
31001-6
September 2009

TenAsys Corporation
1400 NW Compton Drive, Suite 301

Beaverton, OR 97006 USA
+1 503 748-4720

FAX: +1 503 748-4730
info@tenasys.com
www.tenasys.com

U S E R ’ S M A N U A L

INtime® 4.0 Software

September 2009
Copyright © 2009 by TenAsys Corporation.

All rights reserved.
INtime, iRMX, and TenAsys are registered trademarks of TenAsys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names

are the property of their respective owners.

iii

Before you begin

This guide describes INtime® software, both as an extension for Microsoft Windows or
as a stand-alone RTOS (Real Time Operating System) running on an Intel architecture
PC, that provides the tools you need to create and run real-time (RT) applications—
robust, high-performance applications with predictable responses to external events.

This guide assumes that you know how to develop programs for Windows and
understand RT system concepts.

About this guide

Guide contents
This guide introduces you to INtime software: how it makes RT applications possible
and how to use the INtime development tools. Use this guide to get acquainted with
INtime software, then refer to INtime Help for detailed information about INtime
components. For more information about accessing help, see Where to get more
information later in this chapter.

 Note
In this guide, the term “Windows” means any supported version of Windows. For a complete listing
of supported Windows versions, see page 3.

 Note
For a quick start, read the following:
• Chapter 1, Overview to introduce you to all the basic INtime software concepts and to learn

where to find detailed information about INtime software.
• Chapter 10, INtime application development, to learn about developing RT applications using

INtime software.

INtime 4.0 Software

iv

Part I: Introducing INtime software

This part introduces INtime software and explains how INtime software and Windows
work together to create RT applications.

Part II: Using INtime software

This part explains how to start INtime software and how to use the INtime software
development tools.

Part III: Appendices

The appendices provide additional information about INtime software.

Chapter Description
1 Overview Describes how INtime software works together with Windows to

create and run RT applications, and lists INtime software’s
features. It also tells you where to find detailed information about
INtime software topics.

2 Understanding INtime
software architecture

Explains how INtime’s RT kernel works with Windows to provide
RT functionality. It also lists and describes INtime components.

3 About INtime software’s
RT kernel

Describes the RT kernel and its objects, the basic building blocks
that application programs manipulate.

4 About RT programming Describes processes unique to RT programming.
5 Designing RT applications Provides general guidelines for RT system design.

Chapter Description
6 Installation Explains how to install and uninstall INtime software.
7 Configuration Describes how to configure INtime software.
8 Connecting to an INtime

host
Explains how to set up an NTX connection to an INtime host or a
runtime system for remote debugging.

9 Operation Describes how to start and run INtime software.

Appendix Description
A INtime software

system calls
Lists and describes system calls that threads in the RT portion of
INtime applications use to communicate with each other and with
Windows threads. You can find detailed information, including
syntax and parameter values, in INtime Help.

B The iwin32 subsystem Describes the iwin32 subsystem, which provides a Win32 API for
the INtime kernel. It is a parallel API to the INtime API that makes
porting of existing Win32 applications easier.

C INtime directory structure Describes the INtime directory structure.
D INtime software

components
Lists and describes INtime software program files.

Before you begin

v

Glossary

The glossary defines terms used to describe INtime software.

Notational conventions
This manual uses the following conventions:

• All numbers are decimal unless otherwise stated.

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true unless
otherwise stated.

• Data structures and syntax strings appear in this font.

Where to get more information

About INtime software
You can find out more about INtime software from these sources:

• World Wide Web: TenAsys maintains an active site on the World Wide Web. The site
contains current information about the company and locations of sales offices, new
and existing products, contacts for sales, service, and technical support
information. You can also send e-mail to TenAsys using the web site:

www.tenasys.com

You can contact TenAsys by email:

info@tenasys.com

You can contact TenAsys technical support by email:

E Visual Studio debugging for
older INtime projects

Describes how to upgrade existing INtime projects to use the
Visual Studio product and its debugger.

F Adding INtime software
to an XP Embedded
configuration

Lists and describes how to add INtime components to a Windows
XP Embedded development environment so you can produce XP
Embedded images that include these INtime components.

G Troubleshooting Lists problems you may encounter while running INtime software,
and explains how to avoid or resolve those problems.

Appendix Description

 Note Indicates important information about the product.

 Tip Indicates alternate techniques or procedures that you can use to save time
or better understand the product.

 CAUTION
Indicates potentially hazardous situations which, if not avoided, may result
in minor or moderate injury, or damage to data or hardware. It may also
alert you about unsafe practices.

http://www.tenasys.com

INtime 4.0 Software

vi

support@tenasys.com

Requests for sales, service, and technical support information receive
prompt response.

• INtime Help: Describes INtime software concepts and explains how to use INtime
tools. INtime Help includes all system calls, including their syntax which you can
cut and paste directly into your code. To access Intime Help, do one of these:

• Within Microsoft Visual Studio: INtime content is integrated with the Visual
Studio help collections. INtime content may be filtered with the keyword
“INtime”.

• Within source code: Highlight a system call in your source code, then press F1.
Help for that system call displays.

• Readme file: Lists features and issues that arose too late to include in other
documentation.

• Other: If you purchased your TenAsys product from a third-party vendor, you
can contact that vendor for service and support.

About Windows
For more information about Windows operation and program development, see these
documents:

• Documentation that came with Windows.

• Documentation that came with Microsoft Visual Studio.

 Note
When sending e-mail for technical support, please include information about both the
hardware and software, including Windows and INtime versions, plus a detailed description of
the problem, including how to reproduce it.

vii

Contents

Part I Introducing INtime software
Chapter 1 Overview

How does INtime software work? .. 3
Running an INtime application in conjunction with Windows 4

Communication between Windows and RT threads .. 4
Considerations for INtime applications running on a single processor PC 5
Considerations for INtime applications running on a multiprocessor PC 6

Developing an INtime application ... 7
Design considerations.. 7
Code development... 7

Features ... 8
Development environment.. 8

Wizards ... 8
Libraries .. 9
Debuggers.. 9
Sample applications ... 10

Runtime environment ... 12
RT enhancements to Windows .. 12
Memory protection... 12
“Blue screen” protection.. 13

Chapter 2 Understanding INtime software architecture
Terminology .. 15
How INtime software and Windows work together to run RT applications 16

Transport mechanisms .. 17
About the OSEM... 18
How the RT interface driver works.. 19

About the Windows HAL .. 20
About thread scheduling .. 21

Priority-based scheduling.. 21
Execution state .. 21
Round-robin scheduling.. 23

Handling interrupts .. 23
Interrupt handler alone ... 24
Interrupt handler/thread combination.. 24

Managing time .. 25

Chapter 3 About INtime software’s RT kernel
What does the RT kernel provide? ... 27
RT kernel objects .. 27
Threads.. 28

INtime 4.0 Software

viii

Processes ... 28
Virtual memory .. 29
Memory pools .. 30
Dynamic memory... 30
Object directories ... 31

Exchange objects ... 32
Validation levels .. 32
Mailboxes ... 33
Semaphores.. 34
Regions ... 35

Priority inversions .. 35
Deadlocks.. 35

Ports.. 36
Services ... 36
Heaps ... 36
Global objects, references, and locations ... 36

Node architecture .. 37
New Objects .. 37

Location object ... 37
Reference object ... 38
Global objects... 38

Chapter 4 About RT programming
Multi-threading ... 39
Preemptive, priority-based scheduling .. 41
Interrupt processing.. 42
Determinism.. 43
Multi-programming... 44
Inter-thread coordination and communication ... 45

Messages... 46
Synchronization... 47
Mutual exclusion ... 47

Memory pools and memory sharing... 48
Inter-node coordination and communication.. 49
System calls... 50
Real time shared libraries ... 50
Exception handling... 51
Fault Manager ... 52
Structured Exception Handling.. 53

Chapter 5 Designing RT applications
Define the application... 55
Target environments ... 57
Methodology ... 57
A hypothetical system .. 58

Interrupt and event processing.. 59
Multi-tasking.. 59

Contents

ix

Part II Using INtime software
Chapter 6 Installation

Install INtime software on a Windows system .. 63
Requirements ... 63
Before you begin .. 63
Running the Installation program .. 64

Installing hardware for use with the RT kernel... 66

Chapter 7 Configuration
Configuring INtime software .. 67

Default configuration... 67
Running the INtime Configuration Utility.. 68
Miscellaneous .. 69

RTIF.SYS driver.. 69
Interrupt resources ... 69

Configuring INtime applications.. 69
Configuring Windows for non-interactive logon.. 69
Configuring INtime Local Kernel service to execute automatically 70
Automatic loading of Realtime Applications ... 70

Configuring the INtime Network software... 71
Before you begin .. 71
Hardware installation.. 71
Setting the TCP/IP configuration parameters ... 72
NIC driver configuration ... 72

Chapter 8 Connecting to an INtime host
Creating a connection to an INtime host.. 73
Fixed and Passive Connections.. 73

Chapter 9 Operation
Starting the RT kernel and related components .. 75
After you start the INtime kernel ... 76

Chapter 10 INtime application development
Create a project ... 80
Develop Windows source code .. 80

Adding the INtime RT Client Browser to your INtime application............................. 80
Develop RT source code ... 82

Running the INtime Application wizard .. 82
Running the INtime process add-in wizard.. 84
Running the INtime Shared Library wizard ... 84
Running the INtime Static Library wizard ... 85

Compile ... 85
Visual Studio 2008 .. 86
Visual Studio 2005 (aka Visual Studio 8) ... 88

Debug... 89
Debugging tips ... 90

Performance monitor.. 90
Status messages .. 91

INtime 4.0 Software

x

Prepare for release... 92
Before you begin .. 92
Using launch-rt.exe.. 92

Sample INtime applications ... 93
EventMsg DLL Project.. 94
INtime API Sample .. 94
Serial Communications Sample.. 94
Graphical Jitter ... 94
Real-time Interrupt Sample ... 95
C and C++ Samples for Debugger.. 95
TCP Sample Applications ... 95
UDP Sample Applications... 96
INtimeDotNet Sample Applications ... 96
Fault Handling (ntrobust) .. 96
Floating Point Exception Handling... 96
RSL Examples .. 97
NTX Sample (MsgBoxDemo)... 97
Windows STOP Detection sample (STOPmgr)... 97
USB Client sample... 97
Global Objects sample project ... 98
High-Performance Ethernet (HPE) sample project ... 98
PCAP Sample application ... 98

Part III Appendices
Appendix A INtime software system calls

System call types...102
NTX calls..103

Handle conversion..103
RT calls...104

High-level (validating) calls ...104
Low-level (non-validating) calls ..104

RT services ...105
RT system calls ...105

Distributed System Management (DSM)...105
NTX calls ...105
High-level calls ...105

Exception handling..106
High-level calls ...106

Global objects...106
Interrupts..107

High-level calls ...107
Mailboxes ...108

NTX calls ...108
High-level calls ...108
Low-level calls ..108

Memory management ..109
Object directories ...111

Contents

xi

Ports ... 112
Service support .. 112
Port object management ... 113
Message transmission ... 113

Processes .. 114
Regions... 114
Scheduler ... 115
Semaphores.. 115
Status.. 116
System data.. 117
Threads .. 117
Time management.. 118

Structures ... 119
Heaps and memory pools ... 120
High-performance gigabit Ethernet .. 123
INscope calls .. 124
Network stack .. 124
PCI library calls... 124
Real-time shared library (RSL) calls .. 125
Registry calls .. 125
RT services and device drivers... 126
RT service calls ... 126

RT service handlers ... 127
Serial Communications (COMM) .. 128
TCP/IP system calls ... 130
USB calls .. 130
INtimeDotNet calls .. 131
Input/Output Calls ... 133

Appendix B The iwin32 subsystem
Handles ... 135
Named objects ... 136
Processes ... 136
Threads.. 137
Mutexes ... 139
Critical section .. 139
Semaphores... 140
Events .. 140
Shared memory... 141
Timers.. 141
I/O handling.. 142
Interrupt handling... 142
Registry handling.. 143
Miscellaneous ... 144

Appendix C INtime directory structure ... 147

Appendix D INtime software components
Blue.exe (Windows crash program) ... 152

INtime 4.0 Software

xii

Clk1Jitr.rta ...152
EventMsg.dll ...152
INconfCpl.cpl ..152
INtime.chm..153

Main Help files ..153
Utility Help files ..153
C++ Help files ..154

INscope.exe ...154
INtex.exe..155
INtime local kernel (INtime.bin) ..155
INtime remote kernel (Remote.bin) ..155
INtime Visual Studio project type packages ..155
INtime Performance Monitor (INtmPerf.* files) ..155
INtime RT Client Browser...156
iWin32 header files ...157
iWin32 interface library..157
iWin32x header files ...157
iWin32x interface library..157
Jitter.exe...157
LdRta.exe (INtime RT Application Loader) ...157
LoadRtk.exe (INtime Kernel Loader)..158
mDNSINtime.exe ..159
MFC*.dll files..159
network7 utility files ..159
NTX header files ..159
NTX import libraries ..159
NTX DLLs..160
NtxRemote2.exe (INtime Remote Connection Manager) ...160
OvwGuide.pdf ...160
Project files ..160
Quick Start Guide..161
RT header files ...162
RT interface libraries ..162
RT Stack Services..162
RT USB Interface Drivers..163
RtClkSrv.exe (INtime Clock Synchronization Service) ...163
RtDrvrW5.awx (RT Device Driver wizard)...163
RtELServ.exe (INtime Event Log Service) ..164
RtIf.sys (RT Interface Driver) ..164
RtIOCons.exe (INtime I/O console) ..165
RtIOSrv.exe (INtime I/O Service) ...165
RtNdSrv.exe (INtime Node Detection Service) ..166
RtProcW5.awx (RT Process wizard) ...166
RtProcAddinW5.awx (RT Process Add-in wizard)..166
RtRegSrv.exe (INtime Registry Service) ...167
RtRslWiz.awx (RT Shared Library wizard) ..167
Spider.exe (INtime standalone debugger) ..167

Contents

xiii

Appendix E Visual Studio debugging for older INtime projects
Upgrading from Visual Studio 6.0 to newer Visual Studio... 169

Converting to a .intp project ... 169
Setting project properties ... 170

Getting to work with the debugger.. 171
What if conversion did not work?.. 171
Upgrading from Visual Studio 2003 to newer Visual Studio... 171

Appendix F Adding INtime software to an XP Embedded configuration 173

Appendix G Troubleshooting
Do a quick check... 176
Look for symptoms ... 176
Other resources ... 180

Glossary .. 181

Index ... 187

INtime 4.0 Software

xiv

Figures
Figure 1-1. Transport mechanism for NTX communication... 4
Figure 1-2. Transferring control between Windows and INtime software’s RT kernel.. 5
Figure 1-3. Control flows in a dedicated multiprocessor configuration ... 6
Figure 1-4. Creating INtime applications ... 8
Figure 2-1. How Windows threads and RT threads communicate with each other on an INtime node 16
Figure 2-2. How NTX communicates with other INtime hosts .. 17
Figure 2-3. Encapsulating Windows processes and threads into an RT thread... 19
Figure 2-4. Execution state transitions for threads ... 22
Figure 2-5. Round-robin scheduling ... 23
Figure 2-6. Thread execution model ... 25
Figure 3-1. Processes in a process tree ... 29
Figure 3-2. Threads using their process’s memory pool ... 30
Figure 3-3. Threads using the root process's object directory... 31
Figure 3-4. Threads using an object mailbox.. 33
Figure 3-5. Threads using a semaphore for synchronization .. 34
Figure 3-6. Global object architecture .. 37
Figure 4-1. Thread switching in a multithreading environment ... 40
Figure 4-2. Multithreading and preemptive, priority-based scheduling ... 41
Figure 4-3. Interrupt handler interrupting a thread ... 42
Figure 4-4. Multiprogramming ... 44
Figure 4-5. Resources in a process.. 45
Figure 4-6. Object-based solution for message passing.. 46
Figure 4-7. Threads that use a semaphore for synchronization .. 47
Figure 4-8. Multithreading and mutual exclusion... 48
Figure 4-9. Dynamic memory allocation between threads ... 49
Figure 4-10. Fault Manager Dialog... 52
Figure 5-1. Typical development cycle for INtime applications... 56
Figure 5-2. The hardware of the dialysis application system ... 58
Figure 6-1. Installing INtime software.. 65
Figure 7-1. INtime Configuration Panel ... 68
Figure 10-1. Developing an INtime application ... 79
Figure A-1. Converting NTXHANDLES to RTHANDLES .. 103
Figure G-1. Troubleshooting INtime software problems ... 175

Tables
Table 9-1. INtime software’s Windows services ... 75
Table 9-2. INtime software tools.. 77
Table 10-1. INtime program directory...147
Table G-1. Symptom table ...176
Table G-2. Solution table ...177

1

I Introducing INtime software

This part acquaints you with INtime software: its components, how they’re put
together, and how they work with Windows to run real-time applications.

This part contains:

Chapter 1: Overview

Describes how INtime software works together with Windows to create and run
real-time applications, and lists INtime software’s features. It also tells you where to
find detailed information about INtime software topics.

Chapter 2: Understanding INtime software architecture

Explains how INtime’s real-time kernel works with Windows to provide real-time
functionality. It also lists and describes INtime components.

Chapter 3: About INtime software’s RT kernel

Describes the real-time kernel and its objects, the basic building blocks that application
programs manipulate.

Chapter 4: About RT programming

Describes processes unique to real-time programming.

Chapter 5: Designing RT applications

Provides general guidelines for real-time system design.

 Note
Read this chapter first. It introduces you to all the basic INtime software concepts and tells you
where to find detailed information.

INtime 4.0 Software

2

3

1 Overview

INtime software extends Windows to provide the tools you need to create and run
real-time (RT) applications. INtime software consists of:

• Development environment: tools you use to create RT applications that run in the
INtime runtime environment in conjunction with Windows or on a PC running
only the INtime RTOS.

• Runtime environment: additions to your Windows system that provide an RT
platform for INtime applications.

This chapter describes how INtime software works together with Windows to create
and run INtime applications, and lists INtime software features. It also tells you where
to find detailed information about INtime software.

How does INtime software work?
You install INtime software on a system that already runs Windows. Once installed,
Windows and INtime software work together to provide deterministic, RT support for
INtime applications.

INtime software works with the following versions of Windows:

• Windows XP, Service Pack 2 or later

• Windows XP Embedded

• Windows Server 2003 and Windows Server 2003 Release 2

• Windows Vista

• Windows 7

For further details of supported Windows version, see the release notes.

INtime 4.0 Software

4

Running an INtime application in conjunction with Windows

An INtime application includes these components:

• RT processes: RT processes contain threads that typically handle time-critical I/O
and control. Where Windows and RT processes share a CPU, RT threads preempt
Windows threads.

• Windows processes: Windows processes contain threads that handle aspects other
than time-critical I/O and control, including the user interface, network
communication, data manipulation and computation, and data storage.

Communication between Windows and RT threads

When an INtime application runs, Windows threads communicate with RT threads via
the Windows extension (NTX) API.

The RT threads in your INtime application(s) may reside on the same PC as the
Windows threads or in a remote computer accessed via Ethernet cable. The NTX API
automatically detects the connection type and determines the transport mechanism to
use between Windows and RT threads: in-memory (local) or Ethernet:

 Note
For detailed information about how INtime software and Windows work together to run INtime
applications, see Chapter 2, Understanding INtime software architecture.

Figure 1-1. Transport mechanism for NTX communication

Windows host

NTX

INtime application(s)
(Windows portion)

1–n
RT clients

INtime
application(s)
(RT portion)

Transport mechanism

 Note
For detailed information about INtime software’s transport mechanisms, see Transport
mechanisms in Chapter 2, Understanding INtime software architecture.

Chapter 1: Overview

5

Considerations for INtime applications running on a single processor PC

When both the Windows and RT portions of an INtime application run on a single CPU
hardware thread, INtime software transfers control between the Windows and RT
environments as shown in this figure:

When running on a single microprocessor, the INtime runtime environment
encapsulates all Windows processes and threads into a single RT thread of lowest
priority. As a result, RT threads always preempt running Windows threads,
guaranteeing determinism for RT activities within the system.

The RT and Windows threads can share sections of memory allocated by INtime
applications. A Windows thread can obtain a handle for this shared memory, then map
the memory referenced by that handle into the thread’s address space.

This INtime operating environment is referred to as Shared Mode.

RT interrupt
occurs Switch to

RT kernel

RT threads
idle

RT kernel

Windows

Windows
activity stops

Windows runs

Switch to
Windows

) When a Windows thread runs, the full Windows environment exists, including its interrupts,
interrupt masks, and handlers.

) When an RT interrupt occurs, control immediately switches to the RT kernel, where an RT interrupt
handler deals with the event. This, in turn, may cause one or more RT threads to execute.

) Windows processes and interrupts stop until the RT threads complete.
) When all RT threads complete their work, leaving no RT threads ready to run, control switches
back to the Windows environment, and standard Windows scheduling resumes.

Figure 1-2. Transferring control between Windows and INtime software’s RT kernel

 Note
For detailed information about memory usage, go to INtime Help and select About INtime software,
RT kernel objects, then Memory Management.

INtime 4.0 Software

6

Considerations for INtime applications running on a multiprocessor PC

When Windows and INtime run on a multiprocessor PC, by default the INtime kernel
and Windows share one CPU and Windows uses the others. The shared hardware
thread behaves in the same way as the previously mentioned single-CPU case.

INtime software may alternatively be configured such that an entire CPU hardware
thread may be dedicated to the INtime kernel. In this case the architecture is rather
different, as shown in this figure:

On multiple processors configured so that INtime has a dedicated processor, the
RT kernel does not need to encapsulate the Windows system in the same way because
there are separate processors for each OS.

In both cases, RT and Windows processes can share sections of memory allocated by
INtime applications. A Windows thread can obtain a handle for this shared memory,
then map the memory referenced by that handle in Shared Mode into the thread’s
address space.

From version 4.0 it is possible to configure INtime software on a multicore system so
that multiple cores each have an instance of the RT kernel. In this case each RT kernel
instance has a dedicated hardware thread using a single chunk of memory, neither of
which are shared with Windows or another instance of the RT kernel.

Figure 1-3. Control flows in a dedicated multiprocessor configuration

) When a Windows interrupt occurs, the I/O APIC delivers the interrupt to only the Windows CPU.
) When an RT interrupt occurs, the I/O APIC delivers the interrupt to only the INtime CPU.
) Windows processes are never preempted by real-time interrupts and processes and vice-versa,
because each OS has a dedicated CPU.

) When all RT threads complete their work, leaving no RT threads ready to run, the INtime CPU
executes an idle task until the next real-time interrupt occurs.

) The Windows and INtime kernels signal using IPIs (Inter Processor Interrupt) and shared memory.

Windows processes Real-time processes

Windows kernel

rtif.sys

I/O APIC

INtime kernel

Chapter 1: Overview

7

Developing an INtime application

Design considerations

When designing INtime applications, you must divide the labor appropriately between
Windows processes and RT processes and, to a finer degree, between the threads in
each process. For the best performance, limit RT processes to performing only time-
critical functions, and determine which Windows threads require the greater relative
priority.

Code development

To develop an INtime application, you use Microsoft Visual Studio, including INtime
wizards and Microsoft Visual Studio extensions for RT processes, a standard Windows
debugger, and a Windows-based RT dynamic debugger that supports on-target
debugging of RT threads. INtime includes a debugger which integrates with the Visual
Studio debugger. This integration supports the Visual Studio versions from 2005 onward.

 Note
For detailed information about designing INtime applications, see Chapter 5, Designing
RT applications.

 Note
For detailed information about developing INtime applications, see Chapter 10, INtime application
development.

INtime 4.0 Software

8

When developing INtime applications with Microsoft Visual Studio, you create
executable files for both RT and Windows environments as shown in this figure:

Features

Development environment
To develop INtime applications, you use standard Windows tools together with these
INtime software tools:

Wizards

Accessed from within Microsoft Visual Studio, INtime wizards automatically prompt you
for the information needed to create projects that contain source code for the RT portion
of your INtime applications. Once you create the project, you manually edit the code.

Windows
wizard

Application
source code

NTX

Windows

Windows
(.DLL and .EXE)

 files

Windows portionDevelop
source code

Compile source
and link libraries

Create INtime
executable files

Microsoft Visual Studio

Figure 1-4. Creating INtime applications

Windows
components

RT application
source code

RT
(.RTA and .RSL)

files

Real-time portion

INtime
wizard

RT
kernel

 Note
For detailed list of INtime software components, see Appendix D, INtime software components. For
information about using these components, see Chapter 10, INtime application development.

Chapter 1: Overview

9

INtime software provides these wizards:

• Application wizard: develops the RT portion of INtime applications.

• Shared Library wizard: develops RT shared library (RSL is the RT equivalent to
Windows DLL).

• Static Library wizard: develops an RT static library which you can link to other
RT applications.

Libraries

INtime software provides interface libraries that your threads use to obtain RT kernel
services. INtime software libraries include:

• Windows extension (NTX) library: Contains system calls that the Windows portion
of an INtime application uses to communicate with the RT portion of the system.

• Real-time (RT) application library: Contains system calls that the RT portion of an
INtime application uses to access RT kernel services such as memory management
and inter-thread communication.

• Real-time (RT) DSM library: Contains system calls that implement sponsorship
and dependency registration of INtime RTAs (real-time applications) with their
counter-part Windows applications.

• Real-time C and C++ libraries: Contains system calls that the RT portion of an
INtime application uses to access standard ANSI C and C++ functions.

• PCI library: Contains system calls that provide access to the PCI bus
configuration space.

• iWin32 library: Contains system calls which emulate a subset of the Win32 API.

• Windows iWin32x library: Contains system calls that the Windows portion of an
INtime application uses to access real-time objects created using the iWIn32
library.

Debuggers

You debug the Windows portion of INtime applications using the debug tools provided
in Microsoft Visual Studio. To debug the RT portion of INtime applications, you use
the debug tools provided with INtime software:

 Note
For information about using the INtime wizards, see Chapter 10, INtime application development.

 Note
For an overview of system calls included in the APIs, see Appendix A, INtime software system calls.
For detailed information, including syntax and parameter values, see Help.

INtime 4.0 Software

10

• Visual Studio debugger: The INtime software debug engine is integrated with the
Visual Studio 2005 or later IDE to provide debugging capabilities from within
Microsoft Visual Studio. This is the recommended default debug environment.

• Spider debugger (SPIDER.EXE): A Windows application that provides source
level, multi-tasking debug capabilities. Spider can debug multiple RT threads
simultaneously while other threads continue to run. Use the Spider debugger
when you must be able to debug a thread in a process when other threads continue
to run.

• System debug monitor (SDM): A command-line interface for RT applications that
provides low-level, static debugging capability.

• System Debugger (SDB.RTA): An extension to SDM which provides information
about RT kernel objects, threads, and processes.

You can simultaneously debug the Windows and RT portions of an INtime application.

Sample applications

INtime software contains several sample applications that you can use as examples for
your own program development.

• EventMsg DLL Project: This DLL allows you to customize event messages.

• INtime API Sample: This test application exercises most INtime software
system calls.

• Serial Communications Sample: This project demonstrates how to use the INtime
Serial Communications library. The library and accompanying drivers allows the
user to access serial devices such as the COM PC ports, RocketPort multi-channel
PCI devices, and Edgeport multi-channel USB devices.

• Graphical Jitter: This application measures the minimum, maximum, and average
times between low-level ticks via an Alarm Event Handler. Because this
application is made from both an RT and a Windows executable, it shows both
INtime and INtimeDotNet API usage.

• Real-time Interrupt Sample: This application tests the INtime RT Interrupt system
calls using the Transmitter Ready interrupt from COM1.

• C and C++ Samples for Debugger: These simple C and C++ programs are provided
as a vehicle to demonstrate the Spider debugger’s capabilities. The C++ program
also demonstrates several components of the C++ language available to RT

 Note
For detailed information about Spider, see Spider Help. For detailed infomration about SDM, see
INtime Help. For detailed information about using SDM, access INtime Help, then select
Debuggers>Low-level debugger>System Debug Monitor (SDM).

Chapter 1: Overview

11

applications, as well as basic classes, dynamic instantiation, operator overloading,
and so on. It also shows the libraries and startup modules needed.

• TCP Sample Applications: Sample project that demonstrate TCP communications
between a client and server. Client and server code is provided for INtime, and
server code for Windows.

• UDP Sample Applications: Sample project that demonstrate a UDP ping-pong type
application. Datagram packets are exchanged between INtime and Windows with
an incrementing identifier in the payload.

• INtimeDotNet Sample Applications: Sample INtimeDotNet applications that
demonstrate NTX communication via the INtime DotNet assembly.

• Fault Handling (ntrobust): This INtime application has both a Windows and an RT
portion. The Windows portion allows the user to set up timing parameters that
control how often a thread in the RT portion causes a hardware fault. The
application demonstrates how another RT thread can detect and log the failure,
delete the offending thread, and recreate it, all without affecting Windows or other
RT processes.

• Floating Point Exception Handling: This simple program demonstrates floating
point exception handling.

• RSL Examples: These RT programs demonstrate the creation and use of RT Shared
Libraries, the RT analog for Windows DLLs.

• NTX Sample (MsgBoxDemo): This INtime application has both a Windows and a
RT portion. The Windows portion looks up an RT mailbox created by the RT
portion, and then waits at the mailbox. When an RT thread sends a message to the
mailbox, the Windows portion displays the received data in a message box on the
Windows side. RT semaphore and RT shared memory usage are also demonstrated.

• Windows STOP Detection sample (STOPmgr): This sample application shows how
an INtime application can detect either a Windows Crash (blue screen) or Windows
Shutdown event and prevent Windows from completing its normal actions until
the RT application has had a chance to do a “graceful” shutdown.

• Global Objects sample project: This project illustrates some aspects of the Global
Objects feature of INtime. and how they are used.

• High-Performance Ethernet (HPE) sample project: This project illustrates the use
of the HPE drivers included with INtime.

• PCAP Sample application: This project illustrates the use of the PCAP library to
filter specific Ethernet packets from the network stack.

INtime 4.0 Software

12

• USB Client sample: This sample application demonstrates how to use the INtime
USB subsystem. It monitors a USB keyboard and prints a dump of each keystroke
as it occurs.

Runtime environment
INtime’s runtime environment includes RT enhancements to Windows, memory
protection, and blue screen protection. Runtime features are described in detail in the
following sections.

RT enhancements to Windows

These features enable Windows and one or more instances of the RT kernel to work
together in the same system:

• RT kernel: provides deterministic scheduling and execution of RT threads.

• OS encapsulation mechanism (OSEM): manages the simultaneous operation and
integrity of the Windows kernel and the RT kernel where they occupy the same
hardware thread.

• RTIF: Windows Driver that enables NTX interface between Windows threads and
RT threads, and reserves system memory for exclusive use by each RT kernel
instance. Also, in Shared Mode, intercepts certain HAL functions that ensures
determinism of INtime applications running on a Windows host.

Memory protection

During INtime node system initialization, memory is allocated by RTIF for use by the
RT kernel and INtime applications. This memory is “locked down” so that it does not
page to disk. This memory is either removed from the non-paged memory pool
available for Windows applications, or allocated from memory that has been excluded
from Windows use.

INtime’s RT kernel provides several protection levels for RT memory:

• 32-bit segmentation: INtime software keeps Windows and each RT process in
separate address spaces. Keeping Windows from the RT kernel isolates and protects

 Note
For detailed information about these sample applications, see Chapter 10, INtime application
development.

 Note
For information about the RT kernel, see Chapter 3, About INtime software’s RT kernel. For
information about the OSEM and HAL, see Chapter 2, Understanding INtime
software architecture.

Chapter 1: Overview

13

addresses not only between complex RT processes but between RT processes and
Windows processes.

• Paging: The RT kernel uses the processor’s paging mode for virtual address
translation, but does not implement demand paging. Each RT process loads into its
own virtual address space, defined by a 32-bit virtual segment. Because code, data,
and stack are automatically placed in non-contiguous areas of the application’s
virtual memory, memory overruns are trapped as page faults.

• Virtual addressing: Since each RT process resides in a separate memory space
defined by a virtual segment created by the RT Application Loader, RT processes
cannot address beyond the virtual segment. This effectively partitions every RT
process into its own address space.

“Blue screen” protection

On an INtime node, the RT kernel enables successful execution of RT threads even in
the event of a total Windows failure, also known as a “blue screen crash.”

• Failure diversion: The RTIF driver captures Windows failures. Once captured,
control transfers to the RT kernel, Windows operation suspends and RT threads
continue to run, unaffected by the failure.

• Application-specific recovery: In the event of a Windows failure, your crash
recovery RT threads run and you can execute an orderly shutdown of the hardware
your INtime application controls.

In the event of a Windows blue screen crash, INtime software keeps running until a
graceful shutdown occurs. To start INtime software again, you must first restart
Windows.

INtime 4.0 Software

14

15

2 Understanding INtime
software architecture

This chapter explains how the RT kernel works in conjunction with Windows to
provide real-time functionality. It also lists and describes INtime components.

Terminology
Some commonly-used terms are described here:

• Host: A computer consisting of one or more processing elements (cores or
hardware threads).

• Node: An instance of an operating system. A node may be on its own on a host, or
one of several on a multi-core host, or sharing a host with Windows.

• Windows node: An instance of the Windows operating system, whether running
on a single or multiple hardware threads.

• Node scope: Accessible by all processes on a given node.

• Remote node: A node other than the node where the current process is running.

• Host scope: Accessible by all processes on all nodes of a given host.

• Universal scope: Accessible by all processes on all nodes.

• Location: A handle which uniquely identifies a node.

INtime 4.0 Software

16

How INtime software and Windows work together to run RT applications
When an INtime application runs on an INtime node, Windows threads communicate
with RT threads via the Windows extension (NTX) library as shown in this figure:

The INtime components include:

RT kernel: Provides deterministic scheduling and execution of RT threads within
RT processes. For detailed information about the kernel, see Chapter 3, About
INtime software’s RT kernel.

Real-time application, C, and C++ libraries: Gives direct access to the RT kernel
services for RT threads. For an overview of calls in the RT libraries, see Appendix
A, INtime software system calls. For detailed information on all calls, including
syntax and parameter values, see INtime Help.

NTX library: Provides RT interface extensions for the Win32 API that allow
Windows threads to communicate and exchange data with RT threads within the
application. For an overview of calls in this library, see Appendix A, INtime software
system calls. For detailed information, including syntax and parameter values, see
INtime Help.

Real-time
C library

Real-time process

Windows kernel

NTX
library

Real-time
application

library

Windows process

Transport
driver

Transport
mechanism

RT kernel

HAL

INtime software application

Windows executive

Figure 2-1. How Windows threads and RT threads communicate
with each other on an INtime node

Chapter 2: Understanding INtime software architecture

17

Transport driver: A driver that converts information to the protocol needed by the
specified transport mechanism. For details, see Transport mechanisms later in this
chapter.

Transport mechanism: The communication protocol or method used by NTX to
communicate between Windows and RT threads. Whether the various portions of
your INtime applications reside on a single PC or on multiple computers accessed
via Ethernet cable, NTX provides this essential communication. For details, see
Transport mechanisms later in this chapter.

Windows hardware abstraction layer (HAL): INtime software intercepts some
HAL calls to ensure real-time performance. For details, see About the
Windows HAL later in this chapter.

