Cross-references

diagnostic

include

list | nolist

print | noprint

translate | notranslate

long64 | nolong64 Primary control

Chapter 3 Compiler Controls78

long64 | nolong64
Specifies the size of long objects.

Syntax

[no]long64

#pragma [no]long64

Abbreviation

[no]l64

Default

For iRMX applications, use the default nolong64 unless you are using iRMK calls
that require long64.

Discussion

The nolong64 control (default) specifies that objects declared with the long type
qualifier are 32 bits in length.

The long64 control specifies that objects declared as long are 64 bits in length.
For compatibility, change any longs that need to stay 32 bits to long32. Header
files are independent and not affected by the long64 control.

The long64 compiler switch may be used with C modules that make iRMK system
calls. Under certain circumstances, however, the compiler may hang when compiling
programs with long64 set. C library and POSIX functions do not support long64.

If notranslate is specified, the compiler does not generate object code and the
long64 and nolong64 controls have no effect. If noobject is specified, the effect
of the long64 and nolong64 controls on the object code can be seen in the print
file, although the compiler does not produce a final object file.

See also: iC-386 data types in Chapter 10

Cross-references

object | noobject

translate | notranslate

Primary control mod486 | nomod486

iC-386 Compiler User's Guide Chapter 3 79

mod486 | nomod486
Generates Intel486 processor code or Intel386 processor code.

Syntax

[no]mod486

#pragma [no]mod486

Abbreviation

(none)

Default

nomod486

Discussion

Use the iC-386 mod486 control to cause the compiler to generate code for the
Intel486 processor. This code is particularly suited for fast execution on Intel486
processor-based systems. The code includes code alignment for the CALL
instruction, and different instruction sequences to take advantage of the on-chip
cache. Use the nomod486 control (default) to cause the compiler to generate code
for the Intel386 processor, which also executes on the Intel486 processor.

If notranslate is specified, the compiler does not generate object code and the
instruction set control has no effect. If noobject is specified, the effect of the
instruction set control on the object code can be seen in the print file, although the
compiler does not produce a final object file.

✏ Note
An object module compiled with the mod486 control can execute
on an Intel386 processor, but may execute more slowly than if
compiled with the nomod486 control.

Do not execute a mod486-compiled object module that contains
Intel486 processor built-in functions on an Intel386 processor. The
behavior of such code on an Intel386 processor is unpredictable.

mod486 | nomod486 Primary control

Chapter 3 Compiler Controls80

Cross-references

object | noobject

translate | notranslate

Primary control modulename

iC-386 Compiler User's Guide Chapter 3 81

modulename
Names the object module.

Syntax

modulename (name)

#pragma modulename (name)

Where:

name is the name of the object module (not the object file).

Abbreviation

mn

Default

The compiler uses the source filename without its extension. For example, the
compiler names the object module main for the source file main.c.

Discussion

Use the modulename control to name the object module.

The object module name is used by the binder, and builder. BND386 can rename
object modules. The object module name also appears in the print file.

The notranslate control overrides the modulename control. The noobject
control overrides the modulename control except for its effect on the print file.

✏ Note
A #pragma preprocessor directive specifying the modulename
control must precede any #pragma directives that specify the
subsys control.

Cross-references

object | noobject

translate | notranslate

object | noobject Primary control

Chapter 3 Compiler Controls82

object | noobject
Generates and names or suppresses object file.

Syntax

object [(filename)]

noobject

#pragma object [(filename)]

#pragma noobject

Where:

filename is the file specification (including a directory name or pathname, if
necessary) in which the compiler places the object code.

Abbreviation

[no]oj

Default

object

By default, the compiler places the object file in the directory containing the source
file. The compiler composes the default object filename from the source filename, as
follows:

sourcename.obj

Where:

sourcename
is the filename of the primary source file without its file extension.

For example, by default the compiler creates an object file named main.obj for the
source file main.c.

Primary control object | noobject

iC-386 Compiler User's Guide Chapter 3 83

Discussion

Use the object control to specify a non-default name or directory for the object file.
Use the noobject control to suppress creation of an object file.

The notranslate control suppresses all translation of source code to object code
and suppresses creation of the object file and the print file. The noobject control
does not suppress translation, and the compiler can produce a print file. The
noobject control overrides other object file controls except for their effect on the
print file.

To place a pseudo-assembly language version of the object code in the print file, use
the code control.

Cross-references

code | nocode

translate | notranslate

optimize Primary control

Chapter 3 Compiler Controls84

optimize
Specifies the level of optimization.

Syntax

(level)

#pragma optimize (level)

Where:

level is 0, 1, 2, or 3. The values correspond to the levels of optimization,
with 0 being the lowest level (least optimization) and 3 being the
highest level (most optimization).

Abbreviation

ot

Default

optimization level 1

Discussion

Use the optimize control to improve the space usage and execution efficiency of a
program. Use level 0 when debugging to ensure the closest match between a line of
source text and the generated object code for that line. Each optimization level
performs all the optimizations of all lower levels.

The optimize control is a primary control. Use it in the compiler invocation or in a
#pragma preprocessor directive. A primary control in a #pragma preprocessor
directive must precede the first line of data definition or executable source text. A
primary control in the invocation overrides any contradictory control in a #pragma
preprocessor directive.

See also: compact, debug|nodebug, line|noline, and type|notype

control descriptions for other ways to optimize code size

Folding of Constant Expressions at All Levels

The compiler recognizes operations involving constant operands and removes or
combines them to save memory space or execution time. Addition with 0,
multiplication by 1, and operations on two or more constants fall into this category.
For example, the expression a+2+3 becomes a+5.

Primary control optimize

iC-386 Compiler User's Guide Chapter 3 85

Reducing Operator Strength at All Levels

The compiler substitutes quick operations for longer ones, such as shifting left by 1
instead of multiplying by 2. The substituted instruction requires less space and
executes faster. The addition of identical subexpressions can also generate left shift
instructions.

Eliminating Common Subexpressions at Levels 1, 2, and 3

If an expression reappears in the same block of source text, the compiler generates
object code to reuse rather than recompute the value of the expression. It generates
code to save intermediate results during expression evaluation in registers and on the
stack for later use. The compiler also recognizes commutative forms of
subexpressions. For example, in this block of code the compiler generates code to
compute the value of c*d/3 for the first expression and to save and retrieve it for the
second expression:

a = b + c*d/3;

c = e + d*c/3;

Optimizing the Machine Code of Short Jumps and Moves at Levels 2 and 3

The compiler saves space in the object code by using shorter forms for identical
machine instructions.

Eliminating Superfluous Branches at Levels 2 and 3

The compiler combines consecutive or multiple branches into a single branch.

Reusing Duplicate Code at Levels 2 and 3

Duplicate code can be identical code at the ends of two converging paths, or it can be
machine instructions immediately preceding a loop identical to those ending the loop.
In the first case, the compiler inserts code on only one path and inserts a jump to that
path in the other path. In the second case, the compiler generates a branch to reuse
the code generated at the beginning of the loop.

Removing Unreachable Code at Levels 2 and 3

The compiler eliminates code that can never be executed. The optimization that
removes the unreachable code takes a second pass through the generated object code
and finds areas that can never be reached due to the control structures created in the
first pass.

optimize Primary control

Chapter 3 Compiler Controls86

Reversing Branch Conditions at Levels 2 and 3

The compiler optimizes the evaluation of Boolean expressions, so only the shorter of
two mutually exclusive conditions is evaluated. For example, this if statement on
the left has the execution order of its branches reversed:

if (!a) if (a)

{ {

/* (block 1) */ /* (block 2) */

} /* becomes */ }

else else

{ {

/* (block 2) */ /* (block 1) */

} }

Optimizing Indeterminate Storage Operations at Level 3

The indeterminate storage operations involve pointer indirection. When code assigns
a pointer to refer to a variable, it creates an alias for that variable. A variable
referenced by a pointer has two aliases: the pointer and the name of the variable
itself. Use optimization level 3 when the compiler need not insert code to guard
against aliasing.

The compiler performs this level 3 optimization as follows:

• When the code assigns an expression to a variable, the compiler generates code
to evaluate the expression and assign the result to the variable. The result also
remains in the register used in evaluating the expression.

• When the code subsequently uses the same alias to access the variable, the
compiler does not generate code to access the variable; instead it inserts a
reference to the register.

• The compiler refers to the same register each time the code uses the alias. Run-
time performance is improved because accessing the register executes faster than
accessing the variable in memory.

Primary control optimize

iC-386 Compiler User's Guide Chapter 3 87

This optimization can introduce errors when the code uses multiply-aliased variables.
The compiler does not insert code to check for intermediate references to a variable
using a different alias. If the code modifies a variable using a different alias, the
value in the variable is not necessarily the same as the value in the register referenced
by the compiler. For example, in this code under optimization level 3, y erroneously
acquires the value 1 instead of 2. If the optimization level is less than 3, the compiler
codes the assignment correctly:

int x,y;

int *a = &x; /* *a is aliasing x */

x = 1; /* put a value in x */

a = 2; / x now has value 2 */

y = x; /* trouble at level 3! */

Using the Numeric Coprocessor for Floating-point-to-integer Conversions at
Level 3

Unsafe conversions of floating-point types to integral types can occur at optimization
level 3. The 1989 ANSI C standard specifies that these conversions must use
truncation. At optimization level 3, the numeric coprocessor controls the method
used in rounding. After RESET, the rounding mode of the numeric coprocessor is
round-to-nearest. Therefore, at optimization level 3, the conversion of floating-point
types to integral types usually uses rounding, contrary to the standard. At lower
optimization levels, these conversions use truncation, which is according to the
standard.

Cross-references

code | nocode

compact

debug | nodebug

type | notype

pagelength Primary control

Chapter 3 Compiler Controls88

pagelength
Specifies lines per page in the print file.

Syntax

pagelength control (lines)

#pragma pagelength (lines)

Where:

lines is the length of a page in lines. This value can range from 10 to
32767.

Abbreviation

pl

Default

60 lines per page

Discussion

Use the pagelength control to specify the maximum number of lines printed on a
page of the print file before a form feed is printed. The number of lines on a page
includes the page headings.

The noprint and notranslate controls suppress the print file, causing the
pagelength control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

eject

print | noprint

title

translate | notranslate

Primary control pagewidth

iC-386 Compiler User's Guide Chapter 3 89

pagewidth
Specifies line length in the print file.

Syntax

pagewidth control (chars)

#pragma pagewidth (chars)

Where:

chars is the line length in number of characters. This value ranges from 72

through 132.

Abbreviation

pw

Default

120 characters

Discussion

Use the pagewidth control to specify the maximum length, in characters, of lines in
the print file.

The noprint and notranslate controls suppress the print file, causing the
pagewidth control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

pagelength

print | noprint

tabwidth

translate | notranslate

preprint | nopreprint Invocation control

Chapter 3 Compiler Controls90

preprint | nopreprint
Generates or suppresses a preprocessed source text listing file.

Syntax

preprint [(filename)]

nopreprint

Where:

filename is the file specification (including a directory name or pathname, if
necessary) in which the compiler places the preprint information.

Abbreviation

[no]pp

Default
nopreprint

when the translate control is in effect.

preprint when the notranslate control is in effect.

By default, the compiler places the in the directory containing the source file. The
compiler composes the default preprint filename from the source filename as follows:

sourcename.i

Where:

sourcename
is the filename of the primary source file without its file extension.

For example, by default the compiler creates a preprint file named proto.i for the
source file proto.c.

Discussion

Use the preprint control to create a file containing the text of the source after .
Use the nopreprint control (default) to suppress creation of a preprint file.
Preprocessing includes file inclusion, macro expansion, and elimination of
conditional code. The preprint file is the intermediate source text after preprocessing
and before compilation.

The preprint file is especially useful for observing the results of macro expansion,
conditional compilation, and the order of include files. If the preprint file contains no

Invocation control preprint | nopreprint

iC-386 Compiler User's Guide Chapter 3 91

errors, compiling the preprint file produces the same results as compiling the and any
files included in the compiler invocation.

The preprint control creates a file different from the print file. The eject,
pagelength, pagewidth, tabwidth, and title controls have no effect on the
preprint file.

When the preprint control is in effect, the maximum nesting level of include files
is 7.

See also: Chapter 5 for a description of the print and preprint files

Cross-reference

print | noprint

print | noprint Primary control

Chapter 3 Compiler Controls92

print | noprint
Generates or suppresses the print file.

Syntax

print [(filename)]

noprint

#pragma print (filename)

#pragma noprint

Where:

filename is the file specification (including a directory name or pathname, if
necessary) in which the compiler places the print information.

Abbreviation

pr

Default

print

By default the compiler places the print file in the directory containing the source
file. The compiler composes the default print filename from the source filename, as
follows:

sourcename.lst

Where:

sourcename
is the filename of the primary source file without its file extension.

For example, the compiler creates a print file named main.lst for the source file
main.c.

Discussion

Use the print control to produce a text file of information about the source and
object code. Use the noprint control to suppress the print file. The noprint
control causes the compiler to display diagnostic messages only at the console.

Primary control print | noprint

iC-386 Compiler User's Guide Chapter 3 93

The noprint control overrides all other listing controls except the preprint
control. The notranslate control overrides the print control. The noprint
control causes diagnostic messages to appear at the console.

The print control creates a print file different from the preprint file.

The listexpand|nolistexpand and listinclude|nolistinclude qualifiers
and the code|nocode, cond|nocond, diagnostic, list|nolist,
listexpand|nolistexpand, listinclude|nolistinclude,
symbols|nosymbols, and xref|noxref controls affect the contents of the print
file. The pagewidth, pagelength, tabwidth, and title controls affect the
format of the print file.

See also: Chapter 5 for a description of the print file

Cross-references

code | nocode

cond | nocond

diagnostic

eject

list | nolist

listexpand | nolistexpand

listinclude | nolistinclude

pagelength

pagewidth

preprint | nopreprint

symbols | nosymbols

tabwidth

title

translate | notranslate

xref | noxref

ram | rom Primary control

Chapter 3 Compiler Controls94

ram | rom
Specifies the placement of constants in the object module.

Syntax

ram control

rom control

#pragma ram

#pragma rom

Abbreviation

(none)

Default

ram

Discussion

Use the ram control (default) to place constants in the data segment in memory.
When the ram control is in effect, the compiler initializes to zero all static variables
not explicitly initialized in the source text.

Use the rom control to place constants in the code segment in memory. When the
rom control is in effect, the compiler does not initialize any static variables not
explicitly initialized in the source text. Also, the compiler produces warning
messages for all static variables the code explicitly initializes.

Constants can be defined in the code or defined by the compiler. Constants include
the values of string literals, floating-point literals, and static variables declared with
the const attribute specifier.

The rom or ram control does affect the value of the _ROM_ predefined macro.

See also: Predefined macros in Chapter 5

The compact control determines the segmentation model for the object code. The
segmentation model determines how many code and data segments are present in the
object code.

The notranslate control overrides the ram and rom controls. The noobject
control overrides the ram and rom controls except for their effect on the print file.

See also: Segmentation in Chapter 4

Primary control ram | rom

iC-386 Compiler User's Guide Chapter 3 95

Cross-references

compact

object | noobject

translate | notranslate

searchinclude | nosearchinclude General control

Chapter 3 Compiler Controls96

searchinclude | nosearchinclude
Specifies search paths for include files.

Syntax

searchinclude (pathprefix [,...])

nosearchinclude

#pragma searchinclude (pathprefix [,...])

#pragma nosearchinclude

Where:

pathprefix
is a string of characters that the compiler prepends to the filename
argument of an instance of the include or subsys control, or to the
file argument of an #include preprocessor directive. If the path prefix
contains special characters such as the slash (/), enclose the
pathprefix in quotation marks (").

Abbreviation

[no]si

Default

nosearchinclude

The three default path prefixes are derived from the directory containing the primary
source file, the :include: logical name from the iRMX OS, or the :include:
environment variable from DOS, and the null prefix (current directory). The
compiler always uses the path prefix in the :include: logical name from the iRMX
OS or the :include: environment variable from DOS after the list specified by the
searchinclude control.

The :include: logical name is /intel/gen/inc on iRMX systems. The submit
file is /intel/gen/inc/bind.csd. Attach the library as :include: explicitly
using the iRMX attachfile command.

General control searchinclude | nosearchinclude

iC-386 Compiler User's Guide Chapter 3 97

Discussion

Use the searchinclude control to specify a list of possible path prefixes for
include files. Use the nosearchinclude control (default) to limit the compiler to
the three default search path prefixes. Each pathprefix argument is a string that,
when concatenated to a filename, specifies the relative or absolute path of a file
(including a device name and directory name, if necessary). The compiler tries each
prefix in the order in which they are specified, until a legal filename is found. If a
legal filename is not found, the compiler issues an error.

The DOS :include: environment variable can specify a path prefix to the name of
a directory containing include files.

Include files are files specified with the include control or the subsys control in
the compiler invocation or with the #include preprocessor directive in the source
text.

When the compiler searches for a file specified in the include control, or when it
searches for a source file specified in an #include preprocessor directive, the
compiler tests the prefixes in this order:

1. The source directory prefix

2. The directories specified by the searchinclude list

3. The directory or directories specified by the :include: logical name for the
iRMX OS or environment variable for DOS, if defined

4. The null prefix, that is, the current directory

The iC-386 compiler on DOS has two added facilities for searching for files. The
compiler maps slashes (/) in filenames to backslashes (\). When a pathname begins
with an environment variable, the compiler uses the value of the environment
variable as the directory path prefix and applies the mappings to all filenames
including prefixes specified with the searchinclude control.

Cross-references

include

subsys

signedchar | nosignedchar Primary control

Chapter 3 Compiler Controls98

signedchar | nosignedchar
Sign-extends or zero-extends char objects when promoted.

Syntax

[no]signedchar

#pragma [no]signedchar

Abbreviation

[no]sc

Default

signedchar

Discussion

Use the signedchar control (default) to specify that objects declared to be the char
data type are treated as if they were declared as the signed char data type. The
compiler sign-extends these objects when they are converted to a data type that
occupies more memory.

Use the nosignedchar control to specify that objects declared as the char data type
are treated as if they were declared as the unsigned char data type. The compiler
zero-extends these objects when they are converted to a data type that occupies more
memory.

If notranslate is specified, the compiler does not generate object code and the
signedchar and nosignedchar controls have no effect. If noobject is specified,
the effect of the signedchar and nosignedchar controls on the object code can be
seen in the print file, although the compiler does not produce a final object file.

The signedchar control does not affect the interpretation of objects specifically
declared as either signed char or unsigned char data types.

Cross-references

object | noobject

translate | notranslate

Primary control srclines | nosrclines

iC-386 Compiler User's Guide Chapter 3 99

srclines | nosrclines
Generates or suppresses debug information (iC-386 only).

Syntax

[no]srclines

#pragma [no]srclines

Abbreviation

[no]sl

Default

srclines when the debug and line controls are in effect

nosrclines when the nodebug or noline control is in effect

Discussion

Use the iC-386 srclines control (default) to cause the compiler to add source file
name and source line offset information to the object file. Use the nosrclines
control to suppress this information, reducing the object file size by as much as 80%.
This source file name and offset information is used by some symbolic debuggers for
source-level debugging. Other debuggers, such as Soft-Scope III, do not require this
information.

This control also modifies the amount of object code line offset information
generated by the line control. When srclines is in effect, object code offset
information is generated for every line in the source file (and include files), beginning
with the first line of the source file. When nosrclines is in effect, the compiler
starts emitting object code offset information only when the first executable
statement is encountered; non-executable statements preceding the first executable
statement, such as the definitions and declarations typically contained in header files,
do not cause object code offsets to be emitted.

The noline control, the nodebug control, the noobject control, and the
notranslate control override the srclines control.

Cross-references

debug | nodebug

line | noline

object | noobject

translate | notranslate

subsys Primary control

Chapter 3 Compiler Controls100

subsys
Reads a subsystem specification.

Syntax

subsys (filename [,...])

#pragma subsys (filename [,...])

Where:

filename is the file specification (including a device name and directory name or
pathname, if necessary) in which the compiler finds the subsystem
definition.

Abbreviation

(none)

Default

(none)

Discussion

Use the subsys control to cause the compiler to read one or more files for subsystem
definitions. The compiler searches for the named files the same way that it searches
for source files surrounded by quotation marks in the #include preprocessor
directive.

See also: searchinclude control description for the search method,
defining subsystems in Chapter 9

The compiler preserves case distinction in identifiers in exports lists. The compiler
always ignores dollar signs ($) in identifiers, even if the extend control is not in
effect. The compiler ignores valid PL/M controls unrelated to segmentation, such as
$IF and $INCLUDE. The compiler ignores lines whose first character is not a dollar
sign ($).

A subsystem can export only function and variable names with file scope. The
compiler implicitly modifies declarations of exported symbols, if necessary, by
inserting the far keyword in the appropriate place. The modifications occur even if
the extend control is not in effect.

Primary control subsys

iC-386 Compiler User's Guide Chapter 3 101

If notranslate is specified, the compiler does not generate object code and the
subsys control has no effect. If noobject is specified, the effect of the subsys
control on the object code can be seen in the print file, although the compiler does not
produce a final object file.

✏ Notes
A #pragma preprocessor directive specifying the modulename
control must precede any #pragma directives that specify the
subsys control.

Do not use the codesegment or datasegment controls in an
invocation that specifies the subsys control. The compiler issues
an error or a warning message, depending on whether the subsys
control is found in the invocation line or in a #pragma
preprocessor directive.

See also: Subsystems in Chapter 9, extend|noextend control in Chapter 3,
segmentation memory models and the far keyword in Chapter 4

Cross-references

codesegment

datasegment

extend | noextend

modulename

object | noobject

searchinclude | nosearchinclude

translate | notranslate

symbols | nosymbols Primary control

Chapter 3 Compiler Controls102

symbols | nosymbols
Generates or suppresses identifier list in print file.

Syntax

[no]symbols

#pragma [no]symbols

Abbreviation

[no]sb

Default

nosymbols

Discussion

Use the symbols control to include in the print file a table of all identifiers and their
attributes from the source text. Use the nosymbols control (default) to suppress the
table.

The noprint and notranslate controls override symbols. The xref control
causes the compiler to generate a cross-referenced symbol table even if the
nosymbols control is specified.

See also: Chapter 5 for a description of the print file

Cross-references

print | noprint

translate | notranslate

xref | noxref

Primary control tabwidth

iC-386 Compiler User's Guide Chapter 3 103

tabwidth
Specifies characters per tab stop in the print file.

Syntax

tabwidth control (width)

#pragma tabwidth (width)

Where:

width is a value from 1 to 80. This value is the number of characters from tab
stop to tab stop in the print file.

Abbreviation

tw

Default

4 characters per tab stop

Discussion

Use the tabwidth control to specify the number of characters between tab stops in
the print file.

The noprint and notranslate controls suppress the print file, causing the
tabwidth control to have no effect.

Cross-references
eject

pagelength

pagewidth

print | noprint

title

translate | notranslate

title Primary control

Chapter 3 Compiler Controls104

title
Specifies the print file title.

Syntax

title control ("string")

#pragma title ("string")

Where:

string is the title.

Abbreviation

tt

Default

The compiler uses the object module name.

Discussion

Use the title control to specify the print file title. The compiler places the title at
the top of each page of the print file.

To specify no title, use at least one blank in the title string. Do not use the null string.

A title can be up to 60 characters long. A narrow page width can restrict a title to
fewer than 60 characters. In such cases, the compiler truncates the title from the
right.

The noprint and notranslate controls suppress the print file, causing the title
control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

eject pagewidth

modulename print | noprint

object | noobject tabwidth

pagelength translate | notranslate

Invocation control translate | notranslate

iC-386 Compiler User's Guide Chapter 3 105

translate | notranslate
Compiles or suppresses compilation after preprocessing.

Syntax

[no]translate

Abbreviation

[no]tl

Default

translate

Discussion

Use the translate control (default) to cause the compilation to continue after
preprocessing. Translation includes parsing the input, checking for errors, generating
code, and producing an object module. Use the notranslate control to cause
compilation to cease after preprocessing.

The notranslate control implies the preprint control. The notranslate
control overrides all other object and listing controls except for their effect on the
print file. The notranslate control causes preprocessing diagnostic messages to
appear at the console.

Cross-references

object | noobject

preprint | nopreprint

type | notype Primary control

Chapter 3 Compiler Controls106

type | notype
Generates or suppresses type information in the object module.

Syntax

[no]type

#pragma [no]type

Default

type

Abbreviation

ty

Discussion

Use the type control (default) to include type information for public and external
symbols in the object module. Use the notype control to suppress generation of type
information. Suppressing type information reduces the size of the object module.

Type information can be useful to other tools in the application development process.
The binder uses type information to perform type checking across modules. A
debugger or an emulator uses type information to display symbol attributes.

The noobject and notranslate controls cause type and notype to have no
effect.

See also: debug control description for information on combining controls that
affect the size of the object module, such as the line control

The optimize control can further reduce the size of the object module. However,
higher levels of optimization reduce the ability of most symbolic debuggers to
accurately correlate debug information to the source code. The line control puts
source line number information into the object file. The symbols control puts a
listing of all identifiers and their types into the print file. The xref control puts a
cross-reference listing of all identifiers into the print file.

Primary control type | notype

iC-386 Compiler User's Guide Chapter 3 107

Cross-references

debug | nodebug

object | noobject

optimize

symbols | nosymbols

translate | notranslate

xref | noxref

varparams General control

Chapter 3 Compiler Controls108

varparams
Specifies variable parameter list calling convention.

Syntax

varparams control [(function [,...])]

#pragma varparams [(function [,...])]

Where:

function is the name of a function defined in the source text. Case is significant
in function-name arguments.

Abbreviation

vp

Default

The default is fixedparams. If you specify varparams but do not supply a
function argument, the varparams control applies to all functions in the
subsequent source text.

Discussion

Use the varparams control to require the specified functions to use the variable
parameter list (VPL) calling convention. Most of Intel's non-C compilers generate
object code for function calls using the fixed parameter list (FPL) calling convention.
Some earlier versions of Intel C use the variable parameter list calling convention.

A function's calling convention dictates the sequence of instructions that the compiler
generates to manipulate the stack and registers during a call to a function. This is the
VPL calling convention:

1. The calling function pushes the arguments onto the stack with the rightmost
argument pushed first before control transfers to the called function.

2. The calling function removes the arguments from the stack after control returns
from the called function.

The VPL calling convention provides more flexibility than the FPL calling
convention. Use the VPL calling convention for functions that take a variable
number of parameters.

See also: FPL and VPL calling conventions, fixedparams control description

General control varparams

iC-386 Compiler User's Guide Chapter 3 109

A calling convention specified without an argument in the compiler invocation
affects functions throughout the entire module. If a function uses a calling
convention other than the one in effect for the compilation, specify the calling
convention before declaring the function.

If FPL is in effect globally, you can use an ellipsis in a prototype or declaration to
declare a VPL function, or use the varparams control. If VPL is in effect globally,
you must use the fixedparams control in a #pragma preprocessor directive to
declare an FPL function.

If notranslate is specified, the compiler does not generate object code and the
calling convention control has no effect. If noobject is specified, the effect of the
calling convention control on the object code can be seen in the print file, although
the compiler does not produce a final object file.

✏ Note
An error occurs if a function in the source text explicitly declares a
variable parameter list and also is named in the function list for
the fixedparams control. In this example, the ellipsis in the
fvprs function prototype indicates a VPL convention for this
function. Specifying the fixedparams (fvprs) control in this
case causes an error:
#include <stdarg.h>

fvprs (int a, ...);

The varparams and fixedparams controls are general controls. Use them freely
in the compiler invocation or in #pragma preprocessor directives. If you specify
both controls without arguments in the invocation, the compiler acts on the most
recently encountered control. These controls only affect the subsequent source text
and remain in effect until the compiler encounters a contrary control or the end of the
source text.

See also: extend|noextend control for other information on code compatibility
with previous versions of Intel C; fixedparams control for
information on the fixed parameter list calling convention

varparams General control

Chapter 3 Compiler Controls110

Examples

1. This combination of qualifiers specifies convention (VPL) for all functions in
the source file except those in the argument list. Use the qualifiers on the
invocation line as follows:

varparams fixedparams (argument_list)

Or use the controls in #pragma preprocessor directives:

#pragma varparams

#pragma fixedparams (argument_list)

2. This control specifies fixed parameter list convention (FPL) for all functions in
the source file except those in the argument list. Use the varparams control on
the invocation line to override the default for the function in the argument list:

varparams (argument_list)

Or use the varparams control in a #pragma preprocessor directive:

#pragma varparams (argument_list)

Cross-references

extend | noextend

fixedparams

object | noobject

translate | notranslate

Primary control xref | noxref

iC-386 Compiler User's Guide Chapter 3 111

xref | noxref
Specifies symbol table cross-reference in listing.

Syntax

[no]xref

#pragma [no]xref

Abbreviation

[no]xr

Default

noxref

Discussion

Use the xref control to add cross-reference information to the symbol table listing in
the print file. Use the noxref control (default) to suppress the cross-reference
information.

The noprint and notranslate controls override the xref control. The xref and
symbols controls are similar, except that the xref control adds a cross-reference
listing of identifiers from the source program. The xref control causes the compiler
to generate a cross-referenced symbol table even if the nosymbols control is
specified.

The print file lists the cross-reference line numbers on the far right under the
"Attributes" column in the symbol table listing. The "Attributes" column describes
the data or function type. A number with an asterisk (*) indicates the line where the
object or function is declared. A number without an asterisk indicates a line where
the object or function is accessed. The cross-reference line numbers refer to the line
numbers in the source text listing in the print file.

