tenAsys Quick Start Guide

INtime 7 Quick Start Guide

July, 2024

TenAsys Corporation

1400 NE Compton Drive, #301
Hillsboro, OR 97006 USA

+1 503 748-4720

fax +1 503 748-4730
info@tenasys.com
www.tenasys.com

Copyright © 2005-2024 TenAsys Corporation 20230718 i

ten{sysy Quick Start Guide

This document is protected by US and international copyright laws.
TENASYS, INTIME and IRMX are registered trademarks of the
TenAsys Corporation.

T Other companies, products, and brands mentioned herein may be
trademarks of other owners.

Information regarding products other than those from TenAsys has been
compiled from available manufacturers’ material. TenAsys cannot be
held responsible for inaccuracies in such material.

TenAsys makes no warranty for the correctness or for the use of this
information and assumes no liability for direct or indirect damages of
any kind arising from the information contained herewith, technical
interpretation or technical explanations, for typographical or printing
errors, or for any subsequent changes in this article.

TenAsys reserves the right to make changes to specifications and
product descriptions at any time, without notice, and without incurring
any liability. Contact your local TenAsys sales office or distributor to
obtain the latest specifications and product descriptions.

Copyright © 2005-2024, TenAsys Corporation, All Rights Reserved

No part of this guide may be copied, duplicated, reprinted, and stored in
a retrieval system by any means, mechanical or electronic, without the
written permission of the copyright owner.

July, 2024 Edition

Copyright © 2005-2024 TenAsys Corporation 20230718 i

INtime SDK v7 Quick Start Guide

Contents

Welcome! — Before You Begin........occevceeccerccrsesccnsessescesseessesssesssesnenns 5
Notational CONVENTIONScceiiiriiiiii et 6

T BIMIS e 7
REQUINEIMENTSeiiiiiiiieiee ettt e e e e e e e e e 7
INtime SDK and INtime for Windows Requirements...................... 7
INtime Distributed RTOS Deployment Host Requirements............ 8

SDK Installationcccccvcenmnnnnnnnnssss s 8
INtime Distributed RTOS Deployment Host Installation 12
Example #1: The INtime Application Wizard - HelloWorld.............. 16
Using the INtime Application Wizardcccccovieeeiiiiieiiiiiee e 16
Stop and start the application from Visual Studio..............cccceuvveeee.. 21
Introducing the INtime EXPIOrer..........ccccvvviee i 23
Debugging HelloWorld with Visual Studioccccovieeiiiiieeninenn. 25
Example #2: Working Together - Windows and Real-time............. 26
Two processes — one appliCationocovveeeiriieeiniiiee e 26
Creating the Real-Time ProCessccocvvveviiiieiiiiie e 27
Creating the WIiNdOWS PrOCESSevviiiiieeiiiiieiieeee e 31
Create the Project and Setup the Environment.............ccccocoevveee. 31
Creating a Graphical User Interfacecccocceevviieeinienennneennn 33

Edit the Codecoooiiiiiieie e 34
Running the Complete Solutioncceeeeeiiiiiiiiiiieeeeee 38
EXAMPLE #3 - Working with multiple INtime Nodes. 40
Creating the RTSend applicationccccevviiieiiiiieiiieee e 41
Edit the COU@.....uiiiiiiiiie e 41
RUNNING the SOIULIONo.eviiiiiie e 43
Adding 8 SECONT NOAEooiiiiieiiiiie e 44
INtime for Windows: - Setting up a second Nodec.eeeeeee. 44
INtime Distributed RTOS: - Setting up a second Node................. 45

Copyright © 2005-2024, TenAsys Corporation page 1 of 64

Modifying RTSend application for a second node..............cccccceeeen. 46
Running the complete solution with a second node.......................... 47

Example #4: The INscope Performance Analyzer..........cccocevvcurrneen.

How Fast is DeterministiC?...........cccceeevveeeiniineeeninnenn.
Fast Does Not Equal Deterministiccccceeeeviciiiiieeeee e,

A Multi-threaded EXample...........coooiiuiiiiiiieiiiiiiieiee e
Trace the Threads With INSCOPE.........ceeiiiiieeiiiiee e
6)....In a few moments the View Trace button appears, indicating that
the trace buffer is full. Click View Trace. The event trace for

MultiThread appears in the INscope upper-right pane. 54
NEXE SEEPS .uerierrrrerrrr et nan 58
A. Configuring the INtime for Windows Kernel (local Node)............ 59

INtime for Windows Node Management............cccuveeeeeeenniiiiiieeneennn. 59

INtime for Windows Device Managercccovvveeeiiieeenniieeeniieen 62
B. INtime for Windows Sample Applicationsccceecveeerserssnrseesenns 63

page 2 of 64 Copyright © 2005-2024, TenAsys Corporation

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:

Figures

INtime for Windows configuration:.............cccccceeeennne 6
INtime Distributed RTOS configuration: 6
Entering Network License FQDN or IP.ccccceeeen. 10
Enter USB Drive etter........ccoovivieiviieeeiiiiee e 12
Create USB installer.ccoccviviiiiiiiiieee e, 12
BOOU STAUS ... 15
DRTOS Web Configurationcccccceevviiiiiiieereeennnnnns 15
Creating a NeW Project.cccvvveeeeiiiiiiiieeee e 16
Selecting templateocoeiiiiiiiiiii 17

Selecting name and location for solution................... 17
Creating a New INtime Projectccccccovcvevennnnenn. 18
Selecting Process Elementscccoccvvvveiiiieieiinnnnn, 18
Specifying Polling Thread Parameters 19
Wizard Summary SCreenccccoovcvveeiriiieeenniiee e 19
Files Generated by the wizard.oo oo, 20
Selecting INtime Projectcccccvvveveviiiiiieee 21
Selecting an INtime Node from Visual Studio........... 22
HelloWorld Console Windowc.cccoccuiiieeieeennnns 22
Configuring INtime Explorer Optionsc........ 23
HelloWorld Console Windowcccooccvvveereeennnnns 24
Terminating the HelloWorld Processccuuu..... 24
Setting a Breakpoint..........ccccceeviiiieniiieie e, 25
Basic INtime Solution Architectureccccocveeeens 26
Data-floWooeveeiiiiece e 27
Selecting the MFC Application Template 31
Specifying the Project Name and Location............... 31
MFC Application Type Selections................cceeeeeenn. 32
Specifying Additional Include Directories 33
Dialog Editor in the ToolboX.............ccoeeeeeieeeieeeeen, 33
NTXData Dialog BOX.......cocooeeieiiieieiiieieee e, 34
Running the Complete Solution...............cooeeeeeeeenn. 39
RTData process console output.ccccveeeeriiieeeenns 43
RTSend process console output...........cocceeeeviiieeeens 44
INtime Configuration Panel...........cc.cccovieinniineennnn 44
INtime Node Management applet.........cccccevvvveeennnn 45
NodeA and NodeB are shown as local nodes. 45
Configure Distributed RTOSccoooiiiiiiiiieeeiien, 46
Distributed RTOS configuration interface 46

Figure 39: Selecting a Node within Visual Studio a7
Figure 40: Comparison of Real-time Systemscccccceeeene 48
Figure 41: Modifying Thread Parameterscccocccuvieeieeennnnns 50
Figure 42: Modifying Thread Parameterscccocccvvieeieeennnnns 50
Copyright © 2005-2024, TenAsys Corporation page 3 of 64

Figure 43:
Figure 44:
Figure 45;
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:

MultiThread Project SUMMArycccccoeeciiieeeeeennnnns 51
MultiThread Application Outputcccovveeeeeeennnnnns 53
INscope Event Tracec..ceevveviiiviiiiiiiin e 54
Zoomed INSCOPE TracCecccvveeveeeeeiiiiriieeeeeeeeseeeneees 55
Event Based detail..........ccccevviiieeiiiiieee e 56
INtex View of the Multithread Appcccovvvveveeeiiiinne, 57
INtime Control Panel............ccccceevviieiiiiiie e 59

Node Management Kernel Tab............cccccvvveeeeennnns 60
Node Management System Tab...........cccceeiviieeens 61
Device Configuration applet...........ccceeeriiieeiiiineeenns 62

page 4 of 64

Copyright © 2005-2024, TenAsys Corporation

Welcome! — Before You Begin

Thank you for your interest in our INtime® 7 SDK (Software
Development Kit) supporting the INtime RTOS. The INtime 7 SDK
supports the following usage configurations:

= [INtime for Windows, where the INtime RTOS runs
simultaneously alongside the Microsoft® Windows® operating
system.

= INtime Distributed RTOS, where INtime runs as a stand-alone
RTOS. Configurations run the same binary application and
support multi-core implementations with one or more instance
of the INtime RTOS running on the same host.

INtime for Windows offers a unique solution for developing embedded
real-time applications for the Microsoft Windows platform. Your real-time
application can run in conjunction with Windows applications or as two
independent applications, running alongside each other.

Both configurations use Microsoft Visual Studio and the same TenAsys
tools to create and debug INtime applications. With INtime for Windows
the INtime SDK typically resides on the same host as the real-time
application being developed, while in INtime Distributed RTOS, the
INtime applications and the Windows-based SDK run on separate hosts
connected by Ethernet, as shown in the next figures.

Copyright © 2005-2024, TenAsys Corporation page 5 of 64

Figure 1: INtime for Windows configuration:

With Windows running the SDK and the INtime OS (local node) on the
Same host

Figure 2: INtime Distributed RTOS configuration:

With Windows running the SDK and the INtime OS (deployment node)
running on separate hosts

Ethernet

This guide familiarizes you with the INtime development tools. You can
find detailed technical information about the INtime software
architecture, kernel, and APIs in the online help files and user manuals.

When running the examples in the INtime for Windows configuration
setup; Examples 1, 2 and 4 can be performed with Windows and INtime
each running on a dedicated HW thread?! on a host that supports two
HW threads. Example 3 requires a host with three (3) or more HW
threads.

When running the Examples 1, 2, 3 and 4 in the INtime Distributed
RTOS configuration setup, a second x-86 host is needed on which to
install INtime. Example 3 requires the second host with two (2) or more
HW threads.

Notational Conventions

This guide uses the following conventions:

e All numbers are decimal unless otherwise stated.

1 A HW thread is defined as a single processor core or one side of a single core
Hyper threaded processor. For example, a Dual-Core processor and a Single-
core Hyper- threaded processor supports two (2) HW threads. A Dual core
hyper-threaded processor supports four HW threads.

page 6 of 64 Copyright © 2005-2024, TenAsys Corporation

e Bit 0 is the low-order bit. If a bit is set to 1, the associated
description is true unless stated otherwise.

e Data structures and syntax strings appear in this font.
Notes indicate important information about the product.

Tips indicate alternate techniques or procedures to use to save time or
better understand the product.

Terms
e System: Total interactive collection of hosts used in a networked
solution.

e Host: computer that shares memory, 10 bus, and a single BIOS. A
host may have multiple cores and sockets.

e Core: one of many cores in a multi-core processor.

e Hardware Thread: One hardware core or hyperthreaded core.

¢ Node: one OS instance (a Windows node can include multiple
cores). INtime for Windows has at least two Nodes on one Host:
one for Windows and at least one for INtime.

Requirements

e INtime can be installed on hosts with up to 64 hardware threads.

e INtime can be assigned to a maximum of 32 hardware threads.

e Note that Hyperthreading provides 2 hardware threads for each
hardware core when enabled.

e Each INtime process can address a maximum of 4GB memory.
Multiple processes can be loaded on each INtime instance (thread)
enabling access to the entire 64-bit memory address space.

INtime SDK and INtime for Windows Requirements

The tutorial applications in this guide will be built and executed directly

on the development host. The development host needs to meet the

following minimum requirements:

e Pentium class (or better) processor
(See note above listing the kind of processor required to support
each example application.)

e 40MB of free RAM for INtime and your real-time applications

e 250MB hard disk space for tools, examples, and documentation

e Windows 11, Windows 10, Windows Server 2022, 2019, or 2016
(See the Knowledge Base at tenasys.com/my-tenasys/knowledge-
base/ for updated Windows version support information). Both 32-
bit and 64-bit versions of Windows are supported.

e Windows must be loaded using the Windows bootloader. Third-
party bootloaders will not load INtime successfully.

Copyright © 2005-2024, TenAsys Corporation page 7 of 64

https://tenasys.com/my-tenasys/knowledge-base/
https://tenasys.com/my-tenasys/knowledge-base/

e Visual Studio (2022, 2019, 2017, or 2015). (See the Knowledge
Base at tenasys.com/my-tenasys/knowledge-base/ for updated
Visual Studio version support information.)

INtime for Windows applications run with Windows 11, Windows 10,
Windows Server 2022, Windows Server 2019, and Windows Server
2016. The examples in this guide focus on the Windows 10 environment
and with Visual Studio 2019. Check the installer readme file for any
amendments to these requirements.

INtime Distributed RTOS Deployment Host Requirements

The deployment host must be a PC platform with the following
requirements:

e Pentium class (or better) processor with APIC enabled.