Transport mechanisms
With INtime software, NTX communicates between Windows and RT portions of
INtime applications, whether they reside on a single PC (single or multi-core), or on
separate computers accessed via Ethernet cable:

RT client

INtime
application(s)
(RT portion)

RT client

Windows host

INtime
application(s)
(RT portion)

NTX

The Windows portion of INtime applications, located on a Windows host, makes NTX
calls that communicate to RT clients.
NTX determines RT client locations, detects the connection method, and determines
how to communicate between Windows and RT threads.
NTX uses the appropriate transport method to communicate with the RT portion of the
INtime applications, located on RT clients.

RT client

INtime
application(s)
(RT portion)

INtime application(s)
(Windows portion)

Figure 2-2. How NTX communicates with other INtime hosts

INtime 4.0 Software

18

Transport methods available to NTX include:

About the OSEM

The OSEM manages the simultaneous operation of Windows and the RT kernel on the
same CPU. It encapsulates all of Windows as an RT thread, and then transparently
switches execution to the appropriate kernel, based on interrupt activity and thread
scheduling. Once encapsulated, Windows (with all its processes and threads) execute
as a single, low priority, RT thread in the context of the RT root process.

The OSEM provides:

• Isolated processes: Uses standard Intel architecture support for hardware
multi-tasking to maintain proper address space isolation and protection between
Windows processes and RT processes. This approach also ensures RT
responsiveness, regardless of Windows activity.

• Transparent thread creation and switching: Transparently creates a hardware task
for the RT kernel, and manages the switching and execution of both the standard
Windows and INtime system hardware tasks.

In a standard Windows configuration, the bulk of the OS runs in the confines of a
single hardware task. Additional hardware tasks are defined only to handle
catastrophic software-induced failures, such as stack faults and double faults,
where a safe and known environment is required from which to handle the failure.
INtime software’s task switching approach guarantees the integrity of both
Windows and the RT kernel, and enables the successful operation of RT threads
even in the event of a total Windows failure (a blue screen crash).

• Additional address isolation via 32-bit segmentation: Provides additional address
isolation and protection between RT processes, and between RT processes and
Windows code. The RT kernel accomplishes this by using multiple sets of 32-bit
segments, separate from those used by Windows.

• Easy-to-use interface: Provides a clean, well defined interface, which minimizes
interaction with Windows to a few key areas. The result is improved product
reliability and simplified compatibility between Windows releases.

Transport
mechanism

Transport
driver Description

OSEM RTIF.SYS Used when the Windows host and RT client co-exist on a single PC (Shared
Mode). For details, see About the OSEM and How the RT interface driver works
later in this chapter.

Ethernet UDP/IP Used for Windows hosts and other INtime hosts connected via a local area
network (LAN) cable.

Multicore IPC RTIF.SYS Used for Windows hosts and RT nodes to communicate on a multi-core system.

Chapter 2: Understanding INtime software architecture

19

With INtime applications running on a single PC, the INtime runtime environment
encapsulates all Windows processes and threads into a single RT thread of lowest
priority as shown in the next figure. As a result, RT threads always preempt running
Windows threads, guaranteeing hard determinism for all RT activities within
the system.

When an interrupt occurs, the INtime runtime environment responds in one of
these ways:

How the RT interface driver works

RTIF.SYS is a Windows device driver that provides centralized support for the OS
encapsulation mechanism (OSEM). The RT Interface Driver facilitates communications
between RT kernel threads and Windows threads.

Interrupt type Windows in control RT in control Shared control
Windows Windows maintains control. RT maintains control. RT determines whether to maintain

or relinquish control.
RT RT takes control, pre-empting

Windows activity.
RT maintains control. RT maintains control.

Win32 threads RT threads

Figure 2-3. Encapsulating Windows processes and threads into an RT thread

highest

RT APIWin32 subsystem

Windows hardware task RT hardware task

Windows executive
Windows kernel
Windows HAL

Device drivers/ISRs

User mode - Ring 3
Kernel mode - Ring 0

RT kernel

Intel
architecture

CPU

lowest

highest

lowest

Windows
priorities

RT priorities

INtime 4.0 Software

20

The RTIF driver begins execution as a Windows system service, early in the Windows
boot process. During initialization, it allocates physically contiguous memory for the RT
kernel’s memory pool.

The RTIF driver cooperates with the RT Kernel Loader to load and start the RT kernel
in its own environment. The driver queries the registry for various kernel parameters
and passes them to the RT kernel at the kernel’s initialization time. Parameters include:

• The number of Windows threads that can simultaneously make NTX library calls.
The default is 64.

• The low-level tick duration used by the RT kernel.

If the RT kernel is running, the RTIF driver:

• Routes the clock interrupt (IRQ 0), based on who needs the next clock tick, to
either the RT kernel or to the Windows clock interrupt entry point for processing.

When neither environment needs the tick, the driver sends an EOI to the PIC for
this level and returns control to the interrupted Windows thread.

• Immediately routes all other real-time interrupts to the RT kernel for processing.

• Relays NTX library requests to the RT kernel and blocks the calling Windows
thread until the RT kernel responds to the request and/or until resources are
available to complete the request.

Otherwise, the RTIF driver terminates NTX library requests. When the RT kernel
announces its termination, the RTIF driver terminates all pending requests.

• Manages the Windows portion of controlled shutdown during a Windows blue
screen crash: the handler notifies the RT kernel to handle the RT portion of the
controlled shutdown. If the kernel is not running, control is returned to Windows.

In summary, the RTIF.SYS device driver contains the Windows portion of the OSEM. It
also acts as the NTX transport driver for a co-resident, or local, RT kernel. RTIF.SYS
allocates physical memory for the RT kernel and locks that memory in place so it will
not be used or paged to disk by the Windows kernel. A Windows service loads the RT
kernel into the allocated memory and issues a “start kernel” command to RTIF.SYS. In
response to the start command, the driver establishes a separate hardware task for the
RT kernel and hands off control to the kernel’s initialization code. After initializing its
environment, the RT kernel creates a low-priority thread (priority level 254) which
returns to Windows and becomes the Windows thread.

About the Windows HAL
INtime software uses the Windows HAL, but intercepts certain functions to perform
the following actions (in Shared Mode):

• Traps attempts to modify the system clock rate so that the RT kernel can control
the system time base.

Chapter 2: Understanding INtime software architecture

21

• Traps attempts to assign interrupt handlers to interrupts reserved for RT kernel use.

• Ensures that interrupts reserved for RT kernel use are never masked by
Windows software.

INtime software is compatible with all HAL files shipped with Windows XP and
Windows 2003, and with the Multiprocessor HAL shipped with Windows Vista,
Windows 7 and Server 2008.

About thread scheduling
The RT kernel switches between threads and makes sure the processor always executes
the appropriate thread. The kernel’s scheduling policy is that the highest priority
thread that is ready to run is/becomes the running thread. The kernel maintains an
execution state and a priority for each thread and enforces its scheduling policy on
every interrupt or system call.

Priority-based scheduling
A priority is an integer value from 0 (the highest priority) through 255.

Interrupt threads mask lower-priority (numerically higher) interrupt levels. When you
assign interrupt levels, give a higher-priority (numerically lower) level to interrupts
that can’t wait, such as serial input, and a lower priority (numerically higher) to
interrupts that can wait, such as cached input.

Execution state
The execution state for each thread is, at any given time, either running, ready, asleep,
suspended, or asleep-suspended. The RT kernel enforces the scheduling policy in
which the highest priority ready thread is always the running thread.

Range Usage
0–127 Used by the OS for servicing external interrupts. Creating a thread that

handles internal events here masks numerically higher interrupt levels.
128–130 Used for some system threads.
131–252 Used for application threads.

INtime 4.0 Software

22

Threads run when they have the highest (numerically lowest) priority of all ready
threads in the system and are ready to run. Threads can change execution state, as
shown in the next figure.

A thread can put itself to sleep or suspend itself by using system calls for that purpose.
The RT kernel might indirectly put a thread to sleep if the thread makes a “blocking”
call by, for example, waiting at a mailbox until a message arrives. The kernel puts the
thread in the ready state when the message arrives.

Threads are created in the ready state.
The running thread, the ready thread with the highest priority, does one of these:
• Runs until it removes itself from the ready state by making a blocking system call.
• Runs until its time slice expires (when running with a priority lower—numerically

higher—or equal to the configured round robin threshold priority with other threads at
the same priority.

• Runs until preempted by a higher priority thread which has become ready due to the
arrival of an interrupt, or through the receipt of a message/unit at an exchange at
which the higher priority thread was blocked.

A thread in any state except ready cannot run, even if it has the highest priority.

Ready

Running

Asleep Asleep/
suspended

Suspended

Figure 2-4. Execution state transitions for threads

Chapter 2: Understanding INtime software architecture

23

Round-robin scheduling
INtime software also provides round-robin scheduling, where equal-priority threads
take turns running. Each thread gets a time slice. If a thread is still running when its
time slice expires, that thread moves to the end of a circular queue for that priority
level where it waits until all threads ahead of it use up their time slices, as shown in
the next figure. You can adjust the length of the time slice and set the priority level
threshold where round-robin scheduling occurs.

Higher-priority threads still preempt any running thread in the round-robin queue,
regardless of the amount of time left in its time slice.

Handling interrupts
System hardware invokes an interrupt handler in response to an asynchronous
interrupt from an external source, based on its entry number in the IDT (Interrupt
Descriptor Table). The handler takes control immediately and saves the register
contents of the running thread so it can be restarted later. There are two ways you can
service an interrupt:

• Using a handler alone

• Using a handler/thread combination

Threads A, B, and C are of equal priority below the round-robin priority threshold.
Thread A, the running thread, stops running when its time slice runs out. Thread A's state is saved
and it moves to the end of the queue.
Thread B, a ready thread, then becomes the running thread.
Thread A runs again when all threads in the queue either finish running or are preempted when
their time slice expires.

Thread A

Thread B

Thread C

Figure 2-5. Round-robin scheduling

 Note
Round-robin scheduling cannot guarantee a predictable worst-case response to events because
the number of threads in the queue varies.

INtime 4.0 Software

24

Interrupt handler alone
An interrupt handler alone can process only interrupts that require very little
processing and time. Handlers without threads can:

• Accumulate data from the device in a buffer. The data must have an associated
thread to process the data.

• A handler begins running with all interrupts disabled. It must execute quickly and
then exit to minimize its effect on system interrupt latency.

• Find the interrupt level currently serviced. This is useful if one handler services
several interrupt levels.

• Send an EOI (End of Interrupt) signal to the hardware.

By itself, an interrupt handler can only do very simple processing, such as sending an
output instruction to a hardware port to reset the interrupt source. Handlers can use
only a few system calls. For a list and description of system calls, see Appendix A,
“INtime software system calls”.

During the time the interrupt handler executes, all interrupts are disabled. Since even
very high level interrupts are disabled, it is essential that the handler execute quickly
and exit.

When the handler finishes servicing the interrupt, it sends an EOI to the PIC
(Programmable Interrupt Controller) via an INtime software system call, restores the
register contents of the interrupted thread, and then returns to the interrupted thread.

Interrupt handler/thread combination
An interrupt handler/thread combination provides more flexibility. Although the
handler may perform some processing, it typically signals the corresponding interrupt
thread to do most or all interrupt processing. In general, use an interrupt handler/
thread combination if the processing requires more than 50 microseconds or requires
system calls that interrupt handlers cannot use.

When an associated interrupt thread exists, the handler can put accumulated
information into a memory address, if the interrupt thread has set one up. The
interrupt thread can access data in the memory address and perform the required
processing.

Interrupt threads have access to the same resources and use the same system calls as
ordinary threads. The RT kernel assigns an interrupt thread’s priority, which is based
on the interrupt level associated with the handler. Ordinary threads have a priority
assigned by the process.

Chapter 2: Understanding INtime software architecture

25

In addition to the usual thread activities, an interrupt thread can also:

• Cancel the assignment of an interrupt handler to an interrupt level.

• Wait for an interrupt to occur.

• Enable and disable interrupts.

This shows how an interrupt thread enters an event loop where it waits to service an
interrupt:

Managing time
INtime software enables threads to:

• Create alarm objects that wake up the current thread at a regular interval.

• Start and stop scheduling by the RT kernel.

Upon creation, the interrupt thread uses an RT system call to set up an RT interrupt and associate
itself with this interrupt. Normally, it then waits for a signal that indicates an interrupt occured.
When signaled, the interrupt thread executes the required operations.
The interrupt thread releases control by waiting for the next signal from the interrupt handler,
which restarts the cycle shown in this figure.

Interrupt

Figure 2-6. Thread execution model

INtime 4.0 Software

26

27

3 About INtime software’s
RT kernel

This chapter describes objects provided by the RT kernel.

What does the RT kernel provide?
The RT kernel provides:

RT kernel objects
Objects, data structures that occupy memory, are building blocks that application
programs manipulate. Each object type has a specific set of attributes or characteristics.
Once you learn the attributes of, for example, a mailbox, you know how to use all
mailboxes.

Object-based programming, which concentrates on objects and operations performed
on them, is compatible with modular programming. Typically a single thread performs
only a few related functions on a few objects.

The RT kernel provides basic objects and maintains the data structures that define
these objects and their related system calls. When you create an object, the RT kernel
returns a handle that identifies the object:

• High-level objects consume memory, but also a slot in the system GDT (Global
Descriptor Table). Therefore, the maximum number of high-level objects allowed
in the system at any one time is approximately 7600 (8192 slots in a GDT minus
slots used by the operating system).

Item Description
Object management Includes creating, deleting, and manipulating object types defined by

the kernel. Memory for high-level kernel objects is automaticallly taken
from your processor’s memory pool. You must provide memory for low-
level kernel objects and may allocate memory beyond the kernel’s
needs to store application specific state information associated with
the low-level object.

Time management Includes an RT clock, alarms that simulate timer interrupts, and the
ability to put threads to sleep.

Thread management Includes scheduling locks which protect the currently running thread
from being preempted.

Memory management Implements memory pools from which it allocates memory in
response to application requests.

INtime 4.0 Software

28

• Low-level objects consume only memory. Therefore, only the amount of system
memory controls how many low-level objects can be present at a given time.

The RT kernel provides these objects. Each object is discussed on the indicated page:

Threads
Threads, or threads of execution, are the active, code-executing objects in a system.

Threads typically respond to external interrupts or internal events. External interrupts
include events such as a keystroke, a system clock tick, or any other hardware-based
event. Internal events include events such as the arrival of a message at a mailbox.
Threads have both a priority and an execution state, whether the thread is running or not.

There are system calls to create and delete threads, view and manipulate a thread’s
priority, control thread readiness, and obtain thread handles. For a list and description
of these system calls, see Appendix A, “INtime software system calls”.

Processes
A process is an RT kernel object that contains threads and all their needed resources.
Processes make up your INtime applications. The RT kernel processes have these
characteristics:

• Cannot make system calls; they are passive.

• May include one or more threads.

Object Description Page
Threads Do the work of the system and respond to interrupts and events. 28
Processes Environments where threads do their work. 28
Exchange objects Used by threads to pass information. 32

Mailboxes Used by threads to pass objects and data. INtime software includes
both object and data mailboxes.

33

Semaphores Used by threads to synchronize. 34
Regions Used by threads to provide mutual exclusion. 35
Ports Used by threads to synchronize operations, pass messages, and

access INtime services.
36

Dynamic memory Addressable blocks of memory that threads can use for any
purpose.

30

 Note
For detailed information about RT kernel objects, how they operate, and system calls associated
with each object, see INtime Help.

Chapter 3: About INtime software’s RT kernel

29

• Isolate resources for their threads, particularly for dynamically allocated memory.
Two threads of one process compete for the memory associated with their process.
Threads in different processes typically do not.

• Provide error boundaries. Errors within one process do not corrupt other processes
or the OS because they reside in separate virtual address spaces.

• When you delete processes, the objects associated with them also are deleted.

Each INtime application’s executable loads as a separate, loadable process. The
processes in a system form a process tree. Each application process obtains resources
from the root:

The RT Application Loader creates RT processes when an INtime application loads.
There are system calls you can use to delete RT processes from within an application.

Virtual memory
Each process has an associated VSEG whose size is the amount of Virtual Memory
available to the process. The VSEG size must be large enough to contain all the
memory dynamically allocated by the threads within the process.

Figure 3-1. Processes in a process tree

Root
process

C library
Paging

subsystem
User

Process 1
User

Process 2
User

Process nDSM

INtime 4.0 Software

30

Memory pools
Each process has an associated memory pool, an amount of memory with a specified
minimum and maximum, allocated to the process. Minimum memory is always
contiguous. Usually, all memory needed for threads to create objects in the process
comes from the process’s memory pool, as shown in the next figure.

If not enough contiguous memory exists (up to the maximum size of the process’s
memory pool), the RT kernel tries to borrow from the root process.

You can also statically allocate memory to processes, but you cannot free memory
allocated in this manner for other processes. The system’s total memory requirement is
always the sum of the memory requirements of each process. Static memory allocation
uses more memory than dynamic allocation, but may be safer.

Dynamic memory
Dynamic memory supports many uses, including communicating and storing data. The
memory area is usually allocated from the memory pool of the thread’s process, as
shown in Figure 3-2.“Threads using their process’s memory pool”. If there is not
enough memory available (up to the maximum size of the process's memory pool), the
kernel tries to borrow from the root process.

INtime software includes system calls that allocate and free memory and create
handles for allocated memory to share with other processes. For an overview of these
calls, see Appendix A, INtime software system calls. For detailed information,
including syntax and parameter values, see INtime Help.

Threads A and B obtain memory from the process’s memory pool.

A

B

Figure 3-2. Threads using their process’s memory pool

Chapter 3: About INtime software’s RT kernel

31

Object directories
Each process has an associated object directory. When a thread creates an object, the
RT kernel creates a handle for it. A thread can catalog a high-level object, with its
handle and a corresponding name, in the object directory of its own process or any
other process it knows about. Typically, you catalog objects in the root directory so that
threads in other processes can access them.

Threads that know the name can use the object directory to look up and access objects.
Threads in the same process also can use global variables to identify and access objects
within their process.

 Note
You cannot catalog the handle for a low-level object in an object directory.

Thread A catalogs an object such as a data mailbox in the root process's object directory.
Thread B looks up the object in the object directory to use it.

Now thread A can send data to the mailbox and thread B can receive it.

A B

Figure 3-3. Threads using the root process's object directory

INtime 4.0 Software

32

Exchange objects

Validation levels
INtime software provides two levels of system calls for exchange objects:

Write, test, and debug your application using high-level calls with their protection and
validation features. Use low-level objects when there is no other choice, such as with
AlarmEvents and a mailbox or semaphore that must be used from an interrupt handler.

For more information about validation levels, see RT calls in Appendix A, INtime
software system calls.

Level Description Exchange objects
High
(validating)

Provides higher protection and validation
features.
Memory is allocated automatically from the
process’s pool.
High-level objects:
• Validate parameters.
• Are protected against unexpected deletion.

• Object mailboxes
• Data mailboxes
• Counting semaphores
• Regions (for mutual

exclusion with priority
inversion protection)

Low
(non-validating)

Provide higher performance and lower protection
and validation features. Low-level objects provide
functionality beyond that of high-level objects.
You must allocate memory for low-level objects
and may allocate memory beyond low-level object
needs. You can use this additional memory to
store application-specific state information
associated with the object.
Low-level objects:
• Do not validate parameters. If you need

parameter validation, use high-level system
calls instead.

• Are not protected against unexpected deletion.
Note: System calls that manipulate low-level
objects assume that all memory reference
pointers received are valid.

• Data mailboxes
• Single-unit semaphores
• Region semaphores (with

priority inversion
protection)

• Software alarm events
(virtual timers) that
invoke alarm event
threads that you write.

Chapter 3: About INtime software’s RT kernel

33

Mailboxes
Mailboxes provide communication between threads in the same process or in different
processes. They can send information and, since a thread may have to wait for
information before executing, they can synchronize thread execution. There are two
mailbox types:

• Object mailboxes: Send and receive object handles. Available only as high
level objects.

• Data mailboxes: Send and receive data. Available as both high- and low-level
objects. High-level data mailboxes have a maximum message size of 128 bytes.

The next figure shows how threads use an object mailbox to send a handle for a
memory address.

Mailboxes have thread queues, where threads wait for messages, and message queues,
where messages wait threads to receive them. The thread queue may be FIFO- or
priority-based; the message queue is always FIFO-based.

You use the same system calls to create and delete object and data mailboxes. However,
you use different calls to send and receive messages or data.

Thread A allocates a block of memory and creates a shared-memory handle for it. Data is
placed in this shared memory object.
Thread A sends the shared memory handle to a mailbox.
Thread B waits to receive the shared memory handle at the mailbox. You can specify
whether thread B should wait if the handle isn’t in the mailbox.
Thread B obtains the handle and accesses the data in the memory object by mapping the
memory associated with the memory object into its memory address space.

A B

Figure 3-4. Threads using an object mailbox

INtime 4.0 Software

34

Semaphores
A semaphore is a counter that takes positive integer values. Threads use semaphores
for synchronization by sending units to and receiving units from the semaphores.
When a thread sends n units to a semaphore, the value of the counter increases by n;
when a thread receives n units from a semaphore, the value of the counter decreases
by n.

The next figure shows a typical example of a binary (one-unit) semaphore used for
synchronization.

Semaphores:

• Enable synchronization; they don't enforce it. If threads do not request and obtain
units from the semaphore before running, synchronization does not occur. Each
thread must return the unit to the semaphore when it is no longer needed.
Otherwise, threads can be permanently prevented from running.

• Provide mutual exclusion from data or a resource as follows:

1. Thread A requests one unit from a binary semaphore, and uses the resource when it
receives the unit.

2. Thread B requests one unit from the semaphore before using the resource. Thread B must
wait at the semaphore until thread A returns the unit.

• Enable mutual exclusion; they do not enforce it.

• Have a queue where threads wait for units. The queue may be FIFO- or priority-
based. There are system calls to create and delete semaphores, and to send and
receive units.

To ensure that thread A can do its work before thread B starts running, thread A creates a
semaphore that contains one unit. To enable synchronization, threads A and B should request and
obtain the unit before running.

Thread A begins to run and obtains the semaphore unit, leaving the semaphore empty. While
the semaphore has no units, thread B cannot run.
When thread A completes, it returns the unit to the semaphore. Thread B can now obtain the
unit and start running.

A

B

Figure 3-5. Threads using a semaphore for synchronization

Chapter 3: About INtime software’s RT kernel

35

Regions
A region is a single-unit semaphore with special suspension, deletion, and priority-
adjustment features. Regions provide mutual exclusion for resources or data; only one
thread may control a region at a time; only the thread in control of the region can
access the resource or data protected by a region. Once a thread gains control of a
region, the thread cannot be suspended or deleted until it gives up control of the
region. When the running thread no longer needs access, it exits the region, which
enables a waiting thread to obtain control of the region and thus access the resource or
data protected by that region.

Regions have a thread queue where threads wait for access to the region. The queue
may be FIFO- or priority-based.

Priority inversions

Regions also have a priority-inversion avoidance mechanism when the region’s thread
queue is priority based.

Then, if a higher-priority thread tries to enter a busy region, the priority of the thread in
the region is raised temporarily so that it equals the waiting thread's priority. This
helps prevent priority-inversion, as shown in this example:

1. Thread A is the running thread. It is a low-priority thread with control of a region, accessing
some data. The region has a priority queue. The only other thread that uses the data is thread C,
a high-priority thread that is not ready to run.

2. Thread B, a medium-priority thread, becomes ready to run and preempts A.

3. Thread C becomes ready to run and preempts B. It runs until it tries to gain control of the
region. Thread A's priority is raised to equal thread C's priority until thread A releases the
region; then its priority returns to its initial level.

4. When thread A releases the region, thread C receives control of the region and uses the data.
When thread C completes, thread B runs.

Without the priority inversion avoidance mechanism, thread B would have preempted
A while A had control of the region; C would have preempted B, but would have been
unable to use the data because A had control of the region.

Deadlocks

Regions require careful programming to avoid deadlock, where threads need
simultaneous access to resources protected by nested regions, and one thread has
control of one region while the other thread has control of another. To avoid deadlock,
all threads must access nested regions in the same, arbitrary order, and release them in
the same reverse order.

INtime 4.0 Software

36

Ports
A port is the object which allows access to the features provided by an INtime service.
A process that uses a port object can send messages through the port to the INtime
service, or can receive messages through the port from the service. Other operations
possible on ports include:

• Attach a heap object to the port for use by the service to store received messages.

• Link ports to a sink port, allowing a single thread to service multiple ports.

Services
An INtime service is an INtime real-time application (RTA) which provides access to
one or more interfaces. Each interface is associated with a service descriptor. The
interface generates events which are handled by the service. A process which uses a
service creates a port for access to that service. A service may support more than one
port and more than one user process may use a given port. A user process
communicates with the service by sending and receiving messages via the port.

Heaps
A heap is an INtime memory object that manages the chunk of dynamic memory
allocated to it. A heap can be used by multiple processes that need to share large
amounts of information. For instance, a heap can be associated with a port. Data
placed in memory obtained from the heap by threads in one process (the thread using
a port to communicate with an INtime service) can be manipulated by threads in
another process (thread within the service accessing data passed through the port to
the service).

Global objects, references, and locations
An INtime system is considered to be a set of one or more nodes. Multiple nodes are
connected either through shared memory (multiple processor cores on the same host)
or via Ethernet. The Address of a node is described in terms of its Local Logical APIC

Chapter 3: About INtime software’s RT kernel

37

ID and its network address. The Location of a node is a parameter used by processes on
one node to identify another node.

In the case where a multi-core host is connected to the INtime network from one node
only, the requests will be forwarded to the target node by the connected node.

Node architecture
On each node a management process handles requests on behalf of remote nodes, and
manages local connection objects. It is also responsible for managing objects created by
other nodes, and the DSM relationships between nodes.

New Objects
Two new objects and a new object classification are defined under this specification.
The Location object encapsulates information about the location of a given node and
the spaces it occupies. The Reference object contains information allowing the user of
its handle to use an object on a remote node using the standard APIs for an object of
that type.

Location object
The Location object contains APIC ID and network address information for a given
node. The handle for a location object (of type LOCATION) has Node scope, not
universal scope.

Figure 3-6. Global object architecture

INtime
node C

INtime
node A

Windows node
(one or more cores)

INtime
node B

Network
interface Network

interface

INtime
node D

Windows + INtime host

Message bus

Ethernet

INtime host

INtime 4.0 Software

38

Statically-configured locations are created at kernel boot time and are made visible to
other nodes when they boot the first time. These would normally include all other
nodes on the local host. Locations on other hosts may be created dynamically or on-
demand.

Reference object
A reference object is created on a node when a process requests access to an object on
another node. A reference object can be created explicitly, by a call to
CreateRtReferenceObject. Sometimes a reference object is created implicitly, for
example by CreateGlobalRtMailbox, or by LookupRtHandle. A reference object may
also be deleted explicitly by DeleteRtReferenceObject or implicitly for example by
DeleteRtMailbox.

A handle for a reference object has Node scope. The reference object thus represents
the nexus between an RTHANDLE for a global object and the LOCATION of that global
object. This is particularly important to remember when passing handles between
nodes using the extended APIs.

Global objects
A special instance of a semaphore, mailbox or memory object can be created as a global
object, which is a class of object which can be created either on the local node or a
remote node and optionally it can be created so that it is not owned by the creating
process. The APIs CreateGlobalRtSemaphore, CreateGlobalRtMailbox,
CreateGlobalRtMemoryObject and CreateGlobalRtMemoryHandle may be used to
create such objects. In the standard case the object created with these APIs is
considered to be owned by the creating process, and thus is deleted implicitly when
the process is deleted. However such objects may also be created using the REFCOUNT
flag, which means that the object is not considered to be owned by the creating process.
The object has an associated reference counter which is incremented each time a
reference object is created for it and decremented each time one of its reference objects
is deleted. The object itself is not deleted until its reference count decrements to zero.

Note that a reference object is always owned by the creating process and will be
deleted when that process is deleted.

39

4 About RT programming

This chapter describes mechanisms appropriate to RT programming:

Multi-threading
Multithreading means the computer stops running one thread and starts running
another, as shown in the next figure. INtime software manages thread switching, saving
the old thread’s context on the old thread’s stack and loads the new thread’s context
before starting execution. An INtime software thread is a thread of execution, similar to
a Windows thread.

 Note
For information about developing an RT application using INtime software, see Chapter 10, INtime
application development.

Mechanism Description Page
Multi-threading Switches between threads of execution. 39
Preemptive, priority-
based scheduling

Determines which thread needs to run immediately and which can
wait.

41

Interrupt processing Responds to external interrupts that occur during system
operation.

42

Determinism Enables threads to execute in a predictable fashion, regardless of
the arrival of both internal and external events.

43

Multi-programming Allows more than one application to run at a time. 44
Inter-thread
coordination and
communication

Enables asynchronous threads, which run in a random order, to
coordinate and communicate with one another.

45

Messages Enables threads to exchange data, messages, or object handles. 46
Synchronization Enables threads to signal the second thread when a task is

completed.
47

Mutual exclusion Prevents threads from accessing data currently in use until
released.

47

Memory pools and
memory sharing

Allocates memory to RT applications on request and manages
multiple memory requests.

48

System calls Programmatic interfaces you use to manipulate objects or control
the computer's actions.

50

Real time shared
libraries

Libraries you build that can be shared by one or more real-time
applications.

50

Exception handling Causes and proper handling of system exceptions. 51

INtime 4.0 Software

40

Multithreading and modular programming go hand-in-hand. You start by breaking
down a large, difficult application problem into successively smaller and simpler
problems, grouping similar problems where you can. Finally, you solve the small
problems in separate program modules. In the INtime software multithreading
environment, each module is a thread.

Multithreading simplifies building an application. When you need a new function, you
just add a new thread.

When you combine multithreading with preemptive, priority-based scheduling, your
application can switch as appropriate: from relatively unimportant threads, to
important threads, to critical threads, and back again.

The processor executes thread A.
An event happens and a thread switch occurs. The processor then executes thread B.
When thread B finishes, thread A becomes the running thread again.

Thread A

Thread B

Figure 4-1. Thread switching in a multithreading environment

Chapter 4: About RT programming

41

Preemptive, priority-based scheduling
In a preemptive, priority-based system, some threads are more critical than others.
Critical threads run first and can preempt less critical threads, as shown in this figure:

Multithreading allows an application to respond to internal events and external
interrupts, such as clock ticks from the system clock or receiver ready from a serial
device, based on how critical they are. You determine the priority of threads in your
application; INtime software provides the thread scheduling algorithms.

When you add interrupt processing to multithreading and preemptive, priority-based
scheduling, your application can respond to interrupts as they occur. Your application
becomes event-driven.

Thread A, a low-priority thread, prints data accumulated from the robotic arm in report form.
Thread B, a high-priority thread, controls the robotic arm. If the arm needs to move while thread A
runs, thread B preempts the print thread, then starts and moves the arm.
After thread B repositions the arm, thread A finishes printing.

Thread A

Thread B

Event

Figure 4-2. Multithreading and preemptive, priority-based scheduling

INtime 4.0 Software

42

Interrupt processing
Interrupts are signals from devices such as a malfunctioning robot or interactive
terminal. You connect interrupt sources to the processor through the PC’s two PICs
(Programmable Interrupt Controllers).

With interrupt processing, your application can handle interrupts occurring at random
times (asynchronously) and can handle multiple interrupts without losing track of the
running thread, or those threads waiting to run. Interrupts can occur while the
processor is executing either an unrelated thread or a related thread, as shown in the
next figure.

Typically, numerous sources of interrupts exist in an application. Some of them, like
the malfunctioning robotic arm, are critical; some of them are not. You assign interrupt
levels (which map directly to priorities) to the interrupt sources by the order in which
you connect your external sources to the PIC. INtime software handles more critical
interrupts first, and keeps track of which interrupts occurred, the order in which they
occurred, and which ones have not been handled.

Interrupt handlers can perform very limited operations, so you typically write an
interrupt handler to signal an interrupt thread. The interrupt thread's priority can be
automatically assigned, based on the interrupt level of the external source.

Thread B, the running thread, repositions the robotic arm.
The robotic arm malfunctions and sends an interrupt signal through the PIC.
As soon as it receives the signal, the microprocessor stops the running thread and starts an
interrupt handler. The interrupt handler runs in the context of thread B. No new thread is loaded;
thread B’s state does not need to be saved. It remains loaded in RAM until the scheduler runs it
again. Thread A, the print thread, is still waiting to run.

Thread A

Thread B

Event

IRQ signal

IRQ handler

PIC
Processor

Figure 4-3. Interrupt handler interrupting a thread

Chapter 4: About RT programming

43

Multithreading and interrupt processing simplify expanding an application. Because of
the one-to-one relationship between interrupts and threads, you add a new thread
when you need to respond to a new interrupt.

Determinism
INtime software provides deterministic response by establishing a predictable,
worst-case response time to a high-priority interrupt. Deterministic response time
includes these components:

• Interrupt response time: The time that elapses between a physical interrupt and
the start of interrupt handler execution. A predictable worst-case response time to
interrupt processing ensures that incoming data is handled before it becomes invalid.

• Thread switch time: The time that elapses between exiting one thread and starting
another. To exit a thread, the RT kernel must save data registers, stack and
execution pointers (the thread state) of one thread. Minimized thread switch time
also provides a predictable response time to a high-priority thread.

Since the typical response to an interrupt includes invoking a handler and then
performing a thread switch to an interrupt thread, the deterministic response time
includes both the interrupt response and thread switch times.

RT response does not mean instantaneous execution. A high-priority thread that is
very long and performs many calculations uses as much processor time to execute on
an RT system as on any other system. The length of time instructions take to execute is
a function of processor speed.

INtime 4.0 Software

44

Multi-programming
INtime software supports multiprogramming—running several unrelated applications
on a single system at the same time.

To take full advantage of multiprogramming, you provide each application with a
separate environment: separate memory and other resources. INtime software provides
this kind of isolation in a process. Typically, a process includes a group of related
threads and the resources they need, as shown in the next figure.

Application A contains all the threads that relate to a robotic arm, including the print thread. It may
also contain threads that control other devices on the factory floor.
Application B contains all the threads that relate to an application that controls a chemical mixing
system in one part of the factory.

Application A Application B

Figure 4-4. Multiprogramming

Chapter 4: About RT programming

45

You decide what processes to include in your system. INtime software coordinates the
use of resources within and between processes so independently-developed applications
do not cause problems for each other.

Multiprogramming simplifies adding new applications; you can modify your system
by adding new processes (or removing old ones) without affecting other processes.

Inter-thread coordination and communication
INtime software exchange objects are mailboxes, semaphores, regions, and message
ports. They enable asynchronous threads, which run in a random order, to coordinate
and communicate with one another by:

• Passing messages.

• Synchronizing with each other.

• Mutually excluding each other from resources.

A group of related threads.
The memory the threads need.
An object directory where you can catalog thread resources.

A

B

Process

Figure 4-5. Resources in a process

INtime 4.0 Software

46

Messages
Threads may need to exchange data, messages, or object handles.

For example, a thread accumulates input from a terminal until it receives a carriage
return. The thread then uses an exchange object to send the entire line of input as data to
another thread that decodes the input.

This figure summarizes how you can solve a problem that requires routing several
input types into several output types using a mailbox object. One mailbox and one
manager thread can handle messages from multiple input and output threads.