See also: Symbol table and print file in Chapter 5

Cross-references

print | noprint

symbols | nosymbols

translate | notranslate

■■ ■■ ■■

112 Chapter 3 Compiler Controls

iC-386 Compiler User's Guide Chapter 4 113

Segmentation Memory Models 4
This chapter discusses how segmentation memory models manage code, data, and
stacks for the Intel386 segmented architecture. This chapter contains these topics:

• How the binder combines the compiler-created segments

• Characteristics of the compact memory model

• How to use and interpret the far and near keywords

Use the compact segmentation memory model for iRMX applications.

How the Binder Combines Segments
Segmentation divides a program into units that contain the program's code, data, and
stack. Segmentation makes references to memory locations more efficient. The
compiler places information defining segment attributes and content into each object
module. The binder combines the compiler's segments according to their definitions,
thereby implementing the segmentation memory model.

A segment represents a contiguous set of memory locations, but does not necessarily
have a fixed address or fixed size until placed in memory for execution. The
BLD386 system builder or operating system loader assigns a fixed address to a
segment and establishes its size. The maximum size of an Intel386 processor
segment is 4 gigabytes.

114 Chapter 4 Segmentation Memory Models

Combining iC-386 Segments With BND386
The BND386 binder combines segments from the input object modules if they have
these characteristics:

• The same segment name

• The same kind of contents, i.e., code or data

• The same privilege level

• Compatible granularity, default operand, and address size

• Compatible access rights

• Compatible combine-types

• A combined length no greater than 4 gigabytes

The iC-386 compiler places in each object module these segment definition
characteristics for each compiler-created segment:

• The segment name

• Whether the segment is code or data

• Privilege level 3

• Byte granularity and 32-bit operand and address size

• Segment access rights: non-conforming, not present, and not expand-down for
all segments; and whether code is readable or data is writeable

• The combine-type

• The size of the segment

See also: Intel386 processor segment characteristics in Chapter 6

How Subsystems Extend Segmentation
A subsystem is a collection of modules that use the same segmentation model. A
program can be made up of one or more subsystems. Subsystems allow collections
of program modules that are compiled with different segmentation controls to be
combined into the same program.

See also: Use and syntax of subsystems in Chapter 9

iC-386 Compiler User's Guide Chapter 4 115

Compact Segmentation Memory Model
The segmentation memory model determines the number of segments and the
contents of those segments in the compiler-created object module. The binder uses
the segments from each compiled object module to create the bound object module.
The compact compiler control determines the segmentation model that the compiler
uses to create an object module.

✏ Note
The iRMX OS supports the compact segmentation memory model.

There are four components of object code:

• Code (executable instructions)

• Data (global and static variables)

• Stack (function-activation records, automatic variables, and any
compiler-generated temporary storage not explicitly declared in the source
module)

• Constants (statically allocated constant objects, character strings and
floating-point literals, and other compiler-generated constant values)

The compiler creates a code segment for executable instructions, a data segment for
global and static variables, and a stack segment for stack activity. The ram and rom

controls determine whether the compiler puts the constants with the code segment or
the data segment. If you specify the rom control during compilation, the compiler
places the constants in the code segment. If you specify the ram control during
compilation or accept the default, the compiler places the constants in the data
segment.

116 Chapter 4 Segmentation Memory Models

Compact Model
The BND386 binder combines compiler-generated segments that have the same
name, compatible combine-types, and the same access attributes.

A program using the compact segmentation memory model contains three segments:
CODE32 (iC-386), DATA, and STACK. The CS, DS, and SS registers contain the
selectors for the CODE32, DATA, and STACK segments, respectively. For iC-386, the
ES register contains the same value as the DS register.

Table 4-1 shows the compiler segment definitions for a module compiled with the
compact control. When you specify the rom control, the compiler places the
constants in the module's code segment. When you specify the ram control, the
iC-386 compiler places the constants in the module's data segment.

Table 4-1. iC-386 Segment Definitions for Compact-model Modules

Description Name Combine-type Access

code segment CODE32 normal execute-read

data segment DATA normal read-write

stack segment STACK stack read-write

The resulting bound compact model module contains one code segment up to 4
gigabytes long, one data segment up to 4 gigabytes long, and one stack segment up to
4 gigabytes long.

The compact segmentation memory model is efficient in program size, and offers the
maximum possible space for stack activity. Using the compact segmentation
memory model restricts your program to 12 gigabytes of memory, but has a full 4
gigabytes for stack activity, and allows access to multiple data segments.

Since all the executable instructions fall within one segment, function pointers are
near by default (the offset-only address format). Since data (constants, program
variables, or temporary variables) can be in different segments (code, data, or stack),
data pointers are far by default (the segment-selector-and-offset address format).

See also: Near and far address formats in Chapter 4

Because all data pointers are far pointers by default, a compact model program can
dynamically allocate one or more additional data segments up to 4 gigabytes long.

Figures 4-1 and 4-2 show the process of binding a compact RAM and a compact
ROM program from two modules. The relative sizes of the final segments are not to
scale. The order of modules in the binder input list affects the order of segments in
the output file.

iC-386 Compiler User's Guide Chapter 4 117

Compiled Code

Source Code
main.c setup.c

setup.objmain.obj

STACK

SS
CS

DS

DATA

With Constants

iC-386

BND386

From
main.obj

and
setup.obj

CODE32 From
main.obj

and
setup.obj

4 Gigabytes Max.

W-3367

Figure 4-1. Creating a Compact RAM Program

118 Chapter 4 Segmentation Memory Models

Compiled Code

Source Code
main.c setup.c

setup.objmain.obj

STACK

SS
DS

DATA

With Constants

iC-386

BND386

From
main.obj

and
setup.obj

CODE32 From
main.obj

and
setup.obj

4 Gigabytes Max.

W-3368

CS

Figure 4-2. Creating a Compact ROM Program

iC-386 Compiler User's Guide Chapter 4 119

Using near and far
The near and far keywords are type qualifiers that allow programs to override the
default address size generated for a data or code reference, which is determined by
the segmentation memory model. You must compile programs that use the near and
far keywords with the extend control.

See also: extend control in Chapter 3

Table 4-2 shows the default address sizes for the compact memory model.

Table 4-2. Segmentation Models and Default Address Sizes

Segmentation Model Code Reference Data Reference

compact RAM offset selector and offset

compact ROM offset selector and offset

The near type qualifier causes the compiler to generate an offset-only address. An
offset-only address occupies less space and results in quicker execution than a
selector-and-offset address. An offset-only address can reference memory only
within its segment. The far type qualifier causes the compiler to generate a
segment-selector-and-offset address. A selector-and-offset address can reference all
addressable memory.

Use the far type qualifier:

To call a library
that requires a
selector-and-offset
call

Some libraries require access through a selector-and-offset
call.

To refer to code or
data in a subsystem

In multiple subsystem applications, non-local references can
require the far type qualifier.

See also:Using multiple subsystems within an
application in Chapter 9

To call a function
at a different
privilege level or
handle an interrupt

Functions at different privilege levels are always in different
segments. A call to an interrupt handler is a far call.

120 Chapter 4 Segmentation Memory Models

Use the near type qualifier:

To discard the
selector portion of
an address

Casting a pointer to near discards the selector. Reference
through an offset-only pointer is more efficient.

To override the
default data address
size

For efficient data references, override the default far
references to data that occur when the DS register already has
the correct selector.

To override the
default code
address size

For efficient code references, override the default far
references to code that occur when the CS register already has
the correct selector.

Addressing Under the Segmentation Models
In compact model programs, the CS register contains the code segment selector, the
DS register contains the data segment selector, and the SS register contains the stack
segment selector.

A reference to a selector-and-offset object requires a load to a segment register. In
iC-386, the FS and GS registers are typically used to de-reference selector-and-offset
addresses, and the ES register is expected to contain the same value as the DS
register.

A variable or a function is near if the segmentation model assigns offset-only
addresses by default, or if the variable or function is declared with the near type
qualifier. A variable or a function is far if the segmentation model assigns
selector-and-offset addresses by default, or if the variable or function is declared with
the far type qualifier.

In a call to a near function, the processor uses the segment selector in the CS register
with the offset-only address of the function to form the address of the function. In a
reference to a near variable, the processor uses the segment selector in the DS
register with the offset-only address of the variable to form the address of the
variable.

In a call to a far function, the processor loads the segment selector portion of the
address into the CS register, and then uses the CS register with the offset portion of
the function's address to form the address of the function. In a reference to a far
variable, the processor loads the segment selector portion of the address into the FS
or GS register (Intel386 CPU) if neither contains the necessary selector. Then the
processor uses either the FS or GS register with the offset portion of the variable's
address to form the address of the variable.

iC-386 Compiler User's Guide Chapter 4 121

Using far and near in Declarations
The near and far type qualifiers can occur anywhere in a list of declaration
specifiers. Declaration specifiers include storage-class specifiers and type specifiers.
Declaration specifiers can also occur after an asterisk (*) in a pointer declarator.

See also: Chapter 10 for the way iC-386 extends the syntax of declarators

You can declare any variable or function with either the near or far type qualifier to
indicate whether it is declared in the same segment from which it is referenced or in a
different one. You can specify whether a pointer variable contains a near or a far
address.

For example, these declarations override the default addresses in a module where all
addresses are near by default:

int far m; /* m is a local integer that */

/* is referenced from some */

/* other segment */

extern int far n; /* n is an integer in some */

/* other segment */

/* being referenced here */

int far * mn_ptr; /* mn_ptr is a local pointer */

/* to an integer like m or */

/* n in a different segment */

extern int far * far nm_ptr;/* nm_ptr is a pointer in */

/* some other segment to an */

/* integer like n or m in a */

/* different segment */

extern int * far k_ptr; /* k_ptr is a pointer in */

/* some other segment to a */

/* local integer in this */

/* segment */

122 Chapter 4 Segmentation Memory Models

Examples Using far
All of the examples that follow assume the compilation uses the compact control. In
these examples, each single letter in an identifier stands for a type or a type qualifier.
The identifiers are spelled so that if you read each letter in the identifier from left to
right, the types the letters stand for create a description of the example declaration.
Interpret the phrase "far something" to be the same as "something in a different
segment". These are the identifiers and types in the examples:

i int

F far

f function returning

p pointer to

1. This example declares two integers. The integer i is in the current data segment,
referenced through the DS register. The integer Fi is in a different data
segment, and a reference causes a load to a segment register. The address of i,
&i, is a near address (offset-only). The address of Fi, or &Fi, is a far address
(selector-and-offset). If the extern storage class specifier did not exist in the
declaration of Fi, references to Fi would use near addresses, but the address of
Fi would still be a far address.

extern int i; /* Where "i" is read as "int" */

extern int far Fi; /* Where "Fi" is read as "far int" */

2. This example declares two functions. Calls to fi are near calls, and calls to Ffi

are far calls. The address of fi, or &fi, is a near address. The address of Ffi,
or &Ffi, is a far address. If the extern storage class specifier did not exist in
the declaration of Ffi, calls to Ffi would still be far calls.

extern int fi(); /* Where "fi" is read as */

/* "function returning int" */

extern int far Ffi(); /* Where "Ffi" is read as */

/* "far function returning int" */

3. This example declares four pointer variables. The addresses of pi and pFi are
near addresses, and the addresses of Fpi and FpFi are far addresses. The values
of pi and Fpi are near addresses (near pointers), and those of pFi and FpFi are
far addresses (far pointers). Reference to Fpi, FpFi, *pFi, or *FpFi causes a
load to a segment register.

extern int * pi;

extern int * far Fpi;

extern int far * pFi;

extern int far * far FpFi;

iC-386 Compiler User's Guide Chapter 4 123

4. This example declares four functions that return pointers. Calls to fpi and fpFi

are near calls. Calls to Ffpi and FfpFi are far calls. Both fpi and Ffpi return
near pointers, and fpFi and FfpFi return far pointers.

extern int * fpi();

extern int * far Ffpi();

extern int far * fpFi();

extern int far * far FfpFi();

Reading the last identifier from left to right, the type of FfpFi is read "far
function returning pointer to far int." Reading the declarator inside-out
(right-to-left), which is the standard way of reading complex C declarators, gives
"function returning far pointer to far int," as follows:

Element Interpretation

FfpFi() "function returning"
* far "far pointer to"
int far "far int"

Such an inside-out interpretation is illogical because a function's return value
must be in a register, not in memory (as a far pointer would be). Adding
parentheses and writing the same declaration as follows preserves inside-out
interpretation and matches the left-to-right reading of the letters in FfpFi:

extern int far * (far FfpFi)();

Element Interpretation

int far "far int"
* "pointer to"
(far FfpFi)() "far function returning"

The last declaration uses a non-standard type qualifier syntax explained in
Chapter 10.

5. This example declares four variables whose values point to a function. Such
functions can be called indirectly. Reference to pfi or pFfi uses the DS
register. Reference to Fpfi or FpFfi causes a load into a segment register.
Calls through pfi or Fpfi are near calls. Calls through pFfi or FpFfi are far
calls.

extern int (* pfi)();

extern int (* far Fpfi)();

extern int far (* pFfi)();

extern int far (* far FpFfi)();

124 Chapter 4 Segmentation Memory Models

6. This example declares eight pointers to functions that return pointers. Three
different kinds of memory references can occur: referencing the pointer to a
function, calling the function, and referencing the value indirectly specified by
the return value of the function. Reference to Fpfpi, FpFfpi, FpfpFi, and
FpFfpFi all cause a load into a segment register; these functions are declared
with the far type qualifier in the third column. Calls to pFfpi, FpFfpi,
pFfpFi, and FpFfpFi are far calls; these functions are declared with the far
type qualifier in the second column. The values returned by pfpFi, FpfpFi,
pFfpFi, and FpFfpFi are far pointers; these functions are declared with the
far type qualifier in the first column.

extern int * (* pfpi)();

extern int * (* far Fpfpi)();

extern int * far (* pFfpi)();

extern int * far (* far FpFfpi)();

extern int far * (* pfpFi)();

extern int far * (* far FpfpFi)();

extern int far * far (* pFfpFi)();

extern int far * far (* far FpFfpFi)();

■■ ■■ ■■

iC-386 Compiler User's Guide Chapter 5 125

Listing Files 5
The iC-386 compiler provides listing information in two optional listing files: the
preprint file and the print file. These two files embody two phases in compiling. The
preprint file contains the source text after textual preprocessing, such as including
files and expanding macros. The print file contains information about the results of
compiling, that is, using the source text to create object code. The term compiling
often refers to both the preprocessing and compiling phases as one.

By default, the compiler does not generate a preprint file; use the preprint control
to produce a preprint listing file. By default, the DOS- and iRMX system-hosted
compilers generate a print file; use the noprint control to suppress the print file.

See also: preprint and noprint controls in Chapter 3

Preprint File
This section describes the preprint file generated by the preprocessing phase of the
compiler. The preprint file contains the preprocessor output, which is used as input
for the compiling phase. Compiling the preprint file produces the same results as
compiling the source file, assuming the compiler can expand any macros without
errors.

The compiler preprocesses the source text to produce the preprint text:

• Expands macros by substituting the body, or textual value, of each macro for
each occurrence of its name.

• Inserts source text from files specified with the include compiler control or the
#include preprocessor directive; inserts the #line preprocessor directive to
bracket sections of included source text in the preprint file.

• Eliminates parts of the source text based on the #if, #ifdef, #ifndef, #else,
#elif, and #endif conditional compilation directives.

• Propagates the preprocessor directives #line, #error, and #pragma from the
source text to the preprocessed source text.

126 Chapter 5 Listing Files

Macros
Use the define control or the #define preprocessor directive to define a textual
value for a macro name. The preprocessor substitutes the textual value everywhere
the macro name appears in the subsequent source text.

The iC-386 compiler provides several predefined macros for your convenience.
Table 5-1 shows these macros and their values.

See also: Using the define control to define macros;long64 | nolong64,
nomod287, mod486 | nomod486, optimize, rom, and ram control
descriptions in Chapter 3; segmentation memory models and addressing
formats in Chapter 4

Table 5-1. iC-386 Predefined Macros

Name Value

_ _DATE_ _ Date of compilation (if available)

_ _FILE_ _ Current source filename

_ _LINE_ _ Current source line number

_ _STDC_ _ Conformance to ANSI C standard:
1 indicates conformance

_ _TIME_ _ Time of compilation (if available)

ARCHITECTURE Intel386 for iC-386 compiler and nomod486
control (default)
Intel486 for iC-386 compiler and mod486 control

_FAR_CODE_ Default address size for function pointers and default
range for function calls:
0 (near) for the compact segmentation model

continued

iC-386 Compiler User's Guide Chapter 5 127

Table 5-1. iC-386 Predefined Macros (continued)

Name Value

FAR_DATA_ Default address size for data pointers:
1 (far) for all ROM and compact RAM segmentation
models

LONG64_ Default type size for long data types in iC-386:
1 for 8-byte long data types if using long64 control
0 for 4-byte long data types if using nolong64 control

OPTIMIZE_ Current optimization level as set by optimize control:
0, 1, 2, or 3

ROM_ Placement of constants with code or data:
1 if using rom control
0 if using ram control

Include Files
Use the include control in the compiler invocation or the #include preprocessor
directive in the source text to specify an include file. The preprocessor inserts the
contents of a file included with the include control before the first line of the source
file. The preprocessor inserts the contents of a file included with the #include
preprocessor directive into the source text in place of the line containing the
#include directive.

See also: include control in Chapter 3

Paired occurrences of the #line preprocessor directive bracket the included text.
The compiler inserts the #line directive in the preprint listing file at the beginning
of the included text and another #line directive at the end of the included text.

128 Chapter 5 Listing Files

Conditional Compilation
Conditional preprocessor directives delimit sections of source text to be compiled
only if certain conditions are met. The preprocessor evaluates the conditions and
determines which sections of source text are kept. The source text that is not kept
does not appear in the preprint file unless the cond control is in effect.

See also: cond|nocond control in Chapter 3

The conditional directives are #if, #else, #elif, #endif, #ifdef, and #ifndef.
The #if directive can take a special defined operator.

Propagated Directives
The preprocessor propagates the directives #line, #error, and #pragma from the
source text to the preprint file to ensure that the preprint text is equivalent to the
source text after preprocessing.

See also: Individual directive descriptions in Chapter 11, list of controls that a
#pragma directive can use in Chapter 3

iC-386 Compiler User's Guide Chapter 5 129

Print File
This section describes the print file generated by the compiling phase of the compiler.
The print file contains information about the source text read into the compiler and
the object code generated by the compiler. These controls (and the equivalent DCL-
style qualifiers) affect the format and contents of the print file:

code | nocode listexpand | nolistexpand pagelength

cond | nocond listinclude | nolistinclude pagewidth

diagnostic modulename tabwidth

eject symbols | nosymbols title

list | nolist xref | noxref

Table 5-2 shows the compiler controls that affect the entire print file format.

Table 5-2. Controls That Affect the Print File Format

Control Effect

eject specifies a form feed (new page)

pagelength determines number of lines per page

pagewidth determines number of characters per line

tabwidth determines number of characters per tab stop

Print File Contents
The print file contains these sections:

page header identifies the compiler and the object module name and gives
the date and time of compilation.

compilation heading identifies the host OS, the compiler, the object module name,
and describes the parameters with which the compiler was
invoked.

source text listing is the listing of the C program.

remark, warning, and error messages
are generated by the compiler and are listed with the source
text.

pseudo-assembly listing
is a listing of the assembly language object code produced by
the compiler. The code does not contain all the assembler
directives necessary for a complete assembly language
program.

130 Chapter 5 Listing Files

symbol table and cross-reference
provide symbolic information and cross-reference information.

compilation summary
tabulates the size of the output module, the number of
diagnostic messages, and the completion status (successful
termination or fatal error) of the compilation.

Page Header
Each page of the output listing file begins with a page header. The page header
describes the compiler, identifies the module compiled, and shows the date and page
number.

This page header shows the iC-386 compiler compiling the module MAIN on the 25th
of January, 1991. This example shows the header from the first page of the print file.

iC-386 COMPILER MAIN 01/25/91 10:28:20 PAGE 1

Page numbers range from 1 to 999, then start over at 0.

Compilation Heading
The compilation heading is on the first page of the print file. The compilation
heading gives the name of the object module, the pathname of the object module file,
and the compiler controls specified in the compiler invocation. It also identifies the
compiler version and host system.

For example, to invoke the compiler on a DOS host system:

C:\CEXAMPLE> ic386 main.c compact define(NPAPER) &

>> include(prags.h) &

>> searchinclude(\intel\include\,includes\)

The compiler processes the main.c source file and puts the object module into the
file main.obj. The compilation heading shows the host OS, the compiler version,
the module name, and the controls used on invocation:

system-id iC-386 COMPILER Vx.y, COMPILATION OF MODULE MAIN

OBJECT MODULE PLACED IN main.obj

COMPILER INVOKED BY: \INTEL\bin\IC386.EXE main.c compact

define(NPAPER)

include(prags.h)

searchinclude(\intel\include\,includes\)

iC-386 Compiler User's Guide Chapter 5 131

If the invocation includes the modulename control and uses the noobject control to
suppress the object file, the invocation looks like:

C:\CEXAMPLE> ic386 main.c compact define(NPAPER) &

>> include(prags.h) &

>> searchinclude(\intel\include\,includes\) &

>> modulename(NewName) &

>> noobject

The resulting compilation heading shows the different module name in the first line,
and shows the lack of object file in the second line:

system-id iC-386 COMPILER Vx.y, COMPILATION OF MODULE NEWNAME

NO OBJECT MODULE PRODUCED

COMPILER INVOKED BY: \INTEL\bin\IC386.EXE main.c compact

define(NPAPER)

include(prags.h)

searchinclude(\intel\include\,includes\)

modulename(NewName) noobject

Source Text Listing
The source text listing contains a formatted image of the source text. It also gives the
statement number, block nesting level, and include nesting level of each source text
statement. If a source line is too long to fit on one line, it continues on as many
following lines as are needed. Continued lines contain a hyphen (-) in column 17,
followed by the source text.

Statement numbers range from 1 to 99999. Error, warning, and remark messages,
when present, refer to the statement numbers in the source text listing. Statement
numbers do not always correspond to the sequence of lines in the source text: source
text lines that end in a backslash (\) are continuations of the previous line. The listing
statement numbers do not increment for continuation lines.

The block nesting level describes how many source text block control constructs
surround the statement. It ranges from 0 (for a statement outside of any function
definition) to 99. When its value is 0, this field is blank.

The include nesting level describes how many #include preprocessor directives or
instances of the include control the preprocessor encountered to get to this
statement in the source text. For the input source file, the nesting depth is 0, and this
field is blank. Each nested #include preprocessor directive or include control
increments the include nesting level. The include nesting level column has a value
only if the listinclude control is in effect. The maximum nesting of include files
depends on the number of files open simultaneously during compilation and can vary
with the OS.

132 Chapter 5 Listing Files

In addition to the format controls shown in Table 5-2, Table 5-3 shows the compiler
controls that affect the source text listing portion of the print file.

See also: Limitations on the number of nested include files in Chapter 11, control
descriptions in Chapter 3

Table 5-3. Controls That Affect the Source Text Listing

Control Effect

cond | nocond Generates or suppresses uncompiled conditional code.

diagnostic Determines class of messages that appear.

list | nolist Generates or suppresses source text listing.

listexpand | nolistexpand Generates or suppresses macro expansion listing.

listinclude | nolistinclude Generates or suppresses text of include files.

Remarks, Warnings, and Errors
Compiler messages indicate errors (including fatal errors), warnings, and remarks.
The source text listing contains these messages. The compiler prints each message
on a separate line immediately following the offending statement. If the offending
statement is not printed, the compiler prints the messages in the listing as the
compiler generates them.

Use the diagnostic control to suppress generation of lower-level messages.

See also: diagnostic control in Chapter 3

Pseudo-assembly Listing
The pseudo-assembly listing is an assembly language equivalent to the object code
produced in compilation. It contains a location counter, a source statement number,
and the equivalent assembly code. The location counter is a hexadecimal value that
represents an offset address relative to the start of the object code.

The assembler cannot assemble the pseudo-assembly language listing; it is not a
complete program. It describes the object code produced by the compiler and is
useful for noticing program variations, such as those that result from changing
optimization levels.

Use the code or nocode control to generate or suppress the pseudo-assembly listing.

See also: code | nocode control in Chapter 3

iC-386 Compiler User's Guide Chapter 5 133

Symbol Table and Cross-reference
The symbol table lists all objects and their attributes from the compiled code. The
table includes the name, type, size, and address of each object. The table can
optionally include source text cross-reference information. The compiler generates
the table in alphabetical order by identifier. A source module can declare a unique
identifier more than once, but each object, even if named by a duplicate identifier,
appears as a separate entry in the symbol table.

Use the symbols or nosymbols control to generate or suppress the symbol table.
Use the symbols and xref controls together to generate additional cross-reference
information.

See also: Control descriptions in Chapter 3

Compilation Summary
The final line of the compilation summary in the print file is identical to the sign-off
message displayed on the screen when the compilation is complete. Before this final
line, the compiler lists information about the compiled object module.

If the compilation completes normally (without errors), the compilation summary is
similar to:

MODULE INFORMATION:

CODE AREA SIZE = 0000028BH 651D

CONSTANT AREA SIZE = 000002A7H 679D

DATA AREA SIZE = 00000000H 0D

MAXIMUM STACK SIZE = 0000001AH 26D

iC-386 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS

If the compilation ends with a fatal error, this line is displayed on the console:

COMPILATION TERMINATED

■■ ■■ ■■

134 Chapter 5 Listing Files

iC-386 Compiler User's Guide Chapter 6 135

Processor-specific Facilities 6
This chapter describes the functions, macros, and data types available in the i86.h,
i186.h, i286.h, i386.h, and i486.h header files. These facilities enable the
program to manipulate the unique characteristics of the Intel386, Intel486, and
Pentium family of processors. This chapter contains these topics:

• Making selectors, far pointers, and near pointers

• Using special control functions

• Examining and modifying the flags register

• Examining and modifying the I/O ports

• Enabling and causing interrupts, with guidelines for creating interrupt handlers

• Manipulating the protected mode features of the Intel386, Intel486, and Pentium
processors

• Manipulating the special control, test, and debug registers in the Intel386,
Intel486, and Pentium processors

• Managing the data cache and paging translation lookaside buffer using special
Intel486 and Pentium processor instructions

• Manipulating the Intel387 numeric coprocessor, and the Intel486 and Pentium
floating-point units

The functions and macros take the place of assembly language routines you usually
need to write, saving coding time. The functions and macros also improve run-time
performance, because the compiler generates in-line instructions instead of
generating calls to your assembly language routines.

Header files define the functions, macros, and data types. The header files are
designed so that your code includes only the file named for the target processor, and
your application has access to all appropriate features.

136 Chapter 6 Processor-specific Facilities

Tables 6-1 through 6-5 list the function names in the header files. All the functions
are discussed in this chapter. The function names are available only if your code
includes the appropriate header file, and if your code does not redeclare the function
names.

The i86.h header file defines functions, macros, and data types that apply to the
entire line of Intel386/Intel486/Pentium processors, the Intel387 coprocessor, and the
Intel486/Pentium processor floating-point unit. Two functions are not defined for
Intel386, Intel486, and Pentium processors, as noted.

Table 6-1. Built-in Functions in i86.h

Function Function Function

buildptr halt outword

causeinterrupt inbyte restorerealstatus1

disable initrealmathunit saverealstatus1

enable inword setflags

getflags lockset setrealmode

getrealerror outbyte
1 Not for Intel386, Intel486, or Pentium processors. See the i386.h header file for substitute

definitions.

The i186.h header file uses the #include preprocessor directive to include the
contents of the i86.h header file. The i186.h header file contains functions that
apply to 186 and higher processors.

Table 6-2. Built-in Functions in i186.h

Function Function Function

blockinbyte blockoutbyte blockinword

blockoutword

The i286.h header file uses the #include preprocessor directive to include the
contents of the i186.h header file, which similarly includes the contents of the
i86.h header file. The i286.h header file contains functions, macros, and data
types that apply to 286 and higher processors in protected mode.

iC-386 Compiler User's Guide Chapter 6 137

Table 6-3. Built-in Functions in i286.h

Function Function Function

adjustrpl gettaskregister segmentwritable

cleartaskswitchedflag restoreglobaltable setlocaltable

getaccessrights restoreinterrupttable setmachinestatus

getlocaltable saveglobaltable settaskregister

getmachinestatus saveinterrupttable waitforinterrupt

getsegmentlimit segmentreadable

The i386.h header file uses the #include preprocessor directive to include the
contents of the i286.h header file, which enables access to the functions and macros
in the i86.h header file, as well. The i386.h header file contains functions and
macros that apply to the Intel386, Intel486, and Pentium processors in protected
mode.

Table 6-4. Built-in Functions in i386.h

Function Function Function

blockinhword gettestregister saverealstatus1

blockouthword inhword setcontrolregister

getcontrolregister outhword setdebugregister

getdebugregister restorerealstatus1 settestregister
1 These functions are defined differently from those in the i86.h header file.

The i486.h header file uses the #include preprocessor directive to include the
contents of the i386.h header file, which enables access to the functions and macros
in the i286.h, and i86.h header files, as well. The i486.h header file contains
functions and macros that apply to Intel486 and Pentium processors in protected
mode.