(See note above listing the kind of processor required to support
each example application.)

e Atleast 64 MB of RAM per hardware thread plus additional memory
for your applications

e Forinitial installation, the host must be capable of booting from
USB media, with IDE, or SATA, NVMe, eMMC interface and
storage media attached.

e Akeyboard is required for installation; both USB and PS/2 types
are supported.

e A supported network controller interface is required for connection
to the Windows development host — onboard or on a card. (See the
Knowledge Base at tenasys.com/my-tenasys/knowledge-base/ for
updated list of supported network cards.)

SDK Installation

The following describes how to install the INtime development tools and
kernel on the development host.

Before you begin
e Make sure that the development host meets the requirements listed
in the Platform Requirements section above.

e Install Visual Studio

Note: If you install Visual Studio after installing
INtime, use the INtime Configuration Manager to
add the INtime development tools to Visual
Studio.

e Make sure you are logged on with Administrator privileges.

page 8 of 64 Copyright © 2005-2024, TenAsys Corporation

http://www.tenasys.com/resources/knowledge-base/support
https://tenasys.com/my-tenasys/knowledge-base/

Note: If the user account that will use INtime on
this host is not an administrator, you must add the
user to the system's INtime Users Group.

e If you plan to install a network-licensed product, get the IP address
or fully qualified domain name of the license server. Contact your
company’s IT personnel for this information.

e Insert the CID/USB license key, if your product includes one.
Install the software
Download and execute the file “intime<version>full_installer.exe” from

the My Downloads page of the TenAsys.com website.

An alternative is to insert the INtime CD-ROM. A welcome dialog
appears.

If the welcome dialog does not appear, double-click readme.htm,
located in the root directory of the INtime CD-ROM. The file appears in
your default browser. Click the “SDK Installation” link at the bottom of
the page. The installation starts.

The installation procedure is like that of most standard Windows
applications. You are prompted to accept the INtime software license
agreement to complete the installation procedure.

Files are installed in the following locations:

Files Location

INtime development Environment variable: %INTIME%®
tools and sample files

Sample projects My Documents\INtime\Projects (for the
user who installed INtime).

Configuration files Environment variable: %INTIMECFG%?

1 Typically C:\Program Files\INtime. On 64-bit versions of Windows
this is C:\Program Files (x86)\INtime. Make note of this directory so
you can locate it again if you wish to inspect header files and other
INtime files.

2 Typically C:\Program Data\TenAsys\INtime. Make note of this
directory so you can locate it again if you wish to inspect
configuration or license files.

Three install options are provided:
e Development Tools Only
This option installs only the SDK; it does not install INtime for
Windows runtime software. Select this option to set up a
development host for use with an INtime Distributed RTOS

Copyright © 2005-2024, TenAsys Corporation page 9 of 64

deployment host. The INtime Distributed RTOS components are
not installed.

e Development Tools & INtime for Windows.
This option installs the SDK and the components required to
configure and run local INtime nodes. Select this option to develop
applications for INtime for Windows.
You can also select this option to develop INtime Distributed
RTOS applications. You will, however, need to select the
deployment node to develop and run the application on the
deployment host.

° Custom

The installer prompts for a Name and Organization. If a network license
has been purchased (for 6 or more SDK licenses) enter the IP address
or the Fully Qualified Domain Name of the license server. Leave this
box empty for an evaluation license or CID Key license. Contact your
company’s IT personnel or your INtime site coordinator for the license
server information needed to complete this licensing step.

Figure 3: Entering Network License FQDN or IP.

2 INtime 7 SDK Setup

- X
User Information o

Full Name: '

Qrganization: |

You will need to install a license for this product after installation. For instructions, go to
this address and log in to your TenAsys account

hitps:/ftenasys. com/sdk-install

If you are using a network license server, enter the IP address or FQDN of the license
server here:

< Back Next > Cancel

After installation is completed, the installation program prompts to
reboot the host. After the host reboots, the INtime runtime environment
and services can be configured. For the purposes of this document the
default configuration will suffice. From the INtime Status Application icon
in the task bar, open the INtime Configuration Panel, then the License
Manager to enter the License String for an evaluation license or for a
CID Key license. Skip this step for a network license.

page 10 of 64 Copyright © 2005-2024, TenAsys Corporation

IMPORTANT: Once the installation is complete, the development
host checks for the appropriate license to run. To use the host you
must load and activate the license. For details, see the document
INtime SDK Evaluation License Procedure for the license
installation procedure at tenasys.com/sdk-install or
tenasys.com/policies

Also see INtime Deployment Trial License Procedure for trial
licenses on either INtime for Windows or INtime Distributed RTOS
hosts (where INtime is installed on a host that is not the SDK host).

Copyright © 2005-2024, TenAsys Corporation page 11 of 64

https://tenasys.com/wp-content/uploads/2020/01/INtime-SDK-Evaluation-Licensing-Procedure.pdf
http://www.tenasys.com/sdk-install
https://tenasys.com/policies/
https://tenasys.com/wp-content/uploads/2023/01/INtime-Deployment-Trial-License-Procedure.pdf

INtime Distributed RTOS Deployment Host Installation

The steps below

describe the INtime Distributed RTOS deployment host

installation process. The installation is done by booting from a USB

flash drive.

Create the USB i

nstaller using the shortcut Create an INtime

Distributed RTOS USB installer in the INtime programs group.

Figure 4: Enter USB Drive letter

eg. d:

[Administrator: INtime USB Installer - o %

TenAsys(R) INtime(R) Distributed RTOS USB Installer

EE R KRR KRR R KRR KRR R KRR R R R E R RRA T

This WILL wipe ALL data off the selected drive

B LT L L L T

Enter USB Drive letter

Please use carefully...

Insert the USB flash drive and enter the drive letter at the prompt.

Figure 5: Create USB installer.

B Administrator: INtime USB Installer - (m] x

Installing INtime Distributed RTOS to D:
Please wait ...

areseses

This parti

Root d

BSL 2n

[files\inst
[files\inti

[files\shel
7
1

The INt

[INtime FAT Format Utility v2.0

‘olume (INTIMEDRTOS) will be gquick-formatted as FAT32
Device gran (bytes)

Reserved sector count

Master Boot Record
[++++++++++] : Done
[files\drtos.bin

#iles\drtosnp.bin

[files\rtboot.ini
[files\rtconfig.ins

sreses R— eses esese

tion type ih‘anted partition type is GPT.

512 Sectors per cluster
32 FAT size (sectors)
32 volume size

bs2.bin

mbr. bin

32
14972
29958 Mbytes

ir size (sectors)

d Stage

all.img
meos. 3rd

1x64.efi
file(s) copied.
file(s) copied.

ime USB Installer has been successfully copied to D:
Please boot your target system off this USB stick
rrxans sasren sasx

areseses

Press any

key to continue . . . _

Change the BIOS settings to boot from the USB stick once.
Both Legacy and UEFI boot mode are supported.

page 12 of 64

Copyright © 2005-2024, TenAsys Corporation

Note: If the partition type of the USB stick is MBR (Master Boot
Record) it cannot be used to install INtime Distributed RTOS
on hosts with a UEFI only BIOS. Repartition the USB stick to
GPT (GUID Partition Table) with the Windows utility: diskpart.

On boot, an automatic installation script runs that prompts for responses to
several configuration questions. This configuration must be completed within
10 minutes.

Note: At each step, the script prompts to continue. If you
choose not to continue, the previous step generally repeats.

Configuration questions include:

Prompt Description

Keyboard Select a keyboard from the menu by entering its
Configuration number, and then press Enter.

Storage A list of storage devices with drive names appears.
Device Select the drive for the INtime install.

Partition and

Format

Repartitioning
the device

1. Do you wish to repartition the device (all data will
be lost)? [y/n]. Enter 'y' to repartition, 'n' to keep the
existing partitions.

2. Format device ... Proceed [y/n]. Enter 'y' to format,
'n' to keep the existing format.

Install the files

Type 'y' to unpack the INtime software files into the
partition.

Software Enter 'y' to proceed.

Installation

Time Zone If the default does not apply, follow the prompts to select
Configuration your time zone.

Set Time and
Date

Adjusts the PC real-time clock (battery clock),
depending on whether you want time kept in UTC or
your local time zone.

Most PCs keep their clock in local time, but you can

adjust the battery clock to keep time in UTC (Universal
Coordinated Time, or GMT).

Copyright © 2005-2024, TenAsys Corporation

page 13 of 64

Prompt Description

Network Interfaces detected by the installer appear. Choose

Configuration the default host interface, used to connect to your
development host.

e DHCP Enter 'y’ if you wish the network address to
be assigned by the local DHCP server.

e |P Address (if DHCP is not selected). Enter an
IPv4 address appropriate for the local network.

e Netmask Enter an appropriate netmask for the
local network.

e Gateway May be left blank, otherwise the address
of the forwarding gateway for the local subnet.

e Enter Host Name Should be a unique name
recognizable among the devices on the network.
Host name may contain only the ASCII letters ‘a’
through 'z' (in a case-insensitive manner), the digits
'0" through '9', and the characters (-',’_’).

e Enter Domain Name. May be left blank or choose
the local internet domain name. For example,
mydomain.com. The Domain Name has the same
character restrictions as hostname. Use ".' to
separate subdomain names.

Set Use this password to gain access to the web-based
Administrator configuration utility on the deployment host. Re-enter the
Password password at the prompt for confirmation.

Reboot the Remove the installation media and allow the host to
host reboot.

After rebooting, the INtime RTOS load process appears, as shown

below.

IMPORTANT: Once the installation is complete, the deployment
host checks for the appropriate license to run. After 10 minutes
without a license the host will shut down. To use the host, you must
load and activate the deployment license. For details, see the
document INtime Deployment Trial License Procedure for trial
licenses on either INtime for Windows or INtime Distributed RTOS
hosts at tenasys.com/sdk-install or tenasys.com/palicies

page 14 of 64

Copyright © 2005-2024, TenAsys Corporation

https://tenasys.com/my-tenasys/policies/sdk-install/
https://tenasys.com/my-tenasys/policies/sdk-install/

Figure 6: Boot status

oading init process (NodelD 0)
iosys: root file system is clean, skipping check
init: INtime Distributed RTOS version 7.0.22346.1
init: INtime Kernel Version 7.0.22345
init: Loading syslogd
init: Loading USB stack
/dev/adalblpl
Phase 1 - Read and Compare FATs
pex Phase 2 Check Cluster Chains
Phase 3 - Checking Directories
Phase 4 - Checking for Lost Files
14 files, 4179520 free (130610 clusters)

init: License check...

init: Got a multicore license
init: Loading node manager
init: Loading network
hclient: rtllgd no link ...
dhclient: rtllgd no link ...
hclient: rtllgd got link
dhclient: rtllgd bound td 192.168.1.208)- renewal in 43200 seconds.
init: Loading network apps
init: Loading FTP server
init: Loading ueb server
init: Loading SNTP client
init: Loading GOBS service
DrtosCIExtension.rsl loaded

To verify that the INtime Distributed RTOS host is up, check if its
webserver responds by opening a browser and entering its IP address:
192.168.1.208 (displayed in the screen above “dhclient: New IP
Address (rtl1g0): 192.168.1.208”)

When the following screen appears, click “INtime Configuration”.
Figure 7: DRTOS Web Configuration

€« C 1921681208 > %

I Nt'i ms Distributed RTOS Web Interface

distributed RTOS

Welcome

« INtime Configuration

[Copyright © TenAsys Corporation 2000-2022

A login screen follows. Use the password entered under “Set
Administrator Password:” during the DRTOS installation.

To use INtime Distributed RTOS for more than 10 minutes, a license is
required. Obtain a Distribution Trial license from the My Account page
on the tenasys.com website. Use the “Activate manually: install license
file.” Or “Activate manually: install license string.” from the License tab in
the INtime Distributed RTOS web interface.

Copyright © 2005-2024, TenAsys Corporation page 15 of 64

https://tenasys.com/my-tenasys/account/
https://tenasys.com/

Example #1: The INtime Application Wizard — HelloWorid

This exercise introduces the INtime Application Wizard, which you use
to create a simple real-time process. The Wizard adds template code for
elements to a new project, such as semaphores, threads, shared
memory allocation, interrupt handling, and client threads. The Wizard
creates the foundation for the HelloWorld example project.

In the HelloWorld project you will create a thread that executes in an
infinite loop. The thread will sleep approximately 1000 milliseconds and
print the phrase “HelloWorld” ten times in an INtime console window,
per each loop iteration.

Note: For the sake of brevity, only screenshots of significant
value are shown within the tutorials of this guide.

Tip: Open the electronic (PDF) version of this guide and use
the Adobe Acrobat "Text Tool" to copy and paste code
fragments from the documentation into your Visual Studio
project. These projects are also included in the SDK
installation sample projects directory:

My Documents\INtime\Projects (for the user who installed
INtime).

Example #1 uses the “Hello World Sample” shortcut for the
“HelloWorld” project.