System calls move data from input threads A and B to a waiting mailbox.
Thread C, the manager thread, waits at the mailbox and determines which messages go to which
output threads. If another message arrives during processing, the message waits in the mailbox
queue until the manager thread can handle it.
The individual output threads receive data at their mailboxes and execute it.

D

E

C

A

B

B

Messages

Messages

Output threads

Figure 4-6. Object-based solution for message passing

A

B

Input threads

A

Chapter 4: About RT programming

47

Synchronization
When one thread needs to run before another thread, it can use an exchange object to
signal the second thread when it has completed. For example, the thread that creates
the transaction summary in an automated teller application shouldn’t run until after
the threads that handle withdrawals and deposits run. The transaction summary thread
must synchronize with the other threads.

INtime software provides several objects for synchronization that accommodate a wide
variety of situations. The next figure illustrates using a semaphore to send a signal to
another thread.

Mutual exclusion
INtime software includes regions that you can use to protect data from being accessed
by multiple threads at the same time. This is called mutual exclusion.

When an INtime application runs, multiple threads can concurrently access the same
data. This is useful in a multithreading system, such as a transaction processing system
where a large number of operators concurrently manipulate a common database.

Thread A, the running thread, preprocesses some data. Thread B needs to use the data after thread
A finishes.

When thread A finishes, it sends a signal (not data) to the semaphore.
When thread B receives the signal, it processes the data.

A B

Figure 4-7. Threads that use a semaphore for synchronization

INtime 4.0 Software

48

If a distinct thread drives each client, an efficient transaction system requires that
threads share access to database data. When threads run concurrently, this situation
occasionally arises:

Unless thread B is prevented from modifying the data until after thread A has finished,
thread A may unknowingly use some old data and some new data, resulting in an
invalid computation. It should, however, read and compute the new data after thread B
updates it.

Memory pools and memory sharing
Memory pools are the basis of INtime software’s memory management. Two types of
memory pools exist:

• Initial memory pool: All the memory available to the RT kernel (that is, free space
memory). Managed by the RT kernel, the initial memory pool belongs to the root
process and is allocated to INtime applications on request. Any amount of memory
you allocate to an RT kernel is not available to Windows for that session, or any
other RT node in the system. There is a practical maximum for the amount of
memory allocated to INtime software. This value depends on the number and size
of INtime applications that run on the RT kernel.

• Process memory pools: A portion of the initial memory pool assigned to an INtime
application process when that process is created. Each process memory pool has a
minimum and a maximum size. Once the minimum memory is allocated to a
process, that memory is not available to other processes. When you delete a
process, its memory returns to the initial memory pool.

As threads in a process create and delete objects, the process memory pool’s size
increases and decreases as needed, provided minimum and maximum values
are not yet encountered. This provides dynamic memory allocation of the
memory pool.

Thread A, the running thread, reads data from the database and performs computations based
on the data.
Thread B tries to preempt thread A and update the data while thread A works on it. Mutual
exclusion, provided by a region, prevents two threads from accessing the same data concurrently.

B A

Figure 4-8. Multithreading and mutual exclusion

Chapter 4: About RT programming

49

The RT kernel uses dynamic memory allocation to free unused memory and assign
freed memory to other processes. Threads within processes use dynamic memory
allocation in the same manner.

For example, some threads periodically need additional memory to improve
efficiency such as a thread that allocates large buffers to speed up input and output
operations. Such threads can release memory for other threads when they
complete, as shown in the next figure.

Inter-node coordination and communication
Threads within real-time processes can interact with each other even when resident on
different instances of the real-time kernel. The Global Objects functionality is broadly
similar to that provided to Windows applications by the NTX protocol, with
enhancements to take into consideration issues of thread priority and multiple client
access. A real-time thread can access objects which exist on another instance of the
INtime kernel. Each of these “global” objects has a corresponding local object called a
reference which points to it and may be used in standard APIs by the local thread. For
an example a thread can obtain a reference to a mailbox on a different INtime node
then access it using the standard SendRtData and ReceiveRtData calls.

There are new APIs for discovering other nodes, and for creating new global objects,
and creating and deleting reference objects.

Threads A and B use memory in the process's memory pool for objects they create.
Thread C completes and then deletes its objects, and releases its memory to the process's
memory pool.
Thread D requests memory.

A

C

B

D
C

A

B

Figure 4-9. Dynamic memory allocation between threads

INtime 4.0 Software

50

System calls
Each RT kernel object has an associated set of system calls: programmatic interfaces
you use to manipulate objects or control the computer’s actions. System calls for one
object type cannot manipulate objects of another type. This protects objects from
inappropriate actions or changes.

Most system calls have parameters, such as values and names, that you can set to tailor
the call’s performance. High-level system calls validate these parameters; a condition
code returned by the call indicates whether or not the call completed successfully.
Invalid parameter usage, such as trying to manipulate an object of the wrong type, or
trying to read or write memory to which you have no access, results in the return of a
‘call failed’ condition code. You can use another system call (GetLastRtError) to
determine the failure’s exact cause.

Examples of tasks you can perform with system calls include:

Real time shared libraries
You can build libraries that can be shared by one or more real-time applications. These
Real time shared libraries (RSLs), function essentially like their Windows DLL
counterparts.

An INtime Wizard is provided that integrates with Microsoft Visual Studio to allow
you to easily create an RSL. It produces the framework for an RSL, and sets up the
various Visual Studio settings to generate an RSL that the INtime loader can manage.
For detailed information on creating an RSL, see INtime Help.

Function System call
Create a new mailbox CreateRtMailbox
Set a thread’s priority SetRtThreadPriority
Send a handle to an object mailbox SendRtHandle

 Note
For an overview of INtime software’s system calls, see Appendix A, INtime software system calls.
For detailed information, including syntax and parameter values, see Help.

Chapter 4: About RT programming

51

Exception handling
While running, an INtime application makes various system calls and interfaces with
various hardware devices, the CPU’s Numerics Processor, and both self- and system-
defined memory structures. Incorrect usage of any of these resources will cause a
system exception.

System exceptions include:

Programming and Environmental errors are signaled to threads making system calls as
the return value for each call. Application code should check for successful
completion of each system call and provide error handling subroutines to handle any
possible Programming or Environmental errors.

Proper handling of Numerics exceptions requires that a user exception handler be set
up for each thread that makes floating point calls. INtime software provides a Floating
Point Exception handler sample project that you can use as a template for your own
floating point exception handler.

When a thread causes a Hardware Fault, a system wide Hardware Fault Handler is
called. This handler takes one of the following user specified actions:

• Suspends the offending thread (default).

• Deletes the offending thread.

• Deletes the offending thread and its process.

The handler also sends a notification message to the following cataloged
data mailboxes:

• HW_FAULT_MBX cataloged in the object directory of the root process.

• HW_FAULT_MBX (if present) cataloged in the object directory of the process
whose thread caused the Hardware Fault.

System exception Cause
Programming error Passing an invalid parameter to a system call.
Environmental error Requesting resources outside the capabilities/limits of the operating

system to grant. For example, a call to malloc can fail with an
Environmental exception if the caller’s process cannot provide the
requested memory.

Numerics exception Attempting an illegal floating point operation, such as a floating point
divide-by-zero operation.

Hardware fault Attempting to do an operation that violates the protection
mechanisms built into the X86 architecture. For example, an integer
divide-by-zero operation causes a Divide-by-Zero Fault. Likewise,
trying to access a memory address in your VSEG that has not had
physical memory assigned to it causes a Page Fault.

INtime 4.0 Software

52

An INtime application can create and catalog a data mailbox in its object directory
under the name HW_FAULT_MBX. It can then create a thread that waits at that
mailbox for any hardware fault messages and take whatever actions are desired.

INtime software provides a Hardware Fault Exception handler sample project that
shows the use of a local HW_FAULT_MBX mailbox and a thread that manages it.

For detailed information on the HW_FAULT_MBX and its notification messages, see
INtime Help.

Fault Manager
INtime software includes an application which handles faults and gives the user an
opportunity to debug the faulting condition. The Fault Manager is enabled by default
in the Development Kit. If a fault occurs, the following dialog box displays:

The action required to debug the fault may now be selected, or the process containing
the faulting thread may be deleted. See the Fault Manager help information for how to
configure a default action.

Figure 4-10. Fault Manager Dialog

Chapter 4: About RT programming

53

Structured Exception Handling
Any INtime application may use the Structured Exception Handling feature of the
Microsoft compilers to handle faults in the application.

For more information about Structured Exception Handling, see Microsoft’s compiler
documentation.

INtime 4.0 Software

54

55

5 Designing
RT applications

This chapter provides general guidelines for RT system design using INtime software.

Define the application
When designing an RT application, you should include these steps:

• Partition the application into Windows and RT components.

• List the INtime application’s inputs and outputs, and decide whether RT or
Windows services each system component. Decide which objects to use for
inter-thread synchronization and communication, both within the RT portion and
between the RT and Windows portions.

• List all threads that require the input and output. Define interrupts and decide
which ones require determinism. Assign ownership of the hardware which
provide the interrupts, i.e., owned by Windows or INtime. Remember, an interrupt
cannot be shared between Windows and INtime. Assign interrupt levels and
priorities to take advantage of multitasking and preemptive, priority-based
scheduling.

• Develop the detail for each thread in a block diagram.

• Decide if the application requires multiple processes, and if so, how they will use
shared memory and dynamic memory allocation.

• Design your user interface.

• Determine if you require custom devices and drivers.

• Determine if your application will run on a single system or be distributed over
multiple RT nodes.

INtime 4.0 Software

56

This flowchart shows steps typically taken by RT software designers. When complete,
the prototype system is ready to test, debug, and fine-tune.

Partition the application into RT and Windows components.
Define processes, then define threads, interrupt levels, and priorities. Decide which objects to
use. Define interrupts, handlers, and levels.
Decide on hardware and device drivers. Decide how to implement a multi-user environment and/
or an operator interface.
Decide if you need custom hardware that solves a unique problem or gathers data in a unique way.

Define the application.

Decide which parts of the
application are RT and

which are Windows.

Write code

Compile/assemble
code

Link with operating system
interface libraries

Build or purchase
custom hardware

Write and test driver Use available driver

Is an INtime
driver available?

YesNo

YesNo

Figure 5-1. Typical development cycle for INtime applications

Is special hardware
needed?

Chapter 5: Designing RT applications

57

Target environments
Developing INtime applications involves balancing between the target environments:

• The RT environment, where you create portions of the application that require
RT robustness and determinism.

• The Windows environment, where you can add RT object access to a
Win32 application.

Methodology
A critical aspect of any INtime application is the division of labor between Windows
processes and RT processes and, to a finer degree, between the threads in each process.

Important guidelines for developing RT user applications include:

• Limit RT processes to performing only time-critical functions: For maximum
performance in Shared Mode, applications must be divided appropriately between
the RT and Windows portions. The INtime software scheduler gives precedence to
RT processes and threads. This preferential scheduling guarantees the best
possible RT response.

For example, to optimize user interface (UI) performance, design INtime
applications so that RT activity occurs in event-driven bursts. An INtime
application that executes for too long on the RT kernel can consume too many
CPU cycles and therefore degrade the system’s Windows capabilities. This
typically causes a sluggish GUI on the Windows side.

• Determine which Windows threads require the greater relative priority: The
relative priority given to each of the Windows threads of an INtime application can
determine the perceived performance of the application in a heavily loaded
system. The higher the relative priority given to a Windows thread, the more likely
the thread will perform sufficiently in a heavily loaded system.

Determining which threads require the greater relative priority depends on the nature
of the application. For example, giving higher relative priority to data manipulation
and data storage threads can sacrifice data display and user interface performance
when the system is heavily loaded. If an application is data-intensive or the system
has no keyboard or display, then sacrificing user interface performance may be
desirable. Conversely, if a requirement of an application is a responsive user

 Note
Adverse effects in the Windows interface, disk and network operation become noticeable
when RT CPU utilization on your system exceeds 70 percent. On a multi-core computer
configured for dedicated mode, INtime software can consume close to 100 percent of its
processor without affecting Windows.

INtime 4.0 Software

58

interface, then data manipulation and data storage can be given a lower
relative priority.

A hypothetical system
This hypothetical INtime application monitors and controls dialysis. The application
consists of three main hardware components:

The next sections describe how various INtime software features are used in the
hypothetical system.

 Note
• You can use the Windows Performance Monitor to observe CPU usage by Windows and

INtime software’s RT kernel. For more information, see Performance monitor in Chapter 10,
INtime application development.

• You can dedicate 100% of one processor to INtime on a multi-core computer without
negatively affecting Windows performance.

A bedside unit is located by each bed. Each unit runs INtime software, which performs
these functions:
- Measures the toxins in the blood as it enters the unit
- Adjusts the rate of dialysis
- Removes toxins from the blood
- Generates the bedside display for bedside personnel
- Accepts commands from the bedside personnel
- Sends information to the MCU (Master Control Unit)
The MCU, a PC with a screen and keyboard, runs INtime software. The MCU enables one person
to monitor and control the entire system. It performs these functions:
- Accepts commands from the MCU keyboard
- Accepts messages from the bedside units (toxicity levels, bedside commands,
 emergency signals)
- Creates the display for the MCU screen
A LAN connects the bedside units to the MCU.

Figure 5-2. The hardware of the dialysis application system

Chapter 5: Designing RT applications

59

Interrupt and event processing
Interrupts and internal events occur at the bedside units: bedside personnel enter
commands asynchronously and the system computes toxicity levels at regular
intervals.

Toxicity levels, measured as the blood enters the bedside unit, are not subject to abrupt
change. The machine slowly removes toxins while the patient's body, more slowly,
puts toxins back in. The result is a steadily declining toxicity level. The bedside units
must monitor toxicity levels regularly, but not too frequently. For instance, the bedside
units could compute the toxicity levels once every 10 seconds, using a clock for timing.
The measurement thread would measure and compute the toxicity, put the information
in a mailbox for the MCU, and suspend itself for 10 seconds.

Command interrupts from the bedside unit occur when a medical operator types a
command and presses Enter. Interrupts from command entries occur at random times.
The interrupt handler signals the interrupt thread. The interrupt thread performs any
required processing and waits for the next interrupt.

Processing commands from the bedside units: Each time a medical operator types a
command and presses Enter, the bedside unit receives an interrupt signal from the
terminal. The bedside unit stops executing the current instruction and begins to
execute an interrupt handler.

1. The interrupt handler accumulates the characters in a buffer and puts them in memory. The
interrupt handler signals the interrupt thread for bedside commands.

2. The interrupt thread gets the contents of the memory where the handler put the command. It
parses the command and does the required processing.

3. The thread puts the command information, along with the number of the bedside unit, into a
message.

4. The thread sends the message to the predetermined mailbox for the MCU.

5. The interrupt thread waits for the next interrupt. The system returns to its normal
priority-based, preemptive scheduling.

Multi-tasking
Threads in the application run using preemptive, priority-based scheduling. This
allows the more important threads, such as those that control the dialysis rate, to
preempt lower-priority threads, such as those that update displays. New capabilities
can be added to the system by simply adding new threads.

INtime 4.0 Software

60

61

II Using INtime software

This part provides the information you need to install, run, and use INtime software to
develop RT applications.

This part contains:

Chapter 6: Installation

Explains how to install and uninstall INtime software.

Chapter 7: Configuration

Describes how to configure INtime software.

Chapter 8: Connecting to an INtime host

Explains how to set up an NTX connection to another INtime host.

Chapter 9: Operation

Describes how to start and run INtime software.

Chapter 10: INtime application development

Explains how to use the INtime development environment to create INtime
applications.

INtime 4.0 Software

62

63

6 Installation

This chapter explains how to install your INtime software on a Windows system.
Follow the directions in this chapter to install INtime software for a development
system or a target system.

Install INtime software on a Windows system

Requirements
Installation of INtime on a Windows system requires:

• A minimum of 4MB of RAM above that required to run Windows. The default
allocation to INtime is 16MB.

• A minimum of 75MB of available disk space.

• A supported version of Microsoft Windows (for a listing, see page 3.)

The development environment requires the installation of one of these:

• Microsoft Visual Studio 2005, Standard Edition or better.

• Microsoft Visual Studio 2008.

Before you begin
• Ensure that you are logged on with Administrator privileges.

• Exit all programs prior to installing INtime software.

• If your system has a previously installed version of INtime software, remove it:

1. Ensure that no INtime services are running. If any are running, be sure they are
set to Manual Start (using the Start>Control Panel> Administrative User/
Services applet), and then reboot the system.

 Note
For descriptions of INtime nodes, Windows hosts, and INtime hosts, see Terminology in Chapter 2,
Understanding INtime software architecture.

 Note
Support is provided for Visual C 6.0 and Visual Studio 2003 for support of legacy applications only.
New development with these tools is not supported.

INtime 4.0 Software

64

2. Select the Add/Remove Programs Applet in the System Control Panel (Select
Start>Control Panel>Add/Remove Programs).

3. Highlight INtime 3.1 (or earlier) program, and then click Remove.

4. Reboot the system.

Running the Installation program
To install the INtime software:

1. Insert the INtime software CD-ROM into the CD-ROM drive. A web browser
automatically runs and displays instructions to launch the installer.

If the Installation program detects a previous version of INtime software, it
prompts you to exit the installation and uninstall the previous version as described
in Before you begin (above).

2. Review the INtime License and note its terms and conditions.

3. Review the Readme information for any late-breaking information not included in
the product documentation.

4. Select a destination directory for the INtime software files, then click the Next
button. The default is the default Program Files Path (%PROGRAMFILES%\INtime).

 Note
If you’ve disabled the automatic start feature on your system, you must launch install.htm from
an Explorer window.

 Note
If you continue and install the INtime software, your action shows that you agree to be bound
by the terms and conditions outlined in the INtime License.

Chapter 6: Installation

65

5. Select one of the installation options listed below, then follow the prompts in
the installation.

6. Refer to the license management document for explicit instructions for your
product. Follow the instructions for installing the appropriate licenses.

When the installation is complete, the Installation program may prompt you to
reboot the system.

Option Description
Local Target
Only

Installs the INtime runtime components on the local system. Choose this
option to run INtime applications on this system.

Development
and Local
Target

Installs all product development and runtime components. Choose this
option to develop and run INtime applications on this system.

Custom Installs the product development and runtime feature groups you specify.
Choose this option, for example, to install only the development
components.

Figure 6-1. Installing INtime software

INtime 4.0 Software

66

7. Click the Finish button to complete the installation process.

8. Restart your system using one of these methods:

• Select YES at the last screen. The Installation program restarts your system.

• Select NO to manually restart your system at a later time.

Installing hardware for use with the RT kernel
Before loading an application to interface with a hardware device, you must make the
hardware available to the RT kernel.

Windows Plug-and-Play software tries to automatically configure hardware it detects at
boot time. To prevent this, INtime provides a Windows driver which causes Windows
to believe it has claimed the hardware while isolating it from other Windows hardware
so that an RT application can interact with it.

In an INtime system it is necessary to separate the IRQs of devices that that INtime will
control from those controlled by Windows. If real-time and Windows devices shared
the same interrupt line, deterministic handling of that interrupt is lost, since release of
that signal would depend on the Windows kernel.

The INtime Device Configuration tool reserves hardware devices for INtime usage. To
run the tool, go to Control Panel>INtime>Device Configuration. Use the tool to select
which devices to reserve for INtime. The tool then analyzes the IRQ resources and
ensures that the allocation is possible.

In cases where you cannot physically isolate the device, the hardware/motherboard
combination in your system is not suitable for running the INtime device driver.

In the case where your device does not generate an interrupt or it supports the MSI
method of interrupt delivery, you can pass the device to INtime by selecting the “No
Interrupt or MSI” option. In this case, interrupt conflict is not an issue.

To install two real-time devices, configure both devices at the same time with the
Device Configuration tool. It ensures that IRQ resources are not shared with Windows,
but allows INtime devices to share the same IRQ when necessary.

 Note
You must restart your system before running INtime software.

67

7 Configuration

INtime software provides the flexibility to meet a variety of INtime application
requirements that you set using configuration options available in the INtime
Configuration utility. This chapter describes the following options:

Configuring INtime software

Default configuration
By default, the Install program configures INtime software to:

• Require manual start up for the INtime Kernel service. The installation program
configures all other INtime services to start automatically.

• Install INtime software files in the %PROGRAMFILES%\INtime directory.

• Access INtime application wizards, their components, and Help files from the
directory appropriate for the version of Microsoft Visual Studio installed on your
system.

• Install sample programs only for the user that installed INtime software.

The INtime Configuration utility’s Help contains step-by-step instructions for many
tasks. You can access this Help by running the utility, then pressing the Help button
located at the bottom of the window.

Configuration option Page
Configuring INtime software ..67

Default configuration...67
Running the INtime Configuration Utility..68
Miscellaneous ..69

Configuring INtime applications ..69
Configuring Windows for non-interactive logon ...69

Configuring the INtime Network software... 71
Before you begin .. 71
Hardware installation .. 71
Setting the TCP/IP configuration parameters..72
NIC driver configuration...72

INtime 4.0 Software

68

Running the INtime Configuration Utility
To access the Configuration utility, do one of these:

• Click (the INtime icon) in the Windows Notification Area (aka the System Tray),
then select INtime Configuration.

• Select Start>Control Panel>INtime.

The INtime Configuration Panel displays:

Figure 7-1. INtime Configuration Panel

 Note
Press F1 to view step-by-step instructions for many configuration tasks.

Chapter 7: Configuration

69

Miscellaneous

RTIF.SYS driver

When you install INtime software, the installation process sets up the Windows system
to allow Rtif.sys, the RT kernel mode device driver, to load at boot time.

Interrupt resources

In Shared Mode, INtime software takes over the system clock (IRQ0) and multiplexes
the clock interrupt between the RT and the Windows kernels. INtime applications can
take over other interrupts, but must ensure that Windows drivers do not try to use the
same interrupt signals (IRQs).

Use the INtime Device Manager applet to assign devices and interrupt resources to the
INtime kernel.

Configuring INtime applications
This section details the steps required to configure INtime applications for specific
conditions. You can also access this information in the INtime Configuration’s Help file.

Configuring Windows for non-interactive logon
Executing Windows and INtime software without an attached keyboard and mouse
requires that Windows be configured for non-interactive logon, also known as
AutoAdmin Logon.

To configure Windows for non-interactive logon:

Tab Description
Node Management Configures settings that affect RT kernel operation for each configured RT

kernel. These include the amount of memory allocated to the RT kernel,
and the system clock period as well as other kernel configuration
parameters.

License Manager Collects information for node-locking the installation, and allows the
installation of full license codes.

Development Tools Installs, uninstalls, and verifies the status of INtime wizards for Microsoft
Visual Studio.

Miscellaneous Configures other settings such as automatic Windows logon, Fault
Manager behavior and the size of the console windows where RT
applications display text.

INtime Device
Manager

Configures hardware devices for use with RT applications.

INtime 4.0 Software

70

1. Log on to Windows with Administrator privileges.

2. Create/verify the presence of a Windows user with a password as to which you want to
automatically log on.

3. Start the INtime Configuration application.

4. Select the Miscellaneous applet tab, then edit these fields:

• Automatic Logon Options: Select Auto Logon Always.

• Auto Logon Parameters: Enter the information in these fields:

Domain Name
User Name
Password

Note: Be sure to use the User name and Password established in step 2..

5. Exit the INtime Configuration application.

6. Restart Windows.

When Windows restarts, it automatically logs on as the specified user in the specified
domain.

Configuring INtime Local Kernel service to execute automatically
To configure the INtime Local Kernel service to start automatically during Windows
restart:

1. Go to the Node Manager applet and select the kernel you want to configure.

2. Select the Kernel tab, and then check the Start INtime Kernel Automatically checkbox.

3. Click the Save button

4. Restart your system.

Automatic loading of Realtime Applications
INtime software can load your realtime applications automatically when the Local
Kernel service starts:

1. Open the Node Manager applet in the INtime Control Panel utlity and select the node you want
to configure.

2. Select the Autoload tab, and then click the Add button.

 CAUTION
Deploying a Windows system with the non-interactive logon feature enabled represents a potential
security breach: the Windows registry stores the specified user, domain, and password in clear
text—they are not encrypted.

Chapter 7: Configuration

71

3. Enter the Application Title, and the full path of the application (.RTA file) to load.

4. Add any command-line parameters you want to specify.

5. For other parameters, click the Advanced button.

6. If your application is dependent on another application being loaded first, enter the name of the
dependent application in the Dependencies list by clicking the Add button.

7. Click the Save button. When the INtime Kernel restarts, your application automatically starts.

Configuring the INtime Network software
To configure the INtime kernel TCP/IP software, click the Network tab on the INtime
Node Manager Panel for your selected node.

Before you begin
You will have to assign an IP address and host name to the network interface
controlled by the INtime TCP/IP software. This should not be the same address used by
your Windows networking software. Alternatively, you can specify that a DHCP server
automatically provide the address.

Hardware installation
Before configuring INtime TCP/IP software, install and configure the network interface
adapter you plan to use. Instructions for installing hardware for RT kernel use may be
found in Installing hardware for use with the RT kernel in Chapter 6, Installation.

INtime 4.0 Software

72

Setting the TCP/IP configuration parameters
1. Start the Node Manager applet.

2. Select your node, then click the Network tab.

3. Set the following:

4. Modify the host name as desired.

5. Click the NIC Configuration button. The NIC Management Dialog displays. Edit or Add the
interfaces you require, as needed. Each configured interface needs one of these:

• Check the Enable DHCP box.

• Enter the following:

IP address
IP interface address mask.

6. Exit the NIC Configuration Dialog.

7. If you want to use a DNS server for name resolution, select the DNS checkbox, then enter the
domain name and up to three IP addresses of DNS servers.

8. Click the Save button.

If the INtime kernel is already loaded, you must restart the kernel for changes to
take effect.

NIC driver configuration
When adding or editing a NIC interface, you must select the NIC driver appropriate to
your hardware. Devices are referred to by their INtime instance regardless of the actual
number of devices in a system. Consider a quad-port Intel 1 Gbit/s card of which two
devices, ie1g0 and ie1g1, are passed to INtime. The instance number implies no
ordering or grouping but simply indicates the first and second devices of that type
passed to INtime.

To... Select this checkbox...
Automatically start real-time networking services Start the network automatically

73

8 Connecting to an
INtime host

This release of INtime 4.0 does not include the ability to create a stand-alone INtime
host, but it is still possible to connect to existing hosts. This feature will be re-added in
a later product update.

Creating a connection to an INtime host
You can connect your INtime installation to these host types:

• An existing INtime host (a stand-alone INtime installation, without Windows).
This type of host must have been previously created with an earlier version of
INtime software.

• An INtime runtime installation that runs WinNTXproxy.exe to debug your
application. In this case the WinNTXproxy application services the NTX
connection in order to allow you to make NTX calls on the remote host. This can
assists with debugging a runtime system.

Fixed and Passive Connections
NTX connection types include:

• Fixed connections use fixed IP addresses to identify each end of the connection.

• Passive connections use the mDNS protocol to advertise the connection
automatically in order that you do not have to create a fixed configuration.

To Create a Fixed Connection

Before you begin, ensure that you know the IP address of each end of the connection
and configure each end to address the connection’s other end.

To create the connection:

1. Start the INtime Configuration Panel and open the Node Management applet.

2. Click New Node, and fill in the name of the node, select "Remote or Windows NTX
connection" and fill in the IP address of the INtime host. If this is a WinNtxProxy connection
to another Windows host, check the "WinNtxProxy Node" box.

3. On your INtime node, edit the rtload.sys file to change the IP address of the ntxproxy Windows
host, if necessary.

INtime 4.0 Software

74

To Create a Dynamic Connection

In this case you do not need to know the IP address of the connection endpoints and
you do not need to create a connection using the INtime Control Panel.

1. Download the Apple Bonjour for Windows service from the Apple website. This is an
implementation for Windows of the mDNS "zero-configuration" protocol.

2. Install the service.

3. Ensure that the INtime mDNS service is enabled.

A. Go to the Windows Service Manager and locate the INtime mDNS Service.

B. Open Properties and set Startup Type to "Automatic".

After rebooting the system is now ready to accept mDNS connections.

To connect to an INtime host, make sure that the host is configured as a dynamic node
by loading the mdnsintm.rta process.

To create a dynamic connection to a WinNtxProxy host:

1. Ensure that the target system is configured for mDNS operation, as above.

2. Start the WinNtxProxy process by entering this command line option:

-passive

You can now connect to the INtime host from your development host.

75

9 Operation

This chapter describes how to start and operate INtime software.

You can treat the RT kernel and associated INtime applications as Windows services
and start them automatically when Windows initializes.

In the event of a Windows blue screen crash, INtime software keeps running until a
graceful shutdown occurs. To start INtime software again, you must first restart Windows.

Starting the RT kernel and related components
1. Open the Windows Service Manager (Start>Control Panel>Administrative Tools>Services).

The Windows Services table lists these INtime services:

Table 9-1. INtime software’s Windows services

Service

Default
startup setting

Description

INtime Kernel
Manager

Automatic Loads the RT kernel binary image into memory and
starts it. Uses loadrtk.exe.

INtime Clock
Synchronization
service

Automatic A Windows program that synchronizes RT client time-of-
day clock with the Windows host’s time-of-day clock.

INtime Event Log
service

Automatic A Windows program that acts as a gateway to allow RT
applications to log events in the system event log on the
Windows host.

INtime I/O service Automatic A Windows program that acts as a server to RT “C”
library to obtain a console window for display (via printf)
of application data and to receive (via scanf) user input
from the system keyboard.
This service also provides Windows file system support
to the RT “C” library.

INtime Node
Detection service

Automatic A Windows program that detects RT clients, both local
and remote. This program checks for and registers
RT clients that exist in both of these locations:
• RT clients configured in the INtime Configuration

program (INconfCpl.cpl).
• RT clients available to the system.

INtime 4.0 Software

76

2. Start each INtime software service as desired. By default, all services except the INtime mDNS
service and INtime Debug service start automatically.

You can also start an INtime Kernel using these methods:

• Select a kernel in the Node Management Control Panel applet and click the
Start Local button.

• Click the INtime icon in the system tray and selecting a kernel name from the
menu that displays.

• Open a command window and enter this command:

nodemgr "start NodeA"

• Call ntxStartLocalRtNode from a Windows application.

After you start the INtime kernel
• Use Microsoft Visual Studio to develop your INtime application.

• Use a debugger to load and debug your RT applications.

• Use the INtime Loader to load and run your RT applications. You can start this
program by selecting Start>All Programs>INtime>RT Application Loader. You can
also load your application by double-clicking the .rta file in an Explorer window,
or by right-clicking the .rta file to open the RT Application Loader.

Intime Remote
Connection
manager

Automatic A Windows program that detects and manages
connections between the Windows host other INtime
hosts..
The manager includes NtxRemote2.exe, which is required
for a Windows host to communicate with other INtime
hosts.

INtime Registry
service

Automatic A Windows program that provides Windows registry
access to RT processes via the RT application library.

INtime mDNS
service

Manual A Windows program that uses the mDNS protocol to
automatically configure NTX connections.

INtime Debug
service

Manual Manages the console window on behalf of the INtime
system Debug Monitor.

Table 9-1. INtime software’s Windows services

Service

Default
startup setting

Description

Chapter 9: Operation

77

• INtime tools available from the Start>All Programs>INtime software menu include:

Also available from the Start>All Programs>INtime software menu are these resources:

• INtime Help: Describes INtime software concepts and explains how to use INtime
tools. INtime Help includes all system calls, including their syntax which you can
cut and paste directly into your code.

 Note
One or more of these tools are installed, depending on which INtime Environment option you
selected when you installed INtime software.

Table 9-2. INtime software tools

Tool Description
INtime Configuration A Windows program that configures INtime software.
RT Application Loader A Windows program that loads/starts the RT portion of

INtime applications.
Spider Debugger A Windows program that communicates using NTX calls, with

the INtime debug server to provide dynamic source level,
multi-tasking debug capabilities for RT applications.
Note: For detailed information about using Spider, see
Spider Help.

INtime Explorer A Windows program that uses NTX calls to communicate with its
self-loaded RT counterpart to display objects inside an INtime
node.

INscope Real-time
Performance Analyzer

A Windows program that uses NTX calls to communicate with its
self-loaded RT counterpart to trace execution of INtime
applications.

INtime Status Monitor A program that you use to start and stop the kernel, as well as
open the INtime configuration panel.

NTX Connect-Disconnect
utility

A tool that connects dynamic remote nodes.

Remote Maintenance utility A tool that manages files on a remote node. Can also restart the
remote node.

INtime 4.0 Software

78

To access INtime Help, do one of these:

• Within Microsoft Visual Studio: INtime software content is integrated with the
Visual Studio help collections. You can filter Visual Studio’s help to display
only INtime software content by entering the keyword “INtime software”.

• From the Start menu: Select Programs>INtime>Documentation>INtime Help.

• INtime Release Notes: Lists features and issues that arose too late to include in
other documentation.

• Sample Code and Projects: Menu of Visual Studio projects that demonstrate
various aspects of INtime application programming.

• Quick Start Projects: Menu of projects described in the Quick Start Guide.

 Note
You cannot select INtime Help from within Visual Studio 6. You must manually access the
INtime Help file by selecting Start>Programs>INtime>Documentation>INtime Help.

79

10 INtime application
development

This chapter describes how to create INtime applications.

Typically, you develop both Windows and RT source code as shown in this
illustration. The remainder of this chapter details each of these steps.

Debug with
Windows tools

Developing an
INtime application

Develop Windows
source code

Develop RT
source code

Run
INtime wizard

Compile

Figure 10-1. Developing an INtime application

Run Windows
wizard

Edit source

Debug with
RT debugger

Done

Create a project

Prepare for release

INtime 4.0 Software

80

Create a project
To develop RT applications using INtime software, you must have INtime installed on
your system, and a supported version of Microsoft Visual Studio running. For a list of
supported versions, see Requirements on page 63.

Before creating the project, decide how to set it up. Typical structures for INtime
applications include:

• Set up the project as a single solution with the Windows portion as a project and
the RT portion as a project. Use this approach when you want to start your INtime
application in Windows and invoke the RT functions.

• Set up each portion as a solution.

An INtime application typically results in one Windows executable (a .DLL or .EXE
file) and one RT executable (an .RTA file).

Develop Windows source code
To develop the Windows portion of an INtime application, use Microsoft Visual Studio
as you normally would:

1. With Microsoft Visual Studio running, select a standard application wizard. Use the wizard to
build the Windows portion of your INtime application.

2. Use the Microsoft Visual Studio’s editor to edit the generated code and link the application.

3. When editing your Windows source code, use the NTX calls provided with INtime software to
access RT functionality.

4. Debug with the debugger included as part of Microsoft Visual Studio.

Adding the INtime RT Client Browser to your INtime application
The INtime RT Client Browser (INBROW.OCX) is an ActiveX control that you can add
to your INtime applications. Add the browser using the Microsoft Visual Studio menu.
The Node Browser then displays as an available control on the Controls Toolbar. Add
the control to the dialog you desire. For information about including ActiveX controls
in projects, see the Microsoft Visual Studio documentation.