Table 6-5. Built-in Functions in i486.h

Function Function Function

byteswap invalidatetlbentry wbinvalidatedatacache

invalidatedatacache

The header files are include files, not libraries; use the #include preprocessor
directive or the include control to include one of the headers when compiling. Do
not bind to the header files.

138 Chapter 6 Processor-specific Facilities

Making Selectors, Far Pointers, and Near Pointers
The selector data type and the buildptr function, defined in the i86.h header
file, construct far pointers (segment-selector-and-offset) and extract the selector
portion from far pointers.

A value of type selector refers to the 16-bit selector portion of a far pointer. This
data type is compatible with PL/M SELECTOR data type. The selector type is
similar to the void * type for type checking:

• The compiler implicitly converts a value of type selector to any pointer type,
and vice versa. An explicit cast is unnecessary. When the compiler converts a
far pointer to the selector type, the compiler discards the offset portion of the
far pointer. When the compiler converts a selector to a far pointer type, the
compiler supplies an offset of zero.

• Conversion between the selector type and any integral type requires an
explicit cast. When the compiler converts a selector to an integral type, it
zero-extends to fill, or it truncates high-order bits to shorten. When the compiler
converts an integral value to the selector type, it sign-extends signed values
and zero-extends unsigned values to fill, or it truncates high-order bits to shorten.

The buildptr function takes two arguments: a selector and an offset. The function
returns a far pointer. This is the prototype for buildptr:

void far * buildptr (selector sel,

void near * offset);

The offset argument can be 0, and the value that buildptr returns is equivalent to
casting a selector to a far pointer type, as these expressions show:

(void far *) sel

/* is the same as */

buildptr (sel, 0)

Implicit conversion from a far pointer to a near pointer (offset-only) results in a
warning message. To retrieve the offset portion from a far pointer, explicitly cast to
a near pointer, as this expression shows:

(void near *) farptr

iC-386 Compiler User's Guide Chapter 6 139

Using Special Control Functions
The lockset and halt functions in the i86.h header file provide special control
over processing.

See also: Enabling and Causing Interrupts in this chapter for information on
functions that control the processor interrupt mechanisms

The lockset function takes two arguments: a pointer to a byte and a byte value.
The function generates an exchange instruction (XCHG) with a LOCK prefix. This
is the prototype for lockset:

unsigned char lockset (unsigned char * lockptr,

unsigned char newbytevalue);

The exchange operation puts newbytevalue into the byte pointed to by lockptr

and returns the value previously pointed to by lockptr. The LOCK prefix ensures
that the processor has exclusive use of any shared memory during the exchange
operation.

The halt function enables interrupts, and halts the processor. It generates a set
interrupt instruction (STI) to enable interrupts, followed by a halt instruction (HLT).
This is the prototype for halt:

void halt (void);

140 Chapter 6 Processor-specific Facilities

Examining and Modifying the FLAGS Register
The getflags and setflags functions in the i86.h header file provide access to
the FLAGS register for 86 processors, or the EFLAGS register for Intel386, Intel486,
and Pentium processors. In Intel386, Intel486 and Pentium processors, the EFLAGS
register contains the FLAGS register in its low-order 16 bits. Table 6-6 lists several
macros in the i86.h, i286.h, i386.h, and i486.h header files that isolate
individual flags from the FLAGS and EFLAGS registers.

✏ Note
In this section, the text refers to a 16-bit word and a 32-bit word,
according to other Intel386, Intel486 and Pentium processor
documentation. In C programming literature, a word is the amount
of storage reserved for an integer, which is 32 bits for iC-386.

The getflags function takes no arguments, and returns a 32-bit unsigned integer for
iC-386. Use it to retrieve the value of the EFLAGS register. This is the prototype for
getflags:

unsigned int getflags (void);

The setflags function takes as an argument a 32-bit unsigned integer for iC-386.
Use it to set the value of the EFLAGS register. This is the prototype for setflags:

void setflags (unsigned int wordvalue);

The FLAGS register contains the processor flags reflecting the execution and results
of various operations. Figure 6-1 shows the format of the 86 FLAGS and Intel386,
Intel486, or Pentium EFLAGS register.

iC-386 Compiler User's Guide Chapter 6 141

AC VM RF OF DF IF TF SF ZF AF PF CF

8

Flags Register

Reserved by Intel,
Must be Zeros

31 15 0

IOPLNT

Carry Flag
Parity Flag
Auxiliary Carry Flag
Zero Flag
Sign Flag
Trap Flag
Interrupt Enable Flag
Direction Flag
Overflow Flag

i486 Processor:
Alignment Check

i386 and i486 Processors:
Resume Flag
Virtual Mode

EFlags Register
(i386, i486, and Pentium Processors)

i386, i486 Processors:
I/O Privilege Level
Nested Task Flag

W-3369

VIFVIPID

Pentium Processor:
Virtual Interrupt Flag
Virtual Interrupt Pending
ID-Flag

TM

TM

 i386 and i486 Processors:TM

Figure 6-1. FLAGS and EFLAGS Register

Table 6-6 lists the names of the macros in the i86.h, i286.h, i386.h, and i486.h

header files and describes the meaning of the corresponding fields of the flags
register. These macro names must be uppercase in the source text.

142 Chapter 6 Processor-specific Facilities

Table 6-6. Flag Macros

Name Value Meaning

FLAG_CARRY 0x0001 This flag is set when a subtraction causes a
borrow into, or an addition causes a carry out
of, the high-order bit of the result.

FLAG_AUXCARRY 0x0010 This flag is set when a subtraction causes a
borrow into, or an addition causes a carry out
of, the low-order 4 bits of the result.

FLAG_PARITY 0x0004 This flag is set when the modulo 2 sum of the
low-order 8 bits of the result of an operation is
0 (even parity).

FLAG_ZERO 0x0040 This flag is set when the result of an operation
is 0.

FLAG_SIGN 0x0080 This flag is set when the high-order bit of the
result of an operation is set, that is, when a
signed value is negative.

FLAG_TRAP 0x0100 This flag controls the generation of single-step
interrupts. When this flag is set, an internal
single-step interrupt occurs after each
instruction is executed.

FLAG_INTERRUPT 0x0200 This flag, when set, enables the processor to
recognize external interrupts.

FLAG_DIRECTION 0x0400 This flag, when set, makes string operations
process characters progressing from higher to
lower addresses.

FLAG_OVERFLOW 0x0800 This flag is set when an operation results in a
carry into but not a carry out of the high-order
bit of the result, or a carry out of but not a
carry into the high-order bit of the result (e.g.,
signed overflow).

FLAG_IOPL 0x3000 These two bits define the current task's I/O
privilege level, controlling the task's right to
execute certain I/O instructions.

FLAG_NESTED 0x4000 This flag is set when the processor executes a
task switch. The flag indicates that the back-
link field of the task state segment is valid.

continued

iC-386 Compiler User's Guide Chapter 6 143

Table 6-6. Flag Macros (continued)

Name Value Meaning

FLAG_RESUME 0x10000 This flag, when set, disables debug exceptions
so that an instruction can be restarted after a
debug exception without immediately causing
another debug exception.

FLAG_VM 0x20000 This flag, when set, indicates that the current
task is a virtual 86 program.

FLAG_ALIGNCHECK1 0x40000 This flag, when set, causes interrupt 17,
generating a fault for a memory reference to a
mis-aligned address, such as a word at an odd
address. This flag is ignored if the privilege
level is less than 3.

1 For Intel486 and Pentium processors only.

Use the functions and flag macros to set or clear particular flags.

See also: Sample code in rmx386\demo\c\intro compiler directory for example
programs that test the carry bit, and disable and restore interrupts;
Enabling and Causing Interrupts in this chapter

144 Chapter 6 Processor-specific Facilities

Examining and Modifying the Input/Output Ports
The functions inbyte, inword, outbyte, and outword in the i86.h header file,
and inhword and outhword in the i386.h header file perform reading from and
writing to processor I/O ports. The functions blockinbyte, blockinword,
blockoutbyte, and blockoutword in the i186.h header file, and
blockinhword and blockouthword in the i386.h header file perform block
reading from and block writing to processor I/O ports.

✏ Note
In this section, the text refers to a 16-bit word and a 32-bit word,
according to Intel386, Intel486, and Pentium processor
documentation. In C programming literature, a word is the amount
of storage reserved for an integer, which is 32 bits for iC-386.

The inbyte, inword, and inhword functions take the hardware input port number
as an argument. The inbyte function returns an 8-bit byte. The inword function
returns a 32-bit word for Intel386, Intel486, and Pentium processors. The inhword
function returns a 16-bit word for Intel386, Intel486, and Pentium processors. These
are the function prototypes:

unsigned char inbyte (unsigned short port);

unsigned int inword (unsigned short port);

unsigned short inhword (unsigned short port);

The outbyte, outword, and outhword functions take two arguments: the
hardware output port number and the value to send to the port. The outbyte
function sends an 8-bit byte to an output port. The outword function sends a 32-bit
word for Intel386, Intel486, and Pentium processors. The outhword function sends
a 16-bit word for Intel386, Intel486, and Pentium processors. These are the function
prototypes:

void outbyte (unsigned short port,

unsigned char bytevalue);

void outword (unsigned short port,

unsigned int word_or_dwordvalue);

void outhword (unsigned short port,

unsigned short wordvalue);

iC-386 Compiler User's Guide Chapter 6 145

The blockinbyte, blockinword, and blockinhword functions take three
arguments: the hardware input port number, a pointer to the initial byte in the
destination, and the byte, word, or double word count. The blockinbyte function
reads 8-bit bytes from an input port. The blockinword function reads 32-bit words
for Intel386, Intel486, and Pentium processors. The blockinhword function reads
16-bit words for Intel386, Intel486, and Pentium processors. These are the function
prototypes:

void blockinbyte (unsigned short port,

unsigned char * destinationptr,

unsigned int bytecount);

void blockinword (unsigned short port,

unsigned int * destinationptr,

unsigned int word_or_dwordcount);

void blockinhword (unsigned short port,

unsigned short * destinationptr,

unsigned int wordcount);

The blockoutbyte, blockoutword, and blockouthword functions take three
arguments: the hardware port number, a pointer to the initial byte in the source
location, and a byte, word, or double word count. The blockoutbyte function
copies 8-bit bytes from a location in memory to an output port. The blockoutword
function copies 32-bit words for Intel386, Intel486, and Pentium processors. The
blockouthword function copies 16-bit words for Intel386 and Intel486 processors.
These are the function prototypes:

void blockoutbyte (unsigned short port,

unsigned char const * sourceptr,

unsigned int bytecount);

void blockoutword (unsigned short port,

unsigned int const * sourceptr,

unsigned int word_or_dwordcount);

void blockouthword (unsigned short port,

unsigned short const * sourceptr,

unsigned int wordcount);

146 Chapter 6 Processor-specific Facilities

Enabling and Causing Interrupts
The enable, disable, causeinterrupt, and halt functions in the i86.h header
file provide control over the interrupt process.

The enable function generates a set interrupt instruction (STI). STI sets the
interrupt enable flag. This is the prototype for enable:

void enable (void);

The disable function generates a clear interrupt instruction (CLI). CLI clears the
interrupt enable flag. This is the prototype for disable:

void disable (void);

The causeinterrupt function generates an interrupt instruction (INT). It takes the
interrupt number as an argument. The interrupt number must be a constant in the
range 0 through 255. This is the prototype for causeinterrupt:

void causeinterrupt (unsigned char interruptnumber);

The halt function enables interrupts and halts the processor. It generates an STI
instruction followed by a halt instruction (HLT). This is the prototype for halt:

void halt (void);

Interrupt Handlers
Processors executing in protected mode require an interrupt descriptor table (IDT).
This table can be anywhere in memory. The interrupt descriptor table register
(IDTR) is a system register that holds the address of the IDT.

The entries in the IDT are task, trap, or interrupt gates. A gate is a special
control-transfer descriptor which acts like a sophisticated interrupt vector. It contains
the address of the handler and some access information. Its position in the IDT
determines which interrupt it handles. Figure 6-2 shows the format of a gate. The
special descriptors for a task state segment (TSS) and the local descriptor table
(LDT) share the four-bit type field but differ in other fields from the gate descriptor.

See also: Descriptors, in System Concepts

iC-386 Compiler User's Guide Chapter 6 147

P DPL 0 Type

Present

Selector Offset 15 . .0

Descriptor Privilege Level

Special Descriptor (Gate, LDT, TSS) = 0

Unused for Task, Trap
and Interrupt Gates

Word Count for Call
Gates

31 15 0

0 0 0

TM TM

OM04423

0100 for 286 Call Gate
0101 for Task Gate
0110 for 286 Interrupt Gate
0111 for 286 Trap Gate
1100 for i386, i486 Call Gate
1110 for i386, i486 Interrupt Gate
1111 for i386, i486 Trap Gate

Offset 31..16 for i386 /i486
Processor

Figure 6-2. Gate Descriptor

High-priority hardware interrupts often use an interrupt gate for automatically
disabling interrupts upon invocation. Software-invoked interrupts often use trap
gates since trap gates do not disable the maskable hardware interrupts. Sometimes
low-priority interrupts (for example, a timer) use a trap gate to enable other devices
of higher priority to interrupt the handler of the lower priority interrupt. Task gates
cause a task switch, which includes saving all of the processor registers and isolating
the address space and privilege level of the handler. A task resumes execution on
each invocation instead of starting from the initial entry point.

To make an iC-386 function into an interrupt handler, use the interrupt control.
This control causes the compiler to generate prolog and epilog code for an interrupt
handler to save and restore registers.

The easiest way to associate an iC-386 interrupt handler with a processor interrupt is
to use the Nucleus system call rq_set_interrupt.

See also: interrupt control description, in Chapter 3 of this manual;
rq_set_interrupt, System Call Reference

148 Chapter 6 Processor-specific Facilities

Protected Mode Features of Intel386 and Higher
Processors

See also: The System Concepts manual for a description of the protected mode
features of the Intel386, Intel486, and Pentium processors available to
iRMX applications

Manipulating System Address Registers
The system address registers are the task register (TR), the global descriptor table
register (GDTR), the interrupt descriptor table register (IDTR), and the local
descriptor table register (LDTR).

The gettaskregister function returns the contents of the TR. This is the
prototype for gettaskregister:

selector gettaskregister (void);

The settaskregister function loads a selector into the TR. Only protected mode
code at privilege level 0 can execute this function. It takes the selector value as its
argument. This is the prototype for settaskregister:

void settaskregister (selector sel);

The descriptor_table_reg structure type describes the register value returned by
the saveglobaltable and saveinterrupttable functions. This is the structure
definition:

#if _LONG64_

typedef unsigned int base_addr;

#else

typedef unsigned long base_addr;

#endif

#pragma NOALIGN("descriptor_table_reg")

struct descriptor_table_reg

{

unsigned short limit;

base_addr base;

};

iC-386 Compiler User's Guide Chapter 6 149

The saveglobaltable function copies the contents of the GDTR into a specific
6-byte location of type descriptor_table_reg. The function takes a pointer to
this destination as an argument. This is the prototype for saveglobaltable:

void saveglobaltable

(struct descriptor_table_reg * destinationptr);

The restoreglobaltable function loads a value of type
descriptor_table_reg into the GDTR. Only protected mode code at privilege
level 0 can execute this function. The function takes a pointer to the
descriptor_table_reg 6-byte area as an argument. This is the prototype for
restoreglobaltable:

void restoreglobaltable

(struct descriptor_table_reg const * sourceptr);

The saveinterrupttable function copies the contents of the IDTR into a specific
6-byte location of type descriptor_table_reg. The function takes a pointer to
this destination as an argument. This is the prototype for saveinterrupttable:

void saveinterrupttable

(struct descriptor_table_reg * destinationptr);

The restoreinterrupttable function loads a value of type
descriptor_table_reg into the IDTR. Only protected mode code at privilege
level 0 can execute this function. The function takes a pointer to the
descriptor_table_reg 6-byte area as an argument. This is the prototype for
restoreinterrupttable:

void restoreinterrupttable

(struct descriptor_table_reg const * sourceptr);

The getlocaltable function returns the contents of the LDTR. This is the
prototype for getlocaltable:

selector getlocaltable (void);

The setlocaltable function loads a value of type selector into the LDTR.
Only protected mode code at privilege level 0 can execute this function. It takes the
selector value as an argument. This is the prototype for setlocaltable:

void setlocaltable (selector sel);

150 Chapter 6 Processor-specific Facilities

Manipulating the Machine Status Word
The machine status word (MSW) contains four bits that indicate the status and
configuration of the processor. In the Intel386, Intel486, and Pentium processors, the
machine status word is the lower word in control register 0 (CR0). Figure 6-3 shows
the format of the machine status word.

NE ET TS EM MP PE

 Reserved by Intel, Must be Zeros

PG

Machine Status Word

W-3371

15 8 031

CD NW AM WP

i486 Processor:
Numerics Exception

Protected Mode Enable
Monitor Coprocessor

Emulate Coprocessor
Task Switched

i386 Processor:
 Extension Type

i486 Processor:
Cache Disable

Not Write Through

Write Protect

Alignment Mask

TM TM
i386 and i486 Processors:
Paging

CRO
(i386, i486, and Pentium Processors)TM

Figure 6-3. Machine Status Word

The getmachinestatus function returns the contents of the machine status word.
This is the prototype for getmachinestatus:

unsigned short getmachinestatus (void);

The setmachinestatus function loads a value into the machine status word. The
compiler generates a short jump to the next instruction to clear the instruction
prefetch queue. Only code at privilege level 0 can execute this function. The
function takes the value for the machine status word as an argument. This is the
prototype for setmachinestatus:

void setmachinestatus (unsigned short wordvalue);

iC-386 Compiler User's Guide Chapter 6 151

The cleartaskswitchedflag function clears the task flag in the machine status
word. Only code at privilege level 0 can execute this function. This is the prototype
for cleartaskswitchedflag:

void cleartaskswitchedflag (void);

Four macros isolate particular fields in the machine status word. Table 6-7 lists the
names of the machine status word macros in the i286.h header file and describes the
meaning of the corresponding fields of the machine status word. These macro names
must be uppercase in the source text.

Table 6-7. Machine Status Word Macros

Name Value Meaning

MSW_PROTECTION_ENABLE 0x0001 This bit, when set, places the
processor into protected mode
and cannot be cleared except
by RESET.

MSW_MONITOR_COPROCESSOR 0x0002 This bit, when set, makes WAIT
instructions cause interrupt
number 7 if the task-switched
flag is set.

MSW_EMULATE_COPROCESSOR1 0x0004 This bit, when set, makes ESC
instructions cause interrupt
number 7 to enable
coprocessor emulation.

MSW_TASK_SWITCHED 0x0008 This bit, when set, makes the
next coprocessor instruction
cause interrupt number 7 so
software can test whether the
coprocessor context belongs to
the current task.

1 Not meaningful for Intel486 or Pentium processors.

152 Chapter 6 Processor-specific Facilities

Accessing Descriptor Information
A segment descriptor contains several attributes in its access rights byte. Figure 6-4
shows the format of an Intel386 and Intel486 segment descriptor.

Accessed

Data = 0
Code = 1

31

Expanddown = 1

Conforming = 1

015

Read/Write = 1

Execute/Read = 1

Data: Normal = 0

Code:Normal = 0

Data: Read Only = 0

Code:Execute Only = 0

0

Limit 15..0

Present

Descriptor Privilege LevelAvailable

Data: 16-bit Stack = 0
32-bit Stack = 1

Code: 16-bit Operand = 0
32-bit Operand =1

Granularity: Byte = 0

4K Bytes = 1

TypeP DPL 1

Base 15..0

Base 23..16

Segment Descriptor = 1
(Special System Descriptor = 0)

OSD751

Base 31..24 Limit 19..16

Figure 6-4. Segment Descriptor

The getsegmentlimit function sets the zero flag and returns the limit of the
segment indicated by the selector argument if the following conditions are met (or
clears the zero flag and returns an undefined value otherwise):

• The selector argument is non-null.

• The selector denotes a descriptor within the bounds of the GDT or the LDT.

• If the descriptor is for a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

• If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

iC-386 Compiler User's Guide Chapter 6 153

• If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’s requested privilege level.

• If the descriptor is for a conforming code segment, its descriptor privilege level
can be any value.

The getsegmentlimit function takes the selector value as an argument. The
prototype is as follows:

Unsigned int getsegmentlimit (selector sel);

The segmentreadable function returns a 1 if the segment indicated by the selector
argument is readable (or returns a 0 otherwise). A segment is readable if the
following conditions are met:

• The selector argument is non-null.

• The selector denotes a descriptor within the bounds of the GDT or the LDT.

• If the segment descriptor is for a code segment, the execute/read bit must be 1.

• If the descriptor is for a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

• If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

• If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’s requested privilege level.

• If the descriptor is for a conforming code segment, its descriptor privilege level
can be any value.

The segmentreadable function takes a selector value as an argument. The
prototype is a s follows:

int segmentreadable (selector sel);

The segmentwritable function returns 1 if the segment indicated by the selector
argument is writable (or returns a 0 otherwise). A segment is writable if the
following conditions are met:

• The selector argument is non-null.

• The selector denotes a descriptor within the bounds of the GDT or the LDT.

• The segment descriptor denotes a data segment.

154 Chapter 6 Processor-specific Facilities

• The descriptor’s read/write bit must be 1.

• The descriptor privilege level of the segment must be greater than or equal to the
current privilege level.

The segmentwritable function takes a selector value as an argument. The
prototype is as follows:

int segmentwritable (selector sel);

The getaccessrights function returns the access rights of the segment indicated
by the selector argument and sets the zero flag if the following conditions are met (or
clears the zero flag and returns an undefined value otherwise):

• The selector argument is non-null.

• The selector denotes a descriptor within the bounds of the GDT or the LDT.

• If the descriptor is for a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

• If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

• If the descriptor is for a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’s requested privilege level.

• If the descriptor is for a confirming code segment, its descriptor privilege level
can be any value.

The getaccessrights function takes a selector value as an argument. The return
value is four bytes with the access rights in the byte above the low-order byte. The
prototype for getaccessrights is as follows:

unsigned int getaccessrights (selector sel);

A segment descriptor and a special descriptor have several fields in common: the
present bit, the descriptor privilege level, and the segment or special descriptor bit.
Figure 6-5 shows the format of a special descriptor, such as a gate, local descriptor
table (LDT), or task state segment (TSS).

iC-386 Compiler User's Guide Chapter 6 155

P DPL 0 Type

Present

Selector Offset 15 . .0

Descriptor Privilege Level

Special Descriptor (Gate, LDT, TSS) = 0

0 0 0

Unused for Task, Trap
and Interrupt Gates

Word Count for Call
Gates

31 15 0

TM TM

OM04422

0001 for 286 Available TSS
0010 for LDT
0011 for 286 Busy TSS
0100 for 286 Call Gate
0101 for Task Gate
0110 for 286 Interrupt Gate
0111 for 286 Trap Gate
1001 for i386/i486 Available TSS
1011 for i386/i486 Busy TSS
1100 for i386/i486 Call Gate
1110 for i386/i486 Interrupt Gate
1111 for i386/i486 Trap Gate

Offset 31. .16 for i386 /i486
Processor

Figure 6-5. Special Descriptor

Table 6-8 lists the name s of the macros in the i286.h header file that isolate
information for all descriptors (segment and special) and describes the meaning of the
corresponding fields of the access byte. Refer to Figure 6-4 for the format of a
segment descriptor. These macro names must be uppercase in the source text.

Table 6-8. General Descriptor Access Rights Macros

Name Value Meaning

AR_SEGMENT 0x1000 This bit is 1 for a segment descriptor and 0
for a special descriptor, such as a gate.

AR_PRIV_MASK 0x6000 These two bits indicate the descriptor
privilege level of the segment.

AR_PRESENT 0x8000 This bit indicates whether or not the
segment is present in memory.

AR_PRIVILEGE(x)1 Isolates the descriptor privilege level in the
low-order bits of a word.

AR_PRIV_SHIFT 13 Used by AR_PRIVILEGE to shift the
descriptor privilege level bits.

1The macro definition is as follows:
#define AR_PRIVILEGE(x) (((X & AR_PRIV_MASK) >> AR_PRIV_SHIFT)

156 Chapter 6 Processor-specific Facilities

Table 6-9 lists the names of the macros in the i286.h header file that isolate
information for segment descriptors and describes the meaning of the corresponding
fields of the segment descriptor access byte. Refer to Figure 6-4 for the format of a
segment descriptor. These macro names must be uppercase in the source text.

Table 6-9. Segment Descriptor Access Rights Macros

Name Value Meaning

AR_ACCESSED 0x0100 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is set to
1 when the segment is accessed or the
selector for the segment is loaded into a
selector register.

AR_WRITABLE 0x0200 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is 1 for
a writable data segment and 0 for a read-
only data segment.

AR_READABLE 0x0200 If the AR_SEGMENT bit is 21 and the
AR_EXECUTABLE bit is 1, this bit is 1 for
a readable code segment and for an
execute-only code segment.

AR_EXPAND_DOWN 0x0400 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is 1 for
an expand-down data segment and 0 for a
non-expand-down data segment.

AR_CONFORMING 0x0400 If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 1, this bit is 1 for
conforming code segment and 0- for a
non-conforming code segment.

AR_EXECUTABLE 0x0800 If the AR_SEGMENT bit is 1, this bit is 1
for a code segment and - for a data
segment.

iC-386 Compiler User's Guide Chapter 6 157

Table 6-10 lists the names of the macros in the i286.h header file that isolate
information for special descriptors and describes the meaning of the corresponding
fields of the segment descriptor access byte. These macro names must be uppercase
in the source text.

Table 6-10. Special Descriptor Access Rights Macros

Name Value Meaning

AR_CALL_GATE 0x0000 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 00 for a call gate.

AR_TSS 0x0100 If the AR_SEGMENT bit is 0-and the
AR_GATE bit is 0, this bit is 1 for an
available task state segment.

AR_TASK_GATE 0x0100 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 01 for a task gate.

AR_BUSY 0x0200 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 0, this bit is 1 for a busy
task state segment.

AR_INTR_GATE 0x0200 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 10 for an interrupt gate.

AR_GATE_MASK 0x0300 These two bits indicate the gate type.

AR_TRAP_GATE 0x0300 If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 11 for a trap gate.

AR_GATE 0x0400 If the AR_SEGMENT bit is 0, this bit is 1
for a gate and 0 for other special
descriptors.

AR_386_TYPE 0x0800 If the AR_SEGMENT bit is 0, this bit is 1
for an i386(TM) processor call, interrupt,
or trap gate and 0 for a 286 processor call,
interrupt, or trap gate.

AR_GATE_TYPE(x)1 Isolates the gate type in the high-order
byte of a word.

1The macro definition is as follows:
#define AR_GATE_TYPE(x) ((x) & AR_GATE_MASK)

158 Chapter 6 Processor-specific Facilities

Adjusting Requested Privilege Level
A selector for a processor segment has a two-bit field called requested privilege level
(RPL) This field normally contains the descriptor privilege level of the referring or
calling code segment (referring code segment if the target is a data segment, calling
code segment if the target is a code segment). Through adjustment, the RPL field can
represent the descriptor privilege level of the original calling segment in a series of
nested calls. Figure 6-6 shows the format of a selector.

Index Into Table TI RPL

Requested Privilege Level

OSD286

Table Indicator: GDT = 0, LDT = 1

15 8 0

Figure 6-6. Selector

Adjusting the RPL field of the selector of a called segment ensures that nested code
segment access occur at a level no more privileged than the level of the original
calling segment.

The adjustrpl function is the operating system software, but can execute at any
privilege level. the function takes a selector value as an argument (the selector of the
called segment). The prototype for adjustrpl is as follows:

selector adjustrpl (selector sel);

The adjustrpl function compares its argument with the selector for the code
segment that called the routing that invoked adjustrpl. The adjustrpl function
adjusts the selector argument and sets or clears the zero flag in the flags register as
follows:

If the RPL of the argument is more privileged than the RPL of the calling segment,
the function sets the zero flag, adjusts the RPL of the selector argument to the lesser
privilege level, and returns the adjusted selector.

If the RPL of the argument is the same or less privileged than the RPL of the calling
segment, the function clears the zero flag and returns the selector argument
unchanged.

iC-386 Compiler User's Guide Chapter 6 159

Manipulating the Control, Test, and Debug Registers
of Intel386™, Intel486™, and Pentium Processors

The i386.h header file contains functions that enable iC-386 programs to examine
and set the contents of the control, test, and debug registers. Only code executing at
privilege level 0 can access these registers. Figure 6-7 shows the special registers
accessible in the Intel386, Intel486, and Pentium processors.

✏ Note
Applications accessing these registers cannot be debugged using
the Soft-Scope or iRMX SDM debuggers.