Using the INtime Application Wizard

1) Create a directory on your development machine called INtimeApps
(suggested to store the examples from this Guide).

2) Start Visual Studio.

3) Create a new project using the INtime Application Wizard template
near the bottom of the list.

Figure 8: Creating a new project.

Visual Studio 2019

Open recent Get started

4 code
& c heck out code
“I’j Open a project or solution

2. Open a local folder

%81 Create a new project

page 16 of 64 Copyright © 2005-2024, TenAsys Corporation

Figure 9: Selecting template

Create a new project R

ject templates & =

Recent

Figure 10: Selecting name and location for solution

Configure your new project

Application Wizard

4) Under Installed Templates:
a. Select INtime Projects.
b. Enter HelloWorld as the project name.

c. Setthe location (path) to the INtimeApps directory
that you created above.

d. Select Application Wizard. Click OK. The wizard
dialog appears.

Copyright © 2005-2024, TenAsys Corporation page 17 of 64

Figure 11: Creating a New INtime Project

INtime Appheation Wezard - HelloWorld T X%

tenAsys’

Real-time Virtualization Experts
What kind of INtime application do you want to create?
D An empty project
A “Hello World" application

© A minimal lwin32 application

A full-featured application

[] Generate C++ source (using Bitime ciasses where applicable)

x| ond | we |

5) Select A full-featured application and leave the C++ box
unchecked.

Note: This tutorial does not use the INtime wizard’s HelloWorld
application because the features of this sample project will be
more interesting.

6) Click OK to continue.

The Add Elements dialog appears. This is where you add elements
to the real-time process, such as mailboxes, semaphores, and
threads. You can create these elements manually, but, using the
INtime Wizard saves time and minimizes errors.

Figure 12: Selecting Process Elements

INEime Application Wizard - HelloWord ERS

INtime Application Wizard
Select an elemant to add to the real ume process.

(¥You can add an element type more than ance.)

Eeents inresl e process

« Mailbox, Semaphore or
Queue Thread

« Thread that operates at a
regular interval

+ Interrupt Handling

+ Shared Memory Allocation

+ Client Thread

EdtBenent | O | crdgobas |
snen cancsl b

page 18 of 64 Copyright © 2005-2024, TenAsys Corporation

7) Select Thread which operates at a regular interval from the list of
real-time process elements. The element detail dialog appears.

Figure 13: Specifying Polling Thread Parameters

? X

INtime Application Wizard - HelloWorld

Poling Thread 1

Method for waiting: =) ~]

Humber of milliseconds to wait:

(Range: 0 - 655349) [1000

Thread Propertes

Thread Priority:
(Range: 0 - 254) [0

Stack Size in Kilobytes:
{Min = 4, multiple of 4) i

oK Cancel Help

8) Keep the default settings for the polling thread, so the thread will
wake up every 1000 milliseconds. Click OK to return to the Add
Elements dialog.

9) Highlight -global- in the elements list on the right of the dialog
and click Edit Element. In the dialog box that appears, you can
modify real-time process parameters. The default parameters are
fine for this example.

10) Click OK and then Finish. The final wizard summary screen
appears.

Figure 14: Wizard Summary Screen

INtime Application Wizard - HelloWorld ? X

INtime Application Wizard will create a new skeleton project with the following specdifications.

Generated Features:
project main in file HelloWorld.c:
1 polling threads:

File Poll.c: prio = 170, nucleus sleep 1000 msec

*¥ou use C as your programming language.
The initial set of modules can be extended as necessary.

Cancel Help

Copyright © 2005-2024, TenAsys Corporation page 19 of 64

11) Click OK. The wizard generates project files.
The Visual Studio solutions explorer displays the following .C files

generated by the wizard:

HelloWorld.c: the main () function which contains initialization
and cleanup code. The file name is derived from the project
name.

Polll.c: the polling thread code generated by the add real-time
elements section of the wizard.

Util.c: contains general-purpose utility routines.
Figure 15: Files Generated by the wizard.

e

Search Solution Explorer (Ctrl+:} P~
131 Solution HelloWorld' (1 of 1 project)
4 %] HelloWorld

b =B References

b 5 Extemal Dependencies

] Header Files
[A HelloWorld.h
Rescurce Files
Source Files
€ HelloWorld.c
€ Polll.c
€ utile
B ReadMeixt

v T T4y T4

Solution Explorer

12) Edit Polll.c:

a.
b.
c.

Open Polll.c.
Add an integer named ‘%’ at the start of the polling thread.

Add a for loop and printf () statements after the TODO
comment. The resulting code should look like the following
(additions are shown in bold):

void Polll (void* param)
{
int x;
#ifdef _DEBUG
fprintf (stderr, "Polll started\n");
#endif

..intervening lines removed for brevity..

while (!gInit.bShutdown)

{
RtSleep (1000) ;

#ifdef DEBUG
fprintf (stderr, "Polll waking up\n");
#endif

// TODO: do what has to be done every 1000
milliseconds

// Print Hello World! 10 times

For (x = 0; x < 10; x++)

page 20 of 64 Copyright © 2005-2024, TenAsys Corporation

printf ("Hello World!\n");
}
// tell that this thread is dead
gInit.htPolll = NULL_RTHANDLE;
}

Make sure the build type is set to Debug (go to the Build|Configuration
Manager... menu or select Debug on the menu bar and build the
solution (Build[Build Solution or type Ctrl+Shift+B). The HelloWorld
program compiles and links.

Stop and start the application from Visual Studio

1

2)

INtime for Windows:
Start the NodeA application:

a. Start the Node by clicking the hidden icon in the Windows
c. Click on Start NodeA.

Toolbar.
b. Click the INtime (e icon).
INtime Distributed RTOS:
Make sure that the target node is booted and running.
Select the target node in INtime Properties:

a. In Visual Studio select the INtime project icon in the Solution
Explorer window (as shown in the Figure below) and right-click
it.

b. Select Properties from the window.

Figure 16: Selecting INtime Project

Selution Explorer > 0 x
W o-5 @ p -
Search Solution Explorer (Ctrl+;) 2~
7 Solution 'HelloWorld' (1 project]
P ——

I =B References
b I3 Bxternal Dependencies
4 £ HeaderFiles
b [F HelloWarldh
5! Resource Files
4 2. Source Files
P ++ HelloWorld.c
b+ Polllc
b e outilc
B ReadMetet

Solution Explorer

Copyright © 2005-2024, TenAsys Corporation page 21 of 64

3)

4)

Figure 17: Selecting an INtime Node from Visual Studio.

Configuration: All Configurations | plattorm: | INtime v | Configuration Manager...

Local

b CCes Virtual segment size (bytes)

P Linker Object directory size 0
INtime Properties Allow execution in data segment 0
O Eom=hbr Use XM mede Use XM mode:
b XML Document Generator]
b Browse Information Selectan INtime Node X
b Build Events
P Custom Build Step & Intime Nedes
b Code Anatysiz & Locat pC1
€[
*§ NodeB
A\ RTOS: SKVLAKE-NUC Tendsyzlan
& Hoder
@ HNoded
INtime Node
Stat the program on this Nkime node.
Coreel

Select the node on which you wish to run your program.

The figure above shows “NodeA” running on PC1, the host on
which the Windows and INtime SDK is running (also known as a
local Node). This represents an INtime for Windows configuration
setup. NodeB has a different icon because it is not running.

“NodeA” running on DRTOS.TenAsys.lan repesents an INtime
Distributed RTOS configuration setup.

For this tutorial, select the local “NodeA”.

To run the application with Debug, do one of the following:
e Select Debug|Start Debugging

e PressF5

e Click the green arrow > on the tool bar.

An INtime console window appears and the message Hello World!
appears ten times each second inside the console window.

Figure 18: HelloWorld Console Window

& INtime Console 0x2018 - NodeA — O X

Hello World started ~
Hello World finished initialization
Polll started

Polll waking up

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Polll waking up

Hello World!

Hello World!

page 22 of 64

Copyright © 2005-2024, TenAsys Corporation

5) To stop the application, click the Stop icon (square) on the Toolbar

i m
or type Shift+Fb5.

Introducing the INtime Explorer

In this Example, the INtime Explorer (aka INtex) will load and run the
just-built HelloWorld application. INtex displays the real-time objects

present on an INtime node (an INtime real-time kernel).

1) Start the INtime kernel, if it is not already running, from the INtime
Status Monitor in the Windows system tray. Select Start NodeA.
Note that NodeA is the default name of the INtime kernel, you can

create other nodes and assign different names.

2) Start INtime Explorer using its shortcut in the INtime program

group.

3) Select your node from the dialog box and click OK.
4) Turn on the INtime Explorer automatic refresh:

This feature is useful when debugging a local INtime node.

a. Select View|Options... on the INtex menu.

b. Select the Refresh tab.

c. Check the Enable refresh every box and set the interval for two

seconds.
d. Click OK.

Figure 19: Configuring INtime Explorer Options

INtime Explorer Options

Refresh the cument window

Font for the right pane

Cumert fort: Courier

Change...

Types Refresh Memory Accounting Watch

Enable refresh every 2 = seconds

Cancel

2

X

5) Load and run HelloWorld using one of these methods:

e Click the second button on the INtex toolbar.

e Select File|Load RT app.

6) Navigate to the debug folder in your HelloWorld project directory

and select the real-time executable file HelloWorld.rta.

7) Click Open to load and start the real-time process on the INtime

kernel.

Copyright © 2005-2024, TenAsys Corporation

page 23 of 64

INtime for Windows: A console window and the message
Hello World! appears ten times each second inside the console
window.

Figure 20: HelloWorld Console Window

& INtime Console 0:2018 - NodeA - O pd

Hello World started ~
Hello World finished initialization
Polll started

Polll waking up

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Polll waking up

Hello World!

Hello World!

v

INtime Distributed RTOS: the output appears on the target node
console.

Terminate the HelloWorld process by doing the following:
1) Go to the INtime Explorer main window.

2) Find the HelloWorld real-time process in the left window of INtime
Explorer (each INtime icon represents one real-time process).

3) Click the line to select the HellowWorld process.
4) Click the red ‘X’ button in the toolbar to delete the process.
Figure 21: Terminating the HelloWorld Process

B, INtime Explorer - [NodeA] o x
[} File Edt View Tools Window Heip o

FEdé X0 000
@ 0258 Root Process
@ 0728 CUB "Sha

>

RT Object infor
pe = 1

FT hendle 3580
Object. M)

+ & Ura0RTDS! stem’” Current Threads Current obiects 200
& wiBRGO 2l Objects Manager Centaimer sros Mox Pricmaty 129
& 1320 WIN: 2 helpe for INzime Build 182° Pt foolwem mmbimised
pinDoctorta’ Lorgest free Ecrrowed 160K

et tackrta” Exception ncds Exception handlsr 02801

iderfitsta” Hndl ket RVA Size Entry ref Name

- o [35c8 00030000 DDDSS000 00038210 O clib rsl
ime\Projects\helloworld\vs2015\Debug! HelloWorld.a 35408 00010000 ODO21000 00020=40 O RtRsl rsl
ntex e

2 0e6B
&2 078
&2 Oelt
15
156 -

< > e >

For Help, press F1

Answering Yes to the deletion warning pop-up terminates the real-time
process. The HelloWorld process icon disappears from the INtime
Explorer process list. Notice that the HelloWorld console window
remains on your desktop, but the console window’s title bar displays
Finished.

page 24 of 64 Copyright © 2005-2024, TenAsys Corporation

Debugging HelloWorld with Visual Studio

With INtime, you can debug real-time processes directly from within
Visual Studio (from Visual Studio 2008 onwards). Using the just-created
HelloWorld project, you can step through the code and perform basic
debugging tasks.

1

2)
3)
4)
5)

6)

Note: If you are continuing directly from the previous section,
steps 1 to 4 are not necessary.

If the INtime kernel is not already running, start it using INtime
Status Monitor|Start NodeA. (In the Windows Toolbar)
Start the Visual Studio development environment.
Open the HelloWorld project.
Open Poll.c within the HelloWorld solution.
Set a breakpoint on the for loop, using one of these methods:
e Click the vertical bar to the left of the source window.
e Place the cursor on the line and press the F9 key.
Figure 22: Setting a Breakpoint

Polllc & X
%] HelloWorld - (Global Scope) - @ Polll(void * param)
38 5 while (lgInit.bShutdown) =
29 { -
3@ RtSleep(loe@);
31
32 S#ifdef _DEBUG
33 fprintf(stderr, "Polll waking upin");
34 sendif
35
36 = f/ TODO: do what has to be done every 10@@ milliseconds
37 // Print Hello World! 1@ times //add
® s | for(x=8; x<18; x+) //add |
39 printf("Hello World!\n™); /fadd
a8 }
42 f// tell that this thread is dead
43 gInit.htPolll = NULL_RTHANDLE;
a4 1
-
W% - 4 »

Start the debugger using one of these methods:
e Pressthe F5 key.

e Click Start on the Visual Studio tool bar.
The HelloWorld.RTA process launches.

Note: If you are not running the default configuration, you may
need to select the target INtime node in the INtime project
settings.