Chapter 10: INtime application development

81

Once in your project, the control offers these functions:

Function Description
GetCurrentName Obtains the name of the item highlighted in the INtime RT Client Browser.
GetCurrentState Obtains the state of the item highlighted in the INtime RT Client Browser. Valid

states include:
0 Not an INtime node
1 ACTIVE
2 OFFLINE
3 CONFIG
4 DISCONNECTED
Where:
ACTIVE RT nodes the browser currently can communicate with.
OFFLINE RT nodes the browser has but cannot currently communicate with.
CONFIG RT nodes the browser has not communicated with. These nodes

may not exist.
DISCONNECTED

RT nodes that are disconnected.
GetMask Indicates which RT nodes display in the INtime RT Client Browser.
SetCurrentName Not supported.
SetCurrentState Not supported.
SetMask For SetMask, the mask is any combination of these flags:

1 Show ACTIVE nodes
2 Show OFFLINE nodes
4 Show CONFIG nodes
8 Do not show LOCAL nodes
16 Do not show Remote nodes
32 Show DISCONNECTED nodes
If not explicitly set, the mask is 0x27, which means ACTIVE, OFFLINE, CONFIG,
DISCONNECTED.

Where:
ACTIVE RT nodes the browser currently can communicate with.
OFFLINE RT nodes the browser has but cannot currently communicate with.
CONFIG RT nodes the browser has not communicated with. These nodes

may not exist.
SetSelected Identifies which INtime RT node to select in the browser window when you

specify a pointer to a string that contains a node name. This function returns
TRUE if the name is valid and selected; otherwise it returns FALSE.

INtime 4.0 Software

82

Develop RT source code
To develop the RT portion of an INtime application, use the INtime wizards available
in Microsoft Visual Studio. The INtime wizards guide you through the decisions
required to develop the RT portion of an INtime application and generate the
corresponding code framework which you fine-tune in the Microsoft Visual
Studio’s editor.

You can select one of these INtime wizards:

• Application wizard: develops the RT portion of RT applications.

• Shared Library wizard: generates code for a Realtime Shared Library.

• RT Static Library wizard: Generates code for a Realtime Static Library.

Running the INtime Application wizard
To create the RT portion of an INtime application:

1. Select what you want to generate:

• An empty project (the wizard simply sets up the correct compiler and linker
settings for you). If you select this option, go to step 4.

• A simple “Hello World” application (the wizard creates a simple source file
and adds it to the project). If you select this option, go to step 4.

• A minimal iwin32 application. The wizard creates a project with one source
file, set up to use iwin32 API calls. If you select this option, go to step 4.

• A full-featured INtime application. If you select this option, continue to the
next step.

2. Add elements to your process:

A. Select one or more elements from the main screen to add to your RT application:

•Mailbox or semaphore server thread

•Thread that operates at a regular interval

•Interrupt handling

•Shared memory allocation

 Note
The RT portion of INtime applications support only source code written in C or C++. They do
not support applications written using MFC and/or ATL.

Chapter 10: INtime application development

83

•Client thread

B. Click the Add element button. That element’s detail screen displays.

C. Specify element parameter values.

D. When satisfied with an element’s settings, click the OK button. The wizard’s main screen
displays again.

3. (Optional) Change the global process settings:

A. Select the -global- option from the main screen.

Note: You must click in the Name column to access this detail screen.

B. Specify global process values.

C. When satisfied with the global settings, click the OK button. The wizard’s main screen
displays again.

Note: If you don’t access this screen now, the wizard prompts you to verify
global settings before generating the process.

4. Generate the process. The wizard creates a project from the settings you specified.

A. Click the Generate Process button. If you did not access the Global Settings screen, the
wizard prompts you to edit or accept the global process settings. The wizard then displays
the New Project Information screen and prompts you to verify the process information.

B. Click the OK button. The wizard creates a process from the settings you specified. A
process may include these files:

•Main file (which has the project name) with a .C or .CPP extension; for
example: TEST.C.

•INtime project file TEST.intp, c project file TEST.vcproj, and solution file
TEST.sln.

•Project header file with a .H extension.

•Utility function file, UTIL.C.

•A C source file with a .C extension for each thread.

•A text file called README.TXT that describes each generated file.

 Note
For detailed information about the fields on these screens, see Help. For information
about accessing help, see Where to get more information on page v.

INtime 4.0 Software

84

Running the INtime process add-in wizard
The INtime Process Add-in wizard can be used only for a project generated by the RT
Process wizard with the C++ and Full-Featured options selected. To start it, select
Tools>TenAsys INtime C++ wizard.

To modify an existing RT process:

1. Add elements to your process:

A. Select one or more elements from the main screen to add to your RT application:

•Mailbox or semaphore server thread

•Thread that operates at a regular interval

•Interrupt handling

•Shared memory allocation

•Client thread

B. Click the Add element button. That element’s detail screen displays

C. Specify element parameter values.

D. When satisfied with an element’s settings, click the OK button. The wizard’s main screen
displays again and a message indicates what the wizard added to that process.

2. When you are satisfied with your additions, click the Close button to exit the wizard.

Running the INtime Shared Library wizard
The INtime Shared Library wizard generates the framework for a Real-time Shared
Library. The code generated illustrates how to export both function and variable names,
and also initializes the project settings to correctly generate an RSL.

The generated files include:

• Main file (which has the project name) with either a .C or a .CPP extension,
depending on which option was chosen, for example TEST.C.

• Project files, for example TEST.intp and TEST.vcproj.

• Project header file, for example TEST.h.

• Utility function file, UTIL.C.

 Note
For detailed information about the fields on these screens, see Help. For information
about accessing help, see Where to get more information on page v.

Chapter 10: INtime application development

85

The main file contains a function RslMain which you can modify, if required. A default
RslMain function is linked if this function is deleted from the source file. For further
details about RSLs, see Help.

Running the INtime Static Library wizard
The INtime Static Library wizard generates a project that builds a static library fit for
linking into INtime projects. After running the wizard, the library is empty. Add files as
necessary. Successfully building a static library project results in a LIB file that can be
linked into other projects.

The difference between a static and a shared library is that code and data from a static
library is added to an executable file at link time, whereas code and data from a shared
library is added only when the executable file loads. With a shared library, the shared
code can be updated without rebuilding the executable file, but use of a shared library
involves some minor overhead.

Compile
Use Microsoft Visual Studio to compile and link the application. The RT portion of
INtime applications requires certain project settings. If you use the INtime wizards to
develop the RT portion of your application, the wizards will set up your project
properly. Settings vary, depending on whether you configured Microsoft Visual Studio
to build a debug or a release version.

To view and verify settings required by INtime software, select Microsoft Visual
Studio’s Build>Settings menu option.

Visual Studio settings vary, depending on the version you use. Go to the appropriate
section to see the settings for your version:

• Visual Studio 2008: continue reading in the next section.

• Visual Studio 2005 (aka Visual Studio 8): go to page 88.

 Note
Only required RT portion settings are listed. You can enter the values you want in fields for which no
setting is listed.

INtime 4.0 Software

86

Visual Studio 2008

General

Debugging

C/C++

Dbg Rel Field Value
X X Use of MFC Use Standard Windows Libraries
X X Use of ATL Not Using ATL
X X Character Set Not Set (Unicode not supported)
X X Common Language Runtime

support
No Common Language Runtime support

Dbg Rel Field Value
X X Debugger Type Auto
X SQL Debugging No

Dbg Rel Category Field Value
X X General Additional Include Directories Must include

%INtime%rt\include
X Debug Information Format Program Database

(recommended for Debug
configuration only)

X X Preprocessor Preprocessor definitions Add VS7_CPP if using C++
X X Ignore Standard Include Files Yes
X X Code Generation Enable C++ Exceptions If Yes, select the Exception

handling C++ libraries
X X Basic Runtime Checks Default
X X Buffer Security Check No
X X Language Enable Run-Time Type Info No

Chapter 10: INtime application development

87

Linker

In the list of object/library modules, the following choices depend on other settings:

1. For C++ projects that use the INtime RT classes, add rtppd.lib for the debug version and
rtpp.lib for the release version.

2. For C++ projects, add ecpp7X.lib, where X is one of these:

null No exceptions, no namespaces.
E Using exceptions, no namespaces.
N No exceptions, using no namespaces.
EN Using exceptions and namespaces.

3. The C runtime library is named ciff3m8.lib.

Dbg Rel Category Field Value
X X General Version 21076.20052
X X Enable Incremental Linking No
X X Additional Library Directories Must include %INtime%rt\lib
X X Input Additional Dependencies rt.lib and a selection of

iwin32.lib, pcibus.lib,
netiff3m.lib, ciff3m.lib,
rmxiff3m.lib, rtpp*.lib
ecpp7*.lib

X X Ignore All Default Libraries Yes
X X System Subsystem: Console
X X Heap Reserve Size 0 (zero) which sets this value to

the maximum pool size (in
bytes)

X X Heap Commit Size 0 (zero) which sets this value to
the minimum pool size (in
bytes)

X X Stack Reserve Size Virtual segment (size in bytes)
X X Stack Commit Size Stack size for the main thread

(in bytes)

INtime 4.0 Software

88

Visual Studio 2005 (aka Visual Studio 8)

General

Debugging

C/C++

1. The C runtime library is named ciff3m.lib.

Dbg Rel Field Value
X X Use of MFC Use Standard Windows Libraries
X X Use of ATL Not Using ATL
X X Minimize CRT Use in ATL No
X X Character Set Not Set (Unicode not supported)
X X Common Language Runtime

support
No Common Language Runtime support

Dbg Rel Field Value
X X Debugger Type Auto
X SQL Debugging No

Dbg Rel Category Field Value
X X General Additional Include Directories Must include

%INtime%rt\include
X Debug Information Format Program Database

(recommended for Debug
configuration only)

X X Preprocessor Preprocessor definitions Add VS7_CPP if using C++
X X Ignore Standard Include Paths Yes
X X Code Generation Enable C++ Exceptions If Yes, select the Exception

handling C++ libraries
X X Buffer Security Check No
X X Basic Runtime Checks Default
X X Language Enable Run-Time Type Info No

Chapter 10: INtime application development

89

Debug
You must debug both portions of your INtime application using the appropriate tools:

• Windows portion: Use standard Windows development tools, including the
Microsoft Visual Studio debugger.

• RT portion: Use Visual Studio debugger or Spider plus the other debug tools
provided with INtime software.

Using the two debuggers, you can simultaneously view and debug on-target
application code in both the Windows and the RT environments.

• Spider (SPIDER.EXE): A Windows-based RT debugger that supports on-target
debugging of RT threads. The Spider debugger fully comprehends the RT
constructs supported by INtime and supports dynamic debugging. Spider can
debug multiple RT threads simultaneously while other threads continue to run.

• System debug monitor (SDM): A command-line interface that provides low-level,
static debugging capabilities.

Dbg Rel Category Field Value
X X General Output filename Should have an .RTA or .RSL

extension
X X Output or General Important: You must add value: /heap:0x100000,0x2000 to set

the memory pool for the process
X X General or Input Ignore all default libraries Enabled (checked)
X X Input or General Additional library path $(INtime)rt\lib
X X Input Object/library modules or

Additional Dependencies
rtpp[d].lib
ecppXY.lib
ciff3m[8].lib
rt.lib
rtserv.lib
pcibus.lib
netiff3m.lib
rmxiff3m.lib

Output
X X Stack

allocations
Reserve
Commit

0x100000
0x2000

X X Version
information

Major
Minor

21076
20052

 Note
For detailed information about using Spider, see Spider’s Help. For detailed information about
using SDM, select Debuggers>Low-level debugger>System Debug Monitor (SDM) in INtime Help.

INtime 4.0 Software

90

• Fault Manager: This application pops up a dialog when a hardware fault is
detected on the INtime kernel. The user may then choose one from a list of actions
to handle the fault condition.

• INtime Explorer (INtex): A Windows-based RT object browser. The INtex program,
through its self-loaded RT counterpart, can show the state of all RT processes,
threads, and objects. It can also create a crash report when a thread in a process has
had a hardware exception (crash analysis).

• INscope: The INScope Real-time Performance Analyzer is a Windows application
that allows you to trace execution of INtime applications. Trace information for
thread switches, system calls, and interrupt handling is displayed in a graphical
user interface with various tools available to allow system analysis.

Debugging tips

Performance monitor

To view CPU usage in both the Windows and RT kernels, you can run the Windows
Performance monitor. Viewing CPU activity provides the feedback you need to
determine if you divided labor appropriately between Windows processes and RT
processes. For more information about designing your INtime applications, see
Chapter Chapter 5, “Designing RT applications”.

To view Windows and RT kernel activity in the Windows Performance Monitor:

1. Open the Performance Monitor by selecting this option from the Start menu:

Control Panel>Administrative Tools>Performance>System Monitor

2. Open a chart by selecting the File menu’s New Chart option.

3. Identify the performance metrics you want to view by choosing the Edit menu’s Add to Chart
option, then select these options:

You can now run your INtime application and observe the CPU usage of both the
Windows and RT kernels. When viewing the CPU usage, keep in mind that the
Performance Monitor displays total CPU usage which includes more than the activity

Object Counter Purpose
Processor % Processor time Displays the percent of time devoted to

Windows work.
INtime RT kernel RT Kernel CPU usage (%) Displays the percent of time devoted to

RT work.
NTX Outstanding Requests Displays the number of NTX requests

awaiting completion
NTX Requests per second Displays the number of NTX requests started

each second

Chapter 10: INtime application development

91

generated by an INtime application. Each counter has a separate instance for each local
INtime node, or you can select the total for all local nodes.

The NTX counters indicate how busy the Windows to INtime interface is. The
outstanding requests counter shows how full the NTX queue is. The size of the queue
may be adjusted in the System Wide configuration in the Node Manager, by changing
the value of Max Concurrent NTX Requests.

Status messages

When the RT kernel is running, a protection fault which occurs in the RT portion of an
INtime application is handled by the default system hardware exception handler
which suspends the faulting thread. Such threads display in the INtime Explorer with
the state ‘suspended because of an exception’. For threads in this state, the CPU
frame displays the thread’s CPU context when the hardware fault occurred, including
the CS:EIP address of the faulting instruction.

The error code indicates the fault encountered as follows:

If a debugger is running when the fault occurs, the debugger traps the fault and allows
you to debug or delete the offending program.

Fault Code Description
EH_ZERO_DIVIDE 0x8100 Divide by Zero error
EH_SINGLE_STEP 0x8101 Single Step
EH_NMI 0x8102 NMI
EH_DEBUG_TRAP 0x8103 Debug Interrupt (Ignored by handler)
EH_OVERFLOW 0x8104 Overflow error
EH_ARRAY_BOUNDS 0x8105 Array Bounds error
EH_INVALID_OPCODE 0x8106 Invalid Opcode error
EH_DEVICE_NOT_PRESENT 0x8107 NPX device not present
EH_DOUBLE_FAULT 0x8108 Double Fault error
EH_DEVICE_ERROR 0x8109 NPX device error
EH_INVALID_TSS 0x810A Invalid TSS error
EH_SEGMENT_NOT_PRESENT 0x810B Segment Not Present error
EH_STACK_FAULT 0x810C Stack Fault
EH_GENERAL_PROTECTION 0x810D General Protection Fault
EH_PAGE_FAULT 0x810E Page Fault

INtime 4.0 Software

92

Prepare for release

Before you begin
• On the target system, ensure that you are logged on with Administrator privileges.

• Exit all programs prior to installing INtime software.

• If your system has a previously installed version of INtime software, remove it
using the Add/Remove Programs Applet in the System Control Panel (select:
Start>Control Panel>Add/Remove Programs. Highlight INtime 3.1 (or earlier)
program, and then click Remove). Make sure none of the INtime services are
running. If they are running, ensure they are set to Manual Start (using the
Start>Control Panel>Administrative User/Services applet) and reboot the system
before you can successfully complete the uninstall operation.

Using launch-rt.exe
To install INtime runtime software:

1. Start the launch-rt.exe program by double-clicking it. You can find launch-rt.exe in the
redistribution folder of the CD-ROM, or in the most recent launch-rt.exe installer obtained
form TenAsys.

If the Installation program detects a previous version of INtime software, it
prompts you to exit the installation and uninstall the previous version.

After the prerequisites have been satisfied the launch program will launch
runtime400.exe and exit.

2. Review the INtime License and note its terms and conditions.

3. Select a destination directory for the INtime software files, then click the Next button. The
default is %PROGRAMFILES%\INtime.

4. Click the Next button to install the software.

The runtime400.exe program creates the directory you specified, then installs the
INtime software files.

5. Click the Finish button to complete the installation process.

6. Restart your system using one of these methods:

• Select OK at the last screen. The runtime400.exe program restarts your system.

Chapter 10: INtime application development

93

• Restart your system at a later time. You must restart your system before
running INtime software.

Sample INtime applications
INtime software includes a number of sample applications that you can use as samples
for your own INtime applications. The source code for these applications are provided
in the following Visual Studio project formats:

• Visual Studio 2005

• Visual Studio 2008

The files reside in separate directories per demo. For instance, the INtime API test
program source files reside in the following directory:

My Documents\INtime\Projects\rttest

You can open the projects for these applications from the
Start>All Programs>INtime>Sample Code and Projects menu.

 Note
The runtime400.exe executable installs those portions of INtime software that you can
include in your derivative works. Use of runtime400.exe is governed by the INtime
Software Redistribution License Agreement you must enter into in order to include INtime
Software in your product.
For information about obtaining a Software Redistribution License and on the associated
per unit royalty due to TenAsys Corporation for use of the INtime software in your product,
contact sales@tenasys.com.

 Note
If the user account that will use INtime on this computer is not an administrator, you must add the
user to the system’s INtime Users Group.

 Note
• Sample applications are installed only in the My Documents folder of the user that

installed INtime.
• Sample program cannot run until you compile them.

http://sales@tenasys.com

INtime 4.0 Software

94

EventMsg DLL Project
This DLL allows you to customize event messages.

INtime API Sample
This test application exercises most INtime software system calls.

Serial Communications Sample
This project demonstrates how to use the INtime Serial Communications library. The
library and accompanying drivers allows the user to access serial devices such as the
COM PC ports, RocketPort multi-channel PCI devices, and Edgeport multi-channel
USB devices.

The driver (C:\Program Files\INtime\Projects\serialio\debug\serdrvr.rta) operates as
an INtime service that manages a serial device attached to COM1 or COM2 on an
INtime system. The demo (C:\Program Files\INtime\Projects\
serialio\debug\serialio.rta) uses an INtime Message Port to obtain read/write access to
the COMn channel managed by the Serdrvr.rta service. Both components are provided
in source and binary form. For more information, see the README.TXT file in the
source code directory for this sample application.

Graphical Jitter
This application measures the minimum, maximum, and average times between
low-level ticks via an Alarm Event Handler. Because this application is made from both
an RT and a Windows executable, it shows both INtime and INtimeDotNet API usage.

INtime Graphical Jitter includes these executables:

• Jitter.exe: The Windows executable. Automatically starts Clk1Jitr.rta, then
processes output and displays a histogram.

Item Source
Pathname My Documents\INtime\Projects\eventmsg
Runtime
requirements

The EventMsg Project builds the EventMsg.DLL file properly only if you first build
the project under release mode from within the Microsoft Visual Studio. After
building the project under release mode, you may then build the project under
debug mode.

Item Source
Pathname My Documents\INtime\Projects\rttest

Item Source
Pathname My Documents\INtime\Projects\commsamp

Chapter 10: INtime application development

95

• Clk1Jitr.rta: The RT executable. Started by Jitter.exe.

Real-time Interrupt Sample
This application tests the INtime RT Interrupt system calls using the Transmitter Ready
interrupt from COM1.

The INtime RT Interrupt API Test takes over COM1 and toggles its Transmitter Ready
Interrupt. When the test ends, COM1 is disabled. Make sure COM1 is available on your
system before running this test application. When you run the test, continuous activity
occurs on the RT side, preempting Windows activity for eight 10-second time periods.

C and C++ Samples for Debugger
These simple C and C++ programs are provided as a vehicle to demonstrate the Spider
debugger’s capabilities. The C++ program also demonstrates several components of the
C++ language available to RT applications, as well as basic classes, dynamic
instantiation, operator overloading, and so on. It also shows the libraries and startup
modules needed.

TCP Sample Applications
Sample project that demonstrate TCP communications between a client and server.
Client and server code is provided for INtime, and server code for Windows.

Item Source
Pathname My Documents\INtime\Projects\jittercs
Invocation Invoke the Windows jitter.exe program.

Item Source
Pathname My Documents\INtime\Projects\inttest

Item Source
Pathname My Documents\INtime\Projects\csamp (C program)

My Documents\INtime\Projects\cppsamp (C++ program)

Item Source
Pathname My Documents\INtime\Projects\tcpsample
Invocation See the ReadMe.txt file in the source code directory.

INtime 4.0 Software

96

UDP Sample Applications
Sample project that demonstrate a UDP ping-pong type application. Datagram
packets are exchanged between INtime and Windows with an incrementing identifier
in the payload.

INtimeDotNet Sample Applications
Sample INtimeDotNet applications that demonstrate NTX communication via the
INtime DotNet assembly.

Fault Handling (ntrobust)
This INtime application has both a Windows and an RT portion. The Windows portion
allows the user to set up timing parameters that control how often a thread in the RT
portion causes a hardware fault. The application demonstrates how another RT thread
can detect and log the failure, delete the offending thread, and recreate it, all without
affecting Windows or other RT processes.

Floating Point Exception Handling
This simple program demonstrates floating point exception handling.

Item Source
Pathname My Documents\INtime\Projects\Projects\udpsample
Invocation See the ReadMe.txt file in the source code directory.

Item Source
Pathname My Documents\INtime\Projects\INtimeDotNetSample
Invocation See the ReadMe.txt file in the source code directory.

Item Source
Pathname My Documents\INtime\Projects\NtRobust

My Documents\INtime\Projects\NtRobust\RtRobust\
Invocation See the ReadMe.txt file in the source code directory.

Item Source
Pathname My Documents\INtime\Projects\FpExcep
Invocation See the ReadMe.txt file in the source code directory.

Chapter 10: INtime application development

97

RSL Examples
These RT programs demonstrate the creation and use of RT Shared Libraries, the RT
analog for Windows DLLs.

NTX Sample (MsgBoxDemo)
This INtime application has both a Windows and a RT portion. The Windows portion
looks up an RT mailbox created by the RT portion, and then waits at the mailbox.
When an RT thread sends a message to the mailbox, the Windows portion displays the
received data in a message box on the Windows side. RT semaphore and RT shared
memory usage are also demonstrated.

Windows STOP Detection sample (STOPmgr)
This sample application shows how an INtime application can detect either a
Windows Crash (blue screen) or Windows Shutdown event and prevent Windows from
completing its normal actions until the RT application has had a chance to do a
“graceful” shutdown.

USB Client sample
This sample application demonstrates how to use the INtime USB subsystem. It
monitors a USB keyboard and prints a dump of each keystroke as it occurs.

Item Source
Pathname My Documents\INtime\Projects\RslTest
Invocation See the ReadMe.txt file in the source code directory.

Item Source
Pathname My Documents\INtime\Projects\MsgBoxDemo

My Documents\INtime\Projects\MsgBoxDemo\RtMsgBox
Invocation See the ReadMe.txt file in the source code directory.

Item Source
Pathname My Documents\INtime\Projects\stopmgr

Item Source
Pathname My Documents\INtime\Projects\usbsample

INtime 4.0 Software

98

Global Objects sample project
This project illustrates some aspects of the Global Objects feature of INtime.

High-Performance Ethernet (HPE) sample project

This project illustrates the use of the HPE drivers included with INtime.

PCAP Sample application
This project illustrates the use of the PCAP library to filter specific Ethernet packets
from the network stack.

Item Source
Pathname My Documents\INtime\Projects\globsample

Item Source
Pathname My Documents\INtime\Projects\hpeif2

Item Source
Pathname My Documents\INtime\Projects\nicio

99

III Appendices

The appendices include:

Appendix A: INtime software system calls

Lists and describes system calls that threads in the RT portion of INtime applications
use to communicate with each other and with Windows threads. You can find detailed
information, including syntax and parameter values, in Help.

Appendix B: The iwin32 subsystem

Describes the iwin32 subsystem, which provides a Win32 API for the INtime kernel.
It is a parallel API to the INtime API that makes porting of existing Win32
applications easier.

Appendix C: INtime directory structure

Describes the INtime directory structure.

Appendix D: INtime software components

Lists and describes INtime software program files.

Appendix E: Visual Studio debugging for older INtime projects

Describes how existing INtime projects may be upgraded to use the Visual Studio .NET
product and its debugger.

Appendix F: Adding INtime software to an XP Embedded configuration

Lists and describes how to add INtime components to a Windows XP embedded
development environment so that XP Embedded images can be produced that include
these INtime components.

Appendix G: Troubleshooting

Lists problems you may encounter while running INtime software, and explains how to
avoid or resolve those problems.

INtime 4.0 Software

100

101

A INtime software
system calls

This appendix lists and describes INtime software system calls. Use this appendix to
identify the system calls you want to use for each RT kernel exchange object. The calls
are arranged first by system call types, and then by objects available to that object type:
NTX, high-, or low-level. Other calls are listed at the end of the appendix.

 Note
For detailed information about system calls, including syntax and parameter values, refer to Help.
For more information about accessing Help, see Where to get more information on page page v

Object Page
System call types .. 102
RT system calls ... 105

Distributed System Management (DSM).. 105
Exception handling .. 106
Global objects .. 106
Interrupts.. 107
Mailboxes ... 108
Memory management ... 109
Object directories... 111
Ports ...112
Processes ... 114
Regions... 114
Scheduler ... 115
Semaphores... 115
Status ... 116
System data ... 117
Threads... 117
Time management... 118

Heaps and memory pools ..120
High-performance gigabit Ethernet ...123
INscope calls... 124
Network stack ... 124
PCI library calls ... 124
Real-time shared library (RSL) calls ..125
Registry calls ...125
RT services and device drivers ..126
Serial Communications (COMM) ...128
TCP/IP system calls ..130
USB calls ...130
INtimeDotNet calls.. 131
Input/Output Calls ..133

INtime 4.0 Software

102

System call types
Several types of calls exist, and each kernel exchange object has calls of one or more
type associated with it:

• Windows eXtension (NTX) calls: Windows uses these calls to communicate with
the INtime kernel. NTX calls allow Windows applications to operate on objects
created by, stored in, and controlled by the RT kernel.

• Real-time (RT) calls: The RT kernel uses these calls to run the RT portion of
INtime applications and communicate with Windows. INtime software provides
two levels of system calls for RT kernel exchange objects:

• High-level (validating) calls: Write, test, and debug your application using
high-level calls with their protection and validation features.

• Low-level (non-validating) calls: Use low-level calls where there is no other
choice, such as with AlarmEvents and where a semaphore or a mailbox must
be used with an interrupt handler.

• RT services: INtime real-time applications (RTAs) which process messages from a
user and events from an interface, and the service handlers required to perform
service-dependent functions of the system calls.

RT kernel objects provide these RT call levels:

Object NTX High-level Low-level
Distributed System Management (DSM) X X
Exception handling X
Global objects X
Interrupts X
Mailboxes X X X
Memory management X X
Object directories X X
Ports X X
Processes X X
Regions X
Scheduler X
Semaphores X X X
Status X X
System data X
Threads X
Time management X
RT service handlers X

Appendix A: INtime software system calls

103

Regarding INtime software system calls:

• System call names correspond to related Windows functions, where appropriate.
Where it is confusing to associate the function of an INtime software object with a
Windows object, the names reflect the difference.

For example, no Windows object corresponds closely to an INtime software region,
so these are left as regions. On the other hand, INtime software alarms are
encapsulated as an object which somewhat correspond to a specialized Windows
event object, so this is called AlarmEvent. It does not, however, perform all the
same functions as a Windows event.

• To avoid confusion with similarly-named Windows calls, INtime software system
call names usually include the letters ‘Rt’.

• RT kernel objects and the kernel interface which differ substantially from
corresponding items in the other INtime software layers, include a ‘kn’ prefix to
indicate calls that map to low-level RT kernel functions and deal with low-level
kernel objects.

NTX calls
NTX calls allow Windows applications to operate on objects created by, stored in, and
controlled by the RT kernel. This allows Windows and INtime applications to
communicate and coordinate their activities.

Handle conversion

The NTX DLL converts in transit NTXHANDLES sent to the RT kernel to RTHANDLES,
and vice-versa. This is necessary as the RT kernel cannot operate on NTXHANDLES
and NTX can’t operate on RTHANDLES.

If a handle passes from RT to Windows in data, ntxImportRtHandle must convert it.
Object directories and object mailboxes are converted automatically.

Figure A-1. Converting NTXHANDLES to RTHANDLES

Windows

NTX

RT
kernel

INtime 4.0 Software

104

RT calls
You use these calls when developing the real-time portion of an INtime application.

High-level (validating) calls

High-level calls provide higher protection and validation features. Memory is allocated
automatically from the process’s pool. Each high level object consumes a slot from the
system GDT (8000 objects maximum)

High-level system calls validate a call’s parameters; a condition code returned by the
call indicates whether you used invalid parameters. Condition codes for trying to read
or write memory to which you have no access also exist.

High-level exchange objects validate parameters and are protected against unexpected
deletion. High-level calls exist for these exchange objects:

• Object and data mailboxes

• Counting semaphores

• Regions (for mutual exclusion with priority inversion protection)

Low-level (non-validating) calls

Low-level calls provide higher performance, but lower protection and validation
features. Low-level objects provide functionality beyond that of high-level objects.

You must allocate memory for low-level objects and may allocate memory beyond low-
level object needs. You can use this additional memory to store application-specific
state information associated with the object.

Low-level objects are not protected against unexpected deletion and do not validate
parameters (if you need parameter validation, use high-level system calls). Low-level
calls use the flat, 4 Gbyte addressing capabilities of the microprocessor. They do not
use segmentation. Therefore, they do not consume a slot from the system GDT.

Use low-level objects in these situations:

• For isolated parts of the application, such as signaling ordinary threads from an
interrupt handler.

• When performance is critical, such as high-performance, unvalidated sending and
receiving of data mailbox messages and semaphore units.

 Note
System calls that manipulate low-level objects assume that all memory reference pointers
received are valid.

Appendix A: INtime software system calls

105

Low-level calls exist for these exchange objects:

• Data mailboxes

• Single-unit semaphores

• Region semaphores (with priority inversion protection)

• Software alarm events (virtual timers) that invoke alarm event threads that you
write.

RT services
Real-time services include:

• RT service calls: An INtime real-time application (RTA) which processes messages
from a user and events from an interface. A service is defined by the set of
messages and the actions provoked by those messages. Each interface is associated
with a service descriptor.

• RT service handlers: Subroutines invoked by the kernel to perform service-
dependent functions of the system calls.

RT system calls

Distributed System Management (DSM)

NTX calls

High-level calls

System call Description
ntxRegisterDependency Registers a dependency
ntxUnregisterDependency Unregisters a dependency
ntxRegisterSponsor Registers a sponsor
ntxUnregisterSponsor Unregisters a sponsor
ntxNotifyEvent Notifies of an event

System call Description
RegisterRtDependency Registers a dependency
UnregisterRtDependency Unregisters a dependency
RegisterRtSponsor Registers a sponsor
UnregisterRtSponsor Unregisters a sponsor
RtNotifyEvent Notifies of an event

INtime 4.0 Software

106

Exception handling

High-level calls

Global objects
Global object calls allow real-time processes to interact even when resident on
different instances of the real-time kernel. The functionality is broadly similar to that
provided to Windows applications by the NTX protocol, with enhancements to take
into consideration issues of thread priority and multiple client access.

System call Description
SetRtExceptionHandler Assigns an exception handler and exception mode or changes

the current mode for any of the following:
• Current thread exception handler
• Current process exception handler
• System-wide exception handler

GetRtExceptionHandlerInfo The GetRtExceptionHandlerInfo function returns the address
and exception-handling mode for any of the following:
• Current thread’s exception handler
• Current process’ exception handler
• System-wide exception handler
• System-wide hardware exception handler (trap handler)

System call Description
GetFirstRtLocation
GetNextRtLocation

Returns the first or next LOCATION handle from the local
location table.

GetRtNodeLocationByName Returns a LOCATION for the given name.
GetRtNodeStatus Returns a status value indicating the operational state of the

target node.
GetRtNodeInfo Returns information about a node given its location.
GetGlobalRootRtProcess Returns a handle for a reference to the target node’s

root process.
CreateRtReferenceObject Creates a reference object from a LOCATION and an RTHANDLE

for a valid object on the node indicated by the LOCATION value
and returns a RTHANDLE for the reference object.

DeleteRtReferenceObject Deletes a reference object.
GetRtObjectInfo Returns information about a reference object and its

referenced object.
CreateGlobalRtSemaphore Creates a semaphore on a remote node indicated by the

LOCATION parameter.

Appendix A: INtime software system calls

107

Interrupts
This group provides the system calls required to manage interrupts. Interrupt requests
are encoded to indicate their source; the resulting coding is called the interrupt level.
This encoded interrupt level is required in a number of the system calls in this group.
Macros are provided in the header files for the 15 standard PC interrupt levels,
IRQ0_LEVEL to IRQ15_LEVEL.

High-level calls

CreateGlobalRtMailbox Creates a mailbox on a remote node indicated by the
LOCATION parameter.

CreateGlobalRtMemoryObject Creates a memory area on a remote node indicated by the
LOCATION parameter and returns a handle to a reference object
for that area.

CreateGlobalRtMemoryHandle Creates a handle for a physical memory area on a remote node
indicated by the LOCATION parameter, and on the same host as
the caller, and returns a handle to a reference object for
that handle.

System call Description

System call Description
SetRtInterruptHandler
SetRtInterruptHandlerEx

Assigns an interrupt handler to the specified interrupt level,
and optionally makes the calling thread the interrupt thread for
that level.

ResetRtInterruptHandler Cancels the assignment of the current interrupt handler to the
specified level and disables the level.

EnterRtInterrupt Allows the interrupt handler to have access to static data
belonging to the RT process which owns the handler. This
function is called from an interrupt handler.

GetRtInterruptLevel Returns to the calling thread the highest (numerically lowest)
level that an interrupt handler has started servicing but has not
yet finished.

SignalRtInterruptThread Sends an EOI signal to the interrupt hardware then schedules
the interrupt thread associated with the specified level. This
function is called from an interrupt handler.

SignalEndOfRtInterrupt Sends an EOI signal to the interrupt hardware. This function is
called from an interrupt handler.

WaitForRtInterrupt Used by an interrupt thread to signal its readiness to service an
interrupt. It blocks for the given number of milliseconds.

DisableRtInterrupt Disables the specified interrupt level. It has no effect on
other levels.

EnableRtInterrupt Enables a specific interrupt level which must have an interrupt
handler assigned to it.

INtime 4.0 Software

108

Mailboxes
These calls manage various RT kernel mailbox object types.

INtime software includes two kinds of RT mailboxes:

• Object mailboxes manage RTHANDLES.

• Data mailboxes manage short sections of arbitrary data.

NTX calls

High-level calls

Low-level calls

System call Description
ntxCreateRtMailbox Creates an RT mailbox.
ntxDeleteRtMailbox Deletes an RT mailbox.
ntxReceiveRtHandle Receives RTHANDLES from an object mailbox.
ntxSendRtHandle Sends RTHANDLES to an object mailbox.
ntxSendRtData Copies arbitrary data to a data mailbox (up to 128 bytes).
ntxReceiveRtData Copies arbitrary data out of a data mailbox (up to 128 bytes).

System call Description
CreateRtMailbox Creates a new mailbox and returns an RTHANDLE for the object.