Page Directory Base Register

Page Fault Linear Address

Reserved, Inaccessible

MSW

Control

Status

Reserved, Inaccessible

Reserved, Inaccessible

Breakpoint 3 Linear Address

Breakpoint 2 Linear Address

Breakpoint 1 Linear Address

Breakpoint 0 Linear Address

TLB Test Data

TLB Test Command

Reserved, Inaccessible

Reserved, Inaccessible

Reserved, Inaccessible

Test Registers

CR4

CR3

CR2

CR1

CR0

DR7

DR6

DR5

DR4

DR3

DR2

DR1

DR0

TR7

TR6

TR5

TR4

TR3

TR2

TR1

TR0

31 15 0

31 15 0

31 15 0

W-3372

Control Registers

Debug Registers

Cache Test Control (i486 Processor)

Cache Test Status (i486 Processor)

Cache Test Data (i486 Processor)

Pentium Extensions

Figure 6-7. Control, Test, and Debug Registers
of Intel386, Intel486, and Pentium Processors

160 Chapter 6 Processor-specific Facilities

The getcontrolregister, gettestregister, and getdebugregister

functions return the 32-bit contents of the specified register. The functions take the
register number as an argument. The register number must be a constant. The
functions' prototypes are:

unsigned int getcontrolregister (const unsigned char number);

unsigned int gettestregister (const unsigned char number);

unsigned int getdebugregister (const unsigned char number);

The setcontrolregister, settestregister, and setdebugregister

functions load a 32-bit value into the specified register. The functions take the
register number and the 32-bit value as arguments. These are their prototypes:

void setcontrolregister (const unsigned char number,

unsigned int value);

void settestregister (const unsigned char number,

unsigned int value);

void setdebugregister (const unsigned char number,

unsigned int value);

Control register 0 (CR0) contains the machine status word in its low-order 16 bits.
Figure 6-8 shows the format of control register 0.

See also: Manipulating the Machine Status Word in this chapter

NE ET TS EM MP PE

 Reserved by Intel, Must be Zeros

PG

Machine Status Word

W-3373

15 8 031

CD NW AM WP

i486 Processor:
Numerics Exception

Protected Mode Enable
Monitor Coprocessor

Emulate Coprocessor
Task Switched

i386 Processor:
 Extension Type

i486 Processor:
Cache Disable

Not Write Through

Write Protect

Alignment Mask

TM TM

CR0
(i386, i486, and Pentium Processors)

i386 and i486 Processors:
Paging

TM

Figure 6-8. Control Register 0 of Intel386, Intel486, and Pentium Processors

iC-386 Compiler User's Guide Chapter 6 161

Table 6-11 lists the names of the macros in the i386.h header file and describes the
meaning of the corresponding fields in the high-order 16 bits of the CR0 control
register. These macro names must be uppercase in the source text.

Table 6-11. Control Register 0 Macros for Intel386, Intel486,
and Pentium Processors

Name Value Meaning

CR0_EXTENSION_TYPE 0x0010 This bit is 1 if the Intel387 coprocessor,
Intel486 processor, or the Pentium
processor is present, and 0 if the Intel287
coprocessor is present.

CR0_PAGING_ENABLED 0x8000 This bit is 1 if paging is enabled, or 0 if
paging is disabled.

162 Chapter 6 Processor-specific Facilities

Managing the Features of the Intel486 and Pentium
Processors

The i486.h header file contains functions that enable iC-386 programs to
manipulate the unique features of the Intel486 and Pentium processors.

The Intel386, Intel486, and Pentium processors execute memory read and write
operations from low-order to high-order addresses. This order is called little endian.
The byteswap function reverses the order of bytes in a 32-bit word, converting little
endian format to big endian format. This feature is useful for transferring data
between the Intel486 or Pentium processor and foreign processors or peripherals.
The function takes a 32-bit word as its argument, and returns the swapped 32-bit
value. This is the function prototype:

unsigned int byteswap (unsigned int value);

The Intel486 and Pentium processors also contain on-chip caches and provide
instructions to manipulate those caches. The invalidatedatacache function
flushes the internal data cache. Its prototype is:

void invalidatedatacache (void);

The wbinvalidatedatacache function flushes the internal data cache and directs
any external cache to write back its contents and flush itself. This is the function
prototype:

void wbinvalidatedatacache (void);

The translation lookaside buffer (TLB) is a cache used for page table entries. The
invalidatetlbentry function marks a single entry in the translation lookaside
buffer (TLB) invalid. The function takes an address of a memory location as an
argument; the argument must have the address operator (&) preceding it. If the TLB
contains a valid entry which maps the argument address, that entry is marked invalid.
This is the function prototype:

void invalidatetlbentry (void far * memoryaddress);

iC-386 Compiler User's Guide Chapter 6 163

Manipulating the Numeric Coprocessor
The i86.h header file contains several functions, macros, and data types that enable
iC-386 programs to manipulate a numeric coprocessor, a true software emulator, or
the Intel486 or Pentium processors floating-point unit.

See also: 80387 Programmer's Reference Manual or ASM386 Assembly
Language Reference

This section uses the term numeric coprocessor to indicate a coprocessor, emulator,
or on-chip unit.

The numeric coprocessor uses 8 numeric data registers, a control word register, a
status word register, a tag word register, an instruction pointer and a data pointer.
The coprocessor treats the numeric data registers as if they were a stack. Figure 6-9
shows the numeric data register set. Figure 6-10 shows the environment registers for
the Intel387 coprocessor, and the Intel486 and Pentium processor FPU.

Sign Exponent Significand

ST(7)

ST(6)

ST(5)

ST(4)

ST(3)

ST(2)

ST(1)

ST(0)

79 78 64 63 0

W-3374

Figure 6-9. Numeric Coprocessor Stack of Numeric Data Registers

Data Pointer

Instruction Pointer

Reserved

Reserved

Reserved

Tag Word

Status Word

Control Word

31 15 0
W-3375

Figure 6-10. Intel387 Numeric Coprocessor or Intel486 and
Pentium Processor FPU Environment Registers

164 Chapter 6 Processor-specific Facilities

The setrealmode function sets the fields of the control word.

The getrealerror function retrieves the value of the status word.

The numeric coprocessor's environment consists of the contents of the control word,
status word, tag word, instruction pointer, and data pointer. The numeric
coprocessor's state consists of the contents of all the registers.

See also: Control word and the setrealmode function; status word and the
getrealerror function; Saving and Restoring the Numeric
Coprocessor State for data types and functions relative to the numeric
data registers, environment, and state, in this chapter

iC-386 Compiler User's Guide Chapter 6 165

Tag Word
The tag word contains a 2-bit field for each numeric data register. The tag fields
indicate the kind of value in the register and whether or not the register contains a
valid value. Figure 6-11 shows the tag word and the possible values for each tag.

W-3376

ST(7)

For Each Tag:

ST(6) ST(5) ST(4) ST(3) ST(2) ST(1) ST(0)

00 = Valid
01 = Zero (True)
10 = Special
11 = Empty

15 8 0

Figure 6-11. Numeric Coprocessor Tag Word

Table 6-12 lists the names of the tag word macros in the i86.h header file that
isolate a tag from the tag word. These macro names must be uppercase in the source
text.

Table 6-12. Numeric Coprocessor Tag Word Macros

Name Value Meaning

I87_TAG_MASK 0x0003 Each tag is 2 bits.

I87_TAG(x,y)1 Isolates the tag for the yth numeric register in
the low-order bits of a word.

I87_TAG_SHIFT 2 Used by I87_TAG to shift the appropriate tag
into position.

1 This is the macro definition:
#define I87_TAG(x,y) (((x).tag >> (I87_TAG_SHIFT * (y))) &
I87_TAG_MASK)

Control Word
The control word contains exception mask bits and three sets of control bits. The
mask bits correspond to the flags in the status word (refer to Figure 6-13 for the
format of the status word). Figure 6-12 shows the format of the control word.

166 Chapter 6 Processor-specific Facilities

PM UM OM ZM DM IM

Reserved by Intel,
Must be Zeros

Exception Masks:
(1 = Exception is Masked)

Precision Mask

Underflow Mask

Overflow Mask

Zero Divide Mask

Denormalized Operand Mask

Invalid Operation Mask

PC Values:

RC Values:

IC RC PC

Rounding Control
Precision Control

00 = 24-Bit Significand (Single Precision)
01 = Reserved
10 = 53-Bit Significand (Double Precision)
11 = 64-Bit Significand (Extended Precision)

00 = Round to Nearest or Even
01 = Round Down (Toward -)
10 = Round Up (Toward +)
11 = Chop (Truncate Toward Zero)

15 8 0

IC Values: 0 = Projective Closure Signed 's)
1 = Affine Closure (Unsigned 's)

W-3377

Interrupt Enable Mask for
8087 Coprocessor

TM

(8087/i287)

Infinity Control for
8087 and i287 Coprocessors

Figure 6-12. Numeric Coprocessor Control Word

The setrealmode function loads a value into the control word. The function takes
the value as its argument. This is the prototype for setrealmode:

void setrealmode (unsigned short mode);

Table 6-13 lists the names of the macros in the i86.h header file that isolate
information from the control word. These macro names must be uppercase in the
source text.

iC-386 Compiler User's Guide Chapter 6 167

Table 6-13. Numeric Coprocessor Control Word Macros

Name Value Meaning

I87_INVALID_OPERATION 0x0001 This bit masks or unmasks the IE
bit in the status word.

I87_DENORMALIZED_OPERAND 0x0002 This bit masks or unmasks the DE
bit in the status word.

I87_ZERO_DIVIDE 0x0004 This bit masks or unmasks the ZE
bit in the status word.

I87_OVERFLOW 0x0008 This bit masks or unmasks the OE
bit in the status word.

I87_UNDERFLOW 0x0010 This bit masks or unmasks the UE
bit in the status word.

I87_PRECISION 0x0020 This bit masks or unmasks the PE
bit in the status word.

I87_CONTROL_PRECISION 0x0300 These two bits control whether a
24-bit, 53-bit, or 64-bit significand
is used.

I87_PRECISION_24_BIT 0x0000 The precision bits are 00 for 24-bit
significand (single) precision.

I87_PRECISION_53_BIT 0x0200 The precision bits are 10 for 53-bit
significand (double) precision.

I87_PRECISION_64_BIT 0x0300 The precision bits are 11 for 64-bit
significand (extended) precision.

I87_CONTROL_ROUNDING 0x0C00 These two bits control the method
used in rounding.

I87_ROUND_NEAREST 0x0000 The rounding bits are 00 to round
to nearest or even.

I87_ROUND_DOWN 0x0400 The rounding bits are 01 to round
down.

I87_ROUND_UP 0x0800 The rounding bits are 10 to round
up.

I87_ROUND_CHOP 0x0C00 The rounding bits are 11 to
truncate toward zero.

I87_CONTROL_INFINITY1 0x1000 This bit controls whether projective
closure or affine closure is used to
represent infinity.

continued

168 Chapter 6 Processor-specific Facilities

Table 6-13. Numeric Coprocessor Control Word Macros (continued)

Name Value Meaning

I87_INFINITY_PROJECTIVE1 0x0000 The infinity bit is 0 to use
projective closure (unsigned
infinity).

I87_INFINITY_AFFINE1 0x1000 The infinity bit is 1 to use affine
closure (signed infinities).

1 For 8087 and i287 numeric coprocessors only.

Status Word
The status word contains flags, condition codes, the top of the stack of numeric data
registers, and a busy bit. The flag bits correspond to the mask bits in the control word
(refer to Figure 6-12 for the format of the control word). Figure 6-13 shows the
format of the status word. Table 6-14 shows the values of the condition codes for the
Intel387 numeric coprocessor or Intel487 FPU.

B C3 ST C2 C1 C0 PE UE OE ZE DE IE

15 8 0

ST Values: 000 = Register 0 is Top of Stack
 001 = Register 1 is Top of Stack
010 = Register 2 is Top of Stack
011 = Register 3 is Top of Stack
100 = Register 4 is Top of Stack
101 = Register 5 is Top of Stack
110 = Register 6 is Top of Stack
111 = Register 7 is Top of Stack

ES

Busy
Condition Code 3
Stack top Pointer
Condition Code 2
Condition Code 1
Condition Code 0
Error Summary Status
(Set if any Unmasked
 Exception bit is set, Else
 Cleared)

Exception Flags:
(1 = Exception has Occured)

Precision
Underflow
Overflow
Zero Divide
Denormalized Operand
Invalid Operation

SF

TM TM

W-3378

Stack Flag for i387, i486 FPU

Figure 6-13. Numeric Coprocessor Status Word

iC-386 Compiler User's Guide Chapter 6 169

Table Error! Reference source not found.-14. Intel387 Numeric Coprocessor, and Intel486
or

Pentium Processor FPU Condition Codes

Instructions C3 C2 C1 C0 Interpretation

FCOM, FCOMP,
FCOMPP, FTST,
FUCOM, FUCOMP,
FUCOMPP, FICOM,
FICOMP

0
0
1
1

0
0
0
1

0 or O/U
0 or O/U
0 or O/U
0 or O/U

0
1
0
1

stack top > operand
stack top < operand
stack top = operand 1
unordered

FPREM, FPREM1 Q1 0 Q0 Q2 complete reduction
with 3 low bits of
quotient in C0, C3,
and C1 U

U 1 U U incomplete reduction

FXAM 0
0
0
0
1
1
1

0
0
1
1
0
0
1

Sign
Sign
Sign
Sign
Sign
Sign
Sign

0
1
0
1
0
1
0

unsupported 0
NaN
normal
infinity
zero
empty
denormal

FCHS, FABS, FXCH,
FINCTOP,
FDECTOP, Constant
loads, FXTRACT,
FLD, FILD, FBLD,
FSTP

U U 0 or O/U U

FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,
FDIV, FDIVR, FSUB,
FSUBR, FSCALE,
FSQRT, FPATAN,
F2XM1, FYL2X,
FYL2XP1

U U Round
or O/U

U rounding valid when
PE bit of status word
is set

continued

170 Chapter 6 Processor-specific Facilities

Table Error! Reference source not found.-14. Intel387 Numeric Coprocessor, and Intel486
or

Pentium Processor FPU Condition Codes (continued)

Instructions C3 C2 C1 C0 Interpretation

FPTAN, FSIN, FCOS,
FSINCOS

U 0 Round
or O/U

U complete reduction

U 1 U U incomplete reduction

FLDENV, FRSTOR Loaded Loaded Loaded Loaded each bit loaded from
memory

FLDCW, FSTENV,
FSTCW, FSTSW,
FCLEX, FINIT,
FSAVE

U U U U undefined

Key:
O/U = When IE and SF bits of status word are set
1 = stack overflow and 0 = stack underflow
U = instruction leaves value undefined
Qn = quotient bit n following complete reduction (C2=0)

The getrealerror function returns the contents of the low-order byte of the status
word and then clears the exception flags in the status word to zeros. This is the
prototype for getrealerror:

unsigned short getrealerror (void);

iC-386 Compiler User's Guide Chapter 6 171

Table Error! Reference source not found.-15 lists the names of the macros in the
i86.h header file that isolate information from the status word. These macro names
must be uppercase in the source text.

Table Error! Reference source not found.-15. Numeric Coprocessor Status Word
Macros

Name Value Meaning

I87_STATUS_ERROR 0x0080 This bit is 1 if any unmasked
exception bit is set.

I87_STATUS_STACKTOP_MASK 0x3800 These three bits indicate the
numeric register that is at the top
of the stack.

I87_STATUS_STACKTOP_SHIFT 11 Used by
I87_STATUS_STACKTOP to shift
the stack top bits.

I87_STATUS_STACKTOP(env)1 Isolates the stack top bits in the
low-order bits of a word.

I87_STATUS_BUSY 0x8000 This bit is 1 when the
coprocessor is executing or 0
when the coprocessor is idle.

I87_STATUS_CONDITION_CODE 0x4700 These four bits are the condition
code bits; they reflect the
outcome of arithmetic operations.

I87_CONDITION_C0 0x0100 This bit is condition code bit 0
(see Table 6-14).

I87_CONDITION_C1 0x0200 This bit is condition code bit 1
(see Table 6-14).

I87_CONDITION_C2 0x0400 This bit is condition code bit 2
(see Table 6-14).

I87_CONDITION_C3 0x4000 This bit is condition code bit 3
(see Table 6-14).

1 This is the macro definition:
#define I87_STACKTOP(env) (((env).status &
I87_STATUS_STACKTOP_MASK)
>> \ I87_STATUS_STACKTOP_SHIFT)

172 Chapter 6 Processor-specific Facilities

Intel387™ Numeric Coprocessor, and Intel486 or Pentium
Processor FPU Data Pointer and Instruction Pointer

Figure 6-14 shows the protected mode format of the data pointer and instruction
pointer for the Intel387 numeric coprocessor, and the Intel486 or Pentium processor
FPU.

Protected Mode

Operand Selector

Operand Offset

CS Selector

IP Offset

Data Pointer
Reserved

Opcode 10..0Instruction
Pointer

Reserved by Intel, Must be Zeros

31 26 15 0

W-3379

Figure 6-14. Intel387 Numeric Coprocessor, and Intel486==or Pentium Processor
FPU Data Pointer and Instruction Pointer

The i387_protected_addr data type defines the structure of the information in
the data pointer or instruction pointer for the Intel387 numeric coprocessor, and the
Intel486 or Pentium processor FPU.

The i387_protected_addr structure type accommodates the value of the
protected mode data pointer or instruction pointer. The opcode field is undefined for
the data pointer. This is the structure definition:

#pragma ALIGN("i387_protected_addr")

struct i387_protected_addr

{

unsigned ip_offset: 32;

unsigned cs_sel : 16;

unsigned opcode : 11, : 5;

unsigned op_offset: 32;

unsigned op_sel : 16, : 16;

};

Saving and Restoring the Numeric Coprocessor State
The numeric coprocessor's environment is the contents of the control word, status
word, tag word, instruction pointer, and data pointer. The numeric coprocessor's state
is the contents of the environment registers plus the numeric data register stack.
Refer to Figures 6-9 and 6-10 for the general format of these registers.

iC-386 Compiler User's Guide Chapter 6 173

The i387_environment data type defines the environment for the Intel387
coprocessor, and the Intel486 or Pentium processor FPU. The i87_tempreal data
type and the tempreal_t typedef define the format of one numeric register. The
i387_state data type defines the structure of all the registers for the Intel387
coprocessor, and the Intel486 or Pentium processor FPU. The saverealstatus
and restorerealstatus functions manipulate the entire state of the numeric
coprocessor.

The i387_environment structure type defines the Intel387 numeric coprocessor,
and the Intel486 or Pentium processor FPU environment. This is the structure
definition:

#pragma ALIGN("i387_environment")

struct i387_environment

{

unsigned control: 16, : 16;

unsigned status : 16, : 16;

unsigned tag : 16, : 16;

union i387_address ptrs_n_opcode;

};

The i87_tempreal structure type and tempreal_t typedef define the fields in one
numeric register. You can define the SBITFIELD macro to control whether the
one-bit sign field is signed or unsigned. These are the definitions for i87_tempreal
and tempreal_t:

#pragma NOALIGN ("i87_tempreal")

struct i87_tempreal

{

char significand[8];

unsigned exponent: 15;

#if defined(SBITFIELD)

signed sign : 1;

#else

unsigned sign : 1;

#endif

};

typedef struct i87_tempreal tempreal_t;

The i387_state structure defines the state of the Intel387 numeric coprocessor, and
the Intel486 or Pentium processor FPU. This is the structure definition:

struct i387_state

{

struct i387_environment environment;

174 Chapter 6 Processor-specific Facilities

tempreal_t stack[8];

};

The saverealstatus function copies the contents of the numeric coprocessor state
into a specific location of type i387_state for the Intel387 coprocessor, and the
Intel486 or Pentium processor FPU. The function takes a pointer to this destination
as an argument.

The prototype for saverealstatus for the Intel387 coprocessor, and the Intel486
or Pentium processor FPU is:

void saverealstatus (struct i387_state * destinationptr);

The restorerealstatus function loads values into all the numeric coprocessor
registers. The function takes as an argument a pointer to the i387_state save area
for the Intel387 coprocessor, and the Intel486 or Pentium processor FPU.

The prototype for restorerealstatus for the Intel387 coprocessor, and the
Intel486 or Pentium processor FPU is:

void restorerealstatus (struct i387_state const * sourceptr);

■■ ■■ ■■

iC-386 Compiler User's Guide Chapter 7 175

Assembler Header File 7
The util.ah header file contains macros that help interface assembly routines to
iC-386 programs. To use these facilities, include the header file in your assembly
routines. The util.ah assembler header file provides these facilities:

• Segmentation and linkage directives and generic data type specifiers for any
standard memory model; for iRMX applications, use compact model

• Standard prolog and epilog for conformance to either the variable parameter list
(VPL) or the fixed parameter list (FPL) calling convention

• Simple directives for using parameters and automatic variables

To select these features, use header controls that the util.ah macros recognize.
The source for the util.ah header file is common for ASM86, ASM286, and
ASM386.

See also: Sample code in rmx386\demo\c\intro compiler directory for examples
of code using macros, source files, expanded source code for ASM386
for the compact memory model, and implementations of the strcmp
and memcpy functions.

Macro Selection
The macros defined in util.ah fall into five groups:

Flag macros indicate segmentation model, calling convention, and
instruction set used in the assembly.

Register macros are generic register names and expand to appropriate registers
depending on the calling convention.

Segment macros are names of segments or groups as determined by
segmentation model.

Type macros are generic data type specifications and expand to appropriate
types depending on segmentation model.

Operation macros are instructions or directives for commonly used assembly
language operations.

176 Chapter 7 Assembler Header File

Ensure that the :include: environment variable contains the path for the util.ah
file. For example, set :include: as follows:

C:> set :include:=\intel\lib\

Use this line in your assembly source text to include util.ah:

$include(:include:util.ah)

The expansion of the macros in util.ah depends on the value of a macro named
controls, which contains a list of header controls that specify the behavior of the
util.ah macros. Table 7-1 lists the header controls to use for iRMX applications.

Table 7-1. Assembler Header Controls for Macro Selection

Header Control Abbr. Description Default

asm386 generate code for ASM386 asm86

compact cp generate code for compact
memory model

small l

fixedparams fp generate prolog/epilog for
FPL calling convention

fixedparams

varparams vp generate prolog/epilog for
VPL calling convention

fixedparams

'module=name'1 set module name module=anonymous

ram generate code for RAM
sub-model

ram

rom generate code for ROM
sub-model

ram

'stacksize=size'1 set size of the stack segment stacksize=0
1 Use single quotation marks around these header controls on the assembler invocation line.

If you include util.ah, you must define the controls macro in the assembler
invocation or in the assembly source text before the line including util.ah.
Otherwise, the assembler reports an undefined macro error. You can define the
controls macro with an empty value; any header controls that you do not specify
take on their default settings.

iC-386 Compiler User's Guide Chapter 7 177

You can define the controls macro in the assembler invocation, or in the source
text, or both places:

• If you define the controls macro in the assembler invocation, provide a
definition for the controls macro each time you assemble the program. Thus,
each time you assemble the program you can specify any header control settings
or define the controls macro with an empty value, letting the unspecified
controls take on their default settings.

• If you define the controls macro in the assembly source text as a simple list of
header controls, you can change the header control settings only by modifying
the source text. When the assembler processes a macro definition, it discards
any existing definition of that macro, so defining the controls macro in the
assembler invocation has no effect.

• You can define the controls macro in the assembler invocation, then use that
definition of it as part of a redefinition of the controls macro in the assembly
source text. This forces some header control settings to take effect any time you
invoke the assembler for that source text. You can also override other header
control settings and let some header controls take on their global default settings.

This is the DOS syntax for the assembler invocation:

asm386 file [asm_controls] %define(controls)([header_controls])

Where:

file is the source file to assemble.

asm_controls are controls for the assembly.

See also: ASM controls, ASM386 Macro Assembler
Operating Instructions

header_controls are header controls from Table 7-1, separated by spaces.

Within the source text, this is the syntax for defining the controls macro and
including the util.ah header file:

%define(controls)

([file_default_ctls] %controls [file_override_ctls])

$include(:include:util.ah)

178 Chapter 7 Assembler Header File

If you specify conflicting controls, the last one encountered by the assembler takes
effect. These are the precedence levels of the header controls:

• The file_override_ctls, specified last in the controls definition in the
source text, have the highest precedence. The file_override_ctls always
take effect, overriding any conflicting control in the header_controls or
file_default_ctls.

• The header_controls, specified in the assembler invocation (and expanded in
the source text from the %controls embedded in the controls definition),
have second precedence. The header_controls take effect when they do not
conflict with the file_override_ctls. A control in the header_controls
overrides any conflicting control in the file_default_ctls.

• The file_default_ctls, specified first in the controls definition in the
source text, have third precedence. The file_default_ctls take effect
whenever they do not conflict with the header_controls or
file_override_ctls.

• The global default controls, listed in Table 7-2, have the lowest precedence. The
global default controls take effect only when they do not conflict with the
file_override_ctls, header_controls, or file_default_ctls.

iC-386 Compiler User's Guide Chapter 7 179

Figure 7-1 shows the precedence relationship depending on where controls are
placed.

Highest
Precedence

Lowest
Precedence

Default Controls
From Table 7-2

file_override_controls
(Last in Controls Definition

in Source Text)

header_controls
(In Assembler Invocation and Expanded in Source

Text at %controls)

file_default_ctrls
(First in Controls Definition

in Source Text)

Overrides
Conflicting

Overrides
Conflicting

Overrides
Conflicting

W-3380

Figure 7-1. Precedence Levels of Assembler Header Controls

These examples demonstrate invoking the assembler with header controls to select
macros.

1. This example invokes the ASM386 assembler with non-default assembler
settings and header controls. The assembler processes the source text in the file
utest.asm using the compact model, and produces an object module with
variable parameter list (VPL) calling convention.

C:> asm386 utest.asm %define(controls)(cp vp)

180 Chapter 7 Assembler Header File

2. This example defines controls in the assembly source text. The header control
settings specify ASM386, the compact model, and the ROM submodel.

%define(controls)(asm386 cp rom)

$include(:include:util.ah)

3. This example defines header control defaults partly different from the global
default controls. The assembly source text contains:

%define(controls)

(cp vp 'stacksize=50' %controls 'module=ut1')

This definition of the controls macro sets these defaults:

• The object module is compact model rather than small.

• The calling convention is variable parameter-list (VPL) rather than fixed
parameter list (FPL).

• The stack size is 50 rather than 0.

• The module name is ut1 instead of anonymous and cannot be overridden;
its position after %controls indicates that it is a file override control.

This is the assembler invocation for ASM386 on DOS:

C:> asm386 utest.asm %define(controls)(asm386 rom)

The controls defined in the assembler invocation override only the file default
controls that specify the memory model:

• The object module is ROM model rather than RAM.

• The calling convention is VPL and the stack size is 50, as specified in the
file default controls.

iC-386 Compiler User's Guide Chapter 7 181

Flag Macros
The value of a flag macro is either 1 (set) or 0. Use flag macros in ASM macro
programming language %if constructs.

See also: Macro programming language, ASM386 Macro Assembler Operating
Instructions

Use the flag macros to test these conditions:

%const_in_code indicates that constants are in the code segment; set by the rom
header control.

%far_code indicates that function pointers are far.

%far_data indicates that data pointers are far; set by the compact, or rom
header controls.

%far_stack indicates that the stack is in a separate segment, that is, the SS
register value is not the same as the DS register value; set by
the compact header control.

%fpl indicates that the calling convention is fixed parameter list
(FPL); set by the fixedparams header control.

%i186_instrs indicates whether to use or simulate instructions available only
in 186 and higher instruction sets; set by the asm386 header
controls.

%i386_asm indicates code specific to a particular architecture when code is
common between products targeted for 86, 286, or Intel386
processors; set by asm386 header control.

Table 7-2 lists which flag macros are set when you specify various header controls.

Table 7-2. Assembler Flag Macros Set by Header Controls

Header Control Flag Macros Set

asm386 %i386_asm
%i186_instrs

compact %far_data
%far_stack

fixedparams %fpl

rom %const_in_code
%far_data

182 Chapter 7 Assembler Header File

Register Macros
You can use a register macro as an instruction operand in place of the register name.
Table 7-3 shows macros useful in specifying operands to instructions.

Table 7-3. Assembler Register Macros

Macro ASM386 Expansion

%ax eax

%bx ebx

%cx ecx

%dx edx

%bp ebp

%sp esp

%si esi

%di edi

These are the register macros and the registers they reference:

%retoff is the register that holds the offset portion of a pointer return value. The
%retoff macro expands to eax for ASM386.

%retsel is the register that holds the selector portion of a pointer return value.
The %retsel macro expands to edx for ASM386.

iC-386 Compiler User's Guide Chapter 7 183

Segment Macros
Each segment macro expands to the name of a segment. The memory model
determines the segment names. The segment names conform exactly to those used
by C and PL/M. You can use these names as instruction operands and in
segmentation directives.

The segment macros correspond to the names of segments. These are the segment
names and what each macro expands to:

%cgroup the segment to which the CS register points

%code the code segment name

%const the constant segment name

%data the data segment name

%stack the stack segment name

%dgroup the segment to which the DS register points

%sgroup the segment to which the SS register points

Table 7-4 shows the segment macro expansion for the compact memory model for
ASM386.

Table 7-4. ASM386 Segment Macro Expansion for Compact Memory Model

Macro Model Sub-model Expansion

%code compact RAM or ROM CODE32

%cgroup compact RAM or ROM %code

%data compact RAM or ROM DATA

%dgroup compact RAM or ROM %data

%stack compact RAM or ROM STACK

%sgroup compact RAM or ROM %stack

%const compact
compact

RAM
ROM

%data
%code

184 Chapter 7 Assembler Header File

This example uses %DATA to bracket static variable data:

%data segment

;assembler commands, e.g.,

var dw 0

%data ends

This example expands to:

DATA segment

;assembler commands, e.g.,

var dw 0

DATA ends

iC-386 Compiler User's Guide Chapter 7 185

Type Macros
You can use a type macro wherever an ASM data type (such as byte, word, dword,
etc.) can be used.