The HelloWorld process runs to the breakpoint. Following the
break, you can step through the code and watch variables change
(e.g., ‘¥) as you step through the loop. Debugging an INtime real-
time thread in this way is virtually identical to debugging a Windows
thread.

Copyright © 2005-2024, TenAsys Corporation page 25 of 64

Example #2: Working Together — Windows and Real-time

The typical INtime for Windows solution consists of these executables:

e A standard Windows process that provides access to the Windows
user interface, database functions, and other Windows-specific
functions.

e Areal-time INtime process containing time-critical threads.

The INtime NTX library manages communication between the two parts.

This example uses INtime data mailbox objects to demonstrate how a

simple Windows MFC dialog process can exchange data with real-time
threads running on the INtime kernel.

Tip: Example #2 uses “RT Data Project” shortcut for the
“RTData” project and the
“NTX Data Project” shortcut for the “NXTData” project in the
sample projects directory.

Two processes —one application

Three data mailboxes, MY_MBOX_1, MY_MBOX_2, and a third
mailbox, MBOX_Signal, which will be used to send data between two
processes: NTXData.exe (a Windows process) and RTData.rta (a real-
time process) and to signal between two real-time threads. Together
these two processes comprise a single INtime software application.

Figure 23: Basic INtime Solution Architecture

Application

Real-time

o C library

process
Real-time

application library

NTX
Libraries

idows executive

Windows | Transport
kernel Driver

This data mailbox example is only one possible solution for sharing data
between an INtime real-time application and a Windows application;
other solutions might incorporate shared memory or exchanging
semaphores between Windows processes and real-time processes.

Tip: To learn more, locate the topic “INtime System
Description” in the INtime Help.

page 26 of 64 Copyright © 2005-2024, TenAsys Corporation

Creating the Real-Time Process

First, we will create RTData.rta, the real-time process launched by
NTXData.exe. The real-time process sets up the mailboxes and waits
for the Windows process to send a data message through the first
mailbox. After a message is received, the real-time process sends data
back to the Windows process using the second mailbox. The third
mailbox is used for internal communication between real-time threads
within the real-time process.

Figure 24: Data-flow

Windows Process Real-time Process
NTXData.cxc RTData.rta
—
7 = T ——————> MY MBOX lcée
message 1 <-onosend ™ [t MY_MBOX_1 /
b 6 P— -
— \ — | P — Clientl ¢4z,
_/- MY_MBOX_2

1) Open Visual Studio, create a real-time project called RTData, and
place it in the INtimeApps directory you created for the HelloWorld
example.

Note: It is important to name this project “RTData,” exactly as
shown above. The name you specify is used as a real-time
process object identifier and is referenced in later code. INtime
object names are case-sensitive.

2) Choose A full-featured application from the INtime Application
Wizard and click OK (leave C++ unchecked for this example).

3) Add a Data mailbox element by selecting Mailbox, Semaphore or
Queue Thread from the list of available elements. (Set the Type of
object this thread waits at to Data mailbox in the options dialog.)

4) Type MY_MBOX_1 for the Catalog the object with this name field.
5) Click OK to return to the elements setup dialog.

6) Repeat the preceding three steps to add a second data mailbox,
but this time name it MY_MBOX_2.

7) Click OK to return to the elements setup dialog.

8) From the elements setup dialog add a Client Thread (last element
in the list).

9) Check the Send to data mailbox item (upper left), leave all other
items unchecked, then click OK to return to the elements setup
dialog.

10) Click Finish followed by OK. The wizard automatically generates
real-time code templates.

Copyright © 2005-2024, TenAsys Corporation page 27 of 64

The code generated by the above steps is only a starting point.
Modifications are required to turn this project into a running program.
Data mailbox MY_MBOX_1 receives messages from the Windows
process, and data mailbox MY_MBOX_2 sends messages to the
Windows process.

The client thread in Clientl.c sends messages to the Windows process
via MY_MBOX_2. The code in MY_MBOX_2.c is only used to create
that data mailbox. In addition, we will manually add a third data mailbox
for inter-thread communication.

Note: This file and function structure is not necessarily the

most efficient or elegant solution; it is being used to quickly
demonstrate the INtime architecture and the use of INtime

wizards to generate template code.

Make the modifications shown below in bold to RTData.c. This file
contains the real-time process’ main() function. These modifications add
a third data mailbox to coordinate receiving data from MY_MBOX_1 and
sending data via MY_MBOX_2. The last lines added take control of the
region object and release that control after thread initialization is
complete.

Tip: Open the electronic (PDF) version of this Guide and use
the Adobe Acrobat “Text Tool” to copy and paste these code
fragments directly from the documentation into your Visual
Studio project.

Changes to RTData.c

// global variables

RTHANDLE hRootProcess;
DWORD dwKtickInUsecs;
RTHANDLE hMBOX_Signal;

..intervening lines removed for brevity..

// create mailbox, semaphore and message queue threads
hMBOX_Signal = CreateRtMailbox (DATA_MAILBOX | FIFO_QUEUING) ;
if (hMBOX Signal == BAD_RTHANDLE)

Fail ("Cannot create signaling data mailbox");

Do not forget to include a global declaration for the region object,
hMBOX Signal, at the end of RTData.h.

Changes to RTData.h

extern RTHANDLE hRootProcess;
extern DWORD dwKtickInUsecs;
extern RTHANDLE hMBOX_Signal;

page 28 of 64 Copyright © 2005-2024, TenAsys Corporation

Open MY_MBOX_1.c. The Wizard generated code to create, initialize,
and retrieve data from the mailbox. We are adding code to print
received data to a console window and signal to Clientl that a reply
message can be sent.

Changes to MY_MBOX_1.c

// TODO: operate on byMmessage and dwActual
//Print the message received from the mail box
printf ("This is the message: %s\n", byMessage) ;

//Indicate that the message was received
SendRtData (hMBOX_Signal, "go", 3);
}

}
Next, open MY_MBOX_2.c and remove the lines in the while loop that
wait for data to be received from the data mailbox; in the code fragment
below, they are commented out. In this example we use this thread only
to initialize the data mailbox. To eliminate compile warnings, remove the
declarations as well.
The Windows process receives from this data mailbox and the real-time

process sends through this data mailbox. Add a line at the end of the
while loop to suspend the thread.

Changes to MY_MBOX_2.c

// WORD wActual;
// BYTE byMessage[128] ;
RTHANDLE hMYiMBO)(iZ ;

..intervening lines removed for brevity..

// wActual = ReceiveRtData (hMY MBOX 2, byMessage, WAIT_FOREVER) ;

// if (0 == wActual)

/7|

// Fail ("Receive from data mailbox MY MBOX 2 failed");
// break;

/7 }

// TODO: operate on byMmessage and dwActual

SuspendRtThread (GetRtThreadHandles (THIS_THREAD)) ;
Finally, open Clientl.c and add the retMessage[] array that will build
return messages. Remove the lines used to look up the process handle,
since the data mailbox we will reference in this thread was created in
this process. Modify the parameters accordingly in the line that gets the
handle to the MY_MBOX_2 data mailbox.

Copyright © 2005-2024, TenAsys Corporation page 29 of 64

Changes to Clientl.c

void Clientl (void *param)

{

RTHANDLE hProcess = NULL RTHANDLE;
RTHANDLE hDmbx;

char retMessage[128] ;

int x =0;

int y;

// TODO: adjust process and mailbox name

// TODO: remove the next lines if the data mailbox

// was created in this process
// hProcess = LookupRtHandle (hRootProcess, "DMBX OWNER",
WAIT_FOREVER) ;
// if (BAD_RTHANDLE == hProcess)

//

// Fail ("Cannot find data mailbox process") ;
// return;

// 1}

// TODO: replace hProcess by NULL RTHANDLE
// 1f the data mailbox was created in this process
// hDmbx = LookupRtHandle (hProcess, "DMBX NAME", WAIT_ FOREVER) ;
hDmbx = LookupRtHandle (NULL RTHANDLE, "MY MBOX 2", 5000);
if (BAD RTHANDLE == hDmbx)
{
Fail ("Cannot find data mailbox");
return;

}

Finally, add code in the while loop to wait for the signal indicating that
we should send a message to the Windows process. We will assemble
the message sent by including an incremented count value so each
response message is unique.

while (!gInit.bShutdown)
{
// TODO: put client code that must be repeated here
// the RtSleep call is just an example
// RtSleep(1000) ;
ReceiveRtData (hMBOX_ Signal, retMessage, WAIT_FOREVER) ;
// TODO: fill a message and its size
// if (!'SendRtData (hDmbx, "test", 5))
y = sprintf (retMessage, "%s %i", "Msg rcvd: ", x++);
if (!SendRtData (hDmbx, retMessage, ++y))
{
Fail ("Cannot send to data mailbox");
break;
}
}

We are ready to build the application. Choose Build|Build Solution or
type Ctrl+Shift+B from the Visual Studio menu to compile and link.
Check the Debug folder in your RTData project directory and you should
find an RTData.rta file, among others. This is the real-time process’
executable (equivalent to a Windows EXE file).

page 30 of 64 Copyright © 2005-2024, TenAsys Corporation

Creating the Windows Process

When we create the Windows part of our application, we need to setup
the project environment to include NTX support. Creating the Windows
application takes a few steps.

Create the Project and Setup the Environment

Note: These instructions are specific to Visual Studio 2019, but
should be similar for other versions.

1) Start Visual Studio.

2) From the menu, select File|New|Project or type Ctrl+Shift+N.

3) Scroll down and select the MFC App template. Click Next.
Figure 25: Selecting the MFC Application Template

Create a new project ! AH mgese - tom - prettpe -

Recent project templates

© sppiicstion Wzard

4) Specify NTXData as the project name, set the Location to the
INtimeApps folder. Click Create.

Figure 26: Specifying the Project Name and Location

x

Configure your new project

MFC App ¢++ Windows Deskiop

Project name

‘ NTXData ‘

Location

‘ Ci\Users\, \INtimeApps\NTXData\ -

Solution

Create new solution -

Solution name @

[Prace salution and project in the same directory

Copyright © 2005-2024, TenAsys Corporation page 31 of 64

5) Within the Application Type options, select Dialog based under

6)

Application type, and Use MFC in a static library under Use of
MFC.

Note: When using Unicode libraries do not use the _T()
function when passing text into functions requiring LPTSTR.
See the conversion at the end of NTXDataDlg.cpp.

Figure 27: MFC Application Type Selections

MFC Application

Application Type Options

Application Type Application type Project style
Dislog based

Template Properties

Apphication tyge optiens Visual style and colors

Compound document support

Document support options:

Click Finish. The Wizard generates template code.

Before proceeding with the MFC code, you must modify the project
properties to include the NTX library and header files. This is required
for any Windows program using the Windows Extension (NTX) system
calls

1)
2)

3)

Note: These instructions are specific to Visual Studio 2019, but
should be similar for other versions.

From the Visual Studio menu select Project|Properties... (or right
click NTXData and select Properties in the Solution Explorer)

On the property pages dialog choose All Configurations in the
Configuration pull down and either Win32 or x64 for Platform.
Navigate to C/C++ | General | Additional Include Directories and
select <Edit...> in the field selector. Click the left icon for New Line
and type $ (INTIME)nt\include in the open field.

Keep “Inherit from parent....” checked. Click OK.

page 32 of 64 Copyright © 2005-2024, TenAsys Corporation

4)

5)

6)

Figure 28: Specifying Additional Include Directories

Configuration: | All Configurations | Platform: | Active(Win32) | | Configuration Manager..
4 Configuration Properties Additional Include Directories
General Additional #using Directories
Advanced Debug Information Format =different options>
Debugging Suppert Just My Code Debugging <different options>
VC++ Directories Common Language RunTime S¢
o Gl Consume Windows Runtime Ext
General

Suppress Startup Banner wlxl[v[a

g"’”"““t‘”" Warning Level

S Treat Warnings As Errors SUNTIME]nt\include
Code Generation

Warning Versien

Language o i < B
Precompiled Headers iagnostics Format
Outpur Files SDL checks Evaluated value:
Browse Information Multi-processor Compilation || C:\Program Files (x86)\INtime\nt\include ~
P S{AdditionalineluceDirectories) v
Al Options
Command Line Inherited values

b Manifest Tool
b Resources

b XML Document Generator| [AInheit from parent or project defaults (o
b Browse Information
b Build Events | —
b Custom Build Step 1

Additional Include Directories

b Linker ‘

b el Specifies one or more directories to add to the include path; separate with semi-colons if more than one.

< > | | Ullpath])

aK Cancel Apply

Similarly, navigate to Linker | General | Additional Library
Directories and select <Edit...> in the field selector. Click the left
icon for New Line and type $ (INTIME)nt\1ib in the open field.
And finally, navigate to Linker | Input | Additional Dependencies
and select <Edit...> in the field selector. Type ntx.1ib

(ntx64. 11ib for x64 platform) in the open field.

Click OK to save changes and close the property pages dialog.