The mailbox type is determined by the flags parameter.
DeleteRtMailbox Deletes the mailbox specified by the RTHANDLE given.
SendRtHandle Sends an RT object RTHANDLE to a mailbox which has been

created to pass RT objects.
ReceiveRtHandle Receives an RTHANDLE from an object mailbox.
SendRtData Copies arbitrary data to a data mailbox (up to 128 bytes).
ReceiveRtData Copies arbitrary data out of a data mailbox (up to 128 bytes).

System call Description
knCreateRtMailbox Creates a kernel mailbox with the given specifications.
knDeleteRtMailbox Deletes the kernel mailbox associated with the given kernel

handle.
knSendRtData Sends a data message to the given kernel mailbox.
knSendRtPriorityData Sends high-priority data to a kernel mailbox, bypassing the

queue.
knWaitForRtData Requests a message from a specific kernel mailbox.

Appendix A: INtime software system calls

109

Memory management
The Windows and RT portions of INtime applications can share regions of memory
created by the RT portion of INtime applications.

These system calls implement the flat-model memory management interface for RT
applications. There are additional calls for the management of page-aligned segments
for sharing between applications (both RT and Windows applications). Also included
are the calls that an application requires to allocate memory from its own virtual
segment.

Physical memory may be allocated and mapped into an application’s virtual segment
and then an RTHANDLE created for this allocated memory so that it may be shared
between applications (both RT and Windows applications)

NTX calls

High-level calls

System call Description
ntxMapRtSharedMemory
ntxMapRtSharedMemoryEx

Obtains a Windows pointer to the section of RT memory defined
by the call’s SharedRTMemoryHandle parameter.

ntxGetRtSize Determines the size of the call’s RT object parameter
ntxUnmapRtSharedMemory Removes the mapping of a RT memory section and returns

Windows system resources mapped to that memory.
ntxCopyRtData Copies data directly to/from Windows application space

from/to an RT memory object.

System call Description
AllocateRtMemory Allocates memory from the current process’s memory pool to

the current thread’s virtual segment.
FreeRtMemory Frees physical memory associated with the calling thread’s

virtual segment.
CreateRtMemoryHandle Creates a handle for an area of memory in the process’s virtual

segment.
DeleteRtMemoryHandle Deletes a memory handle created with

CreateRtMemoryHandle.
MapRtSharedMemory Maps a memory area, previously created by another process

using CreateRtMemoryHandle, into the current thread’s
memory space.

MapRtPhysicalMemory Maps a physical memory area, defined by its absolute address
and contiguous length before any translation imposed by the
paging system, into the current process’ virtual segment.

GetRtPhysicalAddress Returns the physical address for a valid buffer described by the
call parameters.

INtime 4.0 Software

110

GetRtSize Returns the number of bytes in a previously allocated segment.
CreateRtHeap Creates a heap object by allocating a segment of cbHeapSize

bytes (plus overhead) and creating the heap structure in this
segment.

DeleteRtHeap Deletes a heap object, given its handle. Any flat-model
mappings are deleted.

RequestRtBuffer Allocates a memory buffer from a heap object and returns a
pointer to the caller.

ReleaseRtBuffer Returns a previously-allocated buffer to its heap.
GetRtHeapInfo Returns a structure containing information about a heap object.
GetRtBufferSize Returns the allocated size of a buffer previously allocated from

a heap.
CopyRtData Copies data directly between RT memory objects.

System call Description

Appendix A: INtime software system calls

111

Object directories
The object directory provides a rendezvous mechanism between RT threads or between
an RT thread and a Windows thread in an INtime application. An RT or Windows
process can catalog objects it wants to share. Other processes can wait for an object to
be cataloged.

These system calls manage RT object directories. Objects may be cataloged, looked up,
and uncataloged. The default directory is the one for the current process. Handles for
the other processes may be obtained using the GetRtThreadHandles call. Catalog names
may be up to 12 characters long and are case-sensitive.

NTX calls

High-level calls

System call Description
ntxLookupNtxHandle Looks up a name-to-handle association. Given a name, an RT or

Windows application can look up the handle associated with it.
ntxImportRtHandle Obtains an NTXHANDLE corresponding to an RTHANDLE.
ntxCatalogRtHandle Creates a name-to-handle association in the object directory of

the RT process specified in the call.
ntxUncatalogRtHandle Removes the name-to-handle association in the object directory

of the RT process specified in the call.
ntxGetRootRtProcess Obtains the root RT process handle for the NTX location

specified in the call.
ntxGetType Checks the RT object’s type.

System call Description
CatalogRtHandle Creates a name-to-handle association in the object directory of

the RT process specified in the call.
LookupRtHandle Searches the given process’ object directory for a given name

and returns the object handle, if found.
UncatalogRtHandle Removes an entry from a process’ object directory.
InspectRtProcessDirectory Returns the contents of a process’ object directory.
GetRtHandleType
GetRtHandleTypeEx

Returns a value indicating the type of an RT object. The handle
must be for a valid RT object.

INtime 4.0 Software

112

Ports

NTX calls

Service support

System call Description
ntxBindRtPort Binds an address to a port.
ntxCreateRtPort Creates a port for access to an RT service module.
ntxDeleteRtPort Destroys an RT port created by a Windows process.
ntxConnectRtPort Creates a connection between one local port identified by a

handle, and another port identified by an address.
ntxAttachRtPort Forwards messages from one port to another on the same

service.
ntxDetachRtPort Stops forwarding messages from the specified port.
ntxGetRtPortAttributes Obtains information about the specified port.
ntxSendRtMessage Sends a message from a port to a service.
ntxSendRtMessageRSVP Sends the request part of an RSVP transaction.
ntxCancelRtTransaction Cancels an RSVP message transmission in progress, or the

status reporting phase of an asynchronous send operation.
ntxReceiveRtMessage Receives a message at a port.
ntxReceiveRtReply Receives the reply phase of an RSVP transaction.
ntxGetRtServiceAttributes Allows the caller to receive parameters from the service.
ntxSetRtServiceAttributes Allows the caller to specify run-time parameters for the service.
ntxRequestRtBuffer Allocates a memory buffer from the heap object associated with

a port connected to a service, and returns a pointer to the
Windows mapping of the buffer.

ntxReleaseRtBuffer Returns memory to the heap object from which it was taken.

System call Description
InstallRtServiceDescriptor Adds a service to the operating system by linking the service

descriptor to the service descriptor list.
UninstallRtServiceDescriptor Removes a service from the operating system by unlinking the

service descriptor from the service descriptor list.
GetRtServiceAttributes Interrogates certain attributes of the interface controlled by the

service.
SetRtServiceAttributes Sets or changes some attributes of the interface controlled by

the service.

Appendix A: INtime software system calls

113

Port object management

Message transmission

System call Description
AttachRtHeap Makes a heap’s memory resources available to one or more

message port objects.
AttachRtPort Enables an application to monitor several ports simultaneously.
BindRtPort Binds an address to a port.
ConnectRtPort Creates a connection between a local port and a remote port.
CreateRtPort
CreateRtPortEx

Creates a message port for access to a given service.

DeleteRtPort Deletes a port object. Any messages queued at the port are
discarded and, if the port is forwarded, forwarding is severed.

DetachRtHeap Ends the association between a heap object and a
message port.

DetachRtPort Ends message forwarding from the specified message port.
GetRtPortAttributes Returns a structure giving information about the port object

indicated by the supplied handle.

System call Description
SendRtMessage Sends a data message from a port to a service.
SendRtMessageRSVP Sends the request phase of a transaction and allocates a

storage for the response part of the transaction.
SendRtReply Sends a response message to an earlier receive

SendRtMessageRSVP message.
CancelRtTransaction Performs synchronous cancellation of RSVP message

transmission.
ReceiveRtMessage Receives a message at a port.
ReceiveRtReply Receives a reply message to an earlier RSVP transmission. The

port cannot be a sink port.
ReceiveRtFragment Receives a fragment of an RSVP data message request.

INtime 4.0 Software

114

Processes

NTX calls

High-level calls

Regions

High-level calls

System call Description
ntxCreateRtProcess Creates a process.
ntxRegisterDependency Creates a dependency relationship between the calling process

and the specified sponsor.
ntxUnregisterDependency Removes the dependency relationship between the calling

process and the specified sponsor.
ntxRegisterSponsor Registers the calling process as a Sponsor with the given name.
ntxUnregisterSponsor Removes the current sponsor name from the active sponsor

state.
ntxNotifyEvent Blocks until one of the desired notifications has been received.

System call Description
DeleteRtProcess Deletes the current process.
ExitRtProcess Deletes the current process, all of the process' threads, and all

objects created by the threads.
RegisterRtDependency Looks up the name in the sponsor list and creates a dependency

relationship to that sponsor process.
UnregisterRtDependency Removes the dependency relationship from the database between

the RT process and the Windows sponsor registered with the given
name.

RegisterRtSponsor Allows the RT process to register as a sponsor under the given
name.

UnregisterRtSponsor Removes the RT process registered as a sponsor from the
database.

System call Description
CreateRtRegion Creates a region object.
DeleteRtRegion Deletes a region object.

Appendix A: INtime software system calls

115

Scheduler

Low-level calls

Semaphores
Semaphores contain units. These system calls deal with semaphore objects and the
units associated with them.

RT semaphores differ from Windows semaphore objects in these respects:

• Choice of FIFO or priority queuing.

• A thread may wait for multiple units from a semaphore.

• Multiple-object waiting is not supported.

• High-level semaphores differ from the low-level semaphores in the following
respects:

• High-level semaphores have parameter validation.

• Multiple units may be sent to and received from high-level semaphores.

• High-level semaphore may be created with any initial count other than one or
zero (low-level semaphores may be created only with zero or one unit).

• Low-level handles may not be cataloged.

AcceptRtControl Receives ownership of a region object only if it is
immediately available.

WaitForRtControl Gains ownership of a region. This function blocks until the
current owner gives up the region.

ReleaseRtControl Releases this thread’s most recently obtained region object.

System call Description

System call Description
knRtSleep Puts the calling thread to sleep for the specified number of

kernel ticks.
knStartRtScheduler Cancels one scheduling lock imposed by the

knStopRtScheduler function.
knStopRtScheduler Temporarily locks the scheduling mechanism or places an

additional lock on the mechanism for the running thread.

INtime 4.0 Software

116

NTX calls

High-level calls

Low-level calls

Status

NTX calls

System call Description
ntxCreateRtSemaphore Creates an RT semaphore.
ntxDeleteRtSemaphore Deletes an RT semaphore.
ntxWaitForRtSemaphore Waits for and removes units from an RT semaphore.
ntxReleaseRtSemaphore Adds units to an RT semaphore.

System call Description
CreateRtSemaphore Creates a semaphore with the given initial and maximum

number of units.
DeleteRtSemaphore Deletes a semaphore.
WaitForRtSemaphore Waits for and removes a specified number of units from a

semaphore.
ReleaseRtSemaphore Sends a given number of units to a semaphore.

System call Description
knCreateRtSemaphore Creates 1 of 3 kinds of kernel semaphores with 0 or 1 initial units.
knDeleteRtSemaphore Deletes a kernel semaphore.
knWaitForRtSemaphore Waits for and removes a unit from the specified kernel semaphore.
knReleaseRtSemaphore Sends a single unit to a specified kernel semaphore.

System call Description
ntxGetLastRtError Returns the status code of the last failing NTX call made in this

Windows thread.
ntxGetRtErrorName Returns a pointer to a constant string.
ntxLoadRtErrorString Copies a short sentence (no punctuation) that describes

"Status" into the buffer at lpBuffer.
ntxGetRtStatus Verifies whether the RT kernel is currently running.

Appendix A: INtime software system calls

117

High-level calls

System data

NTX calls

Threads

High-level calls

System call Description
GetLastRtError Returns the status code of the last failing RT system call made

by this RT thread.
SetLastRtError Sets the calling thread’s last error field.
CopyRtSystemInfo Copies the contents of the RQSYSINFO segment, cataloged in

the root process, into the SYSINFO structure.
ReportRtEvent Collects log data in the same format as the Windows

ReportEvent function, and passes it to the INtime Event Log
Service for logging in the Windows Event Log.

System call Description
ntxGetLocationByName Gets a handle to a specified location.
ntxGetFirstLocation Returns a handle to the first known location.
ntxGetNextLocation Gets the handle that follows the one return by the last

location call.
ntxGetNameOfLocation Gets the name NTX uses for a handle.
ntxFindINtimeNode Invokes the INtime RT Client Browser to allow target INtime

node selection.

System call Description
CreateRtThread Creates a thread to execute within the context of the

calling process.
DeleteRtThread Deletes a thread referenced by the given handle.
GetRtThreadAccounting Returns information about when a thread was created and the

amount of time the thread has run.
GetRtThreadHandles Returns a handle for either the calling thread, the calling

thread's process, the parameter object of the calling thread's
process, the root process, or the parent process of the calling
thread's process, depending on the encoded request.

GetRtThreadInfo Returns information about a thread, including such items as
priority, exception handler, containing process, and
execution state.

INtime 4.0 Software

118

Time management
INtime software provides low-level time management calls that allow threads to create
alarm events and to sleep for a specified amount of time. The kernel also provides an
RT clock.

An alarm event is an object which is signaled when a pre-determined time interval has
expired. The alarm event mode may be single-shot or repeatable.

The kernel's RT clock is a counter that the kernel uses to keep track of the number of
kernel clock ticks that have occurred. When the kernel is initialized, the count is set to
0 (zero). The period of a kernel clock tick is configurable via the INtime Configuration
utility and you can read the current configuration using CopyRtSystemInfo.

Low-level calls

GetRtThreadPriority Returns the specified thread’s current priority.
GetRtThreadState Returns information about the state of any thread in the system,

including such items as the execution state and the CPU
registers for that thread’s execution context (if the thread has
been suspended due to its causing a hardware fault).

ResumeRtThread Decreases by one the suspension depth of the specified
non-interrupt thread.

RtSleep Places the current thread in the sleep state until the required
number of system ticks have occurred. System ticks are always
10ms apart.

SetRtThreadPriority Dynamically changes the priority of a non-interrupt thread. The
new value must not exceed the containing process'
maximum priority.

SetRtProcessMaxPriority Dynamically change the maximum priority of threads in
a process.

SetRtSystemAccountingMode Toggles accounting tracking. You can return accounting
information using GetRtThreadAccounting.

SuspendRtThread Increases by one the suspension depth of a specified thread.

System call Description

System call Description
knCreateRtAlarmEvent Creates an alarm event object which is triggered by an alarm.
knWaitForRtAlarmEvent Waits at an alarm object for the given time interval, or until the

alarm triggers.
knResetRtAlarmEvent Resets a one-shot alarm after it has triggered.

Appendix A: INtime software system calls

119

Structures

knDeleteRtAlarmEvent Deletes an alarm event object and releases the memory used
to store its state for reuse.

knGetKernelTime Returns the value of the counter the kernel uses to tally the
number of low-level ticks that have occurred.

knSetKernelTime Sets the value of the counter that the kernel uses to tally the
number of low-level ticks that have occurred.

System call Description

Structure Description
CONTROLBUFFER Tracks the progress of each message during its life in

the service.
CPUFRAME N/A
EVENTINFO Returns notifications about system state, sponsor processes,

dependent processes, and shutdown notifications.
EXCEPTION N/A
FILETIME Provides the file system time stamp.
GENADDR Provides port addresses which fully differentiate ports within a

particular service.
HEAPINFO N/A
HWEXCEPTIONMSG Specifies the format for data sent to the HW_FAULT_MBX data

mailbox.
INTERRUPTINFO N/A
KNTIME The kernel stores and reads the time value.
NTXEVENTINFO Returns notifications about system state, sponsor processes,

and dependent processes.
NTXPROCATTRIBS Specifies memory usage fields the RT Application Loader.
OBJECTDIR N/A
PCIDEV Passes parameters to library calls and to return values from the

PCI configuration space.
POOLINFO N/A
PORTINFO N/A
RECEIVEINFO Provides information about received messages to the thread or

returns information about the operation just completed.
SECURITY_ATTRIBUTES Contains the security descriptor for an object and specifies

whether the handle retrieved by specifying this structure is
inheritable.

SERVICEATTRIBUTES The header for every structure passed to
GetRtServiceAttributes and SetRtServiceAttributes.

INtime 4.0 Software

120

Heaps and memory pools

SERVICEDESC Contains all configuration information needed to run the
service.

SYSINFO Contains information about the current RT machine
configuration.

THREADACCOUNTING N/A
THREADINFO_SNAPSHOT N/A
THREADSTATE_SNAPSHOT N/A
TRANSACTION Tracks many operations through the service. For example: a

simple send, a send-RSVP or certain receive operations.
urb The USB Request Block structure, which identifies USB transfer

requests.
usbClient Identifies the USB client to the USB subsystem.
usbConfigDescriptor The USB-defined configuration descriptor, plus some

implementation-specific fields that link to the configuration
interfaces.

usbCtrlRequest Defines a device control request.
usbDeviceDescriptor The USB-defined device descriptor; there is one descriptor per

device.
usbDeviceId Identifies USB devices and interfaces for hotplugging and

enumeration purposes.
usbEndPointDescriptor The USB-defined endpoint descriptor. The USB subsystem

copies all endpoint descriptors from the device.
usbInterface References the alternate settings for a given interface. This

structure is referenced from the usbConfigDescriptor structure.
usbInterfaceDescriptor The USB-defined interface descriptor. The USB subsystem

copies all interface descriptors from the device.

System call Description
_CrtCheckMemory Confirms the integrity of the memory blocks allocated in the

debug heap (debug version only).
_CrtDbgReport Generates a report with a debug message and sends the report

to three possible destinations (debug version only).
_CrtDoForAllClientObjects Calls an application-supplied function for all _CLIENT_BLOCK

types in the heap (debug version only).
_CrtDumpMemoryLeaks Dumps all the memory blocks in the debug heap when a

memory leak occurs (debug version only).
_CrtGetAllocHook Retrieves the current client-defined allocation function for

hooking into the C runtime debug memory allocation process
(debug version only).

Structure Description

Appendix A: INtime software system calls

121

_CrtGetDumpClient Retrieves the current application-defined function for dumping
the _CLIENT_BLOCK type memory blocks (debug version only).

_CrtGetReportHook Retrieves the client-defined debug reporting function.
_CrtIsMemoryBlock Verifies that a specified memory block is in the local heap and

that it has a valid debug heap block type identifier (debug
version only).

_CrtIsValidHeapPointer Verifies that the heap contains the specified pointer (debug
version only).

_CrtMemCheckpoint Obtains the debug heap's current state and stores it in an
application-supplied _CrtMemState structure (debug version
only).

_CrtMemDifference Compares two memory states and returns their differences
(debug version only).

_CrtMemDumpAllObjectsSince Dumps information about objects in the heap from the start of
program execution or from a specified heap state (debug
version only).

_CrtMemDumpStatistics Dumps the debug header information for a specified heap state
in a user-readable form (debug version only).

_CrtReportBlockType Returns the block type/subtype associated with a given debug
heap block pointer.

_CrtSetAllocHook Installs a client-defined allocation function by hooking it into
the C runtime debug memory allocation process (debug version
only).

_CrtSetBreakAlloc Sets a breakpoint on a specified object allocation order number
(debug version only).

_CrtSetDbgFlag Retrieves or modifies the _crtDbgFlag flag state to control the
debug heap manager's allocation behavior (debug version
only).

_CrtSetDumpClient Installs an application-defined function to dump
_CLIENT_BLOCK type memory blocks (debug version only).

_CrtSetReportFile After specifying _CRTDBG_MODE_FILE with
_CrtSetReportMode, you can specify the file handle to receive
the message text. _CrtDbgReport also use _CrtSetReportFile to
specify the text destination (debug version only).

_CrtSetReportHook Installs a client-defined reporting function by hooking it into the
C runtime debug reporting process (debug version only).

_CrtSetReportMode Specifies the destination(s) for a specific report type generated
by _CrtDbgReport and any macros that call _CrtDbgReport or
_CrtDbgReportW, such as these macros (debug version only):
_ASSERT, _ASSERTE, _RPT, and _RPTF.

_filelength64 Gets the specified file's length.

System call Description

INtime 4.0 Software

122

_findfirst75, _findnext64,
_findclose64

Find functions include:
• _findfirst64: Finds the first file which matches the specified

pattern.
• _findnext64: Finds the next file after an initial call to

findfirst.
• _findclose64: Closes the find handle and releases internal

resources used to maintain context.
_stat64 Gets the specified file's status information.
Memory heaps
heap_buffer_cnt Returns the current number of buffers creaed by

alloc/realloc/calloc.
heap_buffer_size Returns the size of a buffer returned by alloc/realloc/calloc.
heap_check Checks the heap for internal consistency.
heap_compact Returns to the operating system pages of memory freed via free

and no longer in use.
heap_dump Dumps heap statistics and lists to the console or to a file.
heap_get_clk_size Gets the size of the basic heap allocation block.
heap_get_config Gets heap configuration.
heap_get_page_size Gets the size of the system page size value in bytes.
heap_set_blk_size Sets the size of the basic heap allocation block.
heap_set_config Sets heap configuration.
heap_stats Gets heap statistics.
heap_stats_reset Resets heap statistics.
heap_validate_buffer Determines whether the buffer address is valid and exists

within the heap.
heap_zap Instructs the heap manager to clear all buffers when freed.
Memory pools
mpool_alloc Allocates a new buffer from a memory pool.
mpool_buffer_cnt Returns the current number of buffers created by

mpool_alloc/mpool_realloc.
mpool_buffer_size Returns the size of a buffer returned by mpool_alloc or

mpool_realloc.
mpool_check Checks the memory pool for internal consistency.
mpool_compact Returns to the operating system pages of memory freed via

mpool_free and no longer in use.
mpool_create Creates a memory pool and return a handle to it.
mpool_delete Deletes a memory pool and frees all its resources.
mpool_dump Dumps memory pool statistics and lists to the console or to

a file.
mpool_free Frees a buffer allocated with mpool_alloc or mpool_realloc.

System call Description

Appendix A: INtime software system calls

123

High-performance gigabit Ethernet

mpool_get_config Gets a pool's configuration.
mpool_pool2name Retrieves the name associated with a pool.
mpool_ptr2pool Retrieves the pool associated with a buffer.
mpool_realloc Changes the size of a buffer allocated with mpool_alloc or

mpool_realloc.
mpool_reset Restores a pool to its creation state.
mpool_set_config Sets pool configuration.
mpool_stats Gets the memory pool's statistics.
mpool_stats_reset Resets pool statistics.
mpool_validate_buffer Determines whether the buffer address is valid and exists

within a pool buffer.

System call Description
hpeAllocateReceiveBufferSet Allocates a receive buffer set which is compatible with the

network device.
hpeAttachReceiveBufferSet Attaches a set of receive buffers to the driver for use by the

DMA engine to receive Ethernet frames.
hpeAttachTransmitBufferSet Attaches a set of transmit buffers to the driver.
hpeClose Closes an Ethernet interface indicated by the handle parameter.
hpeConfigOptions Configures options for the Ethernet controller, such as multicast

packet reception.
hpeFreeReceiveBufferSet Frees memory allocated by hpeAllocateReceiveBufferSet.
hpeGetMacAddress Reports the interface’s 6-byte MAC address.
hpeGetMediaStatus Reports the current status of the media interface of the

Ethernet controller.
hpeGetReceiveBuffer Returns a pointer to the next receive buffer which has a fully-

received frame in it.
hpeGetTransmitterState Returns a value indicating the current state of the transmitter.
hpeOpen Initializes an Ethernet interface.
hpeOpenWithOptions Similar to hpeOpen; specifies additional options.
hpeStartTransmitter Causes the transmitter to transmit any and all frames which are

ready to be sent.
hpeWaitForReceiveComplete Instructs the caller to sleep until the next receive interrupt

occurs.
Structures
hpeWaitForTransmitComplete Instructs the caller to sleep until the next transmit interrupt

occurs.
HPE_CONFIG_OPTIONS Specifies options; used by hpeConfigOptions.

System call Description

INtime 4.0 Software

124

INscope calls

Network stack
The networking stack supports a rich API. For detailed information, select INtime
APIs>Other system calls>TCP/IP in the INtime help file.

PCI library calls

HPE_OPEN_OPTIONS Specifies options; used by hpeOpenWithOptions.
HPEBUFFER Describes an individual buffer to hold frame data.
HPEMEDIASTATUS Obtains information about the currently-connected media.
HPERXBUFFERSET Describes a set of receive frame buffers.
HPETXBUFFER Describes a single transmit buffer.
HPETXBUFFERSET Describes a transmit buffer set, consisting of multiple transmit

buffers.

System call Description
get_RT_trace_state Retrieves the current state of the INscope RT Server

Component and any current traces.
log_RT_event Logs a user-defined event in the trace buffer which can be used

for reference when viewing the trace.
pause_RT_trace Pauses a trace, writing no new information to the trace buffer

until the trace resumes.
RT_I_am_alive Resets the watchdog timer.
start_RT_trace Starts a trace using the current configuration settings.
stop_RT_trace Stops the trace, locks the buffer, and sends a notification to

INscope that a trace complete.

System call Description

System call Description
PciInitialize Initializes the PCI library by determining the PCI configuration

access method used by the local chipset.
PciReadHeader Reads the PCI configuration header fields to the supplied

PCI_DEV structure.
PciFindDevice Locates a PCI device given the vendor and device IDs, and an

instance number.
PciSetConfigRegister Writes a value to a given PCI configuration register.
PciGetConfigRegister Reads a value from a given PCI configuration register.
PciVendorName Returns a text string corresponding to the vendor ID supplied as

a parameter.

Appendix A: INtime software system calls

125

Real-time shared library (RSL) calls

Registry calls

PciDeviceName Returns a text string corresponding to the vendor and device
IDs supplied as parameters.

PciClassName Returns a text string corresponding to the class ID supplied as
parameters.

PciEnableDevice Brings a PCI device out of a ACPI power down state to fully
operational condition.

System call Description
LoadRtLibrary Dynamically loads a Real-time Shared Library module.
GetRtProcAddress Searches for a given symbol in a loaded module.
GetRtModuleHandle Returns the handle of a loaded module, given its name.
FreeRtLibrary Unloads a Real-time Shared Library module given its handle.
RtTlsAlloc Allocates a thread-local storage index.
RtTlsSetValue Stores a value in the calling thread’s local storage slot for a

specified index.
RtTlsGetValue Retrieves a value from the calling thread’s specified local

storage slot.
RtTlsFree Marks a thread local storage slot free for reuse.

System call Description
RtRegCloseKey Releases a handle to a key.
RtRegConnectRegistry Establishes a connection to a registry handle on another

computer.
RtRegCreateKeyEx Creates a key.
RtRegDeleteKey Deletes a subkey from the registry.
RtRegDeleteValue Deletes a value from a registry key.
RtRegEnumKeyEx Enumerates subkeys of an open registry key.
RtRegEnumValue Enumerates a value for an open registry key.
RtRegFlushKey Writes attributes of an open key into the registry.
RtRegLoadKey Creates a subkey and stores registration information into

that subkey.
RtRegOpenKeyEx Opens a key.
RtRegQueryInfoKey Retrieves information about a registry key.
RtRegQueryValueEx Retrieves type and data for a value name associated with an

open registry key.

System call Description

INtime 4.0 Software

126

RT services and device drivers

RT service calls

RtRegReplaceKey Replaces the file backing a key and all its subkeys with another
file.

RtRegRestoreKey Reads registry information in a file and copy it over a key.
RtRegSaveKey Saves a key and all its subkeys and values to a new file.
RtRegSetValueEx Sets the data and type of a value under a registry key.
RtRegUnLoadKey Unloads a key and subkeys from the registry.

System call Description
DeliverMessage Delivers a complete transactionless message to a port. This call

is typically made from the service thread.
DeliverStatus Terminates a transmit operation, usually from the service

thread.
DeliverTransaction Delivers a transaction. This call is used after a service thread

receives a response message, and the transaction is complete.
DequeueInputTransaction Dequeues the transaction at the head of the service input

queue and returns a pointer to it.
DequeueOutputTransaction Dequeues the transaction at the head of the service output

queue and returns a pointer to it.
EnqueueInputTransaction Enqueues a transaction on the service input queue. This allows

the service to maintain an ordered list of requests for later
completion by the service thread.

EnqueueOutPutTransaction Enqueues a transaction on the service output queue when (for
example) the transmitter hardware is busy.

EnterServiceRegion Enters the region associated with the service. Currently the
SendMessage handler is called while in this region. If mutual
exclusion is desired between the service thread and the
SendMessage handler, the service thread can make this call.

ExitServiceRegion Exits the service region previously entered with
EnterServiceRegion.

GetPortId Returns the port ID for a given port handle.
GetPortParameter Retrieves the parameter previously associated with a port by a

call to SetPortParameter.
GetTransaction Upon receiving a response message from the interface,

instructs the service thread to tie the message with its
transaction structure.

LookupPortHandle Looks up a port handle given a port ID.

System call Description

Appendix A: INtime software system calls

127

RT service handlers
Service handlers are subroutines invoked by the kernel to perform service-dependent
functions of the system calls.

For example, calling SendRtMessage causes the kernel to invoke the handler supplied
by the service to handle the transmission of the message to the interface. Some of these
handlers must be supplied by the service while others are optional.

The control and transaction buffer pools are the static resources used for allocating
internal data structures. The size of these pools is determined from parameters in the
service descriptor at installation time.

QueryInputTransactionQueue Returns the transaction at the head of the service input queue.
QueryOutputTransactionQueue Returns the transaction at the head of the service output

queue.
ReleaseControlBuffer Returns a control buffer to the service pool.
ReleaseTransaction Returns a transaction structure to the pool.
RequestControlBuffer Requests a control buffer from the service pool.
RequestTransaction Requests a TRANSACTION buffer from the service transaction

pool.
SetPortParameter Sets the port parameter for the given port to a value given by

the caller.

System call Description

System call Description
CancelTransaction implement special actions as a result of calling

CancelRtTransaction or DeleteRtPort.
CreatePort Invoked when CreateRtPort is called. A status of E_OK must be

returned for the port to be created, else the port object is
deleted and the status code is returned to the caller.

DeletePort Invoked when DeleteRtPort is called. It must return a status of
E_OK for the port to be deleted, else the port object is deleted
and the status code is returned to the caller.

Finish Ensures that any service-dependent resources are cleaned up
before the service process is killed.

GetAttributes Gets attributes from the service when an application calls
GetRtServiceAttributes.

GetFragment Invoked when an application calls ReceiveRtFragment.
Initialize Performs any service-specific initialization functions and

returns a suitable status code to the caller.
SendMessage Implemented by all services which require a transmission

function.
Service Invoked by the service thread when an event occurs.

INtime 4.0 Software

128

Serial Communications (COMM)

SetAttributes Passes parameters from SetRtServiceAttributes.
UpdateReceiveInfo Invoked just before returning results to either

ReceiveRtMessage or ReceiveRtReply, caused by a service
handler calling DeliverStatus. The kernel handles the receipt of
a message at a port, and then may call this routine in order that
the RECEIVEINFO structure may be filled out.

VerifyAddress Validates the address parameter passed to the call.

System call Description

System call Description
ClearCommBreak Restores character transmission for a specified

communications device and places the transmission line in a
nonbreak state.

ClearCommError Retrieves information about a communications error and
reports the current status of a communications device.

CloseComm Closes a communications device handle.
EscapeCommFunction Directs a specified communications device to perform an

extended function.
FlushCommBuffers Causes all buffered data to be written to a communications

device.
GetCommConfig Retrieves the current configuration of a communications

device.
GetCommMask Retrieves the value of the event mask for a specified

communications device.
GetCommModemStatus Retrieves modem control-register values.
GetCommProperties Retrieves information about the communications properties for

a specified communications device.
GetCommState Retrieves the current control settings for a specified

communications device.
GetCommTimeouts Retrieves the time-out parameters for all read and write

operations on a specified communications device.
OpenComm Opens a handle to a communications device.
PurgeComm Discards all characters from the output or input buffer of a

specified communications resource.
ReadComm Reads data from a communications device.
ResetCommEvent Resets a particular communications device event.
SetCommBreak Suspends character transmission for a specified communications

device and places the transmission line in a break state.
SetCommConfig Sets the current configuration of a communications device.

Appendix A: INtime software system calls

129

COMM Drivers

COMM Utlities

COMM Structures

SetCommMask Specifies a set of events to monitor for a communications
device.

SetCommState Configures a communications device according to the
specifications in a device-control block.

SetCommTimeouts Sets the time-out parameters for all read and write operations
on a specified communications device.

TransmitCommChar Transmits a specified character ahead of any pending data in
the output buffer of the specified communications device.

WaitCommEvent Waits for an event to occur for a specified communications
device.

WriteComm Writes data to a communications device.

System call Description

System call Description
comedgeport.rta Driver for the Digi International Edgeport line of USB

multi-channel serial device.
compc.rta Driver for the onboard PC COM ports.
comrocket.rta Driver for the Comtrol family of RocketPort serial multi-channel

PCI cards.

System call Description
comlist.rta Displays the name and status of all COM ports.

System call Description
COMMCONFIG Contains information about the configuration state of a

communications device.
COMMPROP Used by GetCommProperties to return information about a

given communications driver.
COMMTIMEOUTS Used in SetCommTimeouts and GetCommTimeouts to set and

query the time-out parameters for a communications device.
The parameters determine the behavior of ReadComm and
WriteComm operations on the device.

COMSTAT Contains information about a communications device. This
structure is filled by ClearCommError function.

DCB Defines the control setting for a serial communications device.

INtime 4.0 Software

130

TCP/IP system calls

USB calls

System call Description
accept Accepts a connection on a socket.
bind Assigns a name to an unnamed socket.
bstring Executes binary string operations.
byteorder Converts short and long quantities between network byte order

and host byte order.
connect Initiates a connection on a socket.
gethostname - sethostname Gets and sets the local host name.
getpeername Returns the socket name of the connected remote socket.
getsockname Returns the current name for the specified socket.
getsockopt - setsockopt Returns or sets options associated with a socket.
inet Manipulates Internet addresses.
listen Listens for connection requests on a socket.
recv - recvfrom Receives a message from a socket.
send - sendto Sends a message from one socket to another.
shutdown Shuts down all or part of a full-duplex connection.
socket Creates an endpoint for communication.
select Checks whether sockets are ready to receive or send, or have

out-of-band data pending.
socktout Sets a timeout for completion of calls on a socket.
gethostent Sets and returns entries that identify the network host.
getnetent Returns information about a network entry from the

:config:networks database.
getprotoent Returns an entry from the :config:protocols database file.
getservent Sets or Returns an entry from the :config:services database file.

System call Description
UsbAllocUrb Allocates a URB for use by the client, initializes some internal

fields and marks it as in-use.
UsbBulkMsg Creates a bulk transfer and submits it synchronously, returning

from the call upon completion or time out.
UsbClearHalt Clears a halt condition on an endpoint.
UsbConnect Connects a client to the USB subsystem.
UsbControlMsg Creates a control transfer and synchronously submits it,

returning upon completion or time out.
UsbDisconnect Disconnects a client from the USB subsystem.