The type macros correspond to the data types of objects:

%fnc the type of a global function

%fnc_ptr the size of a pointer to a function

%ptr the size of a pointer to data

%reg_size the size of a pointer

%int the size of an integer

%dint the size of a double integer

Table 7-5 shows the type macro expansion for the compact memory model.

Table 7-5. ASM386 Type Macro Expansion for Compact Memory Model

Macro Model Sub-model Expansion

%fnc compact RAM or ROM near

%fnc_ptr compact RAM or ROM dword

%ptr compact RAM or ROM pword

%reg_size compact RAM or ROM dword ptr

%int compact RAM or ROM dword

%dint compact RAM or ROM dd

186 Chapter 7 Assembler Header File

Operation Macros
The operation macros are grouped in four different classes according to their
function:

External
declaration macros

expand to declarations of external variables, constants, and
functions.

Instruction macros expand to code simulating instructions or the instructions
themselves, depending on the instruction set used.

Conditional macros expand to instructions that test or load data pointers. The
expansion depends on whether data pointers have selectors.

Function definition
macros

expand to the basic parts of a function definition.

External Declaration Macros
Use the external declaration macros as follows:

%extern(type, vname) to declare an external variable where type is a
valid assembler data type or a type macro, and
vname is a variable name; can be used only
outside all functions and segments.

%extern_const(type, cname) to declare an external constant where type is a
valid assembler data type or a type macro, and
cname is a constant name; can be used only
outside all functions and segments.

%extern_fnc(fname) to declare an external function where fname is
a function name; can be used only outside all
functions and segments.

Table 7-6 shows the external definition macro expansion for the compact memory
model for ASM386.

iC-386 Compiler User's Guide Chapter 7 187

Table 7-6. ASM386 External Declaration Macro Expansion
for Compact Memory Model

Macro Model Sub-model Expansion

%extern compact RAM or ROM DATA segment
extrn vname:type

DATA ends

%extern_const compact RAM CONST segment
extrn aconst:type

CONST ends

compact ROM CODE32 segment
extrn aconst:type

CODE32 ends

%extern_fnc compact RAM or ROM CODE32 segment
extrn fname:near

CODE32 ends

Instruction Macros
The instruction macros provide compatibility between 86 and higher processor
instruction sets.

%enter expands to the enter instruction.

%leave expands to leave instruction for 186 and higher instruction
sets.

%pusha expands to the pushad instruction for the Intel386 instruction
set.

%popa expands to the popad instruction for the Intel386 instruction
set.

%pushf expands to pushfd for the Intel386 instruction set.

%movsx expands to movsx for the Intel386 instruction set.

%movzx expands to movzx for the Intel386 instruction set.

188 Chapter 7 Assembler Header File

Conditional Macros
The conditional macros select source text for assembly depending on whether data
pointers have selectors (the far address format). The conditional macros expand as
follows:

%mov|lsr expands to mov if %far_data is not set, or to the register load
instruction you specify as the lsr argument if %far_data is
set. Use this macro as an instruction mnemonic for loading a
data pointer. The lsr argument can be either lds, les, lfs,
or lgs. Note that %mov uses a vertical bar (|) rather than
parentheses to delimit its argument.

%if_sel(text) expands only if data pointers have selectors. The text
argument is the source text to be conditionally assembled.
This macro is equivalent to:

%if (%far_data) then (text) fi

%if_nsel(text) expands only if data pointers do not have selectors. The text
argument is source text to be conditionally assembled. This
macro is equivalent to:

%if (not %far_data) then (text) fi

Function Definition Macros
These entries describe the function macros in detail in their order of use:

%function open a function definition

%param define a parameter name

%param_flt define a floating-point parameter name

%auto define a local automatic variable

%prolog generate a function prolog

%epilog generate a function epilog

%ret generate a return instruction

%endf close a function definition

%function

iC-386 Compiler User's Guide Chapter 7 189

%function
Open a function definition

Syntax
%function(fname)

Where:

fname is the name of the function to be opened.

Discussion

Use %function as the first statement in a function definition, to open the function
definition.

For ASM386 compact model, the %function macro expands to:

CODE32 segment

fname proc near

public fname

%param

190 Chapter 7 Assembler Header File

%param
Define a parameter name

Syntax
%param(type, pname)

Where:

type is the data type of the parameter.

pname is the name of the parameter, which is defined as a macro such that
%pname expands to a valid reference to the parameter.

Discussion

Use %param to define a parameter name. Use %param only between %function

and %prolog. When you define a parameter of data type type, the size of the
parameter block increases by the number of bytes occupied by a parameter of data
type type.

Regardless of whether the calling convention is fixed parameter list (FPL) or variable
parameter list (VPL), parameters must be declared in the order that their
corresponding arguments occur in the ASM function call expression.

%param_flt

iC-386 Compiler User's Guide Chapter 7 191

%param_flt
Define a floating-point parameter name

Syntax
%param_flt(type, fpname)

Where:

type is the data type of the parameter

fpname is the name of the floating-point parameter, which is defined as a macro
such that %fpname expands to a valid reference to the floating-point
parameter.

Discussion

Use %param_flt to define a floating-point parameter name. Use %param_flt only
between %function and %prolog.

If you specify the varparams header control, the effect of %param_flt is identical
to that of %param. If you specify the fixedparams header control, %param_flt
has no effect, since floating-point arguments are passed on the numeric coprocessor
stack instead of on the processor stack. In general, you must handle floating-point
arguments with a construct such as:

%if (not %fpl) then (

fld %fpname ; load the argument

) fi

. ; body of code

.

.

%auto

192 Chapter 7 Assembler Header File

%auto
Define a local automatic variable

Syntax
%auto(type, mname)

Where:

type can be any valid assembler data type or a type macro.

mname is the name of the variable, which is defined as a macro such that
%mname expands to a valid reference to the variable.

Discussion

Use %auto to define a local automatic variable. Use %auto only between
%function and %prolog. When you define a local automatic variable of data type
type, the size of the local area allocated by %prolog increases by the number of
bytes occupied by a variable of data type type.

%prolog

iC-386 Compiler User's Guide Chapter 7 193

%prolog
Generate a function prolog

Syntax
%prolog(registers)

Where:

registers is a list of segment registers and general registers. However, the macro
ignores all but the DS, ES, EDI, and ESI registers for ASM386.
Separate the register names with spaces.

Discussion

Use %prolog to generate a prolog function. Use %prolog only after %function
and before any other instructions. Use %prolog whenever you use %epilog,
%param, %param_flt, or %auto, and be sure to use %prolog after %parm,
%parm_flt, and %auto. You must also use %epilog whenever you use %prolog.

Of the registers you list in the registers argument list, the prolog function pushes
only those that the calling convention requires to be preserved. The prolog function
performs these tasks:

• Pushes registers

• Pushes EBP for ASM386 (the base pointer register) and initializes it for use as a
local frame pointer using the ENTER assembler instruction

• Sets ESP for ASM386 using the ENTER assembler instruction

• Allocates space for automatic variables

%epilog

194 Chapter 7 Assembler Header File

%epilog
Generate a function epilog

Syntax
%epilog

Discussion

Use %epilog to generate a function epilog. Use %epilog only immediately before
a return instruction. The epilog deallocates space for automatic variables (allocated
by the %auto function macro) and pops registers pushed by the %prolog function
macro. The epilog also issues the LEAVE assembler instruction, thereby restoring the
EBP register for ASM386; and the ESP register for ASM386.

%ret

iC-386 Compiler User's Guide Chapter 7 195

%ret
Generate a return instruction

Syntax
%ret

Discussion

Use %ret to generate a return instruction. The expansion of %ret depends on
whether you specify the varparams or the fixedparams header control, as follows.

Under the varparams header control, %ret expands to:

ret

Under the fixedparams header control, %ret expands to:

ret paramsize

The paramsize is the sum of the sizes of all the parameters declared with %param.
The paramsize must be an even value, since parameters are word-aligned.

%endf

196 Chapter 7 Assembler Header File

%endf
Close a function definition

Syntax
%endf(fname)

Where:

fname is the name of the function to be closed.

Discussion

Use %endf as the last statement in a function definition to close the function
definition. The %endf macro always expands to:

fname endp

■■ ■■ ■■

iC-386 Compiler User's Guide Chapter 8 197

Function-calling Conventions 8
To interface functions in different languages, a programmer must know the calling
convention, data types, and segmentation model used by the different translators.
This chapter discusses calling conventions for interfacing iC-386 functions with
functions written in other Intel programming languages.

This chapter contains information on how iC-386 generates object code for a function
call, and how the fixed parameter list and variable parameter list conventions differ.

See also: Segmentation memory models in Chapter 4;
data types, reserved words, conformance to the ANSI C standard,
implementation-dependent compiler features, in Chapter 10

A large application can consist of many separately compiled modules. The binding
process combines the modules before execution to satisfy references to external
symbols. Use Intel translators and binding tools to ensure compatibility with the
segmentation model of the microprocessor.

A function-calling convention establishes rules and responsibilities for these
activities:

• Passing arguments to the called function

• Returning a value from the called function to the calling function

• Saving registers

• Cleaning up the stack

198 Chapter 8 Function-calling Conventions

The compiler generates four sections of object code for a function call. These
sections contain the code that handles the function-calling convention. Figure 8-1
shows these four sections of code. The sections are:

setup code in the calling function that the processor executes just before
control transfers to the called function

prolog code in the called function that the processor executes first when control
has transferred from the calling function

epilog code in the called function that the processor executes just before
control returns to the calling function

cleanup code in the calling function that the processor executes just after control
returns from the called function

Control Transfer Called Function:

Setup

(Call)

Cleanup

Prolog

(Body)

Epilog

W-3381

Calling Function:

Figure 8-1. Four Sections of Code for a Function Call

iC-386 Compiler User's Guide Chapter 8 199

The iC-386 compiler supports two calling conventions: fixed parameter list (FPL)
and variable parameter list (VPL). The FPL calling convention is the default for the
iC-386 compiler and for most non-C compilers or translators. Ensure that the object
code for the calling function and for the called function use the same convention. For
iC-386, use the fixedparams control for the FPL convention and the varparams
control for the VPL convention.

See also: Individual control descriptions in Chapter 3

✏ Note
The iC-386 compiler uses the fixed parameter list (FPL) calling
convention as its default. This feature produces more compact
code. Intel C compilers for Intel386 and Intel486 processors before
Version 4.1 use the variable parameter list (VPL) calling
convention. If the calling function and the called function do not
use the same calling convention, the result is unpredictable.

Passing Arguments
A calling function passes some or all of its arguments to the called function on the
processor stack. These points differ in calling conventions:

• Position that arguments occupy on the stack, or order in which arguments are
pushed onto the stack

• Whether the calling function passes an argument by value (the actual value of the
argument appears on the stack) or passes an argument by reference (a pointer to
the argument appears on the stack)

• The format of pass-by-value arguments on the stack

The iC-386 compiler always uses pass-by-reference for passing arrays and
pass-by-value for other objects. The calling function's setup code pushes arguments
onto the stack.

200 Chapter 8 Function-calling Conventions

FPL Argument Passing
In the FPL convention, the calling function pushes all non-floating-point arguments
onto the processor stack, and the first seven (left-to-right) floating-point arguments
onto the numeric coprocessor (or numeric coprocessor emulator) stack. The calling
function pushes all remaining floating-point arguments onto the processor stack.

The FPL convention pushes the leftmost argument in the function call first and the
rightmost argument last. Therefore, the first argument in the list occupies the highest
memory location of all the arguments on the stack for this function call, and the last
argument in the list is on the top of the stack.

Aggregate objects occupy memory on the stack in the same way that they exist in the
data segment: bytes match from low-order memory to high-order memory.

Each argument on the processor stack occupies a multiple of four bytes. If the size of
the argument is less than four bytes, the compiler pads the argument to four bytes
with undefined bits. The compiler pads aggregate arguments to a multiple of four
bytes with undefined bits.

The floating-point arguments on the numeric coprocessor stack occupy 80 bits each
(extended precision). In conformance to the ANSI C standard, the parameter
prototype declaration determines the size of any floating-point arguments on the
processor stack. In the absence of a prototype, or if the parameter is the eight or
subsequent floating-point value, the calling function pushes floating-point arguments
in double format (64 bits).

When the calling function expects a structure or union as a return value, the calling
function pushes last an argument that is an address where the called function places
the structure or union.

iC-386 Compiler User's Guide Chapter 8 201

✏ Note
A non-prototyped FPL function risks using incorrect offsets for all
parameters following the eighth floating-point parameter if the
eighth or subsequent floating-point parameter is declared within the
function as float instead of double, as follows:

1. Under the FPL calling convention, the first seven floating-
point arguments are passed in the numeric coprocessor
registers, and all subsequent floating-point arguments are
passed on the CPU stack.

2. In the absence of a prototype for the called function, the
calling function always promotes an argument of type float
to type double before passing the argument on the CPU
stack to the called function.

3. If the called function declares the eighth or subsequent
floating-point parameter as type float (instead of type
double, as passed), the called function uses incorrect offsets
to access the ninth and subsequent parameters, and the stack
is not adjusted correctly upon return to the calling function.

To avoid such errors, always provide prototypes for all FPL functions
that include floating-point parameters.

VPL Argument Passing
In the VPL convention, the calling function pushes all arguments, including
floating-point arguments, onto the processor stack.

The VPL convention pushes the rightmost argument in the function call first and the
leftmost argument last. Therefore, the last argument in the list occupies the highest
memory location of all the arguments on the stack for this function call, and the first
argument in the list is on the top of the stack.

Aggregate objects occupy memory on the stack in the same way that they exist in the
data segment: bytes match from low-order memory to high-order memory.

Each argument on the processor stack occupies a multiple of four bytes. If the size of
the argument is less than four bytes, the compiler zero-extends or sign-extends to four
bytes depending on the argument's data type. The compiler pads aggregate
arguments to a multiple of four bytes with undefined bytes.

202 Chapter 8 Function-calling Conventions

In conformance to the ANSI C standard, the parameter prototype declaration
determines the size of a floating-point argument on the processor stack. In the
absence of a prototype, or if the parameter is beyond the ellipsis, the calling function
pushes a floating-point argument in double format (64 bits).

When the calling function expects a structure or union as a return value, the calling
function pushes last an argument that is an address where the called function places
the structure or union.

✏ Note
Variables declared with the register storage class are candidates
for storage in registers only under the VPL calling convention. The
register storage class is ignored under the FPL calling
convention.

Returning a Value
Both the FPL and VPL calling conventions return scalar values in a register and a
floating-point value on the top of the numeric coprocessor stack.

The called function copies a returned union or structure starting at the memory
location pointed to by the last argument on the stack. The called function also loads
the address of the structure or union into a register, as if returning a pointer to the
return object.

Loading the register and copying a returned union or structure occurs in the called
function's epilog code.

Table 8-1 shows the registers used for different scalar objects for iC-386.

Table 8-1. iC-386 FPL and VPL Return Register Use

Data Type FPL or VPL

8-bit result AL

16-bit result AX

32-bit result EAX

64-bit result EDX:EAX

near (short) pointer EAX

far (long) pointer EDX:EAX

real top of coprocessor or
emulator stack

iC-386 Compiler User's Guide Chapter 8 203

Saving and Restoring Registers
The FPL and VPL calling conventions preserve different sets of registers. The VPL
calling convention preserves the EDI, ESI, and EBX registers. Table 8-2 shows the
register preservation scheme of iC-386 for the FPL and VPL conventions.

In the FPL convention, if the calling function uses register variables, the calling
function is responsible for saving their values in the setup code. The balance of
register preservation occurs in the called function's prolog code.

Table 8-2. iC-386 FPL and VPL Register Preservation

Register
FPL
Preserved

FPL not
Preserved

VPL
Preserved

VPL not
Preserved

EAX X X

EBX X X

ECX X X

EDX X X

ESP X X

EBP X X

EDI X X X

ESI X X

CS X X

DS X X

SS X X

ES X X

FS X X

GS X X

204 Chapter 8 Function-calling Conventions

Cleaning Up the Stack
In the FPL calling convention, the called function pops all the arguments off the
processor stack in its epilog before it returns control to the calling function.

In the VPL calling convention, the calling function pops all the arguments off the
processor stack in its cleanup code after the called function returns control.

In both conventions, the called function's prolog code pops any floating-point
arguments off the numeric coprocessor stack and saves them as local variables. If the
called function returns a floating-point value, it is left on the top of the numeric
coprocessor stack and is overwritten by the next floating-point operand.

■■ ■■ ■■

iC-386 Compiler User's Guide Chapter 9 205

Subsystems 9
This chapter tells how to use subsystems to create extended segmentation models,
and contains these topics:

• When to use subsystems

• How subsystems combine to form extended segmentation models

• Syntax for defining subsystems

• Example definitions

Segmentation is the term for the division of code, data, and stacks in the Intel386,
Intel486, and Pentium architectures. The compact segmentation memory model
described in Chapter 4 is the standard way that iC-386 creates code, data, and stack
segments. When your program contains large amounts of data or code, the standard
segmentation memory models do not offer a way to group code and data references
and to structure your program into more segments to take advantage of segmentation
protection mechanisms.

Subsystems extend the efficiency and protection of the compact segmentation
memory model described in Chapter 4. A subsystem is a collection of program
modules that uses the same standard model of segmentation. If you use only the
standard segmentation controls (and not the subsys control) to compile your
program modules, then your program consists of one subsystem with all modules
using the same model of segmentation. The term "extended segmentation model"
refers to the memory model used by any program that consists of more than one
subsystem.

Extended segmentation models offer these advantages:

• Each program subsystem can execute at a different protection level.

• Each subsystem enjoys the segmentation protection mechanisms of the processor
architecture, such as restricted entry points and protection from segment
overruns.

Use compact subsystems for iRMX applications.

206 Chapter 9 Subsystems

A subsystem uses either the RAM or the ROM submodel, with constants in the data
segment or code segment, respectively. A program can contain subsystems that use
different submodels.

To compile a module that is part of a subsystem, place the definitions for the
subsystems in a special text file and use the subsys compiler control in the
invocation or in a #pragma preprocessor directive to include the special file in each
compilation. If you use subsys in a #pragma directive, the directive must precede
any data definitions or executable statements.

Dividing a Program into Subsystems
Using subsystems is an efficient way to structure programs that have large amounts
of data or code. For example, consider a program consisting of 10 modules, mod1
through mod10. Modules mod1 through mod3 deal with input and initial processing.
Modules mod4 through mod8 do the main data processing. Modules mod9 and
mod10 output the data. Figure 9-1 illustrates the program structure and data flow.

W-3382

Data
Flow

Data
Flow

INPUT PROCESS OUTPUT

Data
Input

(mod1

mod2

mod3)

(mod4

mod5

mod6

mod7

mod8)

(mod9

mod10)
Data
Output

Figure 9-1. Subsystems Example Program Structure

Under the compact segmentation memory model described in Chapter 4, the binder
combines the segments for this program into one code segment containing all the
code from mod1 through mod10, one data segment containing all the data from mod1

through mod10, and one stack segment, as shown in Figure 9-2.

iC-386 Compiler User's Guide Chapter 9 207

CS DS SS

CODE32
(All Modules)

DATA
(All Modules)

STACK
(All Modules)

W-3383

Figure 9-2. Subsystems Example Program in Regular
Compact Segmentation Memory Model

Suppose the program is restructured using an extended segmentation model
composed of three compact-model subsystems. Each subsystem is given a name
indicating its function:

Subsystem Name Modules in Subsystem

SUBINPUT mod1 through mod3

SUBPROCESS mod4 through mod8

SUBOUTPUT mod9 and mod10

In a program composed of compact-model subsystems, modules are combined by the
binder so that:

• Each subsystem has one code segment.

• Each subsystem has one data segment.

• All subsystems share one stack segment.

Figure 9-3 shows the segments for the example if the modules are grouped into three
small-model subsystems.

208 Chapter 9 Subsystems

W-3384

SUBINPUT_DATA

(Data From mod1
Through mod3)

SUBPROCESS_DATA

(Data From mod4
Through mod8)

SUBOUTPUT_DATA

(Data From mod9
Through mod10)

DS Register Changes During Execution

CS Register Changes During Execution

(Code From mod1
Through mod3)

SUBINPUT_CODE32 SUBPROCESS_CODE32 SUBOUTPUT_CODE32

(Code From mod4
Through mod8)

(Code From mod9
and mod10)

STACK

(Stack For
All Modules)

SS

Figure 9-3. Subsystems Example Program Using Small-model Subsystems

The program is efficient because most of the calls and references are near and take
place within a subsystem, and each subsystem enjoys segmentation protection. Far
calls are needed only between the subsystems. Far data references are needed only if
data is referenced between subsystems, or if constants are in code. The compiler
implicitly modifies the declarations of symbols referred to by other subsystems by
inserting the far keyword in the appropriate place in the declarations even if the
extend control is not in effect.

You do not increase efficiency or protection by merely dividing a program into
subsystems. If all the even-numbered modules are placed in one subsystem, for
instance, and all the odd-numbered ones in another, the program becomes less
efficient due to the greater number of far calls and far data references between
subsystems. A program is most efficient and takes best advantage of segmentation
protection when you place data accessed by a collection of modules and the functions
that refer to that data into a subsystem. Data and code in another subsystem are
protected and can be accessed only if explicitly declared in the subsystem definition.
All code references within a subsystem are near calls. If you choose the member
modules for your subsystem carefully, you ensure few far calls.

iC-386 Compiler User's Guide Chapter 9 209

Segment Combination in Subsystems
Chapter 4 describes the way the binder combines segments under the standard
segmentation memory models. To understand the combination of segments for
programs structured with subsystems, you must understand the distinction between
compiling modules with iC-386 and combining modules into a program with
BND386.

The compiler compiles only one module at a time. During these separate
compilations, the compiler generates many code, data, and stack segment definitions.
Then, the binder creates an executable program by combining the segments that have
compatible attributes.

See also: Chapter 4 for more information on segment attributes that the binder
uses, such as like names

Both the standard segmentation control compact and the extended segmentation
control subsys determine the way segments are combined by controlling the way
segments are named.

Compact-model Subsystems
Recall that the binder combines compiler-generated segments that have the same
name and compatible characteristics. A linked compact-model subsystem named
COMPSUB contains three segments: COMPSUB_CODE32 for iC-386, COMPSUB_DATA,
and STACK. When code in the subsystem is executing, the CS register contains the
selector for COMPSUB_CODE32, the DS register contains the selector for
COMPSUB_DATA, and the SS register contains the selector for STACK.

Table 9-1 shows the compiler segment definitions for a module compiled with the
subsys control and a definition for a compact-model subsystem. When you specify
-const in code- in the subsystem definition, the compiler places the constants in
the module's code segment, which is like specifying the rom control when you are not
using subsystems. When you specify -const in data- in the subsystem
definition, the compiler places the constants in the module's data segment, which is
like specifying the ram control when you are not using subsystems. If the subsystem
definition contains a subsystem-id, making a closed subsystem as defined in Open
and Closed Subsystems, the identifier and an underscore (_) prefix the CODE32 and
DATA segment names.

210 Chapter 9 Subsystems

Table 9-1. iC-386 Segment Definitions for Compact-model Subsystems

Description Name Combine-type Access

code segment [subsystem-id_]CODE32 normal execute-read

data segment [subsystem-id_]DATA normal read-write

stack segment STACK stack read-write

The binder combines segments with the same name when linking the modules for the
program. Thus, each compact-model subsystem contains its own code segment up to
4 gigabytes for iC-386 and its own data segment up to 4 gigabytes for iC-386. All
stack segments from all compact-model subsystems are combined into one stack
segment up to 4 gigabytes for iC-386.

Function pointers are near by default (the offset-only address format). Data pointers
are far by default (the segment-selector-and-offset format). Compact-model
subsystems can pass pointer arguments between compact-model RAM,
compact-model ROM, small-model ROM, and large-model modules without
specifying the far keyword because data pointers are always far pointers.

See also: near and far address formats in Chapter 4

If a function in a compact-model subsystem accepts a pointer parameter exported
from a small-model RAM subsystem, the small-model RAM subsystem must
explicitly use the far keyword in a prototype, declaration, or cast to pass the data
pointer.

Efficient Data and Code References
The most efficient and compact code contains few far calls and few far data
references. A call from any subsystem to another subsystem is always a far call.
Data references to and from other subsystems are far references.

The near and far keywords are type qualifiers that allow programs to override the
default address size generated for a data or code reference. You must use the
extend control when you compile programs that use the near and far keywords.
Table 9-2 shows the default address sizes for code and data references in all
subsystem models.

See also: near and far keywords in Chapter 4,
extend control description in Chapter 3

iC-386 Compiler User's Guide Chapter 9 211

Table 9-2. Subsystems and Default Address Sizes

Subsystem Model Code Reference Data Reference

compact RAM offset selector and offset

compact ROM offset selector and offset

Creating Subsystem Definitions
A text file contains the definition for a subsystem. To compile a module as part of a
subsystem, use the subsys compiler control in the invocation or in a #pragma
preprocessor directive to include the definition file in the compilation. The subsys
control is a primary control and must appear in the invocation line or in a #pragma
preprocessor directive before the first line of data declaration or executable source
text. A #pragma preprocessor directive containing the modulename control cannot
follow any #pragma containing the subsys control.

See also: subsys control description in Chapter 3

Open and Closed Subsystems
The subsystems that make up an iC-386 program can be either open or closed. The
definition for a closed subsystem must list every program module within it. An open
subsystem contains all modules not specified as part of another subsystem by default.
A program can use open and closed subsystems, according to one of these options:

• All subsystems in a program are closed.

• A program can have many closed subsystems and a single open subsystem.

• By default, a program has one open subsystem and no closed subsystems.

The syntax for a subsystem definition is shown in the Syntax section. For a closed
subsystem, the compiler must know the name of the subsystem, the subsystem-id,
and the modules belonging to it, the has list. For an open subsystem, the definition
cannot have a subsystem-id. By omitting the subsystem name in one subsystem
definition, you automatically create an open subsystem that contains all modules not
claimed in another subsystem's has list. You can add modules not named in a closed
subsystem definition to your program at any time, and the modules automatically
become part of this open subsystem without changing any subsystem definition.

212 Chapter 9 Subsystems

Syntax
Defining subsystems tells the compiler:

• The memory model that each subsystem uses

• Whether to place the constants in the code segment or data segment for the
subsystem

• The modules that belong to each subsystem

• The functions and data that are accessible from outside the subsystem

Making all functions and data available to all subsystems defeats the purpose of
subsystems and decreases the efficiency of the program. For example, if a subsystem
definition declares a function to be accessible from another subsystem, the function is
a far function, making all calls far calls, even if the function actually is never
accessed from outside its subsystem.

A function or data that is accessible to another subsystem must have external linkage.
In the C programming language, public and external symbols are functions or
variables with external linkage. The binder resolves the addresses for such symbols.
These definitions identify public and external symbols:

Public variable defined at the file level, not within a function, and without the
static keyword. By default, a public variable is globally
accessible within its subsystem. Other subsystems can refer
to a public variable if the definition for the containing
subsystem exports the variable.

Public function defined without the static keyword. The public definition
includes the function code. By default, a public function is
globally accessible within its subsystem. Other subsystems
can call a public function if the definition for the containing
subsystem exports the function name.

External function declared with the extern keyword. The external declaration
refers to a corresponding public definition for the variable in
another module within the same or another subsystem.

External function declared with the extern keyword. The external declaration
can take on the form of a function prototype. The external
declaration does not contain the function code but refers to a
corresponding public definition for the function in another
module within the same or another subsystem.

iC-386 Compiler User's Guide Chapter 9 213

Each subsystem in a program must have a subsystem definition. In this subsystem
definition syntax, items in brackets ([]) are optional, items in braces ({ }) are a list
from which to choose, and [; ...] indicates you can choose another item from the
previous list, separating adjacent list items with a semicolon (;). Enter the dollar
sign ($) and parentheses (()) as shown:

$ model ([subsystem-id] [submodel] [{has module-list | exports public-list} [; ...]])

Where:

model specifies the segmentation model for the subsystem. Case is
not significant in the compact keywords. All modules in a
subsystem must be compiled with the same model of
segmentation.

subsystem-id specifies a unique name for a closed subsystem. This name
can be up to 31 characters long and must not conflict with any
module name. The compiler forces this identifier to all
uppercase. The identifier can contain dollar signs ($), which
the compiler ignores.

submodel specifies the submodel, which defines the placement of
constants. Use -const in code- for placing constants in
the code segment or -const in data- (default) for placing
constants in the data segment. Case is not significant in the
-const in code- and -const in data- keywords. All
modules in one subsystem are compiled with the same
submodel.

214 Chapter 9 Subsystems

has module-list specifies the modules that make up the subsystem. Case is not
significant in the has keyword. A has specification is
required for a closed subsystem, and the module-list must
contain all the closed subsystem modules. A has specification
is optional for an open subsystem, and the module-list does
not have to contain all of the open subsystem modules.
Identifiers in the module-list can be up to 31 characters
long and are forced to all uppercase.

Each identifier in the module-list must match a module
name to be included in the subsystem. A module name is the
module's source file name without extension, unless specified
differently by the modulename control. A particular module
name can appear in only one module-list (i.e., a module
can belong to only one subsystem). Any module whose name
does not appear in a module-list becomes part of the open
subsystem. Module names can appear in any order in the
module-list.

exports public-list
lists the functions and variables exported by the subsystem,
which are the functions and variables that the subsystem
wishes to make accessible to other subsystems. Case is not
significant in the exports keyword. Any symbol named in
the public-list must be a public symbol in one of the
subsystem modules. Each symbol must be declared as an
external symbol in all modules accessing the identified
function or variable, whether or not these modules are within
the same subsystem. Case is significant in symbols in the
public-list. Every subsystem definition, with the possible
exception of the subsystem that contains the main() function,
must have an exports list that contains at least the public
symbol for the entry point to the subsystem.

