
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

Intel386 Family
Utilities User’s Guide

07-0579-01
December 1999

ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright  1999 by RadiSys Corporation

All rights reserved.

Intel386 Family Utilities User's Guide iii

Quick Contents

Chapter 1. Introduction

Chapter 2. Using the Intel386 Binder

Chapter 3. Using the Intel386 Librarian

Chapter 4. Using the Intel386 Mapper

Appendix A. BND386 Error Messages

Appendix B. LIB386 Error Messages

Appendix C. MAP386 Error Messages

Glossary

Index

iv

Notational Conventions
The notational conventions described below are used throughout this manual:

UPPERCASE Characters shown in uppercase, monospace font must be entered in the
order shown. The characters may be entered in either uppercase or
lowercase.

italics Monospaced italics indicate a metasymbol that may be replaced with an
item that fulfills the rules for that symbol. Metasymbols in tables are
not always shown in italics.

[] Brackets indicate that the enclosed arguments or parameters are
optional.

{ } Braces indicate that one and only one of the enclosed entries must be
selected unless the entire field is also surrounded by brackets, in which
case choosing an entry is optional.

| The vertical bar separates options within brackets [] or braces { }.

... Ellipses indicate that the preceding item may be followed by other like
items; the items must be separated by single spaces, but no additional
punctuation is required.

[,...] The brackets enclosing comma and ellipsis indicate that the preceding
item may be followed by other like items; the items must be separated
by commas.

punctuation Punctuation other than ellipses, braces, and brackets must be entered as
shown.

This typeface represents what you type in and is used for examples of
machine response or other computer displays.

Intel386 Family Utilities User’s Guide Contents v

Contents

1 Introduction
Overview ... 1
Program Development... 1
Operational Summary: BND386 ... 2
Operational Summary: LIB386 ... 3
Operational Summary: MAP386 ... 3

2 Using the Intel386™ Binder
Major Functions of BND386 ... 5
Input and Output .. 6
BND386 Processing... 7
Segment and Segment Combination.. 8

Segment Attributes ... 8
Segment Names.. 9
USE Attribute... 10
Segment Length.. 10
Access Rights ... 10
Combine Type .. 11
Align Attribute ... 11
Privilege Level ... 11
Criteria for Segment Combination.. 12
Attributes of the Resulting Segment... 12
Length of the Resulting Segment.. 13

Reference Resolution... 14
Fix-up Processing .. 15
Descriptor Table Creation.. 15
Task State Segment Creation... 15
Invoking BND386 ... 16

DOS and iRMX OS Invocation Syntax .. 16
Control Files .. 17

Using a Control File on DOS and iRMX=

==

= OS... 17
BND386 Defaults .. 19

Contentsvi

Output File Names ... 19
Controls .. 19

Console Messages ... 20
BND386 Controls.. 21

CONTROLFILE .. 23
DEBUG/NODEBUG ... 24
ERRORPRINT/NOERRORPRINT.. 25
INT286 ... 27
LOAD/NOLOAD... 28
NAME.. 30
OBJECT/NOOBJECT.. 31
PRINT/NOPRINT.. 33
PUBLICS/NOPUBLICS .. 35
RCONFIGURE .. 37
RENAMESEG ... 39
SEGSIZE.. 40
TYPE/NOTYPE... 42

Print File.. 43
Header .. 45
Segment Map ... 45
Input Modules List ... 47
Unresolved Symbols List ... 47
Warning and Error Messages ... 48

Using BND386: Examples .. 48

3 Using the Intel386 Librarian
Major Functions of LIB386... 55
Input and Output.. 56
The Target Library .. 56
Library Sessions .. 57
Invoking LIB386 ... 58

DOS and iRMX= Invocation Syntax ... 58
Invocation Controls .. 59
LIB386 Defaults... 59

Console Messages ... 60
Queries ... 61
Display Messages... 61
Error Messages... 61

LIB386 Commands ... 62
Hierarchical Levels .. 62
Transfer of Levels .. 62
Effect of Entering the Interrupt Character .. 64

Intel386 Family Utilities User’s Guide Contentsvii

Summary of Commands ... 64
Command Syntax ... 64
ADD ... 67
BACKUP.. 70
COMPRESS... 71
DELETE... 72
FIND .. 74
GET.. 76
HELP.. 78
LIST ... 79
QUIT .. 82
REPLACE .. 85
SET... 87
UPDATE.. 90

Using LIB386: Examples .. 91
Single Session... 91
Multiple Session ... 93
DOS Batch Session... 94