Appendix A: INtime software system calls

131

INtimeDotNet calls

UsbFillBulkUrb Fills an URB for a bulk transfer.
UsbFillControlUrb Fills an URB for a control transfer.
UsbFillintUrb Fills an URB for an interrupt transfer.
UsbFillIsoUrb Fills an URB for an isochronous transfer.
UsbFreeUrb Frees the memory of a URB when all users of it are finished.
UsbGetAsciiString Gets a string descriptor in ASCII format and US/English

language ID.
UsbGetConfigDescriptor Returns a configuration descriptor given a device handle.
UsbGetConfiguration Gets the current configuration number of a given device.
UsbGetDescriptor Returns the descriptor of given type and index.
UsbGetDeviceDescriptor Returns the device descriptor for a given handle.
UsbGetEndpointCount Returns the number of endpoints for a given interface.
UsbGetEndpointDescriptor Returns the endpoint descriptor for the given interface handle

and endpoint index.
UsbGetInterfaceDescriptor Returns the interface descriptor for a given handle.
UsbGetLanguageString Gets a string descriptor in UTF-16LE format.
UsbGetStatus Gets the device, interface, or endpoint status.
UsbInterruptClose Closes an open interrupt pipe handle.
UsbInterruptOpen Opens a handle on an interrupt pipe for synchronous I/O.
UsbInterruptRead Reads from an interrupt endpoint.
UsbInterruptWrite Writes to an interrupt endpoint.
UsbKillUrb Cancels a transfer request for an endpoint.
UsbMatchId Finds a matching entry in a table of device descriptions.
UsbSetConfiguration Creates a control transfer and synchronously submits it,

returning from the call when it completes or times out.
UsbSetInterface Sets an alternative setting number of a given interface.
UsbSubmitUrb Submits a transfer request to the USB subsystem.
UsbUnlinkUrb Cancels a transfer request for an endpoint.

System call Description
ntxCatalogNtxHandle Names an object in a process directory.
ntxCreateRtMailbox Creates an RT mailbox.
ntxCreateRtProcess Loads an RT executable and runs it in a new process.
ntxCreateRtSemaphore Creates an RT semaphore.
ntxDeleteRtMailbox Deletes an RT mailbox.
ntxDeleteRtSemaphore Deletes an RT semaphore.
ntxGetFirstLocation Returns a handle to the first known location.

System call Description

INtime 4.0 Software

132

ntxGetLocationByName Returns a handle to the specified location.
ntxGetNameOfLocation Returns the name by which the specified location handle is

known to NTX.
ntxGetNextLocation Returns the handle to the location following the one returned by

the last call to ntxGetFirstLocation or ntxGetNextLocation in the
current thread.

ntxGetRootRtProcess Obtains the root RT process handle.
ntxGetRtErrorName Returns a string that contains the name of the status

code passed.
ntxGetRtSize Returns a memory region’s size.
ntxGetRtStatus Verifies whether the RT kernel is successfully initialized.
ntxGetType Returns the type of an NTX handle.
ntxImportRtHandle Obtains an NTXHANDLE that corresponds to an RTHANDLE.
ntxLoadRtErrorString Returns a short sentence (no punctuation) that describes

Status.
ntxLookupNtxHandle Searches the given process’s object directory for the given

name and return the object handle, if found.
ntxNotifyEvent Blocks until one of the desired notifications is received.
ntxReadRtXxx Reads from a Byte array or an INtime shared memory object.
ntxReceiveRtDataXxx Waits for and then copies data out of an RT data mailbox.
ntxReceiveRtHandle Receives handles from an object mailbox.
ntxRegisterDependency Creates a dependency relationship between the calling process

and the specified sponsor.
ntxRegisterSponsor Registers the calling process as a Sponsor with the given name.
ntxReleaseRtSemaphore Releases units to an RT semaphore.
ntxSendRtDataXxx Copies data to an RT data mailbox.
ntxSendRtHandle Sends an object handle to an object mailbox.
ntxUncatalogNtxHandle Removes an entry from a process’ object directory.
ntxUnregisterDependency Removes the dependency relationship between the calling

process and the specified sponsor.
ntxUnregisterSponsor Removes the current sponsor name from the active sponsor

state. No notifications are made to dependents and the name
remains in use until the sponsor is removed from all
relationships.

ntxWaitForRtSemaphore Requests a specified number of units to be received from the
RTsemaphore.

ntxWriteRtXxx Writes to a Byte array or an INtime shared memory object.

System call Description

Appendix A: INtime software system calls

133

INtimeDotNet structures

Input/Output Calls

System call Description
NTXEVENTINFO Passes into ntxCreateRtProcess to overrule process creation

defaults.
NTXPROCATTRIBS Returns notifications about system state, sponsor processes,

and dependent processes.

System call Description
inbyte, inhword, inword Inputs data from an I/O port.
outbyte, outhword, outword Outputs data to an I/O port.

INtime 4.0 Software

134

135

B The iwin32
subsystem

This appendix describes the iwin32 subsystem, which provides a Win32 API for the
INtime kernel. It is provided as a parallel API to the INtime API, and is intended to
make porting of existing Win32 applications easier. A subset of the Win32 functions is
implemented, and some extensions are defined to handle INtime features such as
interrupt handling and shared memory. The functionality of the subset is broadly
similar to the Windows CE version of the Win32 API, since Windows CE and INtime
have similar goals. Some groups of functions have been omitted where INtime does not
require the functionality, such as with the GUI functions.

The elements covered by the iwin32 API include the following:

• Processes and threads

• Mutexes, critical sections, semaphores and events

• I/O handling

• Registry handling

• Miscellaneous

In addition a number of real-time extension (RTX) functions are provided where more
real-time functionality is required; this includes functions for:

• Interrupt handling

• Shared memory

• Timers

This appendix also describes the iwin32x API, which gives access to real-time iwin32
objects from a Windows application, much in the same way that the NTX API gives
access to INtime objects from a Windows application.

Handles
Each object is identified by a handle. In INtime an object is uniquely identified by a
single handle value (16 bits for INtime, 32 bits for NTX). This handle can be used in
any INtime process and in Windows processes (using NTX). When the object is deleted
with a type-specific deletion function such as DeleteRtSemaphore, the handle becomes
invalid.

Iwin32 has a different handle system: the Create and Open functions return a handle
and different callers may receive different handles for the same object. A handle is
stored in 32 bits; an iwin32 handle can be distinguished from an INtime handle

INtime 4.0 Software

136

because its value is 0x10000 or greater. Every iwin32 object includes a handle count.
When the last handle for an object is closed, the object is implicitly deleted.

In Windows, a handle is normally specific to a process and the same handle in
different Windows processes may refer to different objects. Iwin32 implements a
slightly different method, where all handle values are unique. This allows a handle to
be shared between processes, which would be against the Win32 rules.

There is a limit on the number of objects that can exist at any time in the system,
because INtime uses a table to define each object; the size of this table (GDT) is
configurable up to a maximum of about 8000 entries. For information about GDT
configuration, see Running the INtime Configuration Utility on page 68.

Each iwin32 object requires one, two (thread, timer, interrupt), or three (process)
INtime objects. Additional handles for a given iwin32 object do not require additional
INtime objects. Iwin32 uses a fixed size table for all handles, the size of which is
configurable.

Named objects
Event, mutex, semaphore and shared memory objects have a Create and an Open
function. CreateXxx checks if the named object of that type already exists and if so,
returns an error and the handle of the found object. If the name exists but belongs to
another object type, the function fails. If the name does not occur yet, the object is
created and the name remembered. If no name is supplied, the name check does not
take place. OpenXxx only does the name check and if that fails, the whole operation
fails.

All object types share one name space, which is not process specific but has system
scope. Iwin32 allows names up to 128 characters.

There are no specific functions for named objects. For details on named objects, see the
functions listed in Events (page 140), Mutexes (page 139), Semaphores (page 140), and
Shared memory (page 141).

Processes
A process is a container for objects and resources; it includes a virtual address space
that is only accessible to the threads in the process. When a process is created, a
primary thread is always created inside it (this is the function named main).

iwin32 calls iwin32x calls
CloseHandle or RtCloseHandle RtCloseHandle

RtImportHandle
RtSetNode

Appendix B: The iwin32 subsystem

137

A process can refer to itself by a so-called pseudo handle, which is not a fixed value,
but must be obtained by the GetCurrentProcess function. A pseudo handle can only be
used by the process itself, and it cannot be closed (it is implicitly closed when the
process terminates).

A process can be explicitly terminated with the TerminateProcess or ExitProcess
functions; implicit termination obeys these rules:

• When the primary thread returns, the process is terminated.

• When the primary thread calls ExitThread explicitly, the process is not terminated.

• When any thread terminates and it was the last thread in the process, the process is
terminated.

Terminating a process does not necessarily delete the process! It only closes the pseudo
handle for the process and only if that is the last handle, the process is deleted. When a
process is terminated, all handles created by its threads are closed; again, this need not
imply that all objects are deleted.

Waiting for a process to be signaled means waiting until the process has terminated.

Process functions include:

Threads
A thread is the active element type in the system. Each thread has a priority, a state and
a stack. The priority indicates the importance of the thread when it is in the ready
state.

A thread is in one of these states:

• Ready: The thread wants to execute; out of the set of ready threads (called the
ready list) the thread with the best priority becomes the running thread.

iwin32 calls iwin32x calls
ExitProcess or RtExitProcess –
GetCurrentProcess –
GetCurrentProcessId –
GetExitCodeProcess or RtGetExitCodeProcess RtGetExitCodeProcess
OpenProcess or RtOpenProcess RtOpenProcess
TerminateProcess or RtTerminateProcess RtTerminateProcess
CreateProcess or CreateRtProcess RtCreateProcess
WaitForMultipleObjects or
RtWaitForMultipleObjects

RtWaitForMultipleObjects

WaitForSingleObject or RtWaitForSingleObject RtWaitForSingleObjects

INtime 4.0 Software

138

• Asleep: The thread waits for an object or one of a set of objects to be signaled, or for
a specific timeout, or both. While in this state, the thread will never be running.

• Suspended: The thread is waiting for a resume operation. More than one suspend
can be done, and each such suspend must be undone by a resume. While in this
state, the thread will never be running.

• Asleep suspended: While in the asleep state, the thread was suspended. Both the
suspend state and the asleep state must be undone before the thread becomes ready
again.

A thread has a stack for calling functions and storing local variables and parameters.
The stack must be big enough to contain all necessary data; when it overflows, it is not
extended but the hardware exception EH_STACK_FAULT occurs.

A thread can refer to itself by a so-called pseudo handle, which is not a fixed value, but
must be obtained by the GetCurrentThread function. A pseudo handle can only be used
within the owning process, and it cannot be closed (it is implicitly closed when the
thread terminates).

Waiting for a thread to be signaled means waiting until the thread has terminated.

Thread handling functions include:

iwin32 calls iwin32x calls
CreateThread or RtCreate Thread –
ExitThread or RtExitThread –
GetCurrentThread –
GetCurrentThreadId –
GetExitCodeThread –
GetLastError or RtGetLastError –
GetThreadPriority or RtGetThreadPriority –
RtGetThreadTimeQuantum –
OpenThread –
ResumeThread or RtResumeThread –
SetLastError or RtSetLastError –
SetThreadPriority or RtSetThreadPriority –
RtSetThreadTimeQuantum –
Sleep or RtSleep –
RtSleepFt or RtSleepFt RtSleepFt
SuspendThread or RtSuspendThread –
TerminateThread or RtTerminateThread –
WaitForMultipleObjects or
RtWaitForMultipleObjects

RtWaitForMultipleObjects

WaitForSingleObject or RtWaitForSingleObject RtWaitForSingleObjects

Appendix B: The iwin32 subsystem

139

Mutexes
A mutex is an object for getting exclusive access to a resource used by more than one
thread, possibly in different processes.

When a thread attempts to get ownership of a mutex and that mutex is free, ownership
is given to that thread; until the thread releases ownership, no other thread can own
the same mutex. A thread can own the same mutex more than once, in which case it
must release the mutex the same number of times. When a thread with INtime priority
Pw wishes to own a mutex and that mutex is already owned by another thread with
priority Po, then if Pw is better than Po, the priority of the owning thread is changed to
Pw until it releases all mutexes it owns. This avoids the infamous priority inversion, as
described in Priority inversions on page 35.

Termination of a thread that owns one or more mutexes causes all threads waiting for
such mutexes to be woken up with a WAIT_ABANDONED exception. Deleting a mutex
causes all threads waiting for that mutex to be woken up with an
ERROR_INVALID_HANDLE error code.

Mutex manipulation functions are:

Critical section
A critical section is a mutex that has no name; it can therefore only be used in the
process that creates it. A critical section is identified by a CRITICAL_SECTION
structure, which in turn contains the handle of the mutex. For more details see
mutexes.

Functions for critical sections include:

iwin32 calls iwin32x calls
CreateMutex or RtCreateMutex RtCreateMutex
OpenMutex or RtOpenMutex RtOpenMutex
ReleaseMutex or RtReleaseMutex RtReleaseMutex
WaitForMultipleObjects or
RtWaitForMultipleObjects

RtWaitForMultipleObjects

WaitForSingleObject or RtWaitForSingleObject RtWaitForSingleObjects

iwin32 calls iwin32x calls
DeleteCriticalSection Part of Win32
EnterCriticalSection Part of Win32
InitializeCriticalSection Part of Win32
LeaveCriticalSection Part of Win32
TryEnterCriticalSection Part of Win32

INtime 4.0 Software

140

Semaphores
A semaphore is a counter that takes positive integer values called units. Threads
release units to and wait for units from the semaphore. A semaphore can synchronize a
thread’s actions with other threads and can also be used to provide mutual exclusion
for data or a resource (although a mutex may be better in that case).

A thread can release one or more units to a semaphore. Waiting can be done for a single
unit only. A semaphore does not protect against priority inversion (described in
Priority inversions on page 35). Deleting a semaphore causes all threads waiting for that
semaphore to be woken up with an ERROR_INVALID_HANDLE error code.

Semaphore functions include:

Events
An event is a flag that can be set (signaled) or reset; it can be reset manually (once set, it
remains set until explicitly reset by a ResetEvent call, independent of how many
threads are woken up) or automatically (after waking up one thread, the event is reset).

Deleting an event causes all threads waiting for that event to be woken up with an
ERROR_INVALID_HANDLE error code.

Event functions include:

iwin32 calls iwin32x calls
CreateSemaphore or RtCreateSemaphore RtCreateSemaphore
OpenSemaphore or RtOpenSemaphore RtOpenSemaphore
ReleaseSemaphore or RtReleaseSemaphore RtReleaseSemaphore
WaitForMultipleObjects or
RtWaitForMultipleObjects

RtWaitForMultipleObjects

WaitForSingleObject or RtWaitForSingleObject RtWaitForSingleObjects

iwin32 calls iwin32x calls
CreateEvent or RtCreateEvent RtCreateEvent
OpenEvent or RtOpenEvent RtOpenEvent
PulseEvent or RtPulseEvent RtPulseEvent
ResetEvent or RtResetEvent RtResetEvent
SetEvent or RtSetEvent RtSetEvent
WaitForMultipleObjects or
RtWaitForMultipleObjects

RtWaitForMultipleObjects

WaitForSingleObject or RtWaitForSingleObject RtWaitForSingleObjects

Appendix B: The iwin32 subsystem

141

Shared memory
Mutexes and semaphores allow threads to synchronize, but what if you want to
exchange data? You can use INtime objects such as mailboxes, but in iwin32 you also
find shared memory. Shared memory is memory that has been allocated by one process
and that can be accessed by other processes as well. To access shared memory created
by another process you need to know its name.

Since every process has its own virtual address space, a shared memory object must be
mapped into a process' address space. Different processes may use different local
addresses to access the same shared memory! The shared memory is only deleted when
all its handles are closed.

Space for shared memory objects comes from an iwin32 virtual memory pool; the
maximum size of that pool is configurable. For information about memory
configuration, see Running the INtime Configuration Utility on page 68.

It is up to the communicating threads to agree on a method of queuing data in the
shared memory as necessary.

Shared memory functions include:

Timers
Any thread can be made to wait for a given time by using Sleep or RtSleepFt. A timer is
simply a thread that gets woken up when its time passes. Creating a timer means that a
thread is created that calls a user-provided function after a given time. This thread is a
special one: it can not be suspended or resumed and its priority can not be changed. It
should not call ExitThread and can not be terminated by TerminateThread.

Timer functions include:

iwin32 calls iwin32x calls
RtCreateSharedMemory RtCreateSharedMemory
RtOpenSharedMemory RtOpenSharedMemory
RtGetPhysicalAddress RtGetPhysicalAddress
RtMapMemory RtMapMemory
RtUnmapMemory –
RtUnmapSharedMemory RtUnmapSharedMemory

iwin32 calls iwin32x calls
RtCancelTimer –
RtCreateTimer –
RtDeleteTimer –
RtGetClockResolution RtGetClockResolution
RtGetClockTime RtGetClockTime

INtime 4.0 Software

142

I/O handling
In iwin32 a few general file handling functions are present. For many functions, the C-
library offers alternatives. Device dependent functions (as provided by DeviceIoControl
in Win32) can either be programmed using port I/O, or can be delegated to INtime
device drivers.

In contrast to Win32, port I/O (accessing hardware ports directly) is allowed in all
INtime threads.

I/O functions in iwin32 include::

Interrupt handling
Win32 does not provide interrupt handling functions, as this always takes place in the
Windows kernel environment. Since interrupts are critical in INtime, we have
extended iwin32 with interrupt handling. There are two choices for handling an
interrupt:

RtGetClockTimerPeriod RtGetClockTimerPeriod
RtGetTimer –
QueryPerformanceCounter –
QueryPerformanceFrequency –
RtSetClockTime –
RtSetTimer –
RtSetTimerRelative –

iwin32 calls iwin32x calls

iwin32 calls iwin32x calls
CreateFile Part of Win32
DeleteFile Part of Win32
RtDisablePortIo Part of Win32
RtEnablePortIo –
RtGetBusDataByOffset RtGetBusDataByOffset
ReadFile Part of Win32
RtReadPort... –
RemoveDirectory Part of Win32
RtSetBusDataByOffset RtSetBusDataByOffset
RtTranslateBussAddress RtTranslateBussAddress
SetFilePointer Part of Win32
WriteFile Part of Win32
RtWritePort... –

Appendix B: The iwin32 subsystem

143

Using RtAttachInterruptVector: A thread is created that is woken up when an interrupt
occurs. The thread may use all INtime functions, which makes this a simple- to-
understand approach. There is a penalty in processing time, as each interrupt requires
two thread switches for switching to and from the interrupt thread.

Using RtAttachInterruptVectorEx: As with the previous function, a thread is created.
But in addition a function may be specified that gets called from the hardware
interrupt handler, which then determines the need to wake up the thread. In this way
many thread switches can be avoided, such as in the case of a terminal: the interrupt
function can cause thread wake up for a carriage return character and do internal
buffering (and maybe editing) for all other characters. Such an interrupt function can
only use the I/O functions RtReadPortXxx and RtWritePortXxx.

When an interrupt comes from a PCI source, the actual interrupt line can be
determined using RtGetBusDataByOffset. Access to I/O ports on the device for
determining interrupt details is provided by the RtReadPortXxx and RtWritePortXxx
functions.

The thread created for interrupt handling is a special one: it can not be suspended or
resumed and its priority can not be changed. It should not call ExitThread and cannot
be terminated by TerminateThread.

Interrupt handling functions include:

Registry handling
This lists common operations on registry keys and the registry system calls that do the
operations.

iwin32 calls iwin32x calls
RtAttachInterruptVector –
RtAttachInterruptVectorEx –
RtDisableInterrupts –
RtEnableInterrupts –
RtReleaseInterruptVector –

To... iwin32 call iwin32x call
Create a key RegCreateKeyEx Part of Win32
Create a subkey and store registration information into
that subkey

RegLoadKey Part of Win32

Delete a subkey from the registry RegDeleteKey Part of Win32
Delete a value from a registry key RegDeleteValue Part of Win32
Enumerate subkeys of an open registry key RegEnumKeyEx Part of Win32
Enumerate a value for an open registry key RegEnumValue Part of Win32

INtime 4.0 Software

144

Miscellaneous
In iwin32 (these all have a counterpart in Win32):

FreeLibrary
GetModuleHandle
GetProcAddress
LoadLibrary

Miscellaneous functions include:

Establish a connection to a registry handle on another
computer

RegConnectRegistry Part of Win32

Open a key RegOpenKeyEx Part of Win32
Read registry information in a file and copy it over a key RegRestoreKey Part of Win32
Release a handle to a key RegCloseKey Part of Win32
Replace the file backing a key and all its subkeys with
another file

RegReplaceKey Part of Win32

Retrieve information about a registry key RegQueryInfoKey Part of Win32
Retrieve type and data for a value name associated with
an open registry key

RegQueryValueEx Part of Win32

Save a key and all its subkeys and values to a new file RegSaveKey Part of Win32
Set the data and type of a value under a registry key RegSetValueEx Part of Win32
Unload a key and its subkeys from the registry RegUnLoadKey Part of Win32
Write attributes of an open key into the registry RegFlushKey Part of Win32

To... iwin32 call iwin32x call

iwin32 calls iwin32x calls
FreeLibrary Part of Win32
GetModuleHandle Part of Win32
GetProcAddress Part of Win32
LoadLibrary Part of Win32

Appendix B: The iwin32 subsystem

145

Provided for easy porting of existing code:

To... iwin32 calls
Allocate a memory block of the specified size. (Provides
the same features as malloc; provided only for
compatibility.)

HeapAlloc

Deallocate a memory block. (Provides the same
features as free; provided only for compatibility.)

HeapFree

Change the size of a previously allocated memory block
or allocate a new one. (Provides the same features as
realloc; provided only for compatibility.)

HeapRealloc

Obtain the size, in bytes, of the given memory unit. HeapSize
Collects log data in the same format as the Windows
ReportEvent function, and passes it to the Windows
machine for logging.

ReportEvent

Allocates contiguous memory from the current
process’s memory pool. Provided only for compatibility.

RtAllocateContiguousMemory

Allocates locked memory from the current process’
memory pool.

RtAllocateLockedMemory

Convert to an integer value. (Provides the same features
as atoi; provided only for compatibility.)

RtAtoi

Register a shutdown notification handler. RtAttachShutdownHandler
Provided only for compatibility. RtCommitLockHeap
Provided only for compatibility. RtCommitLockProcessHeap
Provided only for compatibility. RtCommitLockStach
Free memory allocated with RtAllocateContiguousMemory
or RtAllocateLockedMemory.

RtFreeContiguousMemory

Free memory allocated with RtAllocateContiguousMemory
or RtAllocateLockedMemory.

RtFreeLockedMemory

Indicates which environment the process runs in—the
INtime real-time environment or a simulated one.

RtIsInRtss

Provided only for compatibility. RtLockKernel
Provided only for compatibility. RtLockProcess
Print formatted data to stdout. (Provides the same
features as printf; provided only for compatibility.)

RtPrintf

Destroy the shutdown handler object created by
RtAttachShutdownHandler.

RtReleaseShutdownHandler

INtime 4.0 Software

146

147

C INtime directory
structure

This appendix describes the INtime directory structure.

 Note
These directory paths assume INtime is installed in default locations.

Table 10-1. INtime program directory

Directory Description File Types
%PROGRAMFILES%\INtime\bin Contains executables and

libraries that support INtime
software development an its
tools.

Dynamic link libraries (dll), executables
(exe), help files for INtime tools (chm), real-
time applications for INtime tools and
services (rta), real-time shared libraries for
INtime tools and services (rsl).

%PROGRAMFILES%\INtime\help Contains the INtime overview
guide, quick-start guide, main
INtime help file, and other
INtime documentation

Pdf documents, help files (chm), Wordpad
documents (rtf).

%PROGRAMFILES%\INtime\help\ecpp Contains the documentation for
the C++ available for use in
INtime real-time code

Web pages (htm).

%PROGRAMFILES%\INtime\msdev Contains the files needed for
INtime to work with Visual
Studio 6

Custom application wizard (awx), help files
(chm).

%PROGRAMFILES%\INtime\Network7 Contains files for INtime
networking.

Real-time applications (rta).

%PROGRAMFILES%\INtime\Network Contains files for INtime legacy
networking.

Real-time applications (rta).

%PROGRAMFILES%\INtime\nt\include Contains include files for
windows processes that
communicate via NTX to INtime

Include files (h).

%PROGRAMFILES%\INtime\nt\lib Contains library files fro
windows processes that
communicate via NTX to INtime

Library files (lib).

%PROGRAMFILES%\INtime\
remote\common

Contains files needed to create
remote nodes (NOTE: these
files are only available if you
have purchased a development
kit with remote node support).

Binary images (bin), real-time applications
(rta), DOS executable (exe)

INtime 4.0 Software

148

%PROGRAMFILES%\INtime\rt\include
%PROGRAMFILES%\INtime\rt\include*

Include files for real-time
applications.

Include files (h).

%PROGRAMFILES%\INtime\rt\lib Library files for real-time
applications.

Library files (lib).

%PROGRAMFILES%\INtime\system32\ File to allow events to be
logged.

Dynamic link library (dll).

%PROGRAMFILES%\INtime\
system32\drivers

Driver files for the virtual
Ethernet device

Security catalog file (cat), driver (sys), driver
information file (inf).

%PROGRAMFILES%\INtime\Tools Real time application tools
useful for system evaluation
and debugging.

Real-time applications (rta).

%PROGRAMFILES%\INtime\vstudio
%PROGRAMFILES%\INtime\vstudio* Files used by Visual Studio

2003 for creating and
debugging real-time
applications.

Dynamic link libraries (dl), Windows
executables (exe), Web pages (htm), Java
script files (js), etc.

%PROGRAMFILES%\INtime\vstudio80
%PROGRAMFILES%\INtime\vstudio80* Files used by Visual Studio

2005 for creating and
debugging real-time
applications.

Dynamic link libraries (dl), Windows
executables (exe), Web pages (htm), Java
script files (js), etc.

%USERPROFILE%\My Documents\
INtime\Projects
%USERPROFILE%\Documents\
INtime\Projects (Vista)

Sample applications (see
sample applications chapter)

Visual Studio Solutions (sln), Developer
studio files (dsw), Project files (vcproj,
csproj, jsproj, dsp), source files (h, c, cpp, js,
cs).

%USERPROFILE%\My Documents\
INtime\remote
%USERPROFILE%\Documents\
INtime\remote (Vista)

Files for remote nodes you have
created. (NOTE: these files are
only available if you have
purchased a development kit
with remote node support).

Binary images (bin), real-time applications
(rta), DOS executable (exe), DOS batch file
(bat), configuration files (ini)

%ALLUSERSPROFILE%\
Application Data\TenAsys\INtime
%ALLUSERSPROFILE%\TenAsys\
INtime (Vista)

Global files for INtime
configuration

License file (lservrc), data file (dat)

%ALLUSERSPROFILE%\TenAsys\Node
Name\etc
INtime (Vista)

Global files for specific network
configuration files

Network startup, configuration, and data
files

%ALLUSERSPROFILE%\Application Data\
TenAsys\INtime\Drivers
%ALLUSERSPROFILE%\
TenAsys\INtime\Drivers (Vista)

Driver files for passing devices
to INtime.

Setup information files (inf), Drivers (sys)

Table 10-1. INtime program directory

Directory Description File Types

Appendix C: INtime directory structure

149

INtime 4.0 Software

150

151

D INtime software
components

This appendix describes product components. Descriptions are based on the default
installation path:

C:\Program Files\INtime\...

Configuration option Page
Blue.exe (Windows crash program) ... 152
Clk1Jitr.rta ... 152
EventMsg.dll.. 152
INconfCpl.cpl ... 152
INtime.chm.. 153
INscope.exe... 154
INtex.exe.. 155
INtime local kernel (INtime.bin) ... 155
INtime Performance Monitor (INtmPerf.* files).. 155
INtime RT Client Browser ... 156
Jitter.exe ...157
LdRta.exe (INtime RT Application Loader) ...157
LoadRtk.exe (INtime Kernel Loader) ... 158
MFC*.dll files .. 159
network7 utility files ... 159
NTX header files.. 159
NTX import libraries.. 159
NTX DLLs ... 160
NtxRemote2.exe (INtime Remote Connection Manager) ... 160
OvwGuide.pdf.. 160
Project files ... 160
RT header files.. 162
RT interface libraries .. 162
RT Stack Services... 162
RtClkSrv.exe (INtime Clock Synchronization Service) .. 163
RtDrvrW5.awx (RT Device Driver wizard)... 163
RtELServ.exe (INtime Event Log Service).. 164
RtIf.sys (RT Interface Driver) .. 164
RtIOCons.exe (INtime I/O console).. 165
RtIOSrv.exe (INtime I/O Service).. 165
RtNdSrv.exe (INtime Node Detection Service).. 166
RtProcW5.awx (RT Process wizard) ... 166
RtProcAddinW5.awx (RT Process Add-in wizard) .. 166
RtRegSrv.exe (INtime Registry Service) .. 167
RtRslWiz.awx (RT Shared Library wizard).. 167

INtime 4.0 Software

152

Blue.exe (Windows crash program)
A Windows program that causes the Windows system to have a ‘blue screen crash’. Use
this program to validate the operation of the INtime software after Windows
experiences a “blue screen crash”.

Clk1Jitr.rta
An RT application started by Jitter.exe. This application measures the minimum,
maximum, and average times between low-level ticks via an Alarm Event Handler. For
more information, see Graphical Jitter.

EventMsg.dll
A resource DLL that associates an event ID with a message. You can add your own
messages and event IDs to this DLL by using Microsoft Visual Studio on the project
C:\Program Files\INtime\projects\eventmsg.

INconfCpl.cpl
A Windows program that configures INtime software.

Item Description
Pathname C:\Program Files\INtime\bin\blue.exe
Invocation Invoke from the command prompt as follows:

blue -really

Item Description
Pathname C:\Program Files\INtime\projects\jittercs\clk1jitr.rta
Invocation Jitter.exe loads this RT application as it starts.

Item Description
Pathname C:\My Documents\INtime\Projects\eventmsg
Invocation The INtime Event Log service loads this DLL at runtime.

Item Description
Pathname C:\Program Files\INtime\bin\INconfCpl.cpl
Invocation Double-click the icon associated with the file in the INtime program folder

(Start>Programs>INtime>INtime Configuration).

Appendix D: INtime software components

153

INtime.chm
INtime software contains the following Help files:

• Main Help files

• Utility Help files

• C++ Help files

Main Help files
A Windows Help file that describes INtime software.

Utility Help files
Help files that describe INtime software’s utilities. Utilities include:

Item Description
Pathname C:\Programs\INtime\help\INtime.chm
Invocation Double-click the icon associated with the help file in the INtime program folder

(Start>Programs>INtime>Documentation>INtime Help).

Utility Help files
INtime Configuration C:\Program Files\INtime\bin\INConfig.chm
RT Process wizard C:\Program Files\INtime\bin\RtProcW5.chm
RT Process Add-in wizard C:\Program Files\INtime\bin\RtProcAddin5.chm
RT Device Driver wizard C:\Program Files\INtime\bin\RtDrvrW5.chm
RT Application Loader C:\Program Files\INtime\bin\LdRta.chm

INtime 4.0 Software

154

C++ Help files
HTML and GIF files that describe C++ calls and syntax. Files include:

INscope.exe
A Windows program that uses NTX calls to communicate with its self-loaded RT
counterpart to trace execution of INtime applications.

Pathname Files
C:\Program Files\
INtime\help\ecpp\

_index.html
assert.html
cassert.html
cctype.html
cerrno.html
cfloat.html
charset.html
climits.html
clocale.html
cmath.html
complex.html
crit_pb.html
crit_pjp.html
csetjmp.html
csignal.html
cstdarg.html
cstddef.html
cstdio.html

cstdlib.html
cstring.html
ctime.html
ctype.gif
ctype.html
errno.html
escape.gif
exceptio.html
express.html
float.html
format.gif
fstream.html
fstream2.html
function.html
index.html
iomanip.html
iomanip2.html
ios.html

iosfwd.html
iostrea2.html
iostream.html
istream.html
lib_cpp.html
lib_file.html
lib_over.html
lib_prin.html
lib_scan.html
limits.html
locale.html
math.html
new.html
new2.html
ostream.html
preproc.html
print.gif
scan.gif

setjmp.html
signal.html
sstream.html
stdarg.html
stddef.html
stdexcep.html
stdio.html
stdlib.html
stream.gif
streambu.html
string.html
string2.html
strstrea.html
strtod.gif
strtol.gif
time.gif
time html

Item Description
Pathname C:\Program Files\INtime\help\ecpp_index.html
Invocation Do one of these:

• Access INtime software Help, then select Using INtime software>Other
system calls>C++ calls.

• Double-click the _index.html file in the C++ help folder.

Item Description
Pathname C:\Program Files\INtime\bin\inscope.exe
Invocation Double-click the icon associated with the file in the INtime Program folder

(Start>Programs>INtime>INtime Real-time Performance Analyzer).

Appendix D: INtime software components

155

INtex.exe
A Windows application which allows you to browse the objects in an INtime kernel.

INtime local kernel (INtime.bin)
The RT kernel binary image , loaded by LoadRtk.exe (INtime Kernel Loader).

INtime remote kernel (Remote.bin)
The RT kernel binary image for use with RT nodes.

INtime Visual Studio project type packages
A collection of DLLs and Wizards which implements the INtime project type in Visual
Studio.

INtime Performance Monitor (INtmPerf.* files)
The INtime Performance Monitor reports INtime Kernel CPU usage to the Windows
Performance Monitor.

Item Description
Pathname C:\Program Files\INtime\bin\intex.exe
Invocation Double-click the icon associated with the file in the INtime Program folder

(Start>Programs>INtime>INtime Explorer).

Item Description
Pathname C:\Program Files\INtime\intime.bin
Invocation Launched by LoadRtk.exe (INtime Kernel Loader).

Item Description
Pathname C:\Program Files\INtime\Remote\common\remote.bin
Invocation Booted on remote node.

Item Description
Pathname C:\Program Files\INtime\vstudio*\...

INtime 4.0 Software

156

INtmPerf.ini is a setup file required as a part of the INtime installation process. It is
used by the Windows LOADCTR utility to add the proper registry keys and settings.

INtime RT Client Browser
An ActiveX control that you can add to your INtime applications. For information
about adding this browser to INtime applications, see Adding the INtime RT Client
Browser to your INtime application on page 80.

Item Description
Pathname C:\Program Files\INtime\system\intimperf.dll

C:\Program Files\INtime\system\intimperf.ini

Item Description
Pathname C:\Program Files\INtime\system32\inbrow.ocx

Appendix D: INtime software components

157

iWin32 header files

iWin32 interface library

iWin32x header files

iWin32x interface library

Jitter.exe
A Windows program that automatically starts Clk1Jitr.rta, then processes output and
displays a histogram. This application measures the minimum, maximum, and average
times between low-level ticks via an Alarm Event Handler. For more information, see
Graphical Jitter.

LdRta.exe (INtime RT Application Loader)
A Windows program that loads and starts the RT portion of INtime applications. The
loader has two parts: the program that executes on Windows, and an RT “helper”
process that performs the RT portion of a load operation. The “helper” process is part
of the RT kernel.

The Windows-resident portion of the RT Application Loader is a 32-bit Windows
program that uses NTX library calls to load and start INtime applications under the
RT kernel.

Pathname Files
C:\Program Files\INtime\rt\include\... iWin32 header files.

Pathname Files
C:\Program Files\INtime\rt\lib\iwin32.lib iWin32 interface library

Pathname Files
C:\Program Files\INtime\nt\lib\iwin32x.h iWin32x header file

Pathname Files
C:\Program Files\INtime\rt\lib\iwin32x.lib iWin32x import library

Item Description
Pathname C:\Program Files\INtime\projects\jitternt\jitter.exe
Invocation Select Start>Programs>INtime>INtime Graphical Jitter.