The public-list must list all symbols referred to by other
subsystems. Public symbols not in the public-list are
accessible only from within the subsystem itself. Non-public
symbols do not appear in the public-list. Public symbols
can appear in any order in the public-list.

iC-386 Compiler User's Guide Chapter 9 215

Exported functions have these :

• They use the far form of call and return.

• They save and restore the caller's DS register upon entry and exit.

• They reload the DS register with their associated data segment selector upon
entry.

The compiler implicitly modifies the declarations of exported symbols, if necessary,
by inserting the far keyword in the appropriate place in the declarations. The
modifications occur even if the extend control is not in effect.

Export a function only if it is referenced outside the defining subsystem, because
accessing exported functions requires more code and more execution time than
accessing functions within the same subsystem.

Within a program, the subsystem-id name must be distinct from all module names
because both share the same name space. Within a program (across all subsystems),
exported symbols must also be unique. However, subsystem-id names and
module names do not share name space with public symbols.

The has and exports lists often have several dozen entries each. To accommodate
lists of this length, a subsystem definition can be continued over more than one line.
The continuation lines must be contiguous, each must begin with a dollar sign ($) in
the first column, and the next non-whitespace character cannot be a comma (,), a
right parenthesis ()), or a semicolon (;). You can specify any number of has and
exports lists in a definition, in any order, which allows you to format your
subsystem specification file so it can be easily read and maintained.

Compile all modules in your program with the same set of subsystem definitions, so
that the compiler makes consistent assumptions about the location of external
symbols. To avoid conflicting definitions, place all of the subsystem definitions in
one file and use the subsys control in the invocation line or in a #pragma
preprocessor directive for every compilation. Inconsistent subsystem definitions
cause the binder to issue an error.

216 Chapter 9 Subsystems

✏ Notes
Do not use the codesegment or datasegment control in an
invocation that specifies the subsys control, or when the source
text contains the subsys control in a #pragma preprocessor
directive. The compiler issues an error or a warning, depending on
whether the subsys control is found in the invocation line or in a
#pragma preprocessor directive, respectively.

A #pragma preprocessor directive specifying the modulename
control must precede any #pragma directives that specify the
subsys control.

The definition for an open subsystem without submodel, has list, or exports list
can be placed on the invocation line. Place all definitions of closed subsystems inside
the subsystem definitions file.

Programs written in iC-386 and in PL/M-386 can share subsystem definitions
because the syntax for the definitions is identical for both languages. Symbol names
in the exports list must match the case used in the C program because C is a case-
sensitive language.

The compiler preserves case distinction in identifiers in exports lists. The compiler
always ignores dollar signs ($) in identifiers, even if the extend control is not in
affect. The compiler ignores valid PL/M controls unrelated to segmentation, such as
$IF and $INCLUDE. The compiler ignores lines whose first character is not a dollar
sign ($).

iC-386 Compiler User's Guide Chapter 9 217

Example Definitions
Recall the example program in Dividing a Program into Subsystems. This example
guides you through creating subsystem definitions for the compact model subsystems
in Figure 9-3.

Creating Three Compact-model RAM Subsystems
These subsystem definitions define three compact model RAM subsystems for the
program, which are closed subsystems by definition. The SUBPROCESS and
SUBOUTPUT subsystems export their entry-point functions. No other symbols are
exported. The definitions default to the -const in data- submodel specification.

$ compact (SUBINPUT

$ has mod1, mod2, mod3)

$ compact (SUBPROCESS

$ has mod4, mod5, mod6, mod7, mod8;

$ exports process_entry)

$ compact (SUBOUTPUT

$ has mod9, mod10;

$ exports output_entry)

The program does not contain calls or references that require the far keyword,
because all three subsystems share one single DATA segment, which contains
constants.

218 Chapter 9 Subsystems

Assuming that the mod3_fn function in the mod3 module calls the process_entry
function defined in the mod4 module and passes a pointer to some data called
data_object, the definitions of mod3_fn and process_entry have the general
form:

/* in SUBINPUT */

int data_object;

int mod3_fn ()
{

extern int process_entry ((int far *)int far *);

...

/* calling a function in another */
/* subsystem causes a load to a */
/* segment register */

process_entry (&data_object);
...

}

/*---*/

/* in SUBPROCESS */

int process_entry (int far * data)
{

int mod4int;

...

/* de-referencing the pointer causes */
/* a load to a segment register */

mod4int = *data + 1;
...

}

iC-386 Compiler User's Guide Chapter 9 219

If the subsystem definitions are in a file named compss.def, the compilation of
mod3.c is:

C:> ic386 mod3.c cp subsys(compss.def)

■■ ■■ ■■

220 Chapter 9 Subsystems

iC-386 Compiler User's Guide Chapter 10 221

Language Implementation10
This chapter contains information on the iC-386 implementation of the C
programming language, and is divided into these topics:

• Data types and keywords

• Conformance to the ANSI C standard

• Implementation-dependent compiler features

Where applicable throughout the chapter, conformance to the ANSI C standard is
noted.

Data Types
The iC-386 compiler recognizes three classes of data types: scalar, aggregate, and
void. This section describes the iC-386 implementation of the data types.

Objects of a data type longer than one byte occupy consecutive bytes in memory.
Objects reside in memory from low-order to high-order bytes within a word and from
low address to high address across multiple bytes. The address of an object is the
address of the low-order byte of the object.

222 Chapter 10 Language Implementation

Many names of the data types serve as keywords in the source text. These are
keywords in iC-386:

auto do goto signed unsigned

break double if sizeof void

case else int static volatile

char enum long struct while

const extern register switch

continue float return typedef

default for short union

These additional keywords are supported by iC-386 if the extend control is in effect:

alien is a storage-class specifier that indicates a function uses the fixed
parameter list calling convention.

far is a type qualifier that indicates a segment-selector-and-offset address.

near is a type qualifier that indicates an offset-only address.

readonly is a type qualifier that is equivalent to the const keyword.

See also: Using the near and far qualifiers, in Chapter 4

Scalar Types
A scalar object is a single value, such as the integer value 42 or the bit field 10011.
Most scalar objects occupy 1, 2, 4, or 8 bytes of memory. Bit fields occupy as many
bits as assigned and need not be a multiple of one byte long (8 bits). A bit field
cannot be longer than one word (4 bytes for iC-386).

Table 10-1 shows the scalar data types for iC-386, the amount of memory occupied
by the data type's object, the arithmetic format, and the range of accepted values.

The iC-386 compiler supports the declaration of:

• A char to explicitly be declared signed or unsigned

• An integer constant to be declared long, unsigned, or unsigned long

• Enumerated types

iC-386 Compiler User's Guide Chapter 10 223

Table 10-1. Intel386 Processor Scalar Data Types

Data Type Size in Bytes Format Range

char1 1 integer or
two's-complement integer

0 to 255 or
-128 to 127

unsigned char 1 integer 0 to 255

signed char 1 two's-complement integer -128 to 127

enum 4 two's-complement integer -2,147,483,648 to
2,147,483,647

unsigned short 2 integer 0 to 65,535

signed short 2 two's-complement integer -32,768 to 32,767

unsigned int 4 integer 0 to 4,294,967,295

signed int 4 two's-complement integer -2,147,483,648 to
2,147,483,647

unsigned long 4 or 8 integer 0 to 4,294,967,295 or
0 to 264-1

signed long 4 or 8 two's-complement integer -2,147,483,648 to
2,147,483,647 or
-263 to 263-1

float 4 single precision
floating-point

8.43 x 10-37 to 3.37 x 1038

(approximate absolute value)

double or
long double

8 double precision
floating-point

4.19 x 10-307 to 1.67 x 10308

(approximate absolute value)

bit field 1 to 32 bits integer depends on number of bits

near pointer 4 offset-only address 4 gigabytes

far pointer 6 4-byte offset and 2-byte
selector

64 terabytes

1 Integer (unsigned) if the nosignedchar control is in effect, or two's complement integer (signed) if
the signedchar control is in effect (default).

The iC-386 compiler supports two precisions for floating-point numbers: float and
double. The compiler treats the double and long double formats as double.
The numeric coprocessor automatically promotes float and double objects to
extended precision for arithmetic operations.

224 Chapter 10 Language Implementation

Aggregate Types
An object of an aggregate type is a group of one or more scalar objects. These are
the iC-386 aggregate data types:

array has one or more scalar or aggregate elements. All elements in an array
are the same data type. The elements reside in contiguous locations
from first to last. Multi-dimensional arrays reside in memory in
row-major order.

structure has one or more scalar or aggregate components. The different
components of a structure can be different data types. The components
of a structure reside in memory in the order that they appear in the
structure definition, but may have unused memory between
components.

See also: align control and the allocation of structures in
Chapter 3

union has one piece of contiguous memory that can hold one of a fixed set of
components of different data types. The amount of memory for a union
is sufficient to contain the largest of its components. A union holds
only one component at a time, and the union's data type is the data type
of the component most recently assigned.

Void Type
The void data type has no values and no operations. Use the void keyword for a
function that returns no value or for a function that takes no arguments. Use void *
to denote a pointer to an unspecified data type or a pointer to a function that returns
no value. Cast to void to explicitly discard a value. These are sample declarations
for these uses:

void retnothing (int a); /* function returns no value */

int intfunc (void); /* function takes no arguments */

void * genericptr(); /* pointer to unspecified type */

(void) intfunc(); /* discard the return value */

iC-386 Compiler User's Guide Chapter 10 225

iC-386 Support for ANSI C Features
This section provides information about features in the ANSI C standard that are not
discussed elsewhere in this chapter. The iC-386 compiler supports these features
unless otherwise noted.

Lexical Elements and Identifiers
Trigraphs allow C programs to be written without using characters reserved by ISO
(International Standards Organization) as alphabet extensions.

Character constants and string literals can contain numeric escape codes in
hexadecimal format.

Wide characters support very large character sets, such as pictographic alphabets.
The iC-386 compiler recognizes the ANSI wide-character syntax but implements
wide characters the same as ASCII characters by truncation.

At least 31 characters of non-external names must be significant. The compiler
supports 40-character significance in internal and external names. Case is significant
in internal names.

Preprocessing
The operator concatenates adjacent tokens in macro definitions, forming a single
token.

The compiler concatenates adjacent string literals.

Preprocessor directives in the source text do not have to begin in column one; the #
character must be the first nonblank character of a preprocessor directive line.

The # operator, followed by the name of a macro parameter, expands to the actual
argument enclosed in quotation marks ("). When creating the string, the
preprocessing facility precedes quotation marks (") and backslashes (\) within the
argument with a backslash.

The ANSI C standard specifies the new #elif preprocessor directive and the
defined preprocessor operator.

A single-character character constant in an #if or #elif conditional preprocessor
directive has the same value as the same character in the execution character set.

The #pragma preprocessor directive allows communication of
implementation-specific information to the compiler. Most of the iC-386 compiler
controls can be used in a #pragma preprocessor directive.

See also: Using #pragma and compiler control syntax in Chapter 3

226 Chapter 10 Language Implementation

The maximum length of a #pragma preprocessor directive is 1 kilobyte characters.
All compiler controls except define and include can be specified in a #pragma
preprocessor directive. Where control is a single compiler control and an optional
argument list a #pragma has the form:

#pragma control

An #include preprocessor directive can use a macro to identify the file or header
file.

The arguments to a #line preprocessor directive may result from macro expansion.

The #error preprocessor directive reports user-defined diagnostics.

The maximum nesting level of conditional compilation directives is 16. The
maximum nesting level of macro invocations is 64.

The maximum number of arguments in macro invocation is 31.

See also: List of predefined macros in Chapter 5

iC-386 Compiler User's Guide Chapter 10 227

Implementation-dependent iC-386 Features
This section provides additional information about how iC-386 implements the
implementation-dependent characteristics of the C language as specified by the ANSI
C standard.

The compiler's word size is 4 bytes for iC-386. By default, memory read and write
operations in the Intel386, Intel486, and Pentium processors occur from low-order
address to high-order address (little endian). Objects over 32 kilobytes do not
conform to ANSI standards for pointer arithmetic.

Characters
The source character set is 7-bit ASCII, except in comments and strings, where it is
8-bit ASCII. The execution character set is 8-bit ASCII. The compiler maps
characters one-to-one from the source to the execution character set. You can
represent all character constants in the execution character set. The iC-386 compiler
recognizes the wide-character ANSI syntax. Wide characters are implemented the
same as ASCII characters.

The signedchar | nosignedchar control determines whether the compiler
considers a char that is declared without the signed or unsigned keywords to be
signed or unsigned. The default control is signedchar. A character value
occupies a single byte. Each character is made up of 8 bits, ordered from right to left,
or least significant to most significant.

In a character constant, the compiler assigns up to four characters for iC-386 to a
word, with the first character in the low-order byte. In words containing at least one
character, when any byte does not contain a character, the compiler fills the byte with
the sign of the highest-order byte that does contain a character. An unused byte is
sign-extended if the signedchar control is in effect (default), or zero-extended if
the nosignedchar control is in effect.

The encoding of multi-byte characters does not depend on any shift state.

Integers
When a signed or unsigned integer is converted to a narrower signed integer, or an
unsigned integer is converted to a signed integer of equal width, overflow is ignored
and high-order bits are truncated; a sign change can occur.

The compiler treats signed integers as bit strings in bitwise operations.

The sign of the remainder on integer division is the same as the sign of the dividend.

A right shift of a signed integral type is arithmetic.

See Table 10-1 for types and sizes of integers.

228 Chapter 10 Language Implementation

Floating-point Numbers
When the compiler converts:

• An integral number to a floating-point number, any truncation is controlled by
the numeric coprocessor or emulator.

• A floating-point number to a narrower floating-point number, the direction of
rounding is controlled by the numeric coprocessor or emulator.

See Table 10-1 for types and sizes of floating-point numbers.

Arrays and Pointers
Character string initializers within a character array are not null-terminated.

An unsigned integer is large enough to hold the maximum size of an array. An
integer is large enough to hold the difference between two pointers to members of the
same array.

When you cast:

• A near pointer to int, the compiler preserves the bit representation.

• A near pointer to long, the iC-386 compiler sign-extends the offset if the
long64 control is in effect. If the nolong64 control is in effect, the result is the
same as casting a near pointer to int.

• A far pointer to int, the compiler yields the offset-only part of the pointer value
and discards the selector.

• A far pointer to long, the iC-386 compiler sign-extends the high-order 16 bits if
the long64 control is in effect. If the nolong64 control is in effect, the result is
the same as casting a far pointer to int.

• An int constant to a near pointer, the compiler preserves the bit representation.

• An int constant expression to a far pointer, the compiler uses zero bits for the
selector. Casting any other int expression to a far pointer uses the current value
of the DS register for the selector.

• A long integer to a near pointer, the iC-386 compiler discards the high-order 32
bits if the long64 control is in effect. If the nolong64 control is in effect, the
result is the same as casting an int to a near pointer.

• A long integer to a far pointer, the iC-386 compiler discards the high-order 16
bits if the long64 control is in effect. If the nolong64 control is in effect, the
result is the same as casting an int to a far pointer.

The compiler can initialize arrays with storage class auto.

See Table 10-1 for the types and sizes of pointers.

iC-386 Compiler User's Guide Chapter 10 229

Register Variables
The ESI and EDI registers can contain objects of the register storage class. The
register storage class is effective only for enum, signed short, signed char,
int, unsigned int, and near pointer objects. Register storage is honored only
under the variable parameter list (VPL) function calling convention.

The iC-386 compiler allocates registers for register objects in this order (only under
VPL):

1. Parameters, in the order that they appear in the function declaration

2. Local variables, in the order that the code references them

When a local variable assigned to a register goes out of scope, its register becomes
available again.

Structures, Unions, Enumerations, and Bit Fields
Each of the sets of structure, union, and enumeration tags has its own name space.
Each function has a name space for its labels. Each structure or union has a name
space for its members. Identical names in different name spaces do not conflict.

See also: Virtual symbol table capacity in this chapter

Assignment expressions can assign to structures or unions. A function can have
structures and unions as parameters. The function call passes structures and unions
by value. A function can return a structure or a union.

The compiler can initialize unions and structures of storage class auto.

When the program accesses a member of a union object using a member of a
different type than was last assigned, the result is undefined.

The first member in a union declaration determines the map of the union's initializer.

The compiler represents enumeration types as int.

Bit fields are not necessarily allocated on word boundaries; if a bit field is short
enough, it occupies the space between the end of the previous bit field and the end of
the word the previous bit field occupies.

See also: Using the align control to allocate bit fields on word boundaries in
Chapter 3

The compiler treats a bit field that is declared without the signed or unsigned
keywords as signed.

The allocation of bit fields in an integer is low-order to high-order.

230 Chapter 10 Language Implementation

Declarators and Qualifiers
Objects can be declared as being const or volatile. Pointers can point to const

or volatile objects. A const object cannot be modified by assignment. The
compiler does not remove references to volatile objects during optimization.

Access to a volatile object constitutes two references, a load and a store, when an
object qualified with the volatile keyword occurs as any of these:

• An operand of a pre-increment operator

• An operand of a pre-decrement operator

• An operand of a post-increment operator

• An operand of a post-decrement operator

• A left operand of a compound assignment operator

Every other occurrence of a volatile object constitutes one reference.

The iC-386 compiler allows attribute specifiers to follow a left parenthesis (() or
comma (,). In the ANSI C standard, attribute specifiers are valid in declarators only
when subordinate to an asterisk (*). For example, this line is invalid in the ANSI C
standard:

int (const i), volatile j;

However, the iC-386 compiler recognizes the line above as equivalent to these lines:

int const i;

int volatile j;

This extended syntax does not affect the semantics of any source text that conforms
fully to the rules of the ANSI C standard. The extension causes an asymmetry. For
example, the first of these two declarations causes x, y, and z all to be read-only
variables. The second declaration causes only y to be read-only; x and z are both
modifiable:

int const x, y, z; /* valid for ANSI C */

int x, const y, z; /* extended syntax */

See also: alien, far, and near type qualifiers in Chapter 4

iC-386 Compiler User's Guide Chapter 10 231

Statements, Expressions, and References
The maximum number of:

• Case values in a switch statement is 512

• Functions defined in a module is 1,022

• External references in a module is 511

• Arguments in a function call is 31

The maximum nesting level of:

• Statements is 32

• Functions specified in function argument lists is 20

The iC-386 optimize control governs association of subexpressions in evaluation.

Virtual Symbol Table
The maximum virtual symbol table size is 512 kilobytes. This size is large enough to
hold over 8,000 C symbols or over 16,000 macros. The virtual symbol table also
stores identifiers and macro bodies. In addition, the compiler generates a symbol for
each string literal, floating-point constant, and temporary variable.

The type table can contain a maximum of 2,048 entries. Each distinct type takes up
one entry in the type table. The compiler does not duplicate identical pointer, array,
function, or qualified types, except that every prototype has a unique entry, even if an
identical prototype entry exists.

■■ ■■ ■■

232 Chapter 10 Language Implementation

iC-386 Compiler User's Guide Chapter 11 233

Messages 11
The iC-386 compiler can issue these types of messages:

• Fatal errors

• Errors (syntax and semantic)

• Warnings

• Remarks

• Subsystem diagnostics

• Internal errors

• I/O errors

All messages, except fatal and internal error messages, are reported in the print file.
Fatal and internal errors appear on the screen, abort compilation, and no object
module is produced. Other errors do not abort compilation but no object module is
produced. Warnings and remarks usually provide information only and do not
necessarily indicate a condition affecting the object module.

iC-386 messages relating to syntax are interspersed in the listing at the point of error.
Messages relating to semantics are interspersed in the listing or displayed at the end
of the source program listing; they refer to the statement number on which the error
occurred.

234 Chapter 11 Messages

Fatal Error Messages
Fatal error messages have the syntax:

iC-386 FATAL ERROR

message

These are the fatal error messages, in alphabetic order:

argument expected for control control
A compiler control is specified without the argument required by context. Not
having a required argument is a fatal error if it occurs in the compiler invocation, but
the preprocessor only issues a warning if it occurs in a #pragma directive.

See also: Compiler control syntax in Chapter 3

argument length limit exceeded for control control
The length of the argument to the control exceeds the maximum allowable by the
compiler. For example, an argument to modulename exceeds 40 characters.

compiler error
This message follows internal compiler error messages. If you receive this message,
contact RadiSys customer service.

control control cannot be negated
You cannot use the no prefix with this compiler control. Improper negating is a fatal
error if it occurs in the compiler invocation, but the preprocessor only issues a
warning if it occurs in a #pragma directive.

See also: Negating compiler controls in Chapter 3

duplicate control control
A control that must not be specified more than once was specified more than once.
Only these controls can be specified more than once:

align include subsys

define interrupt varparams

fixedparams searchinclude

See also: Individual control descriptions in Chapter 3

If you specify a compiler control both in the compiler invocation and in a #pragma
preprocessor directive, the compiler invocation specification takes precedence. A
duplicate control is a fatal error if it occurs in the compiler invocation but the
preprocessor only issues a warning if it occurs in a #pragma directive.

duplicate interrupt number: interrupt_number
Indicates interrupt_number was used more than once in interrupt controls. A
duplicate interrupt number is a fatal error if it occurs in the compiler invocation, but
the preprocessor only issues a warning if it occurs in a #pragma directive.

iC-386 Compiler User's Guide Chapter 11 235

expression too complex
A complex expression exhausted an internal structure in the compiler. Break the
expression down into simpler components, or try a lower optimization level.

illegal macro definition: macro_name
An invalid macro was defined on the command line with the define control.

input pathname is missing
A primary source file pathname was not specified in the compiler invocation.

insufficient memory
There is not enough memory available for the compiler to run. Check the available
system memory.

insufficient memory for macro expansion
An internal structure was exhausted during macro expansion. Two causes of this
error are: the macro or the actual arguments are too complex, or the macro's
expansion is too deeply nested.

See also: Macro limits in Chapter 10; and the related error message, macro
expansion too nested

internal error: invalid dictionary access, case 3
This error occurs when the compiler is used in a DOS window for Windows 3.0 or
3.1.

• You may not have enough expanded memory for the compiler. Try compiling
the source file outside of Windows, and if this is successful, make more
expanded memory available to the compiler.

• If you are using emm386, do not set the noems switch.

invalid control: control
A control not supported by the compiler was specified. Check the spelling of the
control. An invalid control is a fatal error if it occurs in the compiler invocation but
the preprocessor only issues a warning if the invalid control occurs in a #pragma
directive.

See also: List of iC-386 controls in Chapter 3

invalid control syntax
The compiler control contained a syntax error. Invalid control syntax is a fatal error
if it occurs in the compiler invocation, but the preprocessor only issues a warning if
the invalid syntax occurs in a #pragma directive.

See also: Compiler control syntax in Chapter 3

236 Chapter 11 Messages

invalid decimal parameter: value
Non-decimal characters were found in an argument that must be a decimal value. An
improper non-decimal argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the improper argument occurs in a
#pragma directive.

See also: Compiler control syntax in Chapter 3

invalid identifier: identifier
An identifier does not follow the rules for forming identifiers in C. An invalid
identifier is a fatal error if it occurs in the compiler invocation, but the preprocessor
only issues a warning if the invalid identifier occurs in a #pragma directive.

invalid syntax for control control
Invalid syntax is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the improper control syntax occurs in a
#pragma directive.

See also: Compiler control syntax in Chapter 3

missing or misplaced right parenthesis
A right parenthesis is required to delimit arguments to a compiler control. An
improper right parenthesis is a fatal error if it occurs in the compiler invocation, but
the preprocessor only issues a warning if the misplaced or missing parenthesis occurs
in a #pragma directive.

See also: Compiler control syntax in Chapter 3

no more free space
The internal structure used to hold macros is exhausted. Use fewer macros in your
program.

See also: Macro limits in Chapter 10

null argument for control control
Null arguments for compiler controls are not allowed. For example, this is illegal:

ALIGN(siga=2,,sigb=2)

A null argument is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the null argument occurs in a #pragma
directive.

parameter not allowed for control control
This message indicates an attempt to pass arguments to a control that accepts none.
Improper argument passing is a fatal error if it occurs in the compiler invocation, but
the preprocessor only issues a warning if the improper argument occurs in a #pragma
directive.

iC-386 Compiler User's Guide Chapter 11 237

parameter not allowed for negated control control
Negated controls generally do not accept arguments. The noalign control is the
only exception. An improper argument for a negated control is a fatal error if it
occurs in the compiler invocation, but the preprocessor only issues a warning if the
improper argument occurs in a #pragma directive.

parameter out of range for control control: parameter
This message indicates an attempt to use an argument value that is out of the valid
range. An out-of-range argument is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the improper argument
occurs in a #pragma directive.

See also: Argument values accepted by compiler controls, in Chapter 3

parameter required for control control
A missing required argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the missing argument occurs in a
#pragma directive.

previous errors prevent further compilation
The compiler was unable to recover from previous errors in the compilation. Correct
the errors reported thus far, then recompile.

subsys control conflicts with codeseg/dataseg control
A subsys control cannot occur while the codesegment or datasegment control is
in effect, and vice versa.

switch table overflow
Too many active cases exist in a switch statement that has not yet been completed.

See also: Switch statement limits in Chapter 10

too many directories are specified for search - pathname
Too many directories are specified in the compiler invocation with the control
searchinclude. The pathname is the directory at which the error occurred, that
is, the first directory over the limit.

See also: Search limits in Chapter 10

type table full
Too many symbols with non-standard data types are defined in the module. Remove
unused definitions, or break down the module.

238 Chapter 11 Messages

unable to recover from syntax error
A syntax error has put the compiler in a state that would lead to spurious error
messages or internal error messages if the compiler continues to process the program.
For example:

• Using the far or near keywords in a program compiled without the extend
control

• Omitting a semicolon from a function declaration, as in this code:
struct a { int c} s /* No semicolon after s */

main () {s.c = 0;}

You can correct the problem by adding a semicolon after the declaration of the
structure s:

struct a { int c} s; /* Semicolon added after s */

main () {s.c = 0;}

• Not defining a macro for a user-defined name for a standard data type, as in this
code:

INT i;

main()

{ i = 0; }

You can eliminate the error by using:
#define INT int

whiles, fors, etc. too deeply nested
The statement nesting structure of the module exhausted an internal structure in the
compiler.

See also: Nesting limits in Chapter 10

iC-386 Compiler User's Guide Chapter 11 239

Error Messages
Syntax error messages have the format:

*** ERROR AT LINE number OF file: syntax error near token

Where:

number is the line number of the offending source line.

file is the name of the source file.

token is the token in the source text near where the error occurred.

Semantic error messages have the syntax:

*** ERROR AT LINE nn OF filename: message

Where:

filename is the name of the primary source file or include file in which the error
occurred.

nn is the source line number where the error is detected.

message is the explanation.

Following is an alphabetic list of error messages.

operator missing macro parameter operand
The # operator must be followed by a macro parameter.

operator occurs at beginning or end of macro body
The ## (token concatenation) operator is used to paste together adjacent
preprocessing tokens, so it cannot be used at the beginning or end of a macro body.

a semantic token cannot precede subsys control
Text that constitutes a semantic token cannot occur before a #pragma subsys.

align/noalign control not allowed with union/enum tag
A union or enumeration tag cannot be used as an argument to the align or noalign
control. Use a structure tag only.

an attempt to undefine a non-existent macro
The name in the #undef preprocessor directive is not recognized as a macro.

anonymous parameter
A parameter in a function definition is prototyped but not named.

arguments not allowed
Arguments were passed to a function that does not accept arguments.

array too large
This error occurs when the size of an array exceeds 4 gigabytes for iC-386.

240 Chapter 11 Messages

attempt to use 0 as divisor in division/modulo
A divide-by-0 was detected in a divide or modulo operation.

basic block too complex
This error is caused by a function with a long list of statements without any
statements such as label, case, if, goto, or return. Break the function into
several smaller functions, or add labels to some statements.

call not to a function
A call is made to a symbol which is not a function.

call to interrupt handler
An interrupt handler can be activated only by an interrupt.

cannot initialize
The type or number of initializers does not match the initialized variable.

cannot initialize extern in block scope
An external declaration cannot be initialized in any scope other than file scope. This
example is an invalid external declaration:

f()

{ extern int i = 1;

}

case not in switch
A case was specified, but not within a switch statement.

code segment too large
The size of the code segment exceeds 4 gigabytes for iC-386. Break the module into
two or more separately compiled modules, or use subsystem definitions.

See also: Defining subsystems in Chapter 9

conditional compilation directive is too nested
The module contains more than the maximum number of conditional statements.

See also: Nesting limits in Chapter 10

constant expected
A non-constant expression appears when a constant expression is expected (e.g., a
non-constant expression as array bounds or as the width of a bit field).

constant value must be an int
The constant specified must be representable as the data type int.

data segment too large
The size of the data segment exceeds 4 gigabytes for iC-386. Break the module into
two or more separately compiled modules, or use subsystem definitions.