Creating a Graphical User Interface
The following steps create the GUI for the Windows process.

1)

2)
3)

Under Resource Files in the Solution Explorer, double click
NTXData.rc, then expand the Dialog category and double click
IDD_NTXDATA_DIALOG.

Delete the TODO: Place dialog controls here test object.
Select View|Toolbox or type Ctrl+Alt+X. Expand the Dialog Editor.

Figure 29: Dialog Editor in the Toolbox

Search Toolbox P~
4 Dialog Editor =
k Pointer
O Button
[CheckBox
abl Edit Control

Combo Box

List Box

Group Box
Radio Button

Static Text

Picture Control
Horizantal Scroll Bar

Vertical Scroll Bar

Y
&
A
m
B

Copyright © 2005-2024, TenAsys Corporation page 33 of 64

4) Add by dragging two Edit Control objects, two Static Text objects,
and one Button object. The figure below shows a layout for the
controls in the NTXData dialog box.

Figure 30: NTXData Dialog Box

B NTXData =2
| Sample edit box <—Data to Send Send Dats
sample edit box <—Reply Message
oK | Cancel |

5) Modify the properties of each control as follows. Right click each
element to access Properties.

IDC_Button1
ID IDC_txDATA
Caption Send Data

Default Button True
IDC_Editl IDC_Static2
1D IDC_DATA ID IDC_STDATA

Caption <-- Data to Send

IDC_Edit2 IDC_Static3
1D IDC_rxDATA ID IDC_STRM
Read Only True Caption | <-Reply Message |

Leave the OK and Cancel buttons as part of the dialog box. You can
use them to close the NTXData application.

6) Save and build the solution, Build|Build Solution or type
Ctrl+Shift+B, to make sure that it compiles without errors.
Edit the Code

These steps add code to start the RTData.rta process when
NTXData.exe starts, using the INtime NTX API.

Changes to NTXDataDlg.h

1) Open the NTXDataDlg.h header file.
2) Add a #include "ntx.h"line at the top of the file.

3) Declarations for the real-time handles must be marked as
protected. In the protected section of the class definition, add
declarations for the handles needed to locate the RTData process
and access the data mailboxes as well as the public declaration for
the button action.

page 34 of 64 Copyright © 2005-2024, TenAsys Corporation

// NTXDataDlg.h : header file
//

#include "ntx.h"
#pragma once
..Intervening lines removed for brevity..

// Implementation
protected:
HICON m_hIcon;

//The handles to the root processes, RTData, and mailboxes
NTXHANDLE m_RootProcess;

NTXHANDLE m_TestNTXProcess;

NTXHANDLE m_RtMailbox 1, m RtMailbox 2;

// Generated message map functions
virtual BOOL OnInitDialog();
afx_msg void OnSysCommand (UINT nID, LPARAM lParam) ;
afx msg void OnPaint () ;
afx_msg HCURSOR OnQueryDragIcon();
DECLARE_MESSAGE_MAP ()
public:
afx_msg void OnBnClickedtxdata() ;
bi

Changes to NTXDataDlg.ccp

4) Open NTXDataDlg.cpp.

Add this line after the #include statements:
NTXHANDLE hNtx;

When NTXData.exe starts, it must load the RTData.rta application.
Add the following initialization code to load and start the
RTAData.rta application in CNTXDataDlg: :OnInitDialog.

BEGIN_MESSAGE_MAP (CNTXDataDlg, CDialogEx)
ON_WM_SYSCOMMAND ()
ON_WM_PAINT ()
ON_WM_QUERYDRAGICON ()
ON_BN_CLICKED (IDC_txDATA, OnBnClickedtxdata)
END_MESSAGE_MAP ()

// CNTXDataDlg message handlers

BOOL CNTXDataDlg::0nInitDialog()
{
NTXHANDLE hRemoteApp;
CString tmp;

..intervening lines removed for brevity..
// TODO: Add extra initialization here

//Launch RTA Application

//First set the location of the node

//Typically you would want to use a browser

//to select from the available nodes

//For this example we will hard code the node to Local

Copyright © 2005-2024, TenAsys Corporation page 35 of 64

hNtx = ntxGetLocationByName ("Local") ;
// Local node name: NodeB
// Local node name: ///NodeB
// Local node name: intime:///NodeB
// Remote DRTOS name: rtoshost.mydomain.com/NodeB
// Remote DRTOS name: intime://rtoshost.mydomain.com/NodeB
// Remote INtime name: host-NodeA.mydomain.com/NodeB
// Remote INtime name: intime://host-NodeA.mydomain.com/NodeB
//check to see that the node is there
If (ntxGetRtStatus(hNtx) != E OK) {
MessageBoxEx (NULL, _T("RT Machine not present"),
_T("NTXData"),
MB_ICONERROR | MB_OKCANCEL, LANG_ENGLISH) ;
exit (0);
}

//Now launch the RTData.rta application
hRemoteApp = ntxCreateRtProcess (hNtx,
// CHANGE THIS PATH for the location on the target system:
"C:\\Users\\ [user]\\Doc. ..\\INtimeApps\\RTData\\Debug\\RTData.rta",
NULL, NULL, NTX PROC_SHOW_PROGRESS) ;
if (hRemoteApp == NTX BAD NTXHANDLE) ({
tmp = "Cannot load file";
MessageBox (tmp) ;

EndWaitCursor() ;
exit(0);
}
return TRUE; // return TRUE unless you set the focus to

a control

}

Note: Make the appropriate changes to your code for the
location of RTData.rta (loads from the windows host):
“C:\Users\[User]\Documents\INtimeApps\RTData\Debug\”.

Note: RTData.rta can be executed on any INtime node. For
Distributed RTOS, include the host/node instead of “Local”.

The last change necessary to complete the application is in the code
behind the Send Data button. This code consists of a sequence of NTX
API calls to retrieve handles for the real-time root process, the RTData
process, and the data mailboxes, MY_MBOX_1 and MY_MBOX_2. The
member variables defined in the NTXDataDlg.h header file are used
here to store those handles. Once we have a handle to the data
mailboxes, we can send the text typed into the IDC_DATA Edit Control
to the MY_MBOX_1 data mailbox using ntxSendRtData (). The last part
of the function waits for a return message from RTData from the
MY_MBOX_2 data mailbox using ntxReceiveRtData (), and displays the
message returned in the IDC_rxDATA Edit Control.

page 36 of 64 Copyright © 2005-2024, TenAsys Corporation

5) Insert the following code at the end of NTXDataDIg.cpp .
Build the solution after you finish editing the code.

Tip: Open the electronic (PDF) version of this guide and use
the Adobe Acrobat “Text Tool” to copy and paste these code
fragments directly from the documentation into your Visual
Studio project.

void CNTXDataDlg::0nBnClickedtxdata ()
{

char rt my mbx_ 1[] = "MY MBOX 1";
char rt my mbx 2[] = "MY MBOX 2";
char rt TestNTXData process[] = "RTData";
char send_buf[128];
char recv_buf[128];
int recv_buf size;
#ifdef UNICODE
TCHAR wsend buf[128];
USES_CONVERSION;
#endif

//Use the existing handle to the local INtime node
//check to see that the INtime kernel is available
If (ntxGetRtStatus (hNtx) != E OK) {
MessageBoxEx (NULL,
T ("RT Machine not present"),

" ("NTXData") ,
MB_ICONERROR | MB_OKCANCEL, LANG_ENGLISH) ;
exit(0);

}

//Get root process handle, needed to get RTData process handle
if ((m_RootProcess = ntxGetRootRtProcess (hNtx))
== NTX BAD_ NTXHANDLE) {
MessageBoxEx (NULL,
_T("Could not find INtime root process"),
_T("NTXData"),
MB_ICONERROR | MB_OKCANCEL, LANG_ENGLISH) ;
exit(0);
}
//Get RTData process handle
if ((m_TestNTXProcess = ntxLookupNtxhandle (m_RootProcess,
rt_TestNTXData_process, Oxffff)) == NTX_ BAD NTXHANDLE) {
MessageBoxEx (NULL,
_T("Could not find RTData process"),
_T("NTXData"),
MB_ICONERROR | MB_OKCANCEL, LANG_ENGLISH) ;
exit(0);
}
//Now get a handle for each mailbox
if (((m_RtMailbox 1 = ntxLookupNtxhandle (m_TestNTXProcess,

rt_my mbx 1, Oxffff)) == NTX BAD_NTXHANDLE)
|l ((m_RtMailbox_ 2 = ntxLookupNtxhandle (m_TestNTXProcess,
rt_my mbx 2, Oxffff)) == NTX BAD_ NTXHANDLE)) {

MessageBoxEx (NULL,
_T("Could not find data mailboxes"),
_T("NTXData"),
MB_ICONERROR | MB_OKCANCEL, LANG_ENGLISH) ;
exit(0);

Copyright © 2005-2024, TenAsys Corporation page 37 of 64

//Get the user information typed in IDC_DATA
//and send it to mailbox MY MBOX 1
#ifdef UNICODE
GetDlgItemText (IDC_DATA, wsend buf, 30);
strcpy_s(send buf, 30, W2A(wsend buf));
#else
GetDlgItemText (IDC_DATA, send_buf, 30);
#endif
ntxSendRtData (m_RtMailbox 1 , send buf, 128);

//Look for response back from RTData
if ((recv_buf_ size
= ntxReceiveRtData(m_RtMailbox 2, recv_buf, INFINITE))
== NTX_ERROR) {
if (ntxGetLastRtError () !'=E_TIME) {
MessageBoxEx (NULL,
_T("Received data failed"),
_T("NTXData"),
MB_ICONERROR | MB_OKCANCEL, LANG_ENGLISH) ;
exit(0);

}

//Convert message from ASCII to Unicode

LPTSTR lpsz = new TCHAR[recv_buf size + 1];
#ifdef UNICODE

_tcscpy_s(lpsz, (recv_buf size + 1), A2W(recv_buf));
#else

_tcscpy (1psz, recv_buf);
#endif

//Update Edit box with value
SetDlgItemText (IDC_rxDATA, lpsz);
UpdateData() ;

}

Running the Complete Solution
1) Start the INtime kernel.

2) Open the INtime Explorer, select the Local node, and press OK.
INtex displays all processes running on the INtime kernel. It also
shows any mailboxes associated with those processes.

3) Start NTXData.exe within Visual Studio by pressing the F5 key.
Recall that NTXData automatically loads and starts RTData.

4) After NTXData starts, locate RTData in the INtex process tree
(remember to enable automatic refresh in the INtex options if you
do not see RTData appear in the process list).

5) Expand the RTData process to see the data mailbox objects,
MY_MBOX_1 and MY_MBOX_2, and the INtime region object. (For
Distributed RTOS, expand “Extended I/O System”|RINTM “INtime
Run-Time Loader” first.)

page 38 of 64 Copyright © 2005-2024, TenAsys Corporation

6) Type something into the IDC_DATA Edit Control and click Send
Data. Your message displays in the RTData console window, and
the words Msg rcvd: # appears in the IDC_rxDATA Edit Control,

where # corresponds to the message sequence number.

Figure 31: Running the Complete Solution

€

RTData started

RTData finished initialization
Thread for MY _MBOX_1 started
Thread for MY_MBOX_1 waiting
Thread for MY_MBOX_2 started
Thread for MY_MBOX_2 waiting

This is the message: This is a test
Thread for MY_MBOX_1 waiting

This is the message: Another test

Thread for MY_MBOX_1 waiting
This is the message: Last test i NTXData

Thread for MY_MBOX_1 waiting
Msgrevd: 2 <--Reply Message

oK

Cancel

X

7) Close NTXData by pressing either OK or Cancel.

RTData continues to run, even though you closed NTXData, because
we did not include any code to stop RTData when NTXData terminates.

Use INtime Explorer to shut down the RTData process by right-clicking
the RTData process icon in the INtime Explorer window and selecting

Delete from the context menu.

Copyright © 2005-2024, TenAsys Corporation

page 39 of 64

EXAMPLE #3 — Working with multiple INtime Nodes

Note:

To run this example in INtime for Windows, the host running
the Windows and INtime SDK requires a four-core processor,
or dual-core with Hyperthreading enabled.

To run this example in INtime Distributed RTOS configuration
setup, the deployment host needs have a multi-core processor.

A key feature of INtime is the ability for processes to communicate with
each other even when they run on different nodes. This communication
uses the same methods — interaction with system objects — as between
two processes running on the same node.

In this example we will use the same RTData.rta application built in the
previous example, and create a new one, RTSend.rta, to replace the
NTXData.exe application. We will use the same interface to the RTdata
application, but from an INtime application using the console.

Tip: Example #3 uses “RT Data Project” shortcut for the
“RTData” project (unchanged from Example #2) and the
“RT Client Data Project” shortcut for the “RTSend” project in
the sample projects directory.
The example goes through the following steps:
a. Creating the RTSend application.

b. Running the processes RTData and RTSend on the same
node.

c. Stopping the processes.
d. Setting up a second INtime node.
¢ INtime for Windows configuration:
Note: This requires that the host has a four-core

processor, or dual-core with Hyperthreading
enabled.

e INtime Distributed RTOS configuration:

Note: This requires that the deployment host
have a multi-core processor.

o

Modifying the RTData application to enable the applications to
run on separate nodes.