4 Using the Intel386 Mapper
Major Functions of MAP386... 95
Input and Output .. 96
MAP386 Module Processing ... 98

Executable Modules ... 98
Linkable Modules in Linkable Files ... 98
Linkable Modules in Library Files ... 99

Invoking MAP386 ... 100
DOS and iRMX Invocation Syntax ... 100

Control Files .. 100
Using a Control File on DOS and iRMX=

==

= ... 101
MAP386 Defaults .. 101

Output Identifiers ... 102
Controls .. 102

Console Messages.. 103
MAP386 Controls.. 104

CONTROLFILE... 107
ERRORPRINT/NOERRORPRINT.. 109
OBJECT/NOOBJECT.. 110
OBJECTCONTROL .. 111
OSINFO ... 114
PAGELENGTH ... 115
PAGEWIDTH .. 116

Contentsviii

PAGING/NOPAGING... 117
PRINT/NOPRINT.. 118
PRINTCONTROLS ... 120
SYMBOLSORT/NOSYMBOLSORT.. 123
TITLE .. 124
TYPE/NOTYPE... 125
TYPECHECK/NOTYPECHECK .. 126
XREF/NOXREF .. 127

MAP386 Print Files... 128
Header .. 129
Module List .. 129
Table Map .. 130
Segment Map ... 131
Gate Map.. 132
Symbol Map... 133
Public Map ... 136
Task Map.. 136
Cross-Reference Map... 137
Warning and Error Messages ... 138

Descriptor Segment Naming ... 139
DOS and iRMX=

==

= Examples Using MAP386.. 140

A BND386 Error Messages
System-Level Exceptions .. 148
Invocation or Input Object Exceptions .. 148
Internal Processing Exceptions.. 167

B LIB386 Error Messages
Processing Errors... 157
LIB386 Processing Error Messages... 158
System Interface Messages.. 165

C MAP386 Error Messages
System Interface Level Errors ... 179
Semantic and Object-File Errors ... 180
Internal Processing Errors ... 187

Intel386 Family Utilities User’s Guide Contentsix

Glossary 197

Index 209

Contentsx

Tables
Table 2-1. Matrix of Access Rights Assignments for Combined Segments.................. 12
Table 2-2. BND386 Controls for DOS and iRMX=

==

= Operating Systems........................ 22
Table 3-1. LIB386 Commands for DOS and iRMX=

==

=Operating Systems 65
Table 3-2. Abbreviations for LIB386 Commands... 66
Table 4-1. MAP386 Controls for DOS and iRMX=

==

= Operating Systems........................ 104
Table 4-2. Standard Abbreviations for MAP386 Controls.. 106

Figures
Figure 1-1. Development of an Application Module .. 2
Figure 2-1. BND386 Input and Output ... 7
Figure 2-2. BND386 Segment Combination... 9
Figure 2-3. A Resolved Public-External Procedure Pair... 14
Figure 2-4. Sample BND386 Print File... 44
Figure 2-5. BND386 Print File Header ... 45
Figure 2-6. BND386 Print File Segment Map .. 47
Figure 2-7. BND386 Print File Input Module Map... 47
Figure 2-8. BND386 Print File Unresolved Symbol List.. 48
Figure 2-9. BND386 Print File for Linkable Output Containing Unresolved Symbols. 50
Figure 2-10. BND386 Print File for Loadable Modules ... 52
Figure 3-1. LIB386 Input and Output ... 57
Figure 3-2. Levels of LIB386 Command Set.. 63
Figure 3-3. Interactive Execution Example: A Single Session 92
Figure 3-4. Interactive Execution Example: Multiple Sessions 93
Figure 4-1. MAP386 Input and Output .. 96
Figure 4-2. MAP386 Print File Header... 129
Figure 4-3. MAP386 Module List... 129
Figure 4-4. MAP386 Table Map... 130
Figure 4-5. MAP386 Segment Map.. 131
Figure 4-6. MAP386 Gate Map .. 132
Figure 4-7. MAP386 Symbol Map ... 135
Figure 4-8. MAP386 Public Map.. 136
Figure 4-9. MAP386 Task Map .. 137
Figure 4-10. MAP386 Cross-Reference Map ... 138
Figure 4-11. Print File Example on DOS and iRMX=

==

= ... 141

Intel386 Family Utilities User's Guide Chapter 1 1

Introduction 1
Overview

This manual describes how to use the Intel386™ Family utilities on DOS and
iRMX® operating systems. The utilities consist of the following software tools for
modular program development:

• The BND386 binder produces a single-task, bootloadable object module in
Intel386 Family Object Module Format (OMF386) by linking modules created
on Intel compilers or assemblers. Linking is the process of combining segments
and resolving references. As an option, BND386 can combine linkable modules,
which can then be used as input to BND386 or to the BLD386 System Builder to
produce loadable modules.