See also: Defining subsystems in Chapter 9

iC-386 Compiler User's Guide Chapter 11 241

default not inside switch
A default label was specified outside of a switch statement.

duplicate case in switch, number
The same value, number, was specified in more than one case in the same switch
statement.

duplicate default in switch
More than one default label was specified within the same switch statement.

duplicate label
A label was defined more than once within the same function.

duplicate parameter name
The same identifier was found more than once in the identifier list of a function
declarator. For example, this code contains a duplicate a identifier:

int f(a, a) {}

duplicate tag
A tag was defined more than once within the same scope.

empty character constant
A character constant should include at least one character or escape sequence.

floating point operand not allowed
An operand is non-integral, but the operator requires integral operands. That is, ~, &,
|, ^, %, >>, and << all require integral operands.

function body for non-function
A function body was supplied for an identifier that does not have function type, as in
this example:

int i {}

function declaration in bad context
A function is defined (i.e., appears with a formal parameter list), but not at module-
level. Or, a function declarator with an identifier list, which is legal only for function
definitions, was encountered within a function, as in this example:

int main(void)

{

int f(a);

}

function redefinition
More than one function body has been found for a single function, as in this example:

int f() {}

int f() {}

242 Chapter 11 Messages

illegal assignment to const object
Constants cannot be modified.

illegal break
A break statement appears outside of any switch, for, do, or while statement.

illegal constant expression
The expression within an #if or #elif is not built correctly.

illegal constant suffix
The suffix of a number is not L, U, or a legal combination of the two.

illegal continue
A continue statement appears, but not within any for, do, or while statement.

illegal #elif directive
An #elif directive is encountered after an #else directive.

illegal #else directive
An #else directive is encountered after an initial #else directive.

illegal field size
Legal field sizes are 0-32 for unnamed fields, and 1-32 for named fields.

illegal floating point constant in exponent
A floating-point constant cannot be an exponent.

illegal function declaration
Internal error; may be caused by an earlier syntax error.

illegal hex constant
A hexadecimal constant contains non-hex characters or is without a 0 prefix.

illegal macro redefinition
A macro can be redefined only if the body of the redefined macro is exactly the same
as the body of the originally defined macro.

illegal nesting of blocks, ends not balanced
Braces delimiting a block of code are unbalanced.

illegal syntax - left parenthesis is expected
The name of a macro that accepts arguments is specified with no argument list, or the
argument list is not properly delimited with parentheses.

illegal syntax in a directive line
A syntax error is encountered in a preprocessor directive.

illegal syntax in a directive line - newline expected
A preprocessor directive line is not terminated with a newline character.

illegal syntax in an argument list
An argument list in a macro contains misplaced or illegal characters.

incompatible types
The two operands of a binary operator have incompatible types, for example,
assigning a non-zero integer to a pointer.

iC-386 Compiler User's Guide Chapter 11 243

incomplete type
The compiler detected a variable whose type is incomplete, such as this example
declaration where the type of s is not complete if the program contains no previous
declaration defining the tag S.

int f(struct S s)

{ ... }

invalid argument for builtin function
For example, the built-in function causeinterrupt appears with a non-constant
argument. Built-in functions are the functions that provide direct access to various
processor features.

See also: Syntax of the built-in function calls in Chapter 6

invalid attribute for: function_name
The source program attempted to set multiple and conflicting attributes for a
function. For example, a varparams or fixedparams control appears for a
function whose calling convention has already been established by use, definition,
declaration, or a previous calling-convention control. For another example, a
function identifier appears as an argument to an interrupt control which appeared
in a previous calling-convention or interrupt control, or the function identifier has
been previously used, defined, or declared.

invalid built-in function
Use Intel486- and Pentium-specific built-in functions only with the mod486 control.
Use Intel386-specific built-in functions only with the iC-386 compiler.

See also: Built-in functions in Chapter 6

invalid cast
These are examples of invalid casts:

• casting to or from struct or union

• casting a void expression to any type other than void

invalid field definition
A field definition appears outside a structure definition or is attached to an invalid
type.

invalid interrupt handler
Interrupt handlers take no arguments and return no value (void).

invalid member name
The member name (that is, the right operand of a . or a ->) is not a member of the
corresponding structure or union.

invalid number of parameters
The number of actual arguments passed to a function does not match the number
defined in the prototype of that function.

244 Chapter 11 Messages

invalid object type
An invalid object type has been detected in a declaration, for example void
array[5];.

invalid pointer arithmetic
The only arithmetic allowed on pointers is to add or subtract an integral value from a
pointer, or to subtract two pointers of the same type. Any other arithmetic operation
is illegal.

invalid redeclaration name
An object is being redeclared, but not with the same type. For example, a function
reference implicitly declares the function as a function returning an int. If the actual
definition follows, and it is different, it is an error.

invalid register number
Only certain of the Intel386, Intel486, or Pentium processor special registers are
available for use in built-in functions. The register number specified must be a
numeric constant.

See also: Intel386, Intel486, and Pentium processor special registers in Chapter 6

invalid storage class
The storage class is invalid for the object declared. For example, alien can be used
only for external procedures, or a module-level object cannot be auto or register.

invalid storage class combination
You cannot have more than one storage class specifier in a declaration.

invalid structure reference
The left operand of a . is not a structure or a union; or the left operand of a -> is not
a pointer to a structure or a pointer to a union. This error message also occurs if an
assignment is made from one structure to another of a different type.

invalid type
An invalid combination of type modifiers was specified.

invalid type combination
An invalid combination of type specifiers was specified.

invalid use of void expression
An expression of data type void was used in an expression.

left operand must be lvalue
The left operand of an assignment operator, and of the ++ and
-- operators, must be an "lvalue;" that is, it must have an address.

limit exceeded: number of externals
The number of external declarations has exceeded the compiler limit.

See also: External declaration limits in Chapter 10

iC-386 Compiler User's Guide Chapter 11 245

macro expansion buffer overflow
Insufficient memory exists for expansion of a macro; the macro is not expanded.

macro expansion too nested
The maximum nesting level of macro expansion has been exceeded. Macro
recursion, direct or indirect, can also cause this error.

See also: Nesting limits in Chapter 10

member of unknown size
The data type of a member of a structure is not sufficiently specified.

missing left brace
The initialization data for an aggregate object (array, structure, or union) must be
enclosed by at least one pair of braces.

multiple parameters for a macro
Two parameters in the definition of a macro are identical. Every parameter must be
unique in its macro definition.

nesting too deep
See nesting level limits in Chapter 10.

newline in string or char constant
The new-line character can appear in a string or character constant only when it is
preceded by a backslash (\).

no more room for macro body
Parameter substitution in the macro has increased the number of characters to more
than the maximum allowed.

See also: Macro limits in Chapter 10

non addressable operand
The & operator is used illegally (such as to take an address of a register or of an
expression).

non-constant case expression
The expression in a case is not a constant.

nothing declared
A data type without an associated object or function name is specified.

number of arguments does not match number of parameters
The number of arguments specified for the macro expansion does not match the
number of parameters specified in the macro definition.

operand stack overflow
An illegal constant expression exists in a preprocessor directive line.

operand stack underflow
An illegal constant expression exists in a preprocessor directive line.

246 Chapter 11 Messages

operator not allowed on pointer
An operand is a pointer, but the operator requires non-pointer integral operands (e.g.,
&, |, ^, *, /, %, >>, <<).

operator stack overflow
An illegal constant expression exists in a preprocessor directive line.

operator stack underflow
An illegal constant expression exists in a preprocessor directive line.

parameter list cannot be inherited from typedef
A function body was supplied for an identifier that has function type, but whose type
was specified via a typedef identifier, as in this example:

typedef void func(void);

func f {}

parameters can't be initialized
An attempt was made to initialize the parameters in a function definition.

procedure too complex for optimize (2)
The combined complexity of statements, user-defined labels, and compiler-generated
labels is too great. Simplify as much as possible, breaking the function into several
smaller functions, or specify a lower level of optimization.

See also: Optimization in Chapter 3

program too complex
The program has too many complex functions, expressions, and cases. Break it into
smaller modules.

real expression too complex
The real stack has eight registers. Heavily nested use of real functions with real
expressions as arguments is excessively complex. Simplify as much as possible.

respecified storage class
A storage class specifier is duplicated in a declaration.

respecified type
A type specifier is duplicated in a declaration.

respecified type qualifier
A type qualifier is duplicated in a declaration.

sizeof invalid object
An implicit or explicit sizeof operation is needed on an object with an unknown
size. Examples of invalid implicit sizeof operations are *p++, where p is a pointer
to a function, or struct sigtype siga, when sigtype is not yet completely
defined.

statement is too large
A statement is too large for the compiler. Break it into several smaller statements.

iC-386 Compiler User's Guide Chapter 11 247

string too long
A string of over 1024 characters is being defined.

syntax error near 'string'
A syntax error occurred in the program. The near string information attempts to
identify the error more precisely.

too many active cases
The limit of active cases in an uncompleted switch statement was exceeded.

See also: Switch statement limits in Chapter 10

too many active functions
The number of function calls within a single expression has exceeded the compiler
limit.

See also: Function call limits in Chapter 10

too many characters in a character constant
A character constant can include one to four characters. The effect of this error on
the object code is that the character constant value remains undefined.

See also: Character constant size for your target processor in Chapter 10

too many cross-references, data truncated
The cumulative number of cross-references exceeded the compiler's internal limit.
Cross-references appear in the symbol table listing when the xref control is active.

too many externals
Too many external identifiers were declared.

See also: External identifier limits in Chapter 10

too many functions
Too many functions were declared.

See also: Function limits in Chapter 10

too many initializers
An array is initialized with more items than the number of elements specified in the
array definition.

too many macro arguments
The maximum number of arguments specified for a macro was exceeded.

See also: Macro limits in Chapter 10

too many nested calls
The nesting limit for functions called in function argument lists has been exceeded.

See also: Nesting limits in Chapter 10

248 Chapter 11 Messages

too many nested struct/unions
The lexical nesting of struct and union member lists is limited to a depth of 32.

too many parameters for one function
The maximum number of parameters specified for one function was exceeded.

See also: Function parameter limits in Chapter 10

too many parameters for one macro
The maximum number of parameters specified for one macro was exceeded.

See also: Macro parameter limits in Chapter 10

unbalanced conditional compilation directive
Conditional compilation directives are improperly formed. For example, the program
contains too many #endif preprocessor directives, or an #else preprocessor
directive without a matching #if preprocessor directive.

undefined identifier: identifier
The program contains a reference to an identifier that has not been previously
declared.

undefined label: label
A label has been referenced in the function, but has never been defined.

undefined or not a label
An identifier following a goto must be a label; the identifier was declared otherwise,
or the identifier was declared as a label but was not defined.

undefined parameter
The argument being defined did not appear in the formal parameter list of the
function.

unexpected EOF
The input source file or files ended in the middle of a token, such as a character
constant, string literal, or comment.

unit string literal too long; truncated
The maximum length of a string is 1024 characters.

variable reinitialization
An initializer for this variable was already processed.

void function cannot return value
A return with an expression is encountered in a function that is declared as type
void. In such functions, all returns must be without a value.

iC-386 Compiler User's Guide Chapter 11 249

Warnings
Warnings have the syntax:

*** WARNING AT LINE nn OF filename: message

Where:

filename is the name of the file in which the warning occurred.

nn is the source line number where the warning is detected.

message is the explanation.

Following is an alphabetic list of warnings.

a #endif directive is missing
At least one #endif preprocessor directive is missing at the end of the input source
file(s). The #if, #elif, and #endif preprocessor directives are not balanced.

an old builtin header file has been used
A built-in header file from a previous release of the compiler has been used. Obtain
the built-in header file provided with this release and use it.

argument expected for control control
A compiler control is specified without the argument required by context. A missing
required argument is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if it occurs in a #pragma directive.

bad octal digit: hex_value (hex)
An octal number contains a non-octal character. The hex_value is the ASCII value
of the illegal character.

comment extends across the end of a file
A comment that is started in a file is not closed before the end of the file.

control control cannot be negated
The prefix no cannot be specified for this compiler control. Improper negating is a
fatal error if it occurs in the compiler invocation, but the preprocessor only issues a
warning if it occurs in a #pragma directive.

See also: List of compiler controls that can be negated in Chapter 3

control control not allowed in pragma
The compiler encountered either a define or an include control in a #pragma
preprocessor directive.

different enum types
An attempt was made to assign one enum type to a different enum type.

250 Chapter 11 Messages

directive line too long
The line length limit for #pragma preprocessor directives was exceeded.

See also: Line length limit in Chapter 10

division by 0
A division by the constant 0 was specified.

escape sequence value overflow
The escape sequence is undefined.

export ignored: identifier
An identifier that is an enumeration constant appeared in the EXPORTS list of a
subsystem specification. An enumeration constant cannot be far.

See also: Subsystems in Chapter 9

exported identifier: identifier
An identifier that is either a built-in or appears as an argument to the interrupt
control, appears also in the EXPORTS list of a subsystem specification.

extra characters in pragma ignored: string
The string represents characters that the compiler cannot process as part of the
current #pragma.

filename too long; truncated
The filename length exceeded the limit of the OS.

illegal character in header name: hex_value (hex)
An illegal character was found in the header name of an #include < > preprocessor
directive.

illegal character: hex_value (hex)
The character with the ASCII value hex_value is not part of the iC-386 character
set.

illegal escape sequence
The sequence following the backslash is not a legal escape sequence. The compiler
ignores the backslash and prints the sequence.

illegal syntax in a directive line
A preprocessor directive line is not terminated with a new-line character.

illegal syntax in a directive line - newline expected
A preprocessor directive line is not terminated with a new-line character.

indirection to different types
A pointer to one data type was used to reference a different data type.

iC-386 Compiler User's Guide Chapter 11 251

initializing with ROM option in effect
When a program is placed in ROM, initialization of a variable that does not have the
const type qualifier has no effect.

See also: ram and rom compiler controls in Chapter 3

invalid control syntax
Invalid control syntax is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if it occurs in a #pragma directive.

See also: Compiler control syntax in Chapter 3

invalid decimal parameter: value
Non-decimal characters were found in an argument that requires a decimal value.
Invalid non-decimal argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the invalid argument occurs in a
#pragma directive.

invalid identifier: identifier
An identifier does not follow the rules for forming identifiers in C. An invalid
identifier is a fatal error if it occurs in the compiler invocation, but the preprocessor
only issues a warning if the invalid identifier occurs in a #pragma directive.

invalid syntax for control control
Invalid syntax is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the invalid syntax occurs in a #pragma
directive.

See also: Compiler control syntax in Chapter 3

missing or misplaced right parenthesis
A right parenthesis is required to delimit arguments to a compiler control. Improper
right parenthesis is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the missing or misplaced parenthesis occurs in a
#pragma directive.

null argument for control control
Null arguments for compiler controls are not allowed. For example, this is illegal:

align(siga=2,,sigb=2)

A null argument is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the null argument occurs in a #pragma
directive.

252 Chapter 11 Messages

parameter not allowed for control control
An argument or arguments were passed to a control that accepts none. Improper
argument passing is a fatal error if it occurs in the compiler invocation, but the
preprocessor only issues a warning if the argument occurs in a #pragma directive.

See also: Compiler control syntax in Chapter 3

parameter not allowed for negated control control
Negated controls generally do not accept arguments (noalign is the only exception).
An improper argument for a negated control is a fatal error if it occurs in the
compiler invocation, but the preprocessor only issues a warning if the argument
occurs in a #pragma directive.

parameter out of range for control control: parm
An argument or arguments were passed that were out of the specified range for the
parameter. An out of range argument is a fatal error if it occurs in the compiler
invocation, but the preprocessor only issues a warning if the argument occurs in a
#pragma directive.

See also: Values accepted by compiler controls in Chapter 3

parameter required for control control
A missing required argument is a fatal error if it occurs in the compiler invocation,
but the preprocessor only issues a warning if the argument occurs in a #pragma
directive.

See also: Compiler control syntax in Chapter 3

pointer extension
An integral expression is being converted to a far pointer type, and the current value
of DS is being inserted as the selector part. Later operations using this value,
particularly comparison against the NULL constant, may not give correct results.

pointer truncation
A far pointer expression is being converted to a narrower type, which cannot
represent the value of the selector part of the pointer. Later indirection using this
value can give incorrect results.

pragma ignored
An entire #pragma preprocessor directive was ignored as a result of an error.
Whenever an error is found in a #pragma preprocessor directive, the diagnostic is
followed by either this message or remainder of pragma ignored, whichever is
appropriate. This message is usually paired with one of several other messages.

predefined macros cannot be deleted/redefined
The predefined macros (e.g., __LINE__ or __FILE__) cannot be deleted or
redefined by the preprocessor directives #define or #undefine.

iC-386 Compiler User's Guide Chapter 11 253

remainder of pragma ignored
This message indicates that a #pragma preprocessor directive is partially ignored as
a result of an error. Whenever an error is found in a #pragma preprocessor directive,
the message is followed by either this message or pragma ignored, whichever is
appropriate. This message is usually paired with one of several other messages.

subsys control conflicts with codeseg/dataseg control
A subsys control cannot occur while the codesegment or datasegment control is
in effect, and vice versa. The preprocessor detected both controls in #pragma

preprocessing directives.

token too long; ignored from character: hex_value (hex)
A character sequence was too long (such as an identifier or a macro argument).

too many alignment specifiers for this tag: structure_tag
Alignment has already been specified for this structure_tag, either in the current
or in a previous align control. Redundant alignment specification is a fatal error if it
occurs in the compiler invocation, but the preprocessor only issues a warning if it
occurs in a #pragma directive.

zero or negative subscript
In an array declaration, the value of an array subscript must be a positive integer.

254 Chapter 11 Messages

Remarks
Remarks have the syntax:

*** REMARK AT LINE nn OF filename: message

Where:

filename is the name of the file in which the remark occurred.

nn is the source line number where the remark is detected.

message is the explanation.

Following is an alphabetic list of remark messages.

a constant in a selection statement
A constant is encountered in the expression of a selection statement such as an if,
else, or switch statement.

implicit function declaration
The function is used without any previous declarations.

invalid number of parameters
The actual number of arguments in a function call do not agree with the number of
parameters in a function definition that is not a prototype.

return statement has no expression
A return statement with no return expression is encountered in a function definition
which returns an expression other than void.

statement has no apparent effect
A statement that does not have any effect in the source code is encountered, as in this
example:

var + 1;

the characters /* are found in a comment
A comment-start delimiter (/*) occurs between a comment-start delimiter and a
comment-end delimiter (*/).

iC-386 Compiler User's Guide Chapter 11 255

Subsystem Diagnostics
Subsystem diagnostic messages have the syntax:

*** ERROR AT LINE nn OF filename: message

Where:

filename is the name of the primary source file or include file in which the error
occurred.

nn is the source line number where the error is detected.

message is the explanation.

Following is an alphabetic list of subsystem diagnostic messages.

conflicting segmentation controls
More than one segmentation control affecting the module being compiled was
encountered. One common cause is specifying both -const in code- in a
subsystem definition and the rom control.

illegal identifier in subsystem specification
An identifier was encountered that does not follow rules for PL/M identifiers.

See also: Subsystem identifiers in Chapter 9

invalid control
An unrecognized control is in the subsystem definition.

See also: Subsystem definitions in Chapter 9

subsystem already defined
The subsystem name has already been defined.

symbol exists in more than one has list
A module name can occur in only one HAS list.

unexpected end of control
A subsystem definition was expecting a continuation line or a right parenthesis.

256 Chapter 11 Messages

Internal Error Messages
Internal error messages have the syntax:

internal error: message

If your compilation consistently produces any of these errors, contact your RadiSys
representative.

iRMX Condition Codes in Error Messages
In some cases, such as a reference to a non-existent file, the compiler passes iRMX
condition codes, as shown below.

See also: List of iRMX condition codes, System Call Reference

ERROR: EXCEPTION: 0021H FILE DOES NOT EXIST

Check to see that the specified file exists.

If you are using a submit file and it uses library files, check that the path to the library
files is fully expanded.

If you have just installed DOSRMX, verify that the autoexec.bat file sets the path to
the C header files, then reboot your system.

■■ ■■ ■■

iC-386 Compiler User's Guide Glossary 257

Glossary

Absolute address An address in memory relative to the beginning of memory.

Access attributes Characteristics which define the type of segment access allowed:
read-only data, read-write data, execute-read code, or execute-only
code. These attributes are represented by bits 41 (Writable/Readable)
and 43 (Executable) in the segment descriptor.

Aggregate data
type

A data type that is a collection of scalar and sometimes aggregate data
types, treated either as a unit, or as individual scalar or aggregate data
types.

Alignment (of an
object)

The allocation of an object in memory relative to byte, even-byte, or
4-byte addresses and boundaries.

Alignment (of a
segment)

The allocation of a segment in memory relative to byte, word,
paragraph, or page addresses and boundaries.

Big-endian A processor that stores multi-byte objects starting with the high-order
byte at the lowest address.

Binder, BND386 The utility that performs linking. The binder combines segments with
like names and resolves symbolic addressing.

Build file A file of system implementation definitions used by BLD386, to
create an absolutely-located system. The definitions describe system
data structures, initial values for the system, and memory
configuration.

Builder, BLD386 The utility that creates an absolutely-located system from linkable
input modules and system definitions in a build file.

Calling convention The set of instructions that the compiler inserts in object code to
handle parameter passing, stack and register use, and return values in a
function call.

Code segment A memory segment containing instructions and sometimes constants.

Compiler control A directive you can specify in the compiler invocation.

258 Glossary

Compiler
invocation

The command that causes the compiler to begin execution.

Conditional
compilation

Compiling only part of the source code, depending on the
preprocessor's evaluation of conditions in the source code.

Cross-referenced
symbol table

A symbol table containing source line-number reference information.

Current segment The segment pointed to by a segment register at any particular time
during execution.

D bit
(Intel386, Intel486,
and Pentium
processors)

Bit 54 (B/D) in a segment descriptor. The D bit refers to the default
operand size of a code segment. If the bit is 1, the default operand
size is 32 bits. If the bit is 0, the default operand size is 16 bits.

Data register One of four 32-bit registers (EAX, EBX, ECX, or EDX for Intel386,
Intel486, and Pentium processors); the processor usually uses data
registers in arithmetic and logical operations.

Data segment A segment containing data (e.g., variables and constants).

Data type The format for representing a value.

Debugger A development tool that enables you to observe and manipulate the
step-by-step execution of your program.

Descriptor An eight-byte data structure containing the base, limit, and access
attributes for a given region of linear address space such as a segment,
table, or task state segment.

Descriptor
privilege level

Bits 29 and 30 in a segment descriptor. The segmentation hardware
checks descriptor privilege levels on accesses to code and data
segments to ensure that the referring code has sufficient privilege.

Development tool Any product used for application development.

EFLAGS register
(Intel386, Intel486,
and Pentium
processors)

The processor register containing indicators of the current state of the
processor and of the result of the just-completed instruction.

Error An exception that does not immediately terminate compilation but can
cause an invalid object module.

Expand-down A special kind of data segment useful for stacks. The expand-down
attribute is in bit 42 of the segment descriptor. A software system can
dynamically increase the expand-down segment size by lowering the
limit in the segment descriptor.

iC-386 Compiler User's Guide Glossary 259

External reference A reference to a location in a different object module via a data
pointer or function call.

Far;far, definition
G-

A reference from a location in one segment to a location in a different
segment; an address with both the segment selector and offset
specified.

Fatal error An exception that terminates compilation; no object module is
produced.

File type The characteristics of a file reflected in the characters of the filename
following the dot character.

Filename The name of a file, including the device and directory path, if
necessary.

Filename base The part of a filename that is left of the dot character.

Filename extension The part of a filename that is right of the dot character.

FLAGS register The processor register containing indicators of the current state of the
processor and of the result of the just-completed instruction. The low-
order 16 bits of the EFLAGS register in Intel386, Intel486, and
Pentium processors.

Gate An eight-byte data structure used to regulate transfer of control to
another code segment. A gate is sometimes called a descriptor
because it has a layout similar to a segment descriptor. Gates provide
indirection that allows the processor to perform protection checks.

General control A compiler control that you can specify on the command line and in a
#pragma preprocessor directive anywhere in the source code as often
as necessary.

General register Any of the data, pointer, or index registers.

Global descriptor
table (GDT)

An array of descriptors defining segments and gates available for use
by all tasks in the system. A software system contains only one global
descriptor table.

Global descriptor
table register
(GDTR)

The system register that contains the base address and limit of the
global descriptor table.

Hardware flags See FLAGS register and EFLAGS register.

Host system The system on which the compiler executes. (See also: Target
system)

260 Glossary

Identifier The name you specify in your source code to refer to an object or
function.

In-circuit emulator A system of hardware and software that emulates the operation of a
microprocessor or microcontroller within a target system.

Include files The source files other than the primary source file; specified in the
include compiler control or in the #include preprocessor directive.

Index register One of two registers, ESI or EDI (for Intel386, Intel486, and Pentium
processors) that you use for addressing operands during execution.

Instruction set The executable elements of the object code.

Interrupt descriptor
table (IDT)

An array of task, interrupt, and trap gates that act as interrupt vectors.
A software system contains only one interrupt descriptor table.

Interrupt descriptor
table register
(IDTR)

The system register that contains the base address and limit of the
interrupt descriptor table.

Interrupt handler The function called when an interrupt occurs.

Listing controls Controls which specify the names, locations, and contents of the
output listing files.

Little endian A processor that stores multi-byte objects starting with the low-order
byte at the lowest address.

Local descriptor
table (LDT)

An array of descriptors defining segments and gates protected from
use by all but specified tasks in the system. Tasks that have a pointer
to a local descriptor in their task state segment can access that table.
The global descriptor table can hold descriptors for local descriptor
tables. A software system can contain many local descriptor tables.

Local descriptor
table register
(LDTR)

The system register that contains the selector for the descriptor of the
currently active local descriptor table.

Lowercase For ASCII characters a through z, the hexadecimal values 61 through
7A.

Machine status
word (MSW)

A 16-bit register whose value indicates the configuration and status of
the processor. In Intel386 and higher processors, the MSW is the low-
order 16 bits of control register 0 (CR0).

Macro A string that the preprocessor replaces with text you specify.

iC-386 Compiler User's Guide Glossary 261

Module A file of code in some stage of translation. An object module refers to
the output of a translator, linker, binder, or system builder. An input
module refers to a file in the form accepted by translating, binding, or
building software.

Near A reference from one location to another within the same segment; an
offset-only address.

Numeric
coprocessor

An Intel387 coprocessor, or the Intel486 or Pentium processor on-chip
floating-point unit.

Object A variable, temporary variable, constant, literal, or macro. (See also:
Object module)

Object code Executable instructions and associated data in binary format.

Object file The file containing the object module that the compiler generates.

Object-file content
controls

Controls which determine the internal configuration of the object file.

Object module The formatted object code that the compiler generates.

Offset The displacement; the number of units (usually bytes) away from the
zero location in memory, or the number of units away from the base
address of the enclosing segment or data structure.

Output listing The print file and preprint file that the compiler generates.

Pathname The name of a directory or file relative to a given directory.

Pointer registers The base pointer (EBP for Intel386, Intel486, and Pentium processors)
and stack pointer (ESP for Intel386, Intel486, and Pentium processors)
registers.

Preprint file A text file that the compiler generates, containing the intermediate
source code after macro expansion, files included using the include
control or the #include preprocessor directive, and conditional
compilation.

Primary control A compiler control that can only be specified once. When you specify
it in a preprocessor directive, you must specify it before the first line
of data definition or executable source code.

Primary source file The file specified as the source file in a compiler invocation.

Primary source text The contents of the primary source file.

Print file A compiler-generated text file containing code listings, symbolic
information, and information about the compilation.

262 Glossary

Privilege level One of four values in bits 45 and 46 of a segment or special descriptor:
0 (most privileged), 1, 2, or 3 (least privileged). The descriptor
privilege level (DPL) of the currently executing code segment is also
called the current privilege level (CPL).

Privileged
instructions

Instructions that affect system registers or halt the processor. These
instructions can only be executed when the current privilege level is 0.

Program A set of compiled modules ready to be linked or located, or the
complete associated source text.

Protected mode A mode of execution where the protection-enable bit (PE) is on in the
machine status word. The first far jump has been executed. This
mode uses selectors and descriptors to calculate addresses.

Protection The mechanisms implemented by the hardware of the processor,
especially when the protection-enable bit (PE) is on and the first far
jump has been executed. There are five basic kinds of protection
available: type checking, limit checking, restricting addressable
domain, restricting entry points, and restricting instruction set.

Protection-enable
bit (PE)

Bit 0 in the machine status word. If PE is 1, the processor executes in
protected mode. If PE is 0, the processor executes in real mode.

Qualifier Invocation command element that controls the result of the invocation.

Real mode The mode of execution of the 86 processor, or of higher processors
with the protection-enable bit (PE) off. The 286 and higher processors
execute in this mode upon reset, except the 376 processor executes in
protected mode on reset.

Relative address An offset into a segment, before the segment loads into memory.

Scalar data type A data type treated as a single value.

Search path A list of strings that the debugger uses as default prefixes of possible
pathnames to a file.

Segment A continuous piece of memory defined by a base address and a limit.

Segment register One of the CS, SS, DS, and ES registers (or FS and GS registers in
Intel386 and higher processors) containing a segment selector.

Segmentation
model

The format used to combine object modules into individual or
contiguous blocks of memory addressable by the processor determines
the placement of constants and the number and names of segments
generated by the compiler.

iC-386 Compiler User's Guide Glossary 263

Selector A system data structure used in computing an address that identifies a
descriptor by specifying a descriptor table and an index to a descriptor
within that table. A selector also contains a requested privilege level
(RPL), which is the descriptor privilege level (DPL) of the referring
segment.