—

Running the applications.

page 40 of 64 Copyright © 2005-2024, TenAsys Corporation

Creating the RTSend application

This real-time process looks for the RTData application and its
mailboxes, prompts the user for the input string, and sends it. It then
receives a reply.

1) Open Visual Studio, create a real-time project called RTSend, and
place it in the INtimeApps directory you created in the HelloWorld
example.

2) Choose A full-featured application from the INtime Application
Wizard and click OK (leave C++ unchecked for this example).

3) From the elements setup dialog, add a Client Thread (last element
in the list).

4) Check the Send to data mailbox item (upper left), leave all other
items unchecked, then click OK to return to the elements setup
dialog.

5) Click Finish followed by OK. The wizard automatically generates
real-time code templates.

The client thread in Clientl.c sends messages to the RTData process
via MY_MBOX_1, then receives the response from MY_MBOX_2.

Edit the code

Open Clientl.c. Add the process and mailbox names, and modify
Clientl, adding the following code:

// Process and mailbox catalog names
char rt RTData process[] = "RTData";
char rt my mbx 1[] = "MY MBOX 1";
char rt my mbx 2[] = "MY MBOX 2";
#undef _MULTI_NODE
//#define _MULTI_NODE_

void Clientl (void *param)

{

LOCATION hLoc;

RTHANDLE hOtherRoot;

RTHANDLE hProcess = NULL_RTHANDLE;
RTHANDLE hDmbx;

RTHANDLE hRmbx ;

char nodename [32] ;

char message[128];

WORD status;

WORD n_recvd;

#ifdef MULTI_NODE_
do {
do {

printf ("Enter the name of the target node: ");
// Local node: NodeB
// Local node: ///NodeB
// Local node: intime:///NodeB
// Remote DRTOS name: rtoshost.mydomain.com/NodeB
// Remote DRTOS name: intime:///rtoshost.mydomain.com/NodeB
// Remote INtime name: host-NodeA.mydomain.com/NodeB

Copyright © 2005-2024, TenAsys Corporation page 41 of 64

// Remote INtime name: intime://host-NodeA.mydomain.com/NodeB
gets (nodename) ;
hLoc = GetRtNodeLocationByName (nodename) ;
if (BAD_LOCATION == hLoc)
printf ("Could not find location of node \"%s\"\n",
nodename) ;
} while (BAD_LOCATION == hLoc);

if ((status = GetRtNodeStatus (hLoc)) != E OK) {
printf ("Node \"%s\" is not ready: %s\n", nodename,
GetRtErrorText (GetLastRtError())) ;
continue;

}
hOtherRoot = GetRemoteRootRtProcess (hLoc) ;
if (BAD_RTHANDLE == hOtherRoot) {
printf ("Could not get remote root process: %s\n",
GetRtErrorText (GetLastRtError())) ;
continue;

}
} while (BAD_RTHANDLE == hOtherRoot);
#else
hOtherRoot = GetRtThreadHandles (ROOT_PROCESS) ;
#endif

// TODO: adjust process and mailbox name
// TODO: remove the next lines if the data mailbox was created
in this process
hProcess = LookupRtHandle (hOtherRoot, rt_ RTData_process, 5000);
if (BAD_RTHANDLE == hProcess)
{
Fail ("Cannot find data mailbox process");
return;

}

// TODO: replace hProcess by NULL RTHANDLE if the data mailbox
was created in this process
// Look up MY MBOX 1
hDmbx = LookupRtHandle (hProcess, rt my mbx 1, 5000);
if (BAD RTHANDLE == hDmbx)
{
Fail ("Cannot find data mailbox 1");
return;

}

// Look up MY MBOX 2
hRmbx = LookupRtHandle (hProcess, rt my mbx_2, 5000);
if (BAD_RTHANDLE == hRmbx)
{
Fail ("Cannot find data mailbox 2");
return;

// tell that this thread is alive
gInit.htClientl = GetRtThreadHandles (THIS_THREAD) ;

// attempt to catalog the thread but ignore error
Catalog (NULL_RTHANDLE, gInit.htClientl, "TClientl");

while (!gInit.bShutdown)
{

page 42 of 64 Copyright © 2005-2024, TenAsys Corporation

// TODO: put client code that must be repeated here
// prompt the user for a message

printf ("\nType a message: ");

gets (message) ;

// send the message
if (!SendRtData (hDmbx, message, 128))
{
Fail (“Cannot send to data mailbox”);
break;
}
// receive a response message
n_recvd = ReceiveRtData (hRmbx, message, WAIT FOREVER) ;
if (n_recvd == 0) {
break;

printf ("Received %u bytes: \"%s\"\n", n_recvd, message);

}

Fail ("Failed to receive message from mailbox 2\n");

// tell that this thread is dead

gInit.htClientl = NULL RTHANDLE;
}

Running the solution
1) Start Node A:
e With INtime for Windows host, start the local NodeA

e With INtimeDistributed RTOS host, make sure the target
node is booted. The default name is NodeA.

2) Start RTData.rta on the appropriate host, NodeA.
3) Start RTSend.rta on the same node on the same host.

4) At the prompt, type a message and observe the response
when the message is returned.

Figure 32: RTData process console output.

& INtime Console 0x25E8 - Nodeh — O x

RTData started ~
RTData finished initialization

Thread for MY_MBOX_1 started

Thread for MY_MBOX_1 waiting

Thread for MY_MBOX_2 started

Thread for MY_MBOX_2 waiting

This is the message: hello

Thread for MY_MBOX_1 waiting

W

Shown running in debug mode (with notifications) waiting for a message
from the RTSend process. Then displaying the message that it
received.

Copyright © 2005-2024, TenAsys Corporation page 43 of 64

Figure 33: RTSend process console output.

 INtime Console 0x27C0 - Nodeh - O *

RTSend started A
RTSend finished initialization

Type a message: hello
|Received 13 bytes: "Msg rcvd: @"

Type a message:

L

Shown running in debug mode (with notifications), prompting (Type a
message:) for message to be entered. Upon sending the message
(hello) the application acknowledges receipt of the message and
prompts for another message.

Adding a second node

So far, we have two cooperating processes running on the same node
on the same host. Now we will create a second node on the same host
and run the processes on different nodes on the same host.

INtime for Windows: - Setting up a second Node

This section explains how to create a second node in INtime for
Windows. (For INtime Distributed RTOS see the next section.)

This section requires that you have at least a four-core processor, or
dual-core with Hyperthreading enabled. (1 Windows node and 2 INtime
nodes minimum.)

Open the INtime Configuration Panel|[Node Management applet.
Figure 34: INtime Configuration Panel

() INtime Configuration Panel x
Select the INtime component that you want to configure
1) o)
@ & # N

ode Development Miscellaneous License INtime
Management Teols Manager Device..

Export Settings Import Settings

Exit Help

page 44 of 64 Copyright © 2005-2024, TenAsys Corporation

On the left side of the dialog, you see a map of all the known INtime
nodes. Currently there is just one — NodeA — showing.

(1) NodeA has a dedicated processor core
(2) Click New Node, and

(3) Select Local and insert Node name “NodeB” or some other
preferred name.

Click OK.

=-4¢ INtime Nodes
- LocakPC1
€ Noder

System Kernel Network Autolosd Advanced

= Windows interaction “
Boot mode Dedicated

Node type 500
Olocal

Legacy Windows NTX connection = ——————————
Memory size
16120M8

12818

oK Cancel Help

Close Save Help

Figure 35: INtime Node Management applet

Reboot the host.

Check that you have two local Nodes (on the same host) running after
rebooting by going to the INtime Configuration Panel|Node
Management applet — left side window should show both local nodes.

Figure 36: NodeA and NodeB are shown as local nodes.

=4 INtime Nodes
=M Local: PC1
& Noder

£, NodeB

New Node Rename Remove

INtime Distributed RTOS: - Setting up a second Node

Open the INtime Configuration Panel|[Node Management applet, as
in the previous section. This operation requires the INtime Distributed
RTOS host to have a multi-core processor.

Copyright © 2005-2024, TenAsys Corporation page 45 of 64

Figure 37: Configure Distributed RTOS

£ INtime Nodes DRTOS hode
A LocakPCI
& MNodea

- RTOS: DRTOS Tenvksys I P odiress W% B m
& bodeA F
Se——

Fip dent C:Pragram Fies|FieZls FTP Clentflesla.oxe
Locate FTP dient

Conect over FTP

Close Heb

Select your node (“DRTOS.TenAsys.lan/NodeA” in this case) and click
“Configure over network”. A web browser appears.

Enter the password you assigned during installation.
Select the Nodes option from the bar.
Figure 38: Distributed RTOS configuration interface

€ C 1921681 208/goform/admin? na o 1

.
INt-Im Host Name DRTOS Up time 0 days 00:11:12
]

Host IP 182.168.1.208 License State Multi-Core Node Locked

Nodes Devices Control Sysiog TPAT INshell License

Node Management

Core Name Base memory inMB Ext. memory in MB State
0 NodeA Rename 1849 6143 rrning Remove

1 {add)
2 (add)

3 {add
Total available memory:

Unused memory:

Click the (add) link for one of the unused nodes, accept the defaults,
and click OK.

Select the Control option from the bar and Reboot the Distributed RTOS
host.

Modifying RTSend application for a second node

Edit the project once more and in Clientl.c comment out this line:
/#undef _MULTI_NODE_

And uncomment this line:

#define _MULTI_NODE_

Rebuild the RTSend application.

This adds a sequence of code which prompts for a node name,
searches for it, and discovers its root process handle.

End of Adding a second node section

page 46 of 64 Copyright © 2005-2024, TenAsys Corporation

Running the complete solution with a second node
1) Start both INtime nodes on the same host.
2) In asecond instance of Visual Studio open the RTData project. Set
its target node to NodeA in the INtime Properties for the project: Right
click RTData in the Solution Explorer, then Click Properties. Select
INtime Properties, then INtime Node <browse>, and then select
NodeA. Launch the application from within Visual Studio.

Figure 39: Selecting a Node within Visual Studio

Fie Edt View Project Buld Debug Test Anshe Tock Esensions Windew Help 2 »

G-t @l DO - Oebug - Meme - b imeDetugger - | 51

Configuration: A8 Configurations | Platforme | Actreltime) | | Configuration Manager.

n Propenies

time Node —
Start the progam orthis INtime node.

eady +

In the first instance of Visual Studio, open the RTSend project. Set
its target node to NodeB. Launch the application.

4) At the prompt for the target node name, enter “NodeA”.

5) Atthe message prompt type a message and observe the response
when the message returns.

The text output to the NodeA and NodeB console ports should be the
same as the example running on the same Node, but with the addition
of the target node querry.

Tip: For INtime Distributed RTOS, use the Channel Select
HotKey: ALT-TAB or ALT-SYSREQ to switch screen I/O
between the nodes.

Tip: To use this example between nodes on two different hosts
the INtime for Windows host needs the following:

1) a network bridge connecting the TenAsys Virtual Ethernet
Adapter and the physical Ethernet Adapter

2) gobs_net.rta running on the INtime for Windows node

Start both from the Node Manager, Auto Load tab of NodeA.

(These are started automatically on a Distributed RTOS node.)

Copyright © 2005-2024, TenAsys Corporation page 47 of 64

Example #4: The INscope Performance Analyzer

Determinism is a key attribute of real-time systems. Speed is always a
useful attribute to have in any embedded system, but the ability to
ensure the correct timing and sequence of events can be even more
important. This is a key difference between a real-time system and a
system that is simply fast.

The INscope performance analyzer is a software tool that provides you
with precise information regarding the timing and sequence of real-time
events in a multi-threaded application, so you can measure the
determinism of your real-time process. INscope traces events while your
application runs in real-time.

In this section we will use the INscope tool to monitor a multi-threaded
real-time process.

Tip: Example #4 uses the “Multithread Sample” shortcut for the
“MultiThread” project in the sample projects directory.

How Fast is Deterministic?

The deterministic nature of a real-time system forces a unique set of
requirements upon software applications. A simple definition of a real-
time system is one in which the time required to respond to an event is
just as important as the logical correctness of that response. Hard real-
time systems require the highest degree of determinism and
performance. Typically, their worst-case event response requirements
are measured in microseconds.

Bounded response to events is the key to defining a hard real-time
system. Real-time systems require determinism to ensure predictable
behavior of the system. Without determinism, a system cannot be called
real-time, and, without bounded determinism, a system cannot be
classified as hard real-time.

Figure 40: Comparison of Real-time Systems

hard real-time event handling

soft real-time event handling

The specific degree of determinism required is a function of the
frequency of the real-time events (size of the time interval between
events) and the effect of delays on the dynamic characteristics of that
system. That is, how often do events occur and how quick and
repeatable must the system be in response to those events. Being able

page 48 of 64 Copyright © 2005-2024, TenAsys Corporation

to place a finite and acceptable bound on the value of these numbers is
what distinguishes a hard real-time system from soft real-time systems.