INtime 4.0 Software

158

The RT Application Loader:

• Supports loading of both 32-bit Microsoft PE code (the output of Visual Studio)
and 32-bit OMF386 code.

• Supports both command line and dialog-based operation. Supports specification of
the file to load, optional debug arguments, and optional program arguments.

• Recognizes the file extension “.RTA” (for RT application).

The INtime Installation processes set up a file association so that an INtime application
loads automatically when a user double-clicks the file name in a supporting Windows
application (such as Windows Explorer). If a default node has not been established,
such an invocation (double-click of the filename) displays ldrta.exe’s user interface so
you can establish a default node.

LoadRtk.exe (INtime Kernel Loader)
A 32-bit Windows program that loads the RT kernel after Windows starts. When set to
automatically start, the INtime Kernel Loader launches the RT kernel at system startup.
In this case, the loader loads the RT kernel after the Windows kernel and after other
Windows services, but before users log on. Otherwise, the RT kernel is started
manually using the INtime Status applet.

The INtime Kernel Loader cooperates with the RT Interface Driver (Rtif.sys) to load the
RT kernel image set up by the INtime Configuration Utility.

First it loads the specified image into the memory allocated by the RT Interface Driver,
then it makes a request to the RT Interface Driver to start the RT kernel.

Item Description
Pathname C:\Program Files\INtime\bin\ldrta.exe
Invocation Do one of these:

• Click the “INtime RT Application Loader” shortcut locatedin the INtime start
menu folder (Start\Programs\INtime). Click the Browse button and locate the
rta you want to load.

• Double-click an INtime application executable which has a .RTA extension.
This launches the application on the default node with no command line
options.

• Right-click an rta file and click the Open button. You can then select the node
and set command line options.

 Note
You can configure the RT kernel to start automatically at boot time by using the INtime
Configuration utility.

Appendix D: INtime software components

159

mDNSINtime.exe
A Windows application which configures remote NTX connections automatically.

MFC*.dll files
Microsoft DLLs required by MFC programs; included in the event they were not
installed with Windows.

network7 utility files

NTX header files

NTX import libraries

Item Description
Pathname C:\Program Files\INtime\bin\loadrtk.exe
Invocation Start INtime software’s RT kernel either in Manual or Automatic mode, using the

INtime Configuration utility.

Item Description
Pathname C:\Program Files\INtime\system32\mfc71.dll

C:\Program Files\INtime\system32\msvcp71.dll
C:\Program Files\INtime\system32\msvcr71.dll

Item Description
Pathname %intime%network7

%intime%rt\include\network7 (header files)

Pathname Files
C:\Program Files\
INtime\nt\include\...

ntx.h..C NTX header file

Pathname Files
C:\Program Files
\INtime\nt\lib\...

ntx.lib .. NTX import library
ntxext.lib ..Extended NTX import library.

INtime 4.0 Software

160

NTX DLLs
DLLs provided with INtime software used by Windows applications to communicate
with INtime applications using NTX system calls.

NtxRemote2.exe (INtime Remote Connection Manager)
Manages connections with remote INtime nodes. Runs as the INtime Remote
Connection Manager.

OvwGuide.pdf
The INtime Software User’s Guide in PDF format. This file requires Acrobat32.exe.

Project files
INtime software has a number of sample applications that you can use as samples for
your own INtime applications.

The source code for these applications is provided in both Microsoft Visual Studio 6.0
and .Net 2003 generation format, and reside in separate directories. For example, the
INtime API test program source files reside in the My Documents\INtime\Projects\
RTTest directory.

Item Description
Pathname C:\windows\system32\ntx.dll

C:\windows\system32\ntxext.dll
Invocation Windows loads these DLLs when a Windows application attempts the first

NTX call.

Item Description
Pathname C:\Program Files\INtime\bin\ntxremote2.exe
Invocation Start INtime software’s ntxremote2.exe either in Manual or Automatic mode

using the Windows Services Manager (Start>Control Panel>Administrative
Tools>Services>INtime Remote Connection Manager).

Item Description
Pathname C:\Program Files\INtime\help\OvwGuide.pdf
Invocation Double-click the file in the Windows Explorer. This launches Acrobat32.exe

which, in turn, opens the OvwGuide.pdf file for viewing.

Appendix D: INtime software components

161

Click on the desired project’s name (Start>Programs/INtime/Sample Code and Projects)
to open the Microsoft Visual Studio and find out more about each of these projects:

• INtime API Sample

• Serial Communications Sample

• Graphical Jitter

• Real-time Interrupt Sample

• C and C++ Samples for Debugger

• TCP Sample Applications

• UDP Sample Applications

• INtimeDotNet Sample Applications

• Fault Handling (ntrobust)

• Floating Point Exception Handling

• RSL Examples

• NTX Sample (MsgBoxDemo)

• Windows STOP Detection sample (STOPmgr)

• USB Client sample

Quick Start Guide
The INtime Quick Start Guide in PDF format. This file requires the Adobe Acrobat reader.

Item Description
Pathname My Documents\INtime\Projects\SampleDirectory\for source code

My Documents\INtime\Projects\SampleDirectory\CompilerVersion\
debug for executables

Invocation Use Microsoft Visual Studio to edit/compile these sample applications. Use the
INtime RT Application Loader to load the resulting sample application executables.

Item Description
Pathname C:\Program Files\INtime\help\QuickStartGuide.pdf
Invocation Double-click the file in Windows Explorer. This launches the Acrobat Reader

which in turn opens the QuickStartGuide.pdf file for viewing.

INtime 4.0 Software

162

RT header files

RT interface libraries

RT Stack Services
INtime RT components that make up the RT TCP/IP Stack. These components include
NIC drivers and TCP/IP Stack Layers.

Pathname Files
C:\Program Files\INtime\rt\include\... C RT and C library header files.
C:\Program Files\INtime\rt\include\sys\... Additional C RT and C library header files.
C:\Program Files\INtime\rt\include\\network7\... Network C header files.
C:\Program Files\INtime\rt\include\cpp\... C++ header files.
C:\Program Files\INtime\rt\include\services\... C RT Services header files.

Pathname Files
C:\Program Files\
INtime\rt\lib\...

clib.libCLIB function interface library
cpplib.libC++ library
net3m.libSockets utility flat library
pcibus.libPCI library
rmxiff3m.lib.............Flat RMX library
rt.lib INtime API interface library
rtpp400.lib INtime C++ library
rtpp400d.lib............ INtime C++ debug library
rtserv.lib INtime port interface library
usbss.lib INtime USB subsystem interface library

Pathname Files
C:\Program Files\
INtime\network

3c59x.rta........................... INtime 3COM driver
bcomg.rta INtime Broadcom Gigabit driver
dhcpcInt.rta....................... Intime DHCP Client application
e1000.rta.......................... Intie Intel Gigabit drivr
eepro100.rta..................... INtime Pro 100 driver
ip.rta INtime IP
loopback.rta...................... INtime Loopback driver
ne.rta INtime NE2000 driver
rip.rta................................. INtime Raw IP
rtl8139.rta Realtek driver
tcp.rta INtime TCP
udp.rta............................... INtime UDP

Appendix D: INtime software components

163

RT USB Interface Drivers
INtime RT components that make up the RT USB Subsystem. These components
include Host Controller drivers for UHCI, OHCI, and EHCI (USB 2.0) interfaces.

RtClkSrv.exe (INtime Clock Synchronization Service)
A Windows program that provides time-of-day and time interval services used to
synchronize the RT time-of-day clock to the Windows time-of-day clock.

RtDrvrW5.awx (RT Device Driver wizard)
An MSVC 6.0 Application Wizard that you use to develop device drivers for INtime
applications.

Pathname Files
C:\Program Files\INtime\bin usbss.rsl INtime USB Subsystem Shared Library

uhci.rta INtime USB Universal Host Controller Interface
Driver

ohci.rta INtime USB Open Host Controller Interface Driver
ehci.rta INtime USB Enhanced Host Controller Interface

(USB 2.0) Driver

 Note
You can have the INtime Clock Synchronization Service start automatically at boot time by using the
Windows Services Manager to set up the INtime Clock Synchronization Service for Automatic
Startup. If the INtime Node Detection Service has not yet started, it is automatically started by the
INtime Clock Synchronization Service.

Item Description
Pathname C:\Program Files\INtime\bin\rtclksrv.exe
Invocation This program is run as a Windows service

(Start>Control Panel>Administrative Tools>Services>
INtime Clock Synchronization Service).

Item Description
Pathname C:\Program Files\INtime\msdev\template\rtdrvrw5.awx
Invocation Invoked by the MSVC 6.0 IDE.

INtime 4.0 Software

164

RtELServ.exe (INtime Event Log Service)
A 32-bit Windows program that supports Windows event log manipulation by RT
threads. The RT Event Log Service receives, processes, and responds to requests from
the RT application library’s event log entry points. When the RT Event Log Service
receives a request, it blocks the calling thread, executes the appropriate Win32 event
log function, and replies to the original request (unblocking the calling thread). If the
Windows host and/or the RT Event Log Service terminates execution, it terminates all
pending requests with an E_EXIST error.

The RT Event Log Service supports a single request: to write an entry from the RT
client event source at the end of the local PC’s Application event log.

Neither the RT application library nor the RT Event Log Service support event logging
to the system or security event logs, event logging by a source other than RT client,
event logging to a remote PC, or backing up an event log file.

RtIf.sys (RT Interface Driver)
A Windows kernel mode device driver that co-manages the OSEM used by the INtime
product to add RT capabilities to Windows. This driver:

• Establishes the initial RT kernel environment.

• Co-manages switching between the Windows and INtime runtime environments.

• Supports communication and synchronization mechanisms between Windows
threads and RT threads by relaying NTX library requests.

 Note
You can have the INtime Event Log Service start automatically at boot time by using the Windows
Services Manager to set up the INtime Event Log Service for Automatic Startup. If the INtime Node
Detection Service has not yet started, the INtime Event Log Service automatically starts it.
The factory default is for this service to automatically start.

Item Description
Pathname C:\Program Files\INtime\bin\rtelserv.exe
Invocation Start the INtime Event Log Service using the Windows Services Manager

(Start>Control Panel>Administrative Tools>Services).

 Note
For detailed information, see INtime Help. For information about accessing help, see Where to get
more information on page v.

Appendix D: INtime software components

165

RtIOCons.exe (INtime I/O console)
The RT I/O Console is a 32-bit Windows program that provides support for Windows
console I/O for RT threads. It creates and manages a single console window and
executes keyboard data (input) requests and display (output) requests from the RT
thread.

RtIOSrv.exe (INtime I/O Service)
A 32-bit Windows program that provides Windows file system and console I/O support
for RT threads. This program acts as a server to RT “C” library to obtain a console
window for display (via printf) of application data and to receive (via scanf) user input
from the system keyboard.

When the RT “C” library receives an stdio request from a real-time thread, it checks to
see if a console exists. If a console exists, it relays the request to the appropriate RT I/O
console If no console exists, it blocks the thread making the request, creates an RT I/O
console window for the thread via the INtime I/O Service, and relays the request to the
RT I/O console. When a request completes, the INtime I/O Service unblocks the
corresponding thread and relays the reply. If Windows terminates execution, the RT
I/O Console terminates all pending requests with an E_EXIST error.

When the RT “C” library receives a file I/O request from an RT thread, it blocks the
thread making the request and forwards the request to the INtime I/O Service for
completion. When a request completes, the RT “C” library unblocks the thread making
the request and relays the reply to the thread.

Use of the INtime I/O Service is restricted to the RT “C” library.

Item Description
Pathname C:\windows\system32\drivers\rtif.sys
Invocation Windows loads this driver at system initialization time.

Item Description
Pathname C:\Program Files\INtime\bin\rtiocons.exe
Invocation Invoked by RtIOSrv.exe (INtime I/O Service)

 Note
You can have the INtime I/O Service start automatically at boot time by using the Windows Services
Manager to set up the INtime I/O Service for Automatic Startup. If the INtime Node Detection
Service has not yet started, the INtimeIO Server automatically starts it.
The factory default is for this service to automatically start.

INtime 4.0 Software

166

RtNdSrv.exe (INtime Node Detection Service)
A 32-bit Windows program that detects RT clients, both local and remote. This
program checks for and registers RT clients that exist in both of these locations:

• RT clients configured in INtime Configuration utility.

• RT clients available to the system.

RtProcW5.awx (RT Process wizard)
An MSVC 6.0 Application Wizard that you use to develop the RT portion of INtime
applications.

RtProcAddinW5.awx (RT Process Add-in wizard)
An Application wizard for Microsoft Visual Studio, version 6.0, that you use to add
supplemental files to the already-generated RT portion of INtime applications.

Item Description
Pathname C:\Program Files\INtime\bin\rtioserv.exe
Invocation Start the INtimeIO Server using the Windows Services Manager (Start>Control

Panel>Administrative Tools>Services).

Item Description
Pathname C:\Program Files\INtime\bin\rtndsrv.exe
Invocation Start the INtime Node Detection Service using the Windows Services Manager

(Start>Control Panel>>Administrative Tools>Services).

Item Description
Pathname C:\Program Files\INtime\msdev\template\rtprocw5.awx
Invocation Invoked by the MSVC 6.0 IDE.

Item Description
Pathname C:\Program Files\INtime\msdev\addins\rtprocaddinw5.awx
Invocation Invoked by the MSVC 6.0 IDE.

Appendix D: INtime software components

167

RtRegSrv.exe (INtime Registry Service)
A Windows program that provides RT Registry Clients access to the Windows registry.

RtRslWiz.awx (RT Shared Library wizard)
An MSVC 6.0 Application Wizard that you use to develop a Realtime Shared Library
(RSL) for an INtime application.

Spider.exe (INtime standalone debugger)
A Windows program that provides standalone debug capabilities for any INtime
application.

Item Description
Pathname C:\Program Files\INtime\bin\rtregsrv.exe
Invocation Start the INtime Registry Service using the Windows Services Manager

(Start>Control Panel>Administrative Tools>Services).

Item Description
Pathname C:\Program Files\INtime\msdev\template\rtrslwiz.awx
Invocation Invoked by the MSVC 6.0 IDE.

Item Description
Pathname C:\Program Files\INtime\bin\spider.exe
Invocation Double-click the icon associated with the file in the INtime Program folder

(Start>Programs>INtime>Spider debugger).

INtime 4.0 Software

168

169

E Visual Studio debugging for
older INtime projects

This appendix describes how existing INtime projects may be upgraded to use the
newer Visual Studio product and its debugger. INtime software continues to provide
support the Microsoft Visual C 6.0 and Visual Studio 2003 products for legacy
applications, but the use of newer Visual Studio products allows you to take advantage
of newer debugging features of the product.

To avoid confusion, we will refer to the newer Visual Studio products as “Visual
Studio”; for earlier versions we will include the version number.

Upgrading from Visual Studio 6.0 to newer Visual Studio
When you open an existing project (.dsp or .dsw file) in Visual Studio, you are asked
whether you want to upgrade; if you refuse, the workspace is not opened. If you agree,
Visual Studio modifies your file set and you now have these files:

The solution file, proj.sln, is the modern version of the workspace: it contains solution
properties (a solution is the new word, but it means the same: a solution or workspace
is a container for one or more projects). There can be different types of projects, but for
INtime we are interested only in the C/C++ project type, which is referred to as a VC
project and identified by the file extension .vcproj; a VC project file contains compiler
and linker settings.

After upgrading, you now have access to all Visual Studio features, but you cannot use
the integrated INtime debugger yet.

Converting to a .intp project
To get access to the integrated INtime debugger, we need to tell Visual Studio that we
have an INtime project. This is accomplished by converting the VC project into an
INtime project (represented by a file with an .intp extension) which encapsulates the
VC project. When Visual Studio reads an INtime project, it provides access to features
specific to INtime projects, which includes the integrated INtime debugger. Before
leading you there, let us see how you convert a project.

Filename Contents
proj.c Main source files
proj.sln Solution properties
proj.suo User options file
proj.vcproj Project properties

INtime 4.0 Software

170

You have already upgraded your VS6 workspace to a Visual Studio solution. Start by
opening that solution in Visual Studio. Load the macros provided by INtime 4.0 into
Visual Studio as follows (loading the macro project needs to be done only once):

1. Select Tools>Macros>Load macro project.

2. Navigate to the vstudio80 directory in INtime’s installation directory.

3. Open the tointp.vsmacros file.

4. Locate ToIntp in the Macro Explorer window:

A. Click the plus icon to expand ToIntp.

B. Click the plus icon to expan Module1.

5. Double-click ToIntp, or click it once and press Enter.

Progress messages display in the Output window, located at the bottom of the
Visual Studio workspace. You are then prompted to save files.

6. Click Yes to save files.

You now have a solution with one or more INtime projects identified by an INtime
icon; each INtime project contains a C/C++ project. Your set of files now looks like this:

Setting project properties
An INtime project has an additional set of options: when you right-click the VC project
and select properties, you see the compiler and linker settings, just like before. Right
clicking the INtime project and selecting properties shows two pages (there are also
menu items to achieve the same results):

• Launch settings, that determine on which INtime noe the application will run and
what command line arguments are passed to it, and

• INtime settings, which control resources in the INtime system.

The pool maximum parameter on the INtime settings page is the same as the Heap
reserve size on the Linker/System page of the C/C++ project properties.

Filename Contents
proj.c Main source files
proj.sln Solution properties
proj.suo Same, but in binary
proj.intp INtime project properties
proj.vcproj VC project properties

Appendix E: Visual Studio debugging for older INtime projects

171

Getting to work with the debugger
All of these steps had to be done only once. From now on you can use the integrated
INtime debugger, just like you are used to doing so with Windows applications:

• Press F9 to set a breakpoint on a source line.

• Press F5 (run), Control-F5 (run without debugging), or F10 (single step) to start
debugging.

• When at a breakpoint, view threads, variables, registers, call stack, modules, etc.

Note that the integrated debugger will refuse to debug an INtime RSL—you must select
a project that represents a .RTA file.

What if conversion did not work?
The ToIntp macro makes some assumptions about projects that can be converted to
INtime projects:

• Such a project is identified by the Version=21076.20052 option in the
Linker/General properties page. Projects that do not have this option are skipped
by the convertion macro.

• There are two configurations, named Debug and Release.

• compiler and linker options are set to default values applicable for INtime.

There is a second macro ToIntpSelected that only converts the selected project.

If for any reason you choose not to use the conversion macro but still want to use the
integrated debugger, you can proceed as follows in Visual Studio:

1. Create a new solution if you wish.

2. In the solution, create a new project; use the INtime projects>Application wizard for this, and
select an empty project.

3. When the wizard is finished, modify the VC project to suit your needs (add configurations,
change compiler and linker settings). Note that you will not be able to modify the platform in
the configuration manager; it will always ge “INtime”.

4. Add project items such as .c and .cpp source files, .h and .hpp include files, and so on.

Upgrading from Visual Studio 2003 to newer Visual Studio
All that is required is to open the existing solution (proc.sln) with the newer Visual
Studio. You will be asked to upgrade and then the solution will be converted to the
newer format. If you do not have a .intp project, proceed as described above under
“Converting to a .intp product”.

INtime 4.0 Software

172

173

F
Adding INtime software
to an XP Embedded
configuration

You can add INtime components to your XP Embedded configuration using the
standard mechanism provided in the XP Embedded Developer's Kit.

The INtime.sld file (C:\Program Files\INtime\Xpembedded\intime.sld) defines the
INTime components and should be imported into the component database using the
Component Database Manager. After creating new target XPE images, you can view
and add INtime components from the Database.

INtime components are found in the component hierarchy under this key:

Software\System\OEM System Extensions\Infrastructure\

 Note
Before starting work with INtime on XP Embedded, obtain the latest sld file from TenAsys at
support@tenasys.com.

INtime 4.0 Software

174

175

G Troubleshooting

This appendix lists problems you may encounter while running INtime software, and
explains how to avoid or resolve those problems.

Complete these steps to resolve INtime software problems:

Problem
encountered

1. Do a quick check to eliminate the
most common causes of failure.

1. Look for symptoms.
•Use the Symptom table to find

a solution code for your
symptoms.

•Find the solution code in the
Solution table and try the
suggested remedy.

Problem
resolved

Problem
still exists?

Yes

No

Figure G-1. Troubleshooting INtime software problems

INtime 4.0 Software

176

Do a quick check
Many problems are solved by correcting these:

• Is the RT kernel running? You must start the RT kernel prior to starting most
INtime development tools and all INtime applications.

• Did you use the INtime RT Application wizard to set up the project? Using this
wizard automatically starts an INtime project and ensures that the project includes
proper settings.

Look for symptoms
Scan the Symptom table until you find a symptom that your system exhibits. The
Symptom table lists solution codes in the order most likely to occur.

Locate the corresponding solution codes in the Solution table and take the
recommended action. You may need to try several solutions before you successfully
resolve the problem.

Table G-1. Symptom table

Symptom

Solution
codes

INtime software does not install. 1, 2, 3,
4, 5, 6

Tools in the INtime development environment do not run. 11
The INtime application reports build errors. 9, 10
A serial mouse does not respond after you start the RT kernel. 12
The INtime application does not load. 11, 13
The file is not recognized as a valid INtime application. 14
The INtime application terminates unexpectedly. 15
The INtime application displays this message:
Running out of Virtual Address Space (error code 0xf0)

15

The INtime application reports an unsupported C library function. 10
The INtime application performs terminal I/O, and no terminal window appears. 17
Only a blue screen displays. 20
Windows window events and applications respond slowly. 19, 16
The system doesn’t respond to attempts to move the cursor or make entries from
the keyboard.

18, 20,
19, 16,
8

You’re running SDM and neither the system console nor the SDM terminal respond to
attempts to move the cursor or make entries from the keyboard.

7

Appendix G: Troubleshooting

177

Table G-2. Solution table

Category Solution
Installing
INtime
software

1 Adjust your system configuration.
Your system has an incompatible system configuration.

2 Check the System Event Log for error messages from source RTIF. Also check
the Application Event Log for error messages from LOADRTK.

3 Ensure that your PC is set up as required for INtime software. For details, see
Requirements on page 63.

4 Ensure that you exit all programs before you install INtime software.
5 Ensure that your system does not contain a previous version of INtime.

If a previous version exists, uninstall it by selecting Start>Control
Panel>Add/Remove programs.

6 Ensure that you are logged on with Administrator privileges.
Developing
INtime
applications

7 Use the SDM PDP <logical address> command to get the physical address of
memory in question, followed by S c80:physical address (returned by PDP).
Do not use the SDM D command to display Ring 3 code/data in a Virtual
Segment at an address not populated with memory.
Do not use the SDM S command to modify memory using a Ring 3 code
segment (read-only).

8 If you’re running SDM, no action is required.
When you run SDM, you access the INtime software via the SDM terminal and
the Windows system console no longer responds.

9 Verify project build settings and ensure that you:
• Select Not Using MFC to disable use of MFC classes.
• Include the <INtime install path>\rt\include directory as a preprocessor

directive.
• Ignore all default libraries as a link option.

10 Remove C library calls not supported by INtime.
For a list of C library calls that INtime supports, run INtime Help and select
Programmer’s reference>C library reference.

INtime 4.0 Software

178

Loading
INtime
applications

11 Start the RT kernel before starting an INtime application.
For information about starting the RT kernel, see Chapter 9, Operation.

12 Do one of these:
• If your mouse is on COM2, switch it to COM1.
• Switch the RT kernel debug port to COM1 or disable RT kernel debug.

13 Run the RT Application Loader and select the Advanced option to increase the
amount of virtual address space in 4 MByte increments.
Not enough memory exists to load the application. The program size and its
heap and stack requirements specified when it was built may exceed the
amount of memory available for INtime applications.
For more information about changing memory options for loading INtime
applications, see Help in the RT Application Loader.

14 Rebuild the project.
You may have tried to run a corrupted executable. This can occur, as an
example, when a project is open and Windows halts.

Table G-2. Solution table

Category Solution

Appendix G: Troubleshooting

179

Running
INtime
applications

15 Run the INtime Explorer to obtain debug information.
For information about running the INtime Explorer, see After you start the
INtime kernel in Chapter 9, Operation.

16 Set the RT kernel tick interval above 200usec.
When the kernel tick drops below this rate, Windows slows down because
the CPU devotes too much time to switching between the Windows and
INtime kernels.

17 Ensure that the INtime I/O Service is running.
INtime applications that perform terminal I/O require that the INtime I/O
Service runs. For information about starting this service, see Starting the RT
kernel and related components in Chapter 9, Operation.

18 End the INtime application:
1. Invoke the INtime Explorer (Start>All Programs>INtime>INtime

Explorer).
2. Highlight the INtime application you want to terminate.
3. Right click the mouse. A pulldown menu displays.
4. Select Delete. INtex prompts you to confim the deletion process.
5. Select Yes.
If you cannot display the INtime Explorer (i.e., the Windows screen seems
frozen and the mouse does not respond), the INtime application may have
halted or may be monopolizing system resources. If you suspect the latter, see
solution 19.
Note:
• To verify whether Windows has halted, try to access the file system from

another system. If you can, Windows is still running but cannot respond.
• Ensure that you wait for at least ten seconds, in case the Spin Doctor

detects a spinning thread.
19 Adjust your INtime application so that the RT portion of your INtime

applications do not dominate CPU time.
Your INtime application may be designed to monopolize too many system
resources. For more information about designing applications to balance RT
and Windows activity, see Methodology in Chapter 5, Designing
RT applications.
Note: To aid in diagnosing system resource misuse, try to access the file
system from another system. If you can, Windows is still running but cannot
respond.

Running
INtime
applications
(continued)

20 Exit INtime applications, if possible, then reboot your system:
One of these situations may have occured:
• Windows halted.
• A Windows application halted.
• An INtime application monopolized system resources.
Note: Try other solutions before trying this one.

Table G-2. Solution table

Category Solution

INtime 4.0 Software

180

Other resources
If the information in this chapter doesn’t solve the problem, you may want to contact
TenAsys as described in Where to get more information on page v.

181

Glossary

Location. a handle which uniquely identifies a node.

application loader The layer of an INtime application that loads programs into memory for execution,
such as when a user enters a command at the console.

asynchronous Events that occur at random times.

BIOS (Basic I/O System) On a PC system, the code that resides in ROM to supply
OS-independent access to the computer’s I/O system.

BSOD (Blue Screen of Death) An acronym used to describe total Windows failure.

client On a network, a client is a computer which makes requests of a remote system that
acts as a server. For example, a client could request a remote server to supply it with
data from one of the server’s disk files.

descriptor An 8-byte data structure taken from a descriptor table in memory. Descriptors provide
the CPU with the data it needs to map a logical address into a linear address. The
fields of a descriptor include information concerning segment size, base address,
access rights, and segment type (such as read/write segment, executable segment, call
gate, task gate, trap gate, etc).

determinism Predictable response time. Enables threads to execute before their deadlines expire.

device controller The hardware interface between the CPU or system bus and a device unit.

device driver The software interface between the I/O system and a device controller.

Distributed INtime A configuration of INtime where an INtime kernel (RT client) runs on a CPU that does
not run Windows.

encapsulation A characteristic of object-based systems. The representation of an object is hidden
from the user of that object. Only the object’s type manager can manipulate an object.
Users of an object can manipulate the object only by invoking type manager functions
for the object.

EOI (End of Interrupt) A command sent to a PIC to indicate that an interrupt handler
completed processing an interrupt.

event-driven Applications can respond to interrupts as they occur; they do not waste time polling
for interrupts.

exception handler A program that receives control when either the operating system or hardware detects
an error.

INtime 4.0 Software

182

exchange object Generic name for object types managed by INtime software that allow threads to
synchronize and communicate with each other. Exchange objects include:
semaphores, mailboxes, and regions.

execution state Thread state. Thread execution states include: running, ready, asleep, suspended, or
asleep-suspended.

FIFO First in, first out.

GDT (Global Descriptor Table) A memory segment that contains descriptors for code, data,
and descriptor table segments.

HAL Hardware Abstraction Layer.

handle An object identifier.

host A computer consisting of one or more processing elements (cores or hardware threads).

host scope Accessible by all processes on all nodes of a given host. See node scope on page 183
and universal scope on page 185.

IDT Interrupt descriptor table.

interrupt A signal from a device such as a NIC (Network Interface Card) or IDE hard disk
controller. You connect interrupt sources to the processor through a PIC
(Programmable Interrupt Controller).

interrupt handler Code executed first in response to a hardware interrupt. This code runs in the context
of the thread that was running when the interrupt occurred. Interrupt handlers must
save the current context on the stack before using any CPU registers.

interrupt levels PICs manage interrupts by presenting them to the system processor as discreet levels
in priority order. INtime software handles more critical interrupts first, and keeps
track of which interrupts occurred, the order in which they occurred, and which ones
have not been handled.

interrupt response
time

The time between a physical interrupt happening and the system beginning to
execute the interrupt handler. By being able to calculate a predictable worst-case
response time to interrupt processing, a real-time system can be designed to ensure
that incoming data is handled before it becomes invalid.

INtime host A computer which is running one or more instances of the INtime RT kernel, but not
Windows. See Windows host on page 185.

IPI (Inter Processor Interrupt) A way to communicate between multiple processors in
a system.

MAC (Media Access Control) The 6-byte Ethernet address for a computer node on a
network.

mailbox An RT kernel object type managed by the RT kernel. Mailboxes are used for
interthread synchronization and communication. Two types of mailboxes exist:

• Data mailbox: sends and receives data. Available in both high and low level.

Glossary

183

• Object mailbox: sends and receives object handles. Available only in high level.

memory address The architectural mechanism used by x86 processors to access an individual byte of system
physical memory. In the 32 bit protected mode environment of Windows and INtime, memory
addresses are 32 bit linear addresses relative to a 16 bit descriptor that is loaded into a CPU
segment register. The INtime kernel manages the 16 bit descriptors (virtual segments - VSEGs)
for INtime applications that only use 32 bit linear addresses to access code and data (flat model
applications generated with MSVC tools).

memory area Provides memory for threads to use for many purposes, including communicating
and storing data.

memory pool An amount of memory, with a specified minimum and maximum, allocated to a
process. The basis of INtime software’s memory management. The initial memory
pool is all the memory available to the application (that is, free space memory). It is
managed by the OS and allocated to the application on request.

message port An RT kernel object type managed by the kernel. Used to provide an access point for
an INtime application thread to communicate with an INtime service.

multi-
programming

Ability of an operating system to simultaneously run several unrelated applications
on a single system. Allows more than one application to run at a time.

multithreading Ability of an operating system to run multiple threads at virtually the same time.
When the operating system stops executing one thread, it resumes/starts executing
another thread. This transition from one thread to another is called a thread switch.

node An instance of an operating system. A node may be on its own on a host, or one of
several on a multi-core host, or sharing a host with Windows. See remote node on
page 184 and Windows node on page 185.

node scope Accessible by all processes on a given node. See host scope on page 182 and universal
scope on page 185.

object An instance of a data structure that can be accessed only through a set of functions
provided by a type manager.

object directory A storage area within an INtime process where objects can be cataloged, i.e. have a
name associated with the objects so that other theads may refer to/access the
cataloged object by name.

OSEM (OS Encapsulaton Mechanism) Manages the simultaneous operation and integrity of
the Windows kernel and the RT kernel. Used only with INtime nodes.

PIC (Programmable Interrupt Controller) An integrated circuit that can resolve
simultaneous interrupt requests and negotiate a sequence of CPU interrupt requests
based on the priorities of the requesting device controllers.

priority-based
scheduling

Abiltiy of an operating system to assign execution order importance values (priority)
to each thread in the system. In an INtime system, the scheduling policy enforced by
the INtime kernel is that the highest priority ready thread is/will immediately become
the running thread. Thus, when thread A is running, if thread B becomes ready

INtime 4.0 Software

184

through some system event, and thread B is higher priority than thread A, then the
INtime kernel will immediately preempt thread A, and make thread B the running
thread.

priority inversion A situation in which a high-priority thread is effectively prevented from running by
a lower-priority thread. Proper use of the RT kernel’s region objects eliminates this
problem.

process An RT kernel object type. Processes have memory pools and contain/own execution
threads and other objects.

region An RT kernel object type managed by the kernel. Regions are binary semaphores with
special suspension, deletion, and priority-adjustment features. You can use regions
to provide mutual exclusion for resources or data.

remote node A host other than the host where the current process is running. See Windows
node on page 185.

round-robin
scheduling

A scheduling method where equal priority threads take turns running. Each thread
gets a time slice, an equal portion of the processor’s time.

RT Real-time.

RT client An RT subsystem designated to consume INtime services (booting, configuration, file
system proxy, etc.) provided by a Windows host.

RT kernel (Real-time kernel) An operating system that provides full RT functionality.

RT subsystem A self-contained collection of software containing an RT kernel, a number of RT
support processes, and the RT portion of zero or more INtime applications.

semaphore An RT kernel object type managed by the kernel. Semaphores are used for interthread
synchronization. A counter that takes positive integer values. Threads use
semaphores for synchronization by sending units to and receiving units from the
semaphores.

server On a network, a server is any computer which responds to requests from remote
systems. For example, file or print servers allow remote systems to access local disks
or printers.

system call A subroutine supplied by INtime software to provide a service, such as I/O processing
or memory allocation. A programmatic interface you use to manipulate objects or
control the computer’s actions.

thread An RT kernel object type managed by the RT kernel. Threads, or threads of execution,
are the active, code-executing objects in a system.

thread switch time The time required to save the context (data registers, stack and execution pointers) of
one thread, and to start another thread by moving its context into the processor
registers.

time slice An equal portion of the processor’s time.

Glossary

185

universal scope Accessible by all processes on all nodes. See host scope on page 182 and node
scope on page 183.

Windows host A computer that simultaneously executes both a Windows host and one or more
RT nodes that are connected via the OSEM. See INtime host on page 182.

Windows node An instance of Windows whether running on a single or multiple hardware threads.
See node on page 183 and remote node on page 184.

Windows
subsystem

A self-contained collection of software containing Windows, a number of Windows
support processes, and the Windows portion of zero or more INtime applications.