Separately-
compiled code

Individual object modules each resulting from its own compilation.

Source directory The directory containing your primary source file.

Source-processing
controls

Controls which specify the names and locations of input files or define
macros at compile time.

Source text Text you write in a programming language such as C.

Stack segment A segment reserved for dynamic memory allocation for objects such
as temporary variables and function activation records.

Symbol table A chart in the print file containing symbolic information.

Symbolic debugger See debugger.

Symbolic
information

Information about the format, location, and identifier of an object or
function.

System data
structures

Descriptors, tables, gates, selectors, and task state segments.

Target system The system on which your compiled program is intended to execute.
(See also: Host system)

Task The code, data, and system data structures which collectively define a
sequential thread of execution.

Uppercase For ASCII characters A through Z, the hexadecimal values 41 through
5A.

Warning A message indicating a situation that is probably unusual but that does
not terminate compilation and probably does not invalidate the object
module.

264 Glossary

Word Two bytes on all Intel family processors. In C programming, a word
is the amount of storage reserved for an integer, which is 32 bits for
iC-386. The Intel386, Intel486, and Pentium processor documentation
and ASM386 instruction sets refer to a 16-bit word and a 32-bit word.

Work file A file that the compiler creates, uses, and deletes during compilation.

■■ ■■ ■■

iC-386 Compiler User’s Guide Index 265

Index

operator, 225
operator, 225
#define preprocessor directive, 60, 61
#DELETE#__DATE__ macro, 126
#DELETE#__FILE__ macro, 126
#DELETE#__LINE__ macro, 126
#DELETE#__STDC__ macro, 126
#DELETE#__TIME__ macro, 126
#DELETE#_ARCHITECTURE_ macro, 127
#DELETE#_FAR_CODE_ macro, 127
#DELETE#_FAR_DATA_ macro, 127
#DELETE#_LONG64_ macro, 127
#DELETE#_NPX_ macro, 127
#DELETE#_OPTIMIZE_ macro, 127
#DELETE#_ROM_ macro, 127
#elif preprocessor directive, 225
#error preprocessor directive, 125, 226
#include preprocessor directive, 10, 70, 76, 97,

125, 127, 131, 226
#line preprocessor directive, 125, 127, 226
#pragma preprocessor directive, 40, 206, 211,

215, 225
#undef preprocessing directive, 25
#undef preprocessor directive, 60
$ dollar sign in identifiers

extend control, 65
%auto assembler macro, 192
%cgroup assembler macro, 183
%code assembler macro, 183
%const assembler macro, 183
%const_in_code assembler macro, 181
%data assembler macro, 183
%dgroup assembler macro, 183
%dint assembler macro, 185
%endf assembler macro, 196
%epilog assembler macro, 194
%extern assembler macro, 186
%extern_const assembler macro, 186

%extern_fnc assembler macro, 186
%far_code assembler macro, 181
%far_data assembler macro, 181
%far_stack assembler macro, 181
%fnc assembler macro, 185
%fnc_ptr assembler macro, 185
%fpl assembler macro, 181
%function assembler macro, 189
%i186_instrs assembler macro, 181
%i386_asm assembler macro, 181
%if_nsel assembler macro, 188
%if_sel assembler macro, 188
%int assembler macro, 185
%leave assembler macro, 187
%mov|lsr assembler macro, 188
%movsx assembler macro, 187
%movzx assembler macro, 187
%param assembler macro, 190
%param_flt assembler macro, 191
%popa assembler macro, 187
%prolog assembler macro, 193
%ptr assembler macro, 185
%pusha assembler macro, 187
%pushf assembler macro, 187
%reg_size assembler macro, 185
%ret assembler macro, 195
%sgroup assembler macro, 183
%stack assembler macro, 183
(E)DI register, used for register variables, 203
(E)SI register, used for register variables, 203
.i extension, 16
.lst extension, 16
.obj extension, 14
/lang directory, 9

266 Index

A
abnormal termination, 12
access rights

compact-model subsystem, 210
iC-386 compact model, 116

access rights (iC-386), 114
activation records, 115
address

of an object, 221
size, 127

aggregate types, 221, 224
aliasing variables, 86
alien keyword

extend control, 65
align | noalign control, 45, 46, 47

examples, 47, 48, 50
ANSI C standard, 5, 7, 25, 65, 221, 225, 227

conformance, 126, 201
application development, 2

examples, 24
modular, 4, 22
tasks, 1

application system, 5
arguments

maximum number, 231
array, 224, 228
assembler invocation, 177
auto storage class specifier, 228, 229
automatic variables, 115

B
big endian, 162
binder, 207, 215

combining segments, 209, 210
binding

compact model, 116
binding (iC-386), 114
bit fields, 222, 229
BLD386, 4, 113

interrupt gate, 71
block nesting level, 131
blockinbyte function, 145
blockinhword function, 145
blockinword function, 145
blockoutbyte function, 145

blockoutword function, 145
BND286/386

syntax, 22
BND386, 4, 22

example, 24
object control, 24
rconfigure control, 24
renameseg control, 24
using libraries, 24

Bootstrap Loader, 1
buildptr function, 138
built-in functions, 135
byteswap function, 162

C
C libraries, 24
C-386 compatibility, 53, 57
CALL instruction for Intel386 and Intel486

processors, 79
calling convention, 66, 67, 108
calling convention, see also function-calling

convention, 198
case significance, 225

control arguments, 40
controls, 40

case values
maximum, 231

casting
pointer to near, 119
to and from pointers, 228

causeinterrupt function, 146
char data type, 98
character

constant, 227
set, 227
strings, 115

cleaning up the stack, see fixed parameter list
and variable parameter list

cleanup code, 198, 203
cleartaskswitchedflag function, 151
CODE

compact-model subsystem, 210
iC-86/286 compact model, 116

code | nocode control, 51
code access

efficiency, 113, 119

iC-386 Compiler User’s Guide Index 267

code segment, 53, 54, 94, 115
compact model, 116
compact-model subsystem, 210

CODE32, 209
compact-model subsystem, 210
iC-386 compact model, 116

CODE32 segment name (iC-386), 53
codesegment control, 53, 216
combine-type

compact model, 116
compact-model subsystem, 210

combine-type (iC-386), 114
combining application with iRMX, 1
command line

preserving case, 40
preserving special characters, 44

compact control, 54, 55, 115, 116, 209
compact model, 113, 205, 206, 210

default address size, 116
dynamic data segments, 116
efficiency, 116
maximum program size, 116
number of segments, 116
segment definitions, 116
segments, 116
selector register use, 116

compact-model subsystems, 207
example, 207
far keyword, 210
segment definition, 209
segment definitions, 210
selector, 209

compatibility
function calling conventions, 65
iC-386 with C-386, 53, 57
non-C translators, 4
other intel compilers, 65, 66
with Intel tools, 6

compilation heading, 129, 130
example, 130

compilation summary, 130, 133
compiler capabilities, 5
compiler version, 7, 130
compiling, 125
cond | nocond control, 56, 132
conditional assembler macros, 188
conditional code, 132

in source listing, 56
conditional compilation, 91, 125, 128

example, 61
macros, 60
maximum nesting, 226

conditional directives, 128
const attribute specifier, 94, 230
constants, 94

code or data segment, 115
compact model, 116
compact-model subsystem, 210
definition, 115

continued lines
in source text listing, 131

control arguments
case significance, 40
special characters, 44

control register 0 (CR0), 150, 160
control registers, 159
control word macros

numeric coprocessor, 167, 168
controls, 39, 40, 41, 44

arguments, 10
case significance, 10
debugging, 2
for print file, 73, 74
optimizing, 4

converting
char objects, 98
floating-point to integer, 87

cross-reference listing, 102, 106, 111, 130, 133
CS register

compact model, 55, 116
far function, 119
near variable, 119

D
data

definition, 115
compact model, 116
compact-model subsystem, 210

data access
efficiency, 113, 119

data pointers, 210
compact model, 116

data segment, 54, 57, 94, 115

268 Index

allocating dynamically, 116
compact model, 116
compact-model subsystem, 210

data types, 221
char, 98
iC-386, 78
void *, 138

datasegment control, 216
iC-386, 57
iC-386, and subsys control, 57

debug | nodebug control, 58
debug information, 58, 106
debug registers, 159
debugging, 84

line control, 72
source file information, 99
using print file, 51

debugging information
compatibility, 3

declaration syntax, 120
default address size, 210

compact model, 116
overriding, 118, 119

examples, 120
segmentation models, 118

default address size (iC-386), 114
define control, 60

example, 61
defined preprocessor operator, 225
descriptor:, see special descriptor. see general

descriptor. see gate descriptor
descriptor_table_reg structure, 148
diagnostic control, 12, 62, 63, 132
diagnostic messages, 76, 92, 94, 105, 129, 233
disable function, 146
dollar sign ($), 100, 215

in identifiers
extend control, 65

DOS applications
iC-86 compiler controls, 5
numeric coprocessor, 5

DS register
compact model, 55, 116
near variable, 119

E
eject control, 64
embedded applications, 5
enable function, 146
enumeration types, 229
epilog code, 198

interrupt handlers, 71
error messages, 62, 63, 233, 239
errors, 129, 132
ES register

compact model, 116
de-referencing, 119
far variable, 119

exit status, 63
extend | noextend control, 65, 222
extend control, 118, 208, 210
extended segmentation models, 205

definition, 205
extended syntax, 230
extensions to ANSI C, 65
extern keyword, 212
extern storage class specifier

examples with far type qualifier, 121
external

linkage, definition, 212
External

function, definition, 212
variable, definition, 212

external declaration assembler macros, 186
external references

maximum per module, 231
external symbols, 106

definition, 212
type information, 58

F
far address

compact model, 116
far function, 119
far keyword, 208, 210

extend control, 65
far pointers, 127, 138

compact model, 55
converting to near pointer, 138
converting to selector, 138

iC-386 Compiler User’s Guide Index 269

far type qualifier, 118, 119
effect, 118
examples, 120, 121, 122, 123
when to use, 118
where to use, 120

far variable, 119
fatal error messages, 233, 234
file use, 13
fixed parameter list (FPL), 66, 108, 198, 222

argument passing, 199
cleaning up the stack, 204
order of arguments on the stack, 199
returning values in registers, 202
saving and restoring registers, 202, 203

fixedparams control, 66, 68, 198
examples, 67

flag assembler macros, 181, 182
flag macros, 142, 143
flags

examples manipulating, 143
FLAGS register, 140
floating-point, 228

in-line functions, 27
libraries, 24
precisions, 223
unit, 135
unit, special functions, 163
using special libraries, 24

floating-point literals, 115
floating-point unit:, see numeric coprocessor
form feed in print file, 64
FS register

de-referencing, 119
FS register (Intel386)

far variable, 119
function

far, 119
near, 119

function activation records, 115
function call

conventions, 66
four sections of code for, 198
maximum arguments, 231

function calling conventions, 67
function definition assembler macros, 188

%auto, 192
%endf, 196

%epilog, 194
%function, 189
%param, 190
%param_flt, 191
%prolog, 193
%ret, 195

function pointers, 210
compact model, 116

function-calling convention
calling function and called function, 199
passing arguments, 199
returning a value, 202
saving and restoring registers, 203
stack use, 204

functions
interfacing, 197
maximum in argument list, 231
maximum per module, 231

G
gate

descriptor, 147
GDTR (global descriptor table register), 149
general controls, 40
getcontrolregister function, 159
getdebugregister function, 159
getflags function, 140
getlocaltable function, 149
getmachinestatus function, 150
getrealerror function, 170
gettaskregister function, 148
gettestregister function, 159
global descriptor table register (GDTR), 148,

149
global functions, 212
global variables, 115, 212
granularity (iC-386), 114
group definition

compact-model subsystem, 210
GS register

de-referencing, 119
GS register (Intel386)

far variable, 119

270 Index

H
halt function, 139, 146
header controls, 176, 177, 178, 179

controls assembler macro, 175, 176, 177,
178, 179

syntax, 177
defaults, 176
flag assembler macros, 181, 182
operation assembler macros, 186
precedence, 177, 178, 179
register assembler macros, 182
segment assembler macros, 183, 184
type assembler macros, 184

header files, 97
in-line functions, 25

I
I/O layer, 1
I/O ports

reading and writing, 144
i186.h header file, 135, 136
i286.h header file, 135
i386.h header file, 135, 137
i387_environment structure type, 173
i387_protected_addr structure type, 172
i387_state structure type, 174
i486.h header file, 135
i8086.h header file, 135
i86.h header file, 135, 136
i87_tempreal structure type, 173
ICU, 1, 5
identifiers, 225

with dollar signs, 100
IDTR (interrupt descriptor table register), 149
inbyte function, 144
in-circuit emulator, 1, 2
include control, 13, 69, 70, 76, 97, 125, 127, 131
include files, 69, 76, 97, 132

nesting, 70, 131
inhword function, 144
instruction assembler macros, 187
instruction set, 127

Intel386 and Intel486, 79
seeing effect in print file, 51

integers, 227

integral type
converting to selector type, 138

Intel C
VPL calling convention, 199

Intel development tools
application development, 4
experience with, 9
host systems, 1

Intel publications
ordering, 7

Intel486 processor, 79, 135
interactive configuration utility, see ICU
internal error messages, 256
interrupt

task switch, 146
interrupt control, 71, 147
interrupt descriptor table (IDT), 71
interrupt descriptor table register (IDTR), 148,

149
interrupt gate, 147

vs. trap gate and task gate, 147
interrupt gate (iC-386), 71
interrupt handlers, 71, 147

286 and higher processors, 146
interrupt number (iC-386), 71
interrupts

manipulating, 146
invalidatedatacache function, 162
invalidatetlbentry function, 162
invocation

example, 130
messages, 12
syntax, 10

invocation line
continuing, 10
length, 10

invocation-only controls, 40
inword function, 144
iPPS PROM programming software, 5
iRMX memory models, 115

K
keywords, 222

iC-386 Compiler User’s Guide Index 271

L
language directory, 9
language implementation, 221
large segmentation model, 205, 210
LDTR (local descriptor table register), 149
LIBn86, 4
libraries, 2, 22

binding, 22
choosing for binding, 24
choosing for iC-386, 24
far calls, 118
floating-point, 24
operating system interface, 24

line | noline control, 72
LINK86, 4

syntax, 22
linker, 207

combining segments, 209, 210
linking

compact model, 116
list | nolist control, 73, 74, 132
listexpand | nolistexpand control, 75, 132
listinclude | nolistinclude control, 76, 132
listing, see print file
listing files, 13
little endian, 162, 227
LOC86, 4
local descriptor table register (LDTR), 148, 149
location counter, 132
lockset function, 139
logical names

language directory, 9
long data type (iC-386), 127
long type qualifier (iC-386), 78
long64 | nolong64 control, 223
long64 | nolong64 control (iC-386), 78

aligning structures, 48, 50

M
machine status word (MSW), 150
machine status word macros, 151
macro, 91

defining with define control, 60
expansion

In print file, 75

scope, 69
Macro

example, 61
macro definition, 25
macro expansion, 132
macro invocation

maximum arguments, 226
maximum nesting, 226

macros, 126
predefined, 126

manual scope, 7
memory model

compact, 54, 55
memory model:, see also segmentation memory

model
messages, 132, 233

console, 12
diagnostic, 62
Diagnostic, 63
print file, 12

mod486 | nomod486 control, 79
modulename control, 81, 211, 214, 216

and subsys control, 81

N
name space, 229
near address

compact model, 116
near function, 119
near keyword, 210

extend control, 65
near pointers, 127

compact model, 55
converting to far pointer, 138

near type qualifier, 118, 119
effect, 118
when to use, 119
where to use, 120

near variable, 119
normal completion, 12
notational conventions, 44
numeric coprocessor, 24, 87, 135

control word, 164, 166
macros, 167, 168

data pointer, 164
environment, 164, 173

272 Index

flags, 168
instruction pointer, 164
Intel387, Intel486, and Pentium condition

codes, 169
numeric registers, 163

stack top, 168
registers, 164
special functions, 163
state, 164, 173
status word, 164, 168

macros, 171
tag word, 164, 165

macros, 165
numerics libraries for iC-386, 24

O
object | noobject control, 14, 82, 83
object code

components, 115
offset information, limiting, 99

object file, 13
defaults, 14
reducing size, 99

Object file
name, 83
pseudo-assembly listing, 83

object module
name, 81
reducing the size of, 84, 106
size, 133

object module format (OMF), 3
offset-only address, 222

format, 210
OH386, 5
OHn86, 4
operation assembler macros, 186

classes, 186
conditional assembler macros, 188
external declaration assembler macros, 186
function definition assembler macros, 188
instruction assembler macros, 187

optimization, 4, 84, 87
at different levels, 27
reducing debug information, 58, 72
run-time performance, 135
structure aligning, 46

using FPL calling convention, 66
optimization example, 27

level 0, 27, 30
pseudo-assembly code, 30

level 1, 31
pseudo-assembly code, 31

level 2, 33
pseudo-assembly code, 33

level 3, 35
source code, 27

optimize control, 27, 84, 127, 231
order of arguments on the stack, see fixed

parameter list and variable parameter list
outbyte function, 144
outhword function, 144
outword function, 144

P
page break in print file, 64
page header, 129, 130
pagewidth control, 89
pass-by-reference arguments, 199
pass-by-value arguments, 199
path prefix, 96, 97
Pentium processor, 135
pointer, 228

compact model, 55
seeing size in print file, 51

pointer indirection, 86
precedence of controls, 40
preprint | nopreprint control, 13, 14, 16, 90, 125
preprint file, 90, 93

contents of, 14, 125
defaults, 14, 16

Preprint file
Defaults, 16

preprocessing, 16, 90, 105, 125
conditional compilation directives, 56
diagnostic messages, 63
macro expansion, 75

preprocessing directives, 128
preprocessor directives, 125, 225
primary controls, 40
primary source file, 10, 69, 90, 91, 92, 96
print | noprint control, 12, 14, 16, 92, 125

iC-386 Compiler User’s Guide Index 273

print file, 12, 91, 92, 93, 98, 101, 102, 106, 109,
131, 233

assembly code, 51
characters per line, 89
characters per tab stop, 103
contents, 14
contents of, 125
controls that affect contents, 129
defaults, 14, 16
form feed, 64
lines per page, 88
page heading, 88
page numbers, 130
source listing, 56, 73, 74, 75

include files, 69
title in, 104

Print file
source listing

Include files, 76
privilege level, 118
privilege level (iC-386), 114
processor

I/O ports
reading and writing, 144

program
efficiency, 208

programming for ROM, 5
prolog code, 198

interrupt handlers, 71
protected mode

interrupt handlers, 146
protection, 205, 208

levels, 205
prototype, 109
pseudo-assembly code

example, 30, 31, 33
pseudo-assembly language listing, 51
pseudo-assembly listing, 129, 132
Public function

definition, 212
public symbols, 106

definition, 212
name space, 215
type information, 58

Public variable
definition, 212

punctuation in control syntax, 44

Q
quotation marks around control arguments, 40,

44

R
ram control, 94, 115, 127, 209

compact model, 116
reading and writing I/O ports, 144
register assembler macros, 182
register storage class, 202
register variables, 229
registers, 108
related publications, 7
remarks, 62, 63, 129, 132, 233, 254
reserved words, see keywords, 222
restoreglobaltable function, 149
restoreinterrupttable function, 149
restorerealstatus function, 174
rom control, 94, 115, 127, 209

compact model, 116
ROM, programming for, 4
run-time libraries, 2

S
saveglobaltable function, 149
saveinterrupttable function, 149
saverealstatus function, 174
SBITFIELD macro, 173
scalar data types, 221, 222, 223
searchinclude | nosearchinclude control, 69, 96
segment

address in memory, 113
attributes, 113
binding, 113, 116
binding iC-386, 114
compact model, 116
iC-386 characteristics, 114

segment assembler macros, 183
example, 184

segmentation
definition, 205
protection mechanisms, 205
see also memory model, 39

segmentation control, 209

274 Index

segmentation memory model, 209
choosing for iC-86/286, 113
efficiency, 113
extending with subsystems, 114
implementation, 113
iRMX operating systems, 55
number of segments, 115

segmentation protection mechanisms, 205
segments

attributes, 209
compact-model subsystem, 210
name, 209

segment-selector-and-offset address, 222
segment-selector-and-offset format, 210
selector register

compact model, 55, 116
selector type, 138

converting to far pointer, 138
converting to integral type, 138

setcontrolregister function, 160
setdebugregister function, 160
setflags function, 140
setlocaltable function, 149
setmachinestatus function, 150
setrealmode function, 166
settaskregister function, 148
settestregister function, 160
setup code, 198
signedchar | nosignedchar control, 98, 227
sign-off message, 12
sign-on message, 12
small segmentation model, 208, 210
Soft-Scope debugger, 1
source text

filename, 126
line number, 126
listing, 111, 129, 131

source text listing, 131
special characters in control arguments, 44
srclines | nosrclines control, 99
SS register

compact model, 55, 116
stack, 108

definition, 115
STACK

compact model, 116
compact-model subsystem, 210

stack segment, 115
compact model, 54, 116
compact-model subsystem, 210

statement numbers, 131
statements

maximum nesting level, 231
static keyword, 212
static variables, 94, 115

initializing, 94
status word macros

numeric coprocessor, 171
storage-class specifier, 222
string literals

preprocessing, 225
structure, 224, 229
structure aligning, 45, 46

by structure tag, 46
with typedef, 47

structures
passing and returning, see fixed parameter

list and variable parameter list
submit files, 5
subsys control, 97, 100, 205, 206, 209, 211, 216

and modulename control, 101
subsystem definitions, 211

constants, 212, 213
examples, 217, 219
exports keyword, 214
functions and data, 212, 213
has keyword, 214
memory model, 212, 213
modules, 212, 213, 214
syntax, 211, 213

continuation lines, 215
sharing with PL/M, 216

subsystem error messages, 255
subsystems, 100, 205

closed, 209, 211, 214, 216
code segment, 209
compact keyword, 213
compact-model, 207

example, 207
compiling, 206
consistent definitions, 215
-const in code-, 209, 213
-const in data-, 209, 213
constants, 205

iC-386 Compiler User’s Guide Index 275

data segment, 209
definition, 114, 205
efficiency, 208, 210
example, 206
exported functions, 215

characteristics, 215
exported symbols

name space, 215
exports list, 214, 215
far calls, 118, 208
far data references, 208
far keyword, 215
has list, 211, 215
has specification, 214
implicit declaration modification, 208, 215
module name

name space, 215
near calls, 208
open, 211, 214, 216
RAM and ROM submodels, 205
subsystem-id, 209, 211, 213

name space, 215
switch statement

maximum case values, 231
symbol attributes, 106
symbol tables, 229, 231
symbolic debugger, 2, 106
Symbolic debugger, 58
symbols | nosymbols control, 102, 133
symbols listing, 102, 106, 111, 130, 133
syntax conventions, 44
system address registers, 148
system calls, 71
System Debugger, 1

T
tabwidth control, 103
tag word macros

numeric coprocessor, 165
target environments, 5
task gate, 147

vs. interrupt gate and trap gate, 147
task register (TR), 148
task switch in nested interrupt task, 146
tempreal_t typedef, 174
test registers, 159

title control, 104
translate | notranslate control, 12, 14, 16, 105
translation, 105
trap gate, 147

vs. interrupt gate and task gate, 147
trigraphs, 225
type | notype control, 106

and debug control, 58
type assembler macros, 184
type checking, 58, 106
type information, 106
type qualifiers, 222

interpreting, 121
near and far keywords, 118, 210

type table, 231
typedef, 3

aligning structures, 47

U
union, 224, 229
util.ah header file, 175

assembling with, 177
controls assembler macro, 175, 176, 177,

178, 179
header controls, 176, 177, 178, 179
including in assembly text, 175

syntax, 177
macro groups, 175

utilities, 4

V
variable parameter list (VPL), 66, 108, 198

argument passing, 201
cleaning up the stack, 204
example, 110
order of arguments on the stack, 199
returning values in registers, 202
saving and restoring registers, 202, 203

variables
aliasing, 86
far, 119
near, 119
static, 94

varparams control, 108, 198
examples, 68

276 Index

version of compiler, 7
void * data type, 138
void data type, 221, 224
void type specifier

interrupt handlers, 71
volatile attribute specifier, 230

W
warnings, 62, 63, 129, 132, 233, 249

wbinvalidatedatacache function, 162

wide characters, 225

word size, 227

work files, 13

X

xref | noxref control, 111, 133

	IC�386 Compiler User’s Guide
	Quick Contents
	Contents
	Chapter 1: Overview
	Software Development With iC˚386
	Using the Run-time Libraries
	Debugging
	Optimizing
	Using the Utilities
	Programming for Embedded ROM Systems

	Compiler Capabilities
	Compatibility With Other Development Tools
	About This Manual
	Related Publications

	Chapter 2: Compiling and Binding
	Using Files and Directories
	Invoking the iC-386 Compiler
	Invocation Syntax on iRMX Systems
	Invocation Syntax on DOS Systems
	Sign˚on and Sign˚off Messages

	Files That the Compiler Uses
	Work Files
	Object File
	Listing Files

	Using Submit, Batch and Command Files
	Using iRMX Submit Files
	Using DOS Batch Files for DOSRMX Systems
	Using DOS Command Files in DOSRMX Systems

	Binding Object Files
	Choosing the Files to Bind
	Examples of Binding

	In˚line Functions
	Compiling at Different Optimization Levels
	Results at Optimization Level 0
	Results at Optimization Level 1
	Results at Optimization Level 2
	Results at Optimization Level 3

	Chapter 3: Compiler Controls
	How Controls Affect the Compilation
	Where to Use Controls
	Alphabetical Reference of Controls
	align | noalign
	code | nocode
	codesegment
	compact
	cond | nocond
	datasegment
	debug | nodebug
	define
	diagnostic
	eject
	extend | noextend
	fixedparams
	include
	interrupt
	line | noline
	list | nolist
	listexpand | nolistexpand
	listinclude | nolistinclude
	long64 | nolong64
	mod486 | nomod486
	modulename
	object | noobject
	optimize
	pagelength
	pagewidth
	preprint | nopreprint
	print | noprint
	ram | rom
	searchinclude | nosearchinclude
	signedchar | nosignedchar
	srclines | nosrclines
	subsys
	symbols | nosymbols
	tabwidth
	title
	translate | notranslate
	type | notype
	varparams
	xref | noxref

	Chapter 4: Segmentation Memory Models
	How the Binder Combines Segments
	Combining iC˚386 Segments With BND386
	How Subsystems Extend Segmentation

	Compact Segmentation Memory Model
	Compact Model

	Using near and far
	Addressing Under the Segmentation Models
	Using far and near in Declarations
	Examples Using far

	Chapter 5: Listing Files
	Preprint File
	Macros
	Include Files
	Conditional Compilation
	Propagated Directives

	Print File
	Print File Contents
	Page Header
	Compilation Heading
	Source Text Listing
	Remarks, Warnings, and Errors
	Pseudo˚assembly Listing
	Symbol Table and Cross˚reference
	Compilation Summary

	Chapter 6: Processor-specific Facilities
	Making Selectors, Far Pointers, and Near Pointers
	Using Special Control Functions
	Examining and Modifying the FLAGS Register
	Examining and Modifying the Input/Output Ports
	Enabling and Causing Interrupts
	Interrupt Handlers

	Protected Mode Features of Intel386 and Higher Processors
	Manipulating System Address Registers
	Manipulating the Machine Status Word
	Accessing Descriptor Information
	Adjusting Requested Privilege Level

	Manipulating the Control, Test, and Debug Registers of Intel386™, Intel486™, and Pentium(Processors
	Managing the Features of the Intel486 and Pentium Processors
	Manipulating the Numeric Coprocessor
	Tag Word
	Control Word
	Status Word
	Intel387™ Numeric Coprocessor, and Intel486 or Pentium Processor FPU Data Pointer and Instruction Pointer
	Saving and Restoring the Numeric Coprocessor State

	Chapter 7: Assembler Header File
	Macro Selection
	Flag Macros
	Register Macros
	Segment Macros
	Type Macros
	Operation Macros
	External Declaration Macros
	Instruction Macros
	Conditional Macros
	Function Definition Macros

	%function
	%param
	%param_flt
	%auto
	%prolog
	%epilog
	%ret
	%endf

	Chapter 8: Function-calling Conventions
	Passing Arguments
	FPL Argument Passing
	VPL Argument Passing

	Returning a Value
	Saving and Restoring Registers
	Cleaning Up the Stack

	Chapter 9: Subsystems
	Dividing a Program into Subsystems
	Segment Combination in Subsystems
	Compact-model Subsystems
	Efficient Data and Code References

	Creating Subsystem Definitions
	Open and Closed Subsystems
	Syntax

	Example Definitions
	Creating Three Compact-model RAM Subsystems

	Chapter 10: Language Implementation
	Data Types
	Scalar Types
	Aggregate Types
	Void Type

	iC˚386 Support for ANSI C Features
	Lexical Elements and Identifiers
	Preprocessing

	Implementation˚dependent iC˚386 Features
	Characters
	Integers
	Floating˚point Numbers
	Arrays and Pointers
	Register Variables
	Structures, Unions, Enumerations, and Bit Fields
	Declarators and Qualifiers
	Statements, Expressions, and References
	Virtual Symbol Table

	Chapter 11: Messages
	Fatal Error Messages
	Error Messages
	Warnings
	Remarks
	Subsystem Diagnostics
	Internal Error Messages
	iRMX Condition Codes in Error Messages

	Glossary
	Index