Fast Does Not Equal Deterministic

Faster processors, memory, and peripherals improve the aggregate
performance of a system, but they generally do not directly affect the
bounded determinism of a system. The worst-case response time to an
event may not be significantly changed by using a faster processor;
increased speed can decrease the average jitter, the spread and
intensity of the variations in response to an event, but it will not
eliminate the worst-case jitter.

Improving the performance (or speed) of a real-time system is useful.
More performance allows one to increase the complexity of the
algorithms that can be implemented in a given period of time (i.e., within
a sample interval or cycle). Therefore, the quality of the control and data
acquisition system that one can implement in software is improved by
using a faster system. However, bounded determinism is still needed to
ensure that a stable and accurate system, regardless of the
performance level, can be deployed.

A Multi-threaded Example

This example application contains three alarm threads, or fixed interval
timing events. Two will be set for the same priority level, and the third
will be set one priority level higher.

Tip: Complete the HelloWorld example before performing this
example to familiarize yourself with the INtime development
system.

1) Open Visual Studio.

2) Create an INtime project called MultiThread and place it in the
INtimeApps directory you created for the HelloWorld example.

3) Select A full-featured application from the INtime application wizard
dialog and click OK.

4) In the next dialog, add a Thread that operates at a regular interval
element.

5) Change the Method for waiting parameter from Sleep to Alarm,
change the Number of microseconds to wait from 1000 to 5000,
and change the Thread Priority from 170 to 160. This creates Polll
as a thread that will start on a precise time interval of every five-
thousand microseconds (every 5 milliseconds). Click OK.

Copyright © 2005-2024, TenAsys Corporation page 49 of 64

6) Click on Thread that operates at a regular interval again. Change
the Method for waiting parameter from Sleep to Alarm, leave the
Number of microseconds to wait parameter at 1000, and change
the Thread Priority from 170 to 165.

Figure 41: Modifying Thread Parameters

INtime Application Wizard - MultiThrezd ? X
Poling Thread 2

Method for waiting: larm ~]

HNumber of microseconds to wait: 1000
Thread Properties

Thread Priority: [

(Range: 0 - 254)

Stack Size in Kilobytes:

(Min = 4, multiple of 4) 4

oK Cancel Help

This sets up Poll2 as a thread that will be started by the INtime
scheduler at a precise time interval of every one millisecond. Click
OK.

7) Choose Thread that operates at a regular interval a third time.
However, this time, specify the following parameters for the thread:
Method for waiting is Sleep, Number of milliseconds to wait is 20
and Thread Priority is 170.

Figure 42: Modifying Thread Parameters

INtime Application Wizard - MultiThread ? X

Poling Thread 3

Method for waiting: [seep ~

Number of milliseconds to wait:
(Range: 0 - 655349)

20

Thread Properties
Thread Priority:
= 170
(Range: 0 - 254)

Stack Size in Kilobytes:
(Min = 4, muttiple of 4) S

oK Cancel Help

page 50 of 64 Copyright © 2005-2024, TenAsys Corporation

This sets up Poll3 as a simple delay thread, not a precise timer-
based interval thread like the previous two threads. As a simple
delay thread, Poll3 will run approximately once every twenty
milliseconds. The imprecision of Poll3 is due to the variable amount
of processing, especially by higher-priority threads that can occur
between each sleep call.

8) Click OK. You now have three time-based threads.

9) Click Finish and double-check the summary screen to be sure it
lists the following threads and parameters for those threads.

Figure 43: MultiThread Project Summary

INtime Application Wizard - MultiThread ? x

Initime Application Wizard will create a new skeleton project with the following specifications.

Generated Features
project main in file MultThread.c:
3 poling threads:

File Poll.c: prio = 160, kernel slesp 5000 usac

File Poll2.c: prio = 165, kernel sleep 1000 usec
File Poll.c: pric = 170, nucleus sleep 20 msec

You use C as your programming language.
The initial set of modules can be extended as necessary.

oK I Cancel | Help |

10) If everything is fine, click OK at the summary screen; otherwise
push the Cancel button, and create a MultiThread project that
matches the parameters specified above.

11) After clicking OK, the wizard builds your project files. Three Poll#.c
files are created. Each Poll#.c file corresponds to one of the three
polling thread elements we created using the INtime application
wizard.

12) Add the two global variables shown below to the beginning of
MultiThread.c for communicating between our timing threads.

// global variables

DWORD dwPolll;

DWORD dwPoll2;
RTHANDLE hRootProcess;
DWORD dwKtickInUsecs;
INIT STRUCT gInit;

13) Remember to include external declarations in the header file
MultiThread.h for the two global variables we added above.
// global variables

extern DWORD dwPolll;
extern DWORD dwPoll2;
extern RTHANDLE hRootProcess; // RTHANDLE of root process

Copyright © 2005-2024, TenAsys Corporation page 51 of 64

extern DWORD dwKtickInUsecs; // length of one low level tick in
usecs

extern INIT_STRUCT gInit; // structure describing all global
objects

14) Polll.c and Poll2.c have nearly identical code. Make the following
modifications to each of these files and be sure the variable
specified after the TODO line matches the thread number.

while (!gInit.bShutdown)

{
if (!WaitForRtAlarm(gInit.hAlarmPolll, KN_WAIT_ FOREVER))

{

Fail ("Cannot wait for alarm Polll");
break;

}

//#ifdef _DEBUG
// fprintf (stderr, "Polll waking up\n");
//#endif

// TODO: do what has to be done every 5000 microseconds
++dwPolll;
}

Note: The code immediately following the while () statement
differs for each thread, as a function of the time interval and
the sleep method specified when you used the wizard to
generate the template code. Also, unlike the previous
examples, in this example remove (or comment out) the
#ifdef DEBUG lines of code inside the while () statement; we
do not want the printf () statements to interfere with the
output and timing of these threads.

15) Poll3.c contains more code than the prior two. Make the following
modifications to this file; again, make sure that the number
specified in the putchar ("#') line matches the thread number.

void Poll3(void* param)

{
int i
int x

0;
0;
#ifdef DEBUG

printf (stderr, "Poll3 started\n");
#endif

..intervening lines removed for brevity..

while (!gInit.bShutdown)
{
RtSleep (20);

//#ifdef DEBUG
// printf (stderr, "Poll3 waking up\n");
//#endif

// TODO: do what has to be done every 20 milliseconds
for (i = 0; 1 < 10; i++) {
putchar (0x0a) ;

page 52 of 64 Copyright © 2005-2024, TenAsys Corporation

for (x = 0; x < 50; x++)
putchar('.'");

if (dwPolll > 0 || dwPoll2 > 0) {
printf (" %.0u %.0u", dwPolll, dwPoll2) ;
dwPolll = dwPoll2 = 0;

}

}

// tell that this thread is dead

gInit.htPoll3 = NULL_RTHANDLE;
}
The for () loops in Poll3 keep the thread alive so we can see pre-
emption using INscope. Polll and Poll2 are at higher priorities than
Poll3. Poll3 can run only when Polll and Poll2 are idle.

16) Make sure the build type is set for Debug and compile the project.

Note: Synchronization code to coordinate setting the values of
the two global variables in Poll1 and Poll2, and reading and
resetting those values in Poll3 is excluded for ease of
instruction.

Trace the Threads With INscope

1) Start INtime Explorer.

2) Using INtime Explorer, start the MultiThread.rta application. The
application’s console window appears, and all three threads start
running. Poll3 prints a series of dots in the console window followed
by the number of times it was interrupted by the two higher priority
threads, Polll and Poll2.

Figure 44: MultiThread Application Output

B INtime Console (xF340 - NodeA - a X

MultiThread started ~
MultiThread finished initialization

Polll started

Pol112 started

Po113 started

3) Start INscope using its shortcut in the INtime programs group
(Start|INtime|INscope).

4) The INscope Trace Control dialog box appears. Click Nodes... and
select NodeA.

5) While MultiThread.rta is running, click Start Trace.

Copyright © 2005-2024, TenAsys Corporation page 53 of 64

6) Inafewmoments the View Trace button appears, indicating that the trace
buffer is full. Click View Trace. The event trace for MultiThread appearsin
the INscope upper-right pane.

Figure 45: INscope Event Trace

& INScope - [INScopel] - a
File View Zoom Cursors Bookmarks Threads Layers Window Help -8 x
h G EFH® 1ms -] C ® TR
MaltiThread rta
1998 TPo112
1350 TPo111
0258 Root P
2a70
o263
1260 NT_TAsK
@ 2aceex in
2158 timer-2158

_EventInfo [Obiect Info | Cursor Info | Run Segment info | Trase Info I
The left pane lists the INtime processes that were running on the kernel
when the trace started, and each of the threads running inside those
processes. The name of the MultiThread executable file appears along
with the three polling threads, also listed by name. The thread names
appear courtesy of the CatalogRtHandle () calls. The exact length of
time associated with the trace, and the order of the threads on the
display, may differ from the figure above. The time it takes Poll3 to run
through the while () loop depends on the speed and configuration of
your machine; remember that all INtime printf () statements (and other
console I/O functions) go through Windows, which affects some of the
timing in this example program.

Scrolling left to right you will see that Polll and Poll2 execute at precise
five and ten millisecond intervals, but the timing of Poll3 is variable.

Note: INscope timestamps are derived from the processor’'s
Time Stamp Counter (TSC). If your host has a variable speed
clock (such as a laptop with SpeedStep) the timing
measurements within INscope may be inconsistent. For more
information regarding this phenomenon, visit the TenAsys
Knowledge Base at www.tenasys.com.

When all real-time threads are in an idle state the NT_TASK and
WIN_EXEC_TSK threads run. These threads represent Windows, its
drivers, applications, and the transfer of information between the INtime
kernel and Windows; In shared mode CPU cycles are allocated to
Windows only when all real-time processes are idle.

page 54 of 64 Copyright © 2005-2024, TenAsys Corporation

http://www.tenasys.com/

The exact set of Windows threads you observe with the INscope tool,
and the rate at which those threads run, depends on the number of CPU
cores in the host and how the host is configured. In a multi-core host
INtime is configured to use one or more cores exclusively for real-time

threads. All remaining CPU cores are allocated to Windows.

Use the zoom controls on the menu or toolbar to see the trace more
clearly and inspect the task switches between threads. By depressing
the ‘Z’ button on the toolbar and tracing a rectangular region with the
mouse, you can zoom to a specific segment. In the screenshot below

we can see all three threads running in a zoomed view.

Figure 46: Zoomed INscope Trace

For Help, press F1

@ INScope - [INScope3] - o x
File View Zoom Cursors Bookmarks Threads Layers Window Hel, & x
= ! p
L 2 [0 ~]C <« ® R
0258 Root Process
0268 1l
1260 NT_TAsK
1648
MultiThread.rta
8470 TPoll3 m
8468 TPoll2 _1.&_
8460 TPolll h —_—
g astact.rta
2158 timer- 2158
Other
< >
E Trace: [NScoped
007435usEXIT. putchar <C Libray > TimeStamp: 0400003169 a2i248a2
Event Infa | Obectnto | Cursor Info | Run Seament into | Trace Inio
NUM Last Mouse

Zoom in further on the Poll3 thread. To see close events, toggle to the
view Event Based mode with the stopwatch icon.

Copyright © 2005-2024, TenAsys Corporation

page 55 of 64

Figure 47: Event Based detail

@ INScope - [INScope3] - O X
File View Zoom Cursors Bookmarks Threads Layers Window Help - 8 %

h G FIFE R Q [low C [] LR

0258 Root Proce:
e —_—
ozes
1260 NT_TASK

1648

MultiThread.rta
8470 TPoll3 W
8468 TPoll2 l‘%

8460 TPolll
B setack e
2158 timer-215

¥ M Other
< > |« >

Trace: INScope3
007435usEXIT: putchar <C Library > TimeStamp: 0x00003169: 224852

[=1E3

Event Info ‘Umecl\nfc Cursor Info | Run SegmentlnfoJ Tracelnfo]

For Help, press F1 NUM Last Mouse

Hover the mouse over one of the arrows on a ‘C’ event and you can see
it is the putchar () function call made inside the Poll3 while () loop. An
up arrow is a return from a prior putchar () call, and the down arrow is a
new call into putchar (). Since a putchar () call results in a transfer of
data to the Windows side of the host, it forces Poll3 into an idle state.
Hovering over the ‘A’ events shows similar information for Poll1 and
Poll2. Right-click an event arrow and select the Display Details item that
appears, and data regarding that event appears in the Event Info tab at
the bottom of the screen.