INtime 4.0 Software

186

187

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

A
accept 130
AcceptRtControl 115
alarms 32
AllocateRtMemory 109
allocating

memory 48
application development

design 55
examples 58

applications
INscope 90
INtex 90
RT Event Log Server 164
RT kernel loader 158
RT loader 157
RT Node Detection Server 166
sample, defined 10
SDM 89
Spider 89
Windows NT Crash program 152

AttachRtHeap 113
AttachRtPort 113

B
bind 130
BindRtPort 113
blue screen protection 13
Blue.exe 152
browser, INtime RT Client 156
BSOD. See blue screen protection.
bstring 130
byteorder 130

C
C and C++ sample for debugger 161
C++ Help files 154
calls

NTX 103
real-time 104

low-level 104

calls. See system calls.
CancelRtTransaction 113
CancelTransaction 127
CatalogRtHandle 111
ClearCommBreak 128
ClearCommError 128
CloseComm 128
comedgeport.rta 129
comlist.rta 129
COMM calls 128

ClearCommBreak 128
ClearCommError 128
CloseComm 128
Drivers

comedgeport.rta 129
compc.rta 129
comrocket.rta 129

drivers 129
EscapeCommFunction 128
FlushCommBuffers 128
GetCommConfig 128
GetCommMask 128
GetCommModemStatus 128
GetCommProperties 128
GetCommState 128
GetCommTimeouts 128
OpenComm 128
PurgeComm 128
ReadComm 128
ResetCommEvent 128
SetCommBreak 128
SetCommConfig 128
SetCommMask 129
SetCommState 129
SetCommTimeouts 129
structures 129
TransmitCommChar 129
Utilities

comlist.rta 129
utilities 129
WaitCommEvent 129
WriteComm 129

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

188

INtime 4.0 Software

COMMCONFIG structure 129
COMMPROP structure 129
COMMTIMEOUTS structure 129
communicating

between threads 46
between Windows NT and RT threads 4

compc.rta 129
comrocket.rta 129
COMSTAT structure 129
configuring INtime software

default settings 67
interrupt resources 69
options 67

connect 130
connecting to INtime host 73
ConnectRtPort 113
CONTROLBUFFER structure 119
conventions, notational v
CopyRtData 110
CopyRtSystemInfo 117
CPUFRAME structure 119
crash program, Windows NT 152
CreateGlobalRtMailbox 107
CreateGlobalRtMemoryHandle 107
CreateGlobalRtMemoryObject 107
CreateGlobalRtSemaphore 106
CreatePort 127
CreateRtHeap 110
CreateRtMailbox 108
CreateRtMemoryHandle 109
CreateRtPort 113
CreateRtPortEx 113
CreateRtReferenceObject 106
CreateRtRegion 114
CreateRtSemaphore 116
CreateRtThread 117

D
data, validity of 48
DCB structure 129
deadlock 35
debug tools

INscope 90
INtex 90
SDM 89
Spider 89

debuggers 9
C and C++ sample 161

default configuration settings 67
DeletePort 127
DeleteRtHeap 110
DeleteRtMailbox 108
DeleteRtMemoryHandle 109
DeleteRtPort 113
DeleteRtProcess 114
DeleteRtReferenceObject 106
DeleteRtRegion 114
DeleteRtSemaphore 116
DeleteRtThread 117
DeliverMessage 126
DeliverStatus 126
DeliverTransaction 126
DequeueInputTransaction 126
DequeueOutputTransaction 126
desigining RT applications

RT processes, appropriate tasks 57
sample system 58
Windows NT processes, assigning priority 57

designing RT applications
guidelines 55

DetachRtHeap 113
DetachRtPort 113
determinism 43

interrupt response time 43
thread switch time 43

developing INtime applications 7
development environment. See INtime development

environment.
directories, object 31
DisableRtInterrupt 107
drivers

RT interface 19 , 164
RT USB interface 163

DSM calls 105
dynamic memory 30

E
e-mail address, TenAsys vi
email, technical support vi , 93 , 173
email, TenAsys v
EnableRtInterrupt 107
encapsulating Windows NT

See OSEM 18

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

189

encapsulating Windows NT as an INtime software
thread 19

encapsulation mechanism. See OSEM.
EnqueueInputTransactionTransaction 126
EnqueueOutPutTransaction 126
EnterRtInterrupt 107
EnterServiceRegion 126
EscapeCommFunction 128
Ethernet 18
Ethernet, high performance calls 123
event log service 164
event-driven applications 41
EVENTINFO structure 119
EventMsg.dll 152
examples

application systems 58
interrupt handlers 24 , 59
multitasking 59
mutual exclusion 34 , 35
regions 35
sample system 58
semaphores 34
synchronizing threads 47

exception handling calls 106
exception handling, floating point 161
EXCEPTION structure 119
exchange objects 32

mailboxes 33
ports 36
regions 35
semaphores 34
validation levels 32

exclusion, mutual 48
execution state 21
ExitRtProcess 114
ExitServiceRegion 126

F
Fault Handling (ntrobust) 161
Fault Manager 52
file types

.DLL 8

.EXE 8

.RTA 8
FILETIME structure 119
Finish 127
Floating Point Exception Handling 161

FlushCommBuffers 128
FreeRtLibrary 125
FreeRtMemory 109
functions. See system calls.

G
GENADDR structure 119
get_RT_trace_state 124
GetAttributes 127
GetCommConfig 128
GetCommMask 128
GetCommModemStatus 128
GetCommProperties 128
GetCommState 128
GetCommTimeouts 128
GetFirstRtLocation 106
GetFragment 127
GetGlobalRootRtProcess 106
gethostent 130
gethostname 130
GetLastRtError 117
getnetent 130
GetNextRtLocation 106
getpeername 130
GetPortId 126
GetPortParameter 126
getprotoent 130
GetRServiceAttributes 112
GetRtBufferSize 110
GetRtExceptionHandlerInfo 106
GetRtHandleType 111
GetRtHandleTypeEx 111
GetRtHeapInfo 110
GetRtInterruptLevel 107
GetRtModuleHandle 125
GetRtNodeInfo 106
GetRtNodeLocationByName 106
GetRtNodeStatus 106
GetRtObjectInfo 106
GetRtPhysicalAddress 109
GetRtPortAttributes 113
GetRtProcAddress 125
GetRtSize 110
GetRtThreadAccounting 117
GetRtThreadHandles 117
GetRtThreadInfo 117
GetRtThreadPriority 118

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

190

INtime 4.0 Software

GetRtThreadState 118
getservent 130
getsockname 130
getsockopt 130
GetTransaction 126
global object calls 106

CreateGlobalRtMailbox 107
CreateGlobalRtMemoryHandle 107
CreateGlobalRtMemoryObject 107
CreateGlobalRtSemaphore 106
CreateRtReferenceObject 106
DeleteRtReferenceObject 106
GetFirstRtLocation 106
GetGlobalRootRtProcess 106
GetNextRtLocation 106
GetRtNodeInfo 106
GetRtNodeLocationByName 106
GetRtNodeStatus 106
GetRtObjectInfo 106

guidelines for designing applications 55
guidelines for designing INtime applications 55

H
HAL, modified for INtime software 12 , 20
handlers

interrupt 42
service 127

handlers, interrupt
alone 24
handler/thread combination 24

header files
NTX 159
RT 162

HEAPINFO structure 119
help iii , v , vi , 3 , 93 , 153 , 173
high-performance gb Ethernet calls 123
host, connecting to 73
HWEXCEPTIONMSG structure 119

I
INBrow.ocx 156
inbyte 133
INCnfgcpl.cpl 152
INConfig.hlp 153
inet 130
inhword 133

Initialize 127
Input/Output calls 133

inbyte 133
inhword 133
inword 133
outbyte 133
outhword 133
outword 133

INscope application 90
INscope calls 124

get_RT_trace_state 124
log_RT_event 124
pause_RT_trace 124
RT_I_am_alive 124
start_RT_trace 124
stop_RT_trace 124

Installation program, running 64
installing INtime software

before you begin 63
running the Installation program 64

InstallRtServiceDescriptor 112
interface driver, RT 19
interface, RT driver 164
internal loop. See loop.
interrupt calls 107
interrupt handlers 24 , 42

alone 24
examples 24 , 59
handler/thread combination 24

INTERRUPTINFO structure 119
interrupts

during RT operation 19
levels 42
processing 42
resources, configuring 69
response time 43
threads 24 , 42

INtex application 90
INtime API Test 161
INtime Application wizard 82
INtime applications

described 4
developing 7 , 55
files 8
how they run 16
RT processes, appropriate tasks 57
runtime behavior 19

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

191

sample system 58
Windows NT processes, assigning priority 57

INtime development environment
debuggers 9
libraries 9
wizards 8

INtime Driver Model Serial Driver Test Demo 161
INtime Graphical Jitter 161
INtime Performance Monitor.INtmPerf.*

files.Performance monitor 155
INtime RT Client Browser 156
INtime RT process add-in wizard 84
INtime runtime environment

blue screen protection 13
encapsulating Windows NT as a thread 19
HAL, modified for Windows NT 12
HAL, modified for windows NT 20
how INtime applications run 16
kernel 12
memory protection 12
OSEM 12 , 18
RT interface driver 19
sample applications 10

INtime Serial Driver Sample 161
INtime services

INtime Registry service 167
INtime software

configuring 67
default settings 67
interrupt resources 69

debuggers 9
defined 3
libraries 9
requirements 63
wizards 8

INtime Software Overview Guide, PDF format 160
INtime USB Client sample 161
INtime Windows STOP Detection sample (STOPmgr)

161
INtime.hlp 153
INtimeDotNet calls 131

ntxCatalogNtxHandle 131
ntxCreateRtMailbox 131
ntxCreateRtProcess 131
ntxCreateRtSemaphore 131
ntxDeleteRtMailbox 131
ntxDeleteRtSemaphore 131

ntxGetFirstLocation 131
ntxGetLocationByName 132
ntxGetNameOfLocation 132
ntxGetNextLocation 132
ntxGetRootRtProcess 132
ntxGetRtErrorName 132
ntxGetRtSize 132
ntxGetRtStatus 132
ntxGetType 132
ntxImportRtHandle 132
ntxLoadRtErrorString 132
ntxLookupNtxHandle 132
ntxNotifyEvent 132
ntxReadRtXxx 132
ntxReceiveRtDataXxx 132
ntxReceiveRtHandle 132
ntxRegisterDependency 132
ntxRegisterSponsor 132
ntxReleaseRtSemaphore 132
ntxSendRtDataXxx 132
ntxUncatalogNtxHandle 132
ntxUnregisterDependency 132
ntxUnregisterSponsor 132
ntxWaitForRtSemaphore 132
ntxWriteRtXxx 132
structures 133

NTXEVENTINFO 133
NTXPROCATTRIBS 133

INtimeDotNet callsntxSendRtHandle 132
INtimeDotNet sample applications 161
inword 133
ITWrpSrv.hlp 153
iWIn32 header files 157
iWin32 library files 157
iWin32x header files 157
iWin32x import library 157

J
Jitter 161

K
kernel

blue screen protection 13
loader 158
memory protection 12
RT 155
time management 25

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

192

INtime 4.0 Software

knCreateRtAlarmEvent 118
knCreateRtMailbox 108
knCreateRtSemaphore 116
knDeleteRtAlarmEvent 119
knDeleteRtMailbox 108
knDeleteRtSemaphore 116
knGetKernelTime 119
knReleaseRtSemaphore 116
knResetRtAlarmEvent 118
knRtSleep 115
knSendRtData 108
knSendRtPriorityData 108
knSetKernelTime 119
knStartRtScheduler 115
knStopRtScheduler 115
KNTIME structure 119
knWaitForRtAlarmEvent 118
knWaitForRtData 108
knWaitForRtSemaphore 116

L
LdRta.exe 157
LdRta.hlp 153
levels, interrupt 42
libraries 9

NTX import 159
RT interface 162

limitations
maximum objects in system 28

listen 130
loader

RT application 157
RT kernel 158

LoadRtk.exe 158
LoadRtLibrary 125
log_RT_event 124
LookupPortHandle 126
LookupRtHandle 111
loop. See internal loop.
low-level calls 104

when to use 104

M
mailbox calls 108
mailboxes, kernel 32 , 33 , 104
managing time 25
MapRtPhysicalMemory 109

MapRtSharedMemory 109
mDNSINtime.exe 159
memory

allocating and sharing 48
dynamic 30
pools 30
segments 30

memory calls 109
memory heap calls 120
memory pool calls 120
memory pools

defined 30
memory protection 12
memory/buffer management 109
message port calls 112
message transmission calls 113
MFC*.dll files 159
modified Windows NT Hardware Abstraction Layer.

See HAL.
modular programming 40
MsgBoxDemo (NTX Sample) 161
multiprogramming 44
multitasking, examples 59
multi-threading 39
mutual exclusion

defined 48
examples 34 , 35

N
network stack calls 124
network7 utility files 159
Node Detection Server 166
non-validating calls 104
notational conventions v
NT Crash program 152
ntrobust (Fault Handling) 161
NTX calls 103
NTX header files 159
NTX import libraries 159
NTX Sample (MsgBoxDemo) 161
NTX.dll 160
ntxAttachRtPort 112
ntxBindRtPort 112
ntxCancelRtTransaction 112
ntxCatalogNtxHandle 131
ntxCatalogRtHandle 111
ntxConnectRtPort 112

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

193

ntxCopyRtData 109
ntxCreateRtMailbox 108 , 131
ntxCreateRtPort 112
ntxCreateRtProcess 114 , 131
ntxCreateRtSemaphore 116 , 131
ntxDeleteRtMailbox 108 , 131
ntxDeleteRtPort 112
ntxDeleteRtSemaphore 116 , 131
ntxDetachRtPort 112
NTXEVENTINFO structure 119 , 133
ntxFindINtimeNode 117
ntxGetFirstLocation 117 , 131
ntxGetLastRtError 116
ntxGetLocationByName 117 , 132
ntxGetNameOfLocation 117 , 132
ntxGetNextLocation 117 , 132
ntxGetRootRtProcess 111 , 132
ntxGetRtErrorName 116 , 132
ntxGetRtPortAttributes 112
ntxGetRtServiceAttributes 112
ntxGetRtSize 109 , 132
ntxGetRtStatus 116 , 132
ntxGetType 111 , 132
ntxImportRtHandle 132
ntxImportRthandle 111
ntxLoadRtErrorString 116 , 132
ntxLookupNtxHandle 132
ntxLookupNtxhandle 111
ntxMapRtSharedMemory 109
ntxMapRtSharedMemoryEx 109
ntxNotifyEvent 105 , 114 , 132
NTXPROCATTRIBS structure 119 , 133
ntxReadRtXxx 132
ntxReceiveData 108
ntxReceiveHandle 108
ntxReceiveRtDataXxx 132
ntxReceiveRtHandle 132
ntxReceiveRtMessage 112
ntxReceiveRtReply 112
ntxRegisterDependency 105 , 114 , 132
ntxRegisterSponsor 105 , 114 , 132
ntxReleaseRtBuffer 112
ntxReleaseRtSemaphore 116 , 132
NtxRemote2.exe 160
ntxRequestRtBuffer 112
ntxSendData 108
ntxSendHandle 108
ntxSendRtDataXxx 132

ntxSendRtHandle 132
ntxSendRtMessage 112
ntxSendRtMessageRSVP 112
ntxSetRtServiceAttributes 112
ntxUncatalogNtxHandle 132
ntxUncatalogRtHandle 111
ntxUnmapRtSharedMemory 109
ntxUnregisterDependency 105 , 114 , 132
ntxUnregisterSponsor 105 , 114 , 132
ntxWaitForRtSemaphore 116 , 132
ntxWriteRtXxx 132

O
OBJECTDIR structure 119
objects

defined 27
directories 31 , 111
exchange 32

mailboxes 33
ports 36
regions 35
semaphores 34

maximum in system 28
memory pools 30
processes 28
threads 28

OpenComm 128
OS encapsulation mechanism. See OSEM.
OSEM 12 , 18
outbyte 133
outhword 133
outword 133
OvwGuide.pdf 160

P
pause_RT_trace 124
PCI library calls 124

PciClassName 125
PciDeviceName 125
PciEnableDevice 125
PciFindDevice 124
PciGetConfigRegister 124
PciInitialize 124
PciReadHeader 124
PciSetConfigRegister 124
PciVendorName 124

PciClassName 125

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

194

INtime 4.0 Software

PCIDEV structure 119
PciDeviceName 125
PciEnableDevice 125
PciFindDevice 124
PciGetConfigRegister 124
PciInitialize 124
PciReadHeader 124
PciSetConfigRegister 124
PciVendorName 124
PDF file, INtime Software Overview Guide 160
POOLINFO structure 119
pools, memory 30
port calls

message transmission 113
port object management 113
service support 112

port callst 112
port object management calls 113
PORTINFO structure 119
ports 36
pre-emptive scheduling 41
priority-based scheduling 21 , 41
process management calls 114
processes 28

about 28
components 44
tree 29

processing, interrupts 42
Project files 160
protection

blue screen 13
memory 12

PurgeComm 128

Q
QueryInputTransactionQueue 127
QueryOutputTransactionQueue 127
Quick Start Guide 161

R
ReadComm 128
real-time

debuggers 9
interface driver 19
INtime applications, designing 55
response 39
RT kernel 12

real-time calls 104
Real-time Interrupt Sample 161
Real-time Shared Library (RSL) calls 125
RECEIVEINFO structure 119
ReceiveRtData 108
ReceiveRtFragment 113
ReceiveRtHandle 108
ReceiveRtMessage 113
ReceiveRtReply 113
recursive. See recursive.
recv 130
recvfrom 130
region calls 114
regions 35
RegisterRtDependency 105 , 114
RegisterRtSponsor 105 , 114
Registry calls 125
registry calls 125
ReleaseControlBuffer 127
ReleaseRtBuffer 110
ReleaseRtControl 115
ReleaseRtSemaphore 116
ReleaseTransaction 127
ReportRtEvent 117
RequestControlBuffer 127
RequestRtBuffer 110
RequestTransaction 127
requirements for INtime software 63
ResetCommEvent 128
ResetRtInterruptHandler 107
response time, predictability 43
ResumeRtThread 118
round-robin scheduling 23
RSL calls

FreeRtLibrary 125
GetRtModuleHandle 125
GetRtProcAddress 125
LoadRtLibrary 125
RtTlsFree 125
RtTlsGetValue 125
RtTlsSetValue 125

RSL Example 161
RT application loader 157
RT Clock Synchronization Server 163
RT Device Driver wizard 163
RT Event Log Server 164
RT header files 162

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

195

RT I/O console 165
RT I/O Server 165
RT interface driver 164
RT interface libraries 162
RT kernel 12 , 155

blue screen protection 13
communicating with Windows NT 4
loader 158

RT Node Detection Server 166
RT Process Add-in wizard 166
RT process wizard 166
RT service handlers 127

CancelTransaction 127
CreatePort 127
DeletePort 127
Finish 127
GetAttributes 127
GetFragment 127
Initialize 127
SendMessage 127
Service 127
SetAttributes 128
UpdateReceiveInfo 128
VerifyAddress 128

RT services 105
RT Shared Library wizard 167
RT USB Interface Drivers 163
RT_I_am_alive 124
rta files

comedgeport.rta 129
comlist.rta 129
compc.rta 129
comrocket.rta 129

RtAddinW.hlp 153
RtClkSrv 163
RtDrvrW.hlp 153
RtDrvrW5.awx 163
RtELServ.exe 164
RTIF.SYS 18 , 19
RtIf.sys 164
RtIOCons.exe 165
RtIOSrv.exe 165
RtkImage.dbg 155
RtNdSrv.exe 166
RtNotifyEvent 105
RtProc5.awx 166
RtProcAddinW5.awx 166

RtProcW.hlp 153
RtRegCloseKey 125
RtRegConnectRegistry 125
RtRegCreateKeyEx 125
RtRegDeleteKey 125
RtRegDeleteValue 125
RtRegEnumKeyEx 125
RtRegEnumValue 125
RtRegFlushKey 125
RtRegLoadKey 125
RtRegOpenKeyEx 125
RtRegQueryInfoKey 125
RtRegQueryValueEx 125
RtRegReplaceKey 126
RtRegRestoreKey 126
RtRegSaveKey 126
RtRegSetValueEx 126
RtRegSrv.exe 167
RtRegUnLoadKey 126
RtRslWiz.awx 167
RtSleep 118
RtTlsAllocRSL calls

RtTlsAlloc 125
RtTlsFree 125
RtTlsGetValue 125
RtTlsSetValue 125
runtime environment. See INtime runtime

environment.

S
sample applications 10 , 160
scheduler calls 115
scheduling

priority-based 21 , 41
round-robin 23

SDM application 89
SECURITY_ATTRIBUTES structure 119
segments 30
select 130
semaphores 34 , 115
send 130
SendMessage 127
SendRtData 108
SendRtHandle 108
SendRtMessage 113
SendRtMessageRSVP 113
SendRtReply 113

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

196

INtime 4.0 Software

sendto 130
Serial Communications calls 128

ClearCommBreak 128
ClearCommError 128
CloseComm 128
Drivers

comedgeport.rta 129
compc.rta 129
comrocket.rta 129

EscapeCommFunction 128
FlushCommBuffers 128
GetCommConfig 128
GetCommMask 128
GetCommModemStatus 128
GetCommProperties 128
GetCommState 128
GetCommTimeouts 128
OpenComm 128
PurgeComm 128
ReadComm 128
ResetCommEvent 128
SetCommBreak 128
SetCommConfig 128
SetCommMask 129
SetCommState 129
SetCommTimeouts 129
TransmitCommChar 129
Utilities

comlist.rta 129
WaitCommEvent 129
WriteComm 129

Service 127
service handlers 127
service support calls 112
SERVICEATTRIBUTES structure 119
SERVICEDESC structure 120
Services

RT Event Log Server 164
RT I/O Server 165
RT Node Detection Server 166

services, RT 105
ServicesLRT Clock Synchronization Server 163
SetAttributes 128
SetCommBreak 128
SetCommConfig 128
SetCommMask 129
SetCommState 129

SetCommTimeouts 129
sethostname 130
SetLastRtError 117
SetPortParameter 127
SetRtExceptionHandler 106
SetRtInterruptHandler 107
SetRtInterruptHandlerEx 107
SetRtProcessMaxPriority 118
SetRTServiceAttributes 112
SetRtSystemAccountingMode 118
SetRtThreadPriority 118
setsockopt 130
sharing memory 48
shutdown 130
SignalEndOfRtInterrupt 107
SignalRtInterruptThread 107
socket 130
socktout 130
Spider

application 89
debugger 9

Spider debugger 167
start_RT_trace 124
states

execution 21
thread 43

stop_RT_trace 124
STOPmgr (INtime Windows STOP Detection

sample) 161
Structured Exception Handling 53
structures

COMM 129
COMMCONFIG 129
COMMPROP 129
COMMTIMEOUTS 129
COMSTAT 129
DCB 129

CONTROLBUFFER 119
CPUFRAME 119
EVENTINFO 119
EXCEPTION 119
FILETIME 119
GENADDR 119
HEAPINFO 119
HWEXCEPTIONMSG 119
INTERRUPTINFO 119
INtime 119

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

197

INtimeDotNet 133
KNTIME 119
NTXEVENTINFO 119
NTXPROCATTRIBS 119
OBJECTDIR 119
PCIDEV 119
POOLINFO 119
PORTINFO 119
RECEIVEINFO 119
SECURITY_ATTRIBUTES 119
SERVICEATTRIBUTES 119
SERVICEDESC 120
SYSINFO 120
THREADACCOUNTING 120
THREADINFO_SNAPSHOT 120
THREADSTATE_SNAPSHOT 120
TRANSACTION 120
urb 120
usbClient 120
usbConfigDescriptor 120
usbCtrlRequest 120
usbDeviceDescriptor 120
usbDeviceId 120
usbEndPointDescriptor 120
usbInterface 120
usbInterfaceDescriptor 120

StrvAlrm.hlp 153
support iii , v , 3 , 153
support, technical vi , 93 , 173
SuspendRtThread 118
synchronizing threads 47
SYSINFO structure 120
system calls 9 , 50

global objects 106
high-level calls

DSM 105
exception handling 106
interrupts 107
mailboxes 108
memory 109
message ports 112
object directories 111
process management 114
regions 114
semaphores 115
thread management 117

high-performance gb Ethernet 123

INscope 124
INtimeDotNet 131
low-level calls 115

mailboxes 108
scheduler 115

memory heaps 120
memory pools 120
network stack 124
NTX calls 103

mailboxes 108
memory 109
object directories 111
semaphores 115

ntx calls
system data 117

PCI library 124
real-time 104

low-level 104
Real-time Shared Library (RSL) 125
registry 125
Serial Communications (COMM) 128
structures

COMM 129
INtime 119
INtimeDotNet 133

TCP/IP 130
types 102
USB 130

system data calls 117
systemcalls

input/output 133

T
TCP Server 161
TCP/IP calls 130

accept 130
bind 130
bstring 130
byteorder 130
connect 130
gethostent 130
gethostname 130
getnetent 130
getpeername 130
getprotoent 130
getservent 130
getsockname 130

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

198

INtime 4.0 Software

getsockopt 130
inet 130
listen 130
recv 130
recvfrom 130
select 130
send 130
sendto 130
sethostname 130
setsockops 130
shutdown 130
socket 130
socktout 130

TCPServ 161
technical support vi , 93 , 153 , 173
TenAsys, contacting vi
thread management calls 117
THREADACCOUNTING structure 120
THREADINFO_SNAPSHOT structure 120
threads 28

about 28
communicating between Windows NT and the

RT kernel 4
communication 45
coordination 45
encapsulating Windows NT 19
execution state 21
interrupt 42
message passing 46
multi-threading 39
priority of 21
scheduling

defined 21
priority-based 21
round-robin 23

states 43
switch time 43
synchronizing 47

THREADSTATE_SNAPSHOT structure 120
time, managing 25
top-down programming 40
TRANSACTION structure 120
TransmitCommChar 129
troubleshooting iii , v , 3 , 153

U
UDP sample applications 161
UDP/IP 18
UncatalogRtHandle 111
UninstallRtServiceDescriptor 112
UnregisterRtDependency 105 , 114
UnregisterRtSponsor 105 , 114
UpdateReceiveInfo 128
urb structure 120
USB calls 130

UsbAllocUrb 130
UsbBulkMsg 130
UsbClearHalt 130
UsbConnect 130
UsbControlMsg 130
UsbDisconnect 130
UsbFillBulkUrb 131
UsbFillControlUrb 131
UsbFillintUrb 131
UsbFillIsoUrb 131
UsbFreeUrb 131
UsbGetAsciiString 131
UsbGetConfigDescriptor 131
UsbGetConfiguration 131
UsbGetDescriptor 131
UsbGetDeviceDescriptor 131
UsbGetEndpointCount 131
UsbGetEndpointDescriptor 131
UsbGetInterfaceDescriptor 131
UsbGetLanguageString 131
UsbGetStatus 131
UsbInterruptClose 131
UsbInterruptOpen 131
UsbInterruptRead 131
UsbInterruptWrite 131
UsbKillUrb 131
UsbMatchId 131
UsbSetConfiguration 131
UsbSetInterface 131
UsbSubmitUrb 131
UsbUnlinkUrb 131

USB Client sample 161
UsbAllocUrb 130
UsbBulkMsg 130
UsbClearHalt 130

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

199

usbClient structure 120
usbConfigDescriptor structure 120
UsbConnect 130
UsbControlMsg 130
usbCtrlRequest structure 120
usbDeviceDescriptor structure 120
usbDeviceId structure 120
UsbDisconnect 130
usbEndPointDescriptor structure 120
UsbFillBulkUrb 131
UsbFillControlUrb 131
UsbFillintUrb 131
UsbFillIsoUrb 131
UsbFreeUrb 131
UsbGetAsciiString 131
UsbGetConfigDescriptor 131
UsbGetConfiguration 131
UsbGetDescriptor 131
UsbGetDeviceDescriptor 131
UsbGetEndpointCount 131
UsbGetEndpointDescriptor 131
UsbGetInterfaceDescriptor 131
UsbGetLanguageString 131
UsbGetStatus 131
usbInterface structure 120
usbInterfaceDescriptor structure 120
UsbInterruptClose 131
UsbInterruptOpen 131
UsbInterruptRead 131
UsbInterruptWrite 131
UsbKillUrb 131

UsbMatchId 131
UsbSetConfiguration 131
UsbSetInterface 131
UsbSubmitUrb 131
UsbUnlinkUrb 131
Utilities

INtime Configuration utility 152

V
validation levels 32
VerifyAddress 128

W
WaitCommEvent 129
WaitForRtControl 115
WaitForRtInterrupt 107
WaitForRtSemaphore 116
Windows NT

communicating with the RT kernel 4
encapsulated as an INtime software thread 19
modified HAL 20
running INtime applications 4 , 16
where to find information vi

wizards 8 , 82 , 84
RT Device Driver 163
RT Process Add-in, MSVC 5.0 166
RT process, MSVC 5.0 166
RT Shared Library 167

WriteComm 129

	INtime® 4.0 Software
	Before you begin
	About this guide
	Guide contents
	Part I: Introducing INtime software
	Part II: Using INtime software
	Part III: Appendices
	Glossary

	Notational conventions

	Where to get more information
	About INtime software
	About Windows

	Contents
	Figures
	Tables

	Part I: Introducing INtime software
	Chapter 1: Overview
	How does INtime software work?
	Running an INtime application in conjunction with Windows
	Communication between Windows and RT threads
	Considerations for INtime applications running on a single processor PC
	Considerations for INtime applications running on a multiprocessor PC

	Developing an INtime application
	Design considerations
	Code development

	Features
	Development environment
	Wizards
	Libraries
	Debuggers
	Sample applications

	Runtime environment
	RT enhancements to Windows
	Memory protection
	“Blue screen” protection

	Chapter 2: Understanding INtime software architecture
	Terminology
	How INtime software and Windows work together to run RT applications
	Transport mechanisms
	About the OSEM
	How the RT interface driver works

	About the Windows HAL

	About thread scheduling
	Priority-based scheduling
	Execution state
	Round-robin scheduling

	Handling interrupts
	Interrupt handler alone
	Interrupt handler/thread combination

	Managing time

	Chapter 3: About INtime software’s RT kernel
	What does the RT kernel provide?
	RT kernel objects
	Threads
	Processes
	Virtual memory
	Memory pools
	Dynamic memory
	Object directories

	Exchange objects
	Validation levels
	Mailboxes
	Semaphores
	Regions
	Priority inversions
	Deadlocks

	Ports

	Services
	Heaps
	Global objects, references, and locations
	Node architecture

	New Objects
	Location object
	Reference object
	Global objects

	Chapter 4: About RT programming
	Multi-threading
	Preemptive, priority-based scheduling
	Interrupt processing
	Determinism
	Multi-programming
	Inter-thread coordination and communication
	Messages
	Synchronization
	Mutual exclusion

	Memory pools and memory sharing
	Inter-node coordination and communication
	System calls
	Real time shared libraries
	Exception handling
	Fault Manager
	Structured Exception Handling

	Chapter 5: Designing RT applications
	Define the application
	Target environments
	Methodology
	A hypothetical system
	Interrupt and event processing
	Multi-tasking

	Part II: Using INtime software
	Chapter 6: Installation
	Install INtime software on a Windows system
	Requirements
	Before you begin
	Running the Installation program

	Installing hardware for use with the RT kernel

	Chapter 7: Configuration
	Configuring INtime software
	Default configuration
	Running the INtime Configuration Utility
	Miscellaneous
	RTIF.SYS driver
	Interrupt resources

	Configuring INtime applications
	Configuring Windows for non-interactive logon
	Configuring INtime Local Kernel service to execute automatically
	Automatic loading of Realtime Applications

	Configuring the INtime Network software
	Before you begin
	Hardware installation
	Setting the TCP/IP configuration parameters
	NIC driver configuration

	Chapter 8: Connecting to an INtime host
	Creating a connection to an INtime host
	Fixed and Passive Connections

	Chapter 9: Operation
	Starting the RT kernel and related components
	After you start the INtime kernel

	Chapter 10: INtime application development
	Create a project
	Develop Windows source code
	Adding the INtime RT Client Browser to your INtime application

	Develop RT source code
	Running the INtime Application wizard
	Running the INtime process add-in wizard
	Running the INtime Shared Library wizard
	Running the INtime Static Library wizard

	Compile
	Visual Studio 2008
	Visual Studio 2005 (aka Visual Studio 8)

	Debug
	Debugging tips
	Performance monitor
	Status messages

	Prepare for release
	Before you begin
	Using launch-rt.exe

	Sample INtime applications
	EventMsg DLL Project
	INtime API Sample
	Serial Communications Sample
	Graphical Jitter
	Real-time Interrupt Sample
	C and C++ Samples for Debugger
	TCP Sample Applications
	UDP Sample Applications
	INtimeDotNet Sample Applications
	Fault Handling (ntrobust)
	Floating Point Exception Handling
	RSL Examples
	NTX Sample (MsgBoxDemo)
	Windows STOP Detection sample (STOPmgr)
	USB Client sample
	Global Objects sample project
	High-Performance Ethernet (HPE) sample project
	PCAP Sample application

	Part III: Appendices
	Appendix A: INtime software system calls
	System call types
	NTX calls
	Handle conversion

	RT calls
	High-level (validating) calls
	Low-level (non-validating) calls

	RT services

	RT system calls
	Distributed System Management (DSM)
	NTX calls
	High-level calls

	Exception handling
	High-level calls

	Global objects
	Interrupts
	High-level calls

	Mailboxes
	NTX calls
	High-level calls
	Low-level calls

	Memory management
	Object directories
	Ports
	Service support
	Port object management
	Message transmission

	Processes
	Regions
	Scheduler
	Semaphores
	Status
	System data
	Threads
	Time management

	Structures
	Heaps and memory pools
	High-performance gigabit Ethernet
	INscope calls
	Network stack
	PCI library calls
	Real-time shared library (RSL) calls
	Registry calls
	RT services and device drivers
	RT service calls
	RT service handlers

	Serial Communications (COMM)
	TCP/IP system calls
	USB calls
	INtimeDotNet calls
	Input/Output Calls

	Appendix B: The iwin32 subsystem
	Handles
	Named objects
	Processes
	Threads
	Mutexes
	Critical section
	Semaphores
	Events
	Shared memory
	Timers
	I/O handling
	Interrupt handling
	Registry handling
	Miscellaneous

	Appendix C: INtime directory structure
	Appendix D; INtime software components
	Blue.exe (Windows crash program)
	Clk1Jitr.rta
	EventMsg.dll
	INconfCpl.cpl
	INtime.chm
	Main Help files
	Utility Help files
	C++ Help files

	INscope.exe
	INtex.exe
	INtime local kernel (INtime.bin)
	INtime remote kernel (Remote.bin)
	INtime Visual Studio project type packages
	INtime Performance Monitor (INtmPerf.* files)
	INtime RT Client Browser
	iWin32 header files
	iWin32 interface library
	iWin32x header files
	iWin32x interface library
	Jitter.exe
	LdRta.exe (INtime RT Application Loader)
	LoadRtk.exe (INtime Kernel Loader)
	mDNSINtime.exe
	MFC*.dll files
	network7 utility files
	NTX header files
	NTX import libraries
	NTX DLLs
	NtxRemote2.exe (INtime Remote Connection Manager)
	OvwGuide.pdf
	Project files
	Quick Start Guide
	RT header files
	RT interface libraries
	RT Stack Services
	RT USB Interface Drivers
	RtClkSrv.exe (INtime Clock Synchronization Service)
	RtDrvrW5.awx (RT Device Driver wizard)
	RtELServ.exe (INtime Event Log Service)
	RtIf.sys (RT Interface Driver)
	RtIOCons.exe (INtime I/O console)
	RtIOSrv.exe (INtime I/O Service)
	RtNdSrv.exe (INtime Node Detection Service)
	RtProcW5.awx (RT Process wizard)
	RtProcAddinW5.awx (RT Process Add-in wizard)
	RtRegSrv.exe (INtime Registry Service)
	RtRslWiz.awx (RT Shared Library wizard)
	Spider.exe (INtime standalone debugger)

	Appendix E: Visual Studio debugging for older INtime projects
	Upgrading from Visual Studio 6.0 to newer Visual Studio
	Converting to a .intp project

	Setting project properties
	Getting to work with the debugger

	What if conversion did not work?
	Upgrading from Visual Studio 2003 to newer Visual Studio

	Appendix F: Adding INtime software to an XP Embedded configuration
	Appendix G: Troubleshooting
	Do a quick check
	Look for symptoms
	Other resources

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