An interesting and useful feature of INtime Explorer is the ability to
suspend and resume threads on the fly.

page 56 of 64 Copyright © 2005-2024, TenAsys Corporation

Figure 48: INtex View of the Multithread App

€, INtime Explorer - [NodeA] — [m] e
[File Edit View Tools Window Help _ax
W aEbLe XOFHO O
5@, 0258 Root Process ~ [RT Object information for RT handle e138
4@ 0728 CLIB "Shared C Library" Object type = 2: Thread
1)@ Ofad RTDSM "DSM Subsystem” Thread is waiting at low level object
i@, 1018 RIGOBSSMGR "Global Objects Manager” Static prio 0 Dynamic prio
@ 1320 IWIN32 “Iwin32 helper for INtime Build 182 Gontainer proc e05) Interzupt level Hone
xcept mode 3 Except handler 0280
©-@ 1bd0 "C\Program Files Delete - Last RT Error 0000 Not an iwind? thread
5@ 1IBVEMUX"CAProgra stack.ta” ggg:ﬁ‘;;‘ Efeegiil SEH trans 00000
w8 2ac8 "C:\Program Files rta" Stack size 4 KE Stack used 1 KB
@ 3980 RTintex "C:AProgra Uncatslog ta”)
5@ cADTASKANALYZRC gong mp\RTAT2OEmp | TOta1 Tunning time 4 466 asscs
o€ DOMuliThread T | AultiThread\Debug
i .2 ecd TMain o
Release
& el0 TPoll2 Wait for
&2 e148 TPoll3
@ el Suspend
P e1SSRIEXTMBOX Resume
% 0268 Change priority
& 0210
22 0e00 Dump
&2 0e20 -
< > < >
For Help, press F1 ot watching|

1) Right-click the Poll2 thread icon in the INtime Explorer process tree
while MultiThread is running (expand the MultiThread process to
see its individual threads).

2) Select Suspend from the context menu.
3) Note the change in the MultiThread console window.

The numbers at the end of each line of dots in the console window
indicate how many times each of the two high-priority threads ran
since the last time the low-priority thread ran. These high-priority
threads can and will pre-empt the low-priority thread (as shown by
the previous figure). If no number appears after the dots, it means
zero precise timer events were detected. The numbers vary
because the time to run Poll3 varies in length.

4) Suspend Polll1 and again watch the console window’s output.

5) Suspend and resume any of the threads, including Poll3. Do the
results match your expectation?

Copyright © 2005-2024, TenAsys Corporation page 57 of 64

Next Steps

This guide introduces a variety of INtime development tools and
features. The example applications were designed to help you become
familiar with developing INtime real-time applications for Windows. The
next step is to become familiar with the INtime architecture and API.
See the online help and User’s Manual for more detailed information
about these subjects.

Once you are familiar with the INtime kernel architecture, you might
want to review the sample real-time applications that were installed
along with the INtime development package. Appendix B includes a list
of the sample applications with their descriptions.

The final step is to review how to deploy INtime real-time applications.
You have the option of creating real-time applications that share the
hardware host with Windows, or stand-alone INtime nodes with INtime
Distributed RTOS. For more information, see the documentation.

page 58 of 64 Copyright © 2005-2024, TenAsys Corporation

A. Configuring the INtime for Windows Kernel (local
Node)

The INtime Configuration applet opened from the Windows Control
Panel or the INtime Configuration Panel can be used to modify run-time
parameters in the INtime kernel and the development environment. This
appendix describes some of those parameters.

Figure 49: INtime Control Panel

@ INtime Configuration Panel X
Select the INtime component that you want to configure
&2 O »n Y
@ & &) L* A

Node Development Miscellaneous License INtime
Management Tools Manager Device. .

Export Settings Import Settings

Exit Help

Double-clicking an icon in the window starts the individual configuration
application.

The Export Settings button can be used to save a configuration file from
a reference machine that can then be applied to other machines (i.e., for
use on a production line) using the Import Settings button. The Export
Settings button will export a single INtime configuration file for all
components that have been selected.

Tip: Hold the Ctrl key down while clicking the left mouse button
to highlight multiple configuration components before exporting
the INtime configuration file.

INtime for Windows Node Management

Use this configuration applet to select the best kernel timer rate for the
INtime application. In the MultiThread example the fastest timer (or

alarm) event we could specify was 500 microseconds, because that is
the default rate at which the INtime kernel is configured. Changing the

Copyright © 2005-2024, TenAsys Corporation page 59 of 64

Kernel Clock Rate to 100 microseconds would have allowed us to
create threads that wake with 100 microsecond resolution.

Figure 50: Node Management Kernel Tab

INtime Node Management X
=& INtime Nodes System Kemel Network Autolosd Advanced
& Local: PC1
& Nodea - Kemel
*¥ Noded Start automaiically Na
A RTOS: SKYLAKE-NUC.TenAsys.Jan Processor core 3
@€ NodeA Kemel memory in MB} 2
& NodeB Kemel memory mode Extended Virual and Physical Memory
Kemel Clock Rate (nus) 500
05 extensions 0
Round Robin Tme Sice n ms) 50
Round Rabin Priorty Threshold 140
Spin Cortrol Threshold in ms 3000
Debugger COM Port Nore
Debugger Baud Rate 9600
New Node
Close save Help

Following are some useful details regarding this applet:

Kernel Clock Rate specifies the number of microseconds that
elapse between system clock interrupts. The default is 500 with a
range of 100 to 10,000 microseconds.

Round Robin Priority Threshold specifies the priority level at which
threads will be scheduled to run using a round-robin schedule. The
priority range is 128 to 254. Only threads with identical priorities
that are at or below the Round Robin Priority Threshold are
scheduled for round-robin operation.

Note: INtime priority levels are numbered from O to 254, where
zero is the highest priority level in the system and 254 is the
lowest. Thus, a priority level that is at or below the Round
Robin Priority Threshold means a priority number equal to or
higher than that specified as the Round Robin Priority
Threshold.

Round Robin Time Slice specifies the time allocated for a round-
robin time slice. Values range from 20 to 100 milliseconds in
multiples of 10 milliseconds.

Spin Control Threshold and AutoLoad Spin Control (scroll the
Kernel Parameters screen down to locate these items) specify the
behavior of a special function of the INtime kernel that can be used
to detect real-time threads that may be running without pause. In
other words, it can be used to identify and stop misbehaving real-
time threads that are “locking up” the system.

page 60 of 64 Copyright © 2005-2024, TenAsys Corporation

e Kernel memory specifies the total amount of physical memory
allocated to the INtime real-time kernel. This is memory reserved
exclusively for use by the INtime kernel and all real-time processes
and threads. This memory is never paged and is, therefore,
guaranteed to be deterministic.

Figure 51: Node Management System Tab

INtime Node Management

588 INtime Nodes
5 ¢ Locak PCT
| L NodeA
I 1 "% NodeB

@ NodeA
i@ Node8

New Node

Windows ineraction
Boot mode

= ¢ RTOS: SKVLAKE-NUC TenAsys.lan M cancurent NTX requests

RSL search path

Sret path RSL oadng

Tene of day update fn seconds)
Wiindows bug check interception

System Kemel Metwork Autoload Advanced

C:\Program Files (¢B6)\INtme \\network 7

Mo

300

Do Not Trap Windows Bug Check Excep...

Processor Used by
0 Windows
1 Windows
2 INtime: NodeB
3 Titme: NodeA

Clse

Memary size
16116M8

5918
328

Help

Settings which affect all nodes on this host are in the System Wide tab.
Following are some useful details regarding this tab:

e Boot Mode specifies how INtime should allocate CPU resources
between INtime and Windows: shared or dedicated.

Dedicated mode is required on Windows 8 forward.
Dedicated means at least one core of a multi-core
host is dedicated to an INtime kernel and all real-time
applications. In this mode you may configure multiple
INtime kernels on a multi-core host.

o

Copyright © 2005-2024, TenAsys Corporation

page 61 of 64

INtime for Windows Device Manager

Use this applet to allocate hardware device resources (especially
interrupts) for use by an INtime kernel and the real-time applications.
The applet presents a view of all hardware devices in the host, similar to
that presented by the Windows Device Manager.

To remove this device from Windows and make it available to the real-
time environment, right-click a device in the list of Windows devices and
select Pass to INtime from the context menu.

Figure 52: Device Configuration applet

% INtime Device Manager
File Action View Help

W W ?
= ledows devices Legacy interrupt usage:
I Display adapters

-7 IDE ATAZATAP! controllers ‘fWi"dSDWSj P2 Kevboand
tandard P5/2 Keyboar
E-EP Network adapters -
: 7 (Windows)
@ Intel(R) Dual Band \'\’H’E|ES'AC 7265 (M5l capable) \Mtime RT Interface Driver
[T intel(R) Ethernet Connection (3) [213-LM (M| capable) 2 Winedoet
i Sound, video and game controllers Pass to Windows
= a"s_tem dlas"“ETB . NodeA Pass to INfime using MS| >
niversal Serial Bus controllers
) I'Ntlme devices NodeB Pass to INtime using polling >
8 NodeA Pass to INtime with legacy IRQ. ller
A€ NodeB < to Wi .
Undo pass to Windows
Undo pass to INtime
ller
Rename
s Core(TM) USB EHCI C...

Microsoft ACPI-Compliant System

NUM

Ready

Passing a device to INtime results in Windows no longer recognizing
and loading a device driver for that hardware. Your real-time
applications now have exclusive access to the interrupt and hardware
registers of that device. This process is needed to ensure that Windows
drivers and applications do not interfere with your use of the device.

INtime includes support for MSI devices (Message Signaled Interrupts).
If you have an MSI-capable device you can pass it to INtime, even if
there is a potential legacy interrupt conflict with Windows, by right
clicking the device, and selecting the Pass to INtime using MSI.

page 62 of 64 Copyright © 2005-2024, TenAsys Corporation

B. INtime for Windows Sample Applications

The following table describes the sample applications that are installed
with the INtime host. These can be found in the My
Documents\INtime\Projects folder of the user who installed INtime on

the host.

Sample Application

Description

C and C++ Samples for
Debugger

The C++ program demonstrates several
components of the C++ language available to
real-time applications, as well as basic classes,
dynamic instantiation, operator overloading,
and so on. It also shows the libraries and
startup modules needed.

Distributed RTOS Configuration
APl Sample

Configure Distributed RTOS.

Global Objects Sample

lllustrates various aspects of global objects
and node management.

Graphical Jitter Sample Project

Measures the minimum, maximum, and
average times between low-level ticks using an
alarm event handler (precise timer). This
application is comprised of both real-time and
Windows executables and illustrates use of the
NTX API.

High Performance Ethernet
Sample

Illustrates the use of the High Performance
Ethernet drivers included with INtime.

HPE3 Extra Features Sample

Illustrates the additional features of the HPE3
interface with the Intel i210 Ethernet adapter.

Intel MKL Example

Shows how to use MKL in INtime.

INtime APl Sample

Exercises most INtime software system calls.

INtime License Library Sample

For INtime for Windows and INtime Distributed
RTOS.

INtimeDotNet Sample
Application (VS2022)

Sample applications showing the use of the
INtimeDotNet assembly for use in Windows
applications that use the CLR to communicate
to the RT side.

INtime Service Process Sample

A skeleton for creating a multi-process service.

Local Node Configuration
Sample

Windows Console application showing read
and write of INtime for Windows configuration.

Memory Heap Debug Sample

Demonstrates how to collect heap usage
statistics as well as technique for trapping
heap errors, invalid pointers, and memory
leaks.

Message Queue Demo

Windows and INtime application using queues

Network Datagrams Sample

Examples of how to send unicast, multicast
and broadcast datagrams.

Network Interface Information

Project showing how to find network interface
information.

Copyright © 2005-2024, TenAsys Corporation

page 63 of 64

Sample Application

Description

NTX Sample Application
(MsgBoxDemo)

This INtime application has both a Windows
and a real-time portion. The Windows portion
looks up a mailbox created by the real-time
portion and waits at the mailbox. Whenever a
real-time thread sends a message to the
mailbox, the Windows portion displays the
received data in a Windows message box. Also
demonstrates use of semaphore and shared
memory.

PCAP Sample Application

lllustrates the use of the PCAP library to filter
specific Ethernet packets from the network
stack.

RSL Examples

Demonstrates the creation and use of real-
time Shared Libraries, the INtime analog of
Windows DLLs.

Serial Communications Sample

This project demonstrates how to use the
INtime Serial Communications library.

TCP Samples Demonstrates TCP communications between a
client and a server. Client and server code is
provided for INtime and server code for
Windows.

UDP Samples UDP ping-pong sample application. Datagrams

are exchanged between INtime and Windows.

USB Device List Utility

How to find all attached USB devices.

USB Keyboard Sample Demonstrates how to use the INtime USB
subsystem by monitoring a USB keyboard and
printing a dump of each keystroke as it occurs.

Windows STOP Detection Shows how an INtime application can detect

Sample either a Windows crash (blue screen) or a

Windows shutdown event and prevent
Windows from completing its normal actions
until the real-time application has had a
chance to perform a “graceful” shutdown.

XCNT-HPE Sample (Ethernet
connector)

Illustrates the use of the XCNT network driver
to forward packets from an HPE application to
and from the network stack.

page 64 of 64

Copyright © 2005-2024, TenAsys Corporation