• The LIB386 librarian organizes linkable modules into libraries and provides
utilities for adding, deleting, or replacing library modules. LIB386 supports
many useful functions related to library classification, identification, and
maintenance.

• The MAP386 mapper generates a variety of listings describing the features of
linkable or loadable object files.

Used together to develop both application and system software, BND386, LIB386,
and MAP386 provide the flexibility to accommodate a wide variety of system
designs.

Program Development
The Intel386 utilities can be most effectively used for modular program development,
an efficient, proven approach to writing software. When a large program is written
as a set of smaller, inter-related modules, errors are reduced, testing and debugging
are simplified, and documentation is made easier. For more efficient project
management and product updating, modules can be created by several programmers
and can be written in different languages.

2 Chapter 1 Introduction

Figure 1-1 shows the typical development of an application module using BND386,
LIB386, and MAP386.

Compiler
or Assembler

LIB386
Librarian

Library
File

BND386
Binder

Loadable
Object
Module

MAP386
Mapper

Linked
Object
Module
("LNK")

Source
Files

Object
Module
("OBJ")

Printed
Maps

Load

Noload

OM02004

Figure 1-1. Development of an Application Module

Operational Summary: BND386
BND386 produces either linkable or loadable output modules. Options available for
use during BND386 invocation allow you to perform the following operations:

• Produce OMF386 bootloadable output for execution on an Intel386 operating
system

• Produce linkable output, which can be stored in object libraries or reprocessed
with BND386 or with the BLD386 System Builder to create loadable output

• Perform type checking while resolving external public symbols

• Obtain a print file containing a segment map, module information, and any error
messages. Error messages can also be directed to a separate file

• Control the contents of the output object module

Intel386 Family Utilities User's Guide Chapter 1 3

BND386 enables you to control the contents of the output object module in the
following ways:

• Include or exclude debug information and public symbol definitions in the output
module

• Change the length of selected input segments

• Change segment names

• Adjust loadable module characteristics related to the operating system on which
the modules will execute

Chapter 2 gives additional details and examples on BND386 functions and use.
Appendix A explains the BND386 error messages.

Operational Summary: LIB386
LIB386 executes both in interactive mode (for running in the foreground) and non-
interactive mode (for running in the background). LIB386 enables you to perform
the following operations:

• Create a new library of linkable object modules

• Update an existing library by adding, deleting, or replacing modules

• Display information about each library

• Change library names and version numbers

• Obtain on-line summaries of the syntax of each LIB386 command

Chapter 3 gives additional details and examples on LIB386 functions and use.
Appendix B explains the LIB386 error messages.

Operational Summary: MAP386
MAP386 enables you to perform the following operations:

• Obtain a variety of listings, or maps, describing the contents of linkable or
loadable input modules. The maps include the following:

− Table Map lists descriptor names and corresponding indexes for Global
Descriptor Tables (GDTs), Interrupt Descriptor Tables (IDTs), and Local
Descriptor Tables (LDTs).

− Segment Map lists names of segments in the input file and characteristics of
each segment, such as descriptor table index, access type, base, descriptor
privilege level, USE16/32 attributes, align attributes, and others.

4 Chapter 1 Introduction

− Gate Map lists symbolic gate names and the characteristics of each gate in
the input file, such as descriptor table name, descriptor table index, gate
type, and others.

− Public Map lists public symbols in the input file and their characteristics,
such as symbol type, word count, and logical address (and physical address,
if applicable).

− Symbol Map lists names of local symbols in the input file and characteristics
of each symbol, such as symbol type, address, and others.

− Task Map lists, for each task in an input file, task characteristics, such as
initial privilege stack, flags, initial values of CS and EIP registers, the task's
LDT selector, and others.

− Cross-Reference Map lists, for each symbol in an input file, the symbol's
name and type, as well as the name of the module containing the symbol's
public definition and the names of modules containing external declarations
for the symbol. This is the only map produced for linkable modules.

• Modify loadable or bootloadable files by selectively purging debug information.

• Add information specific to the operating system to loadable files.

• Control page formatting (e.g., page width and page length).

Chapter 4 gives additional details and examples on MAP386 function and use.
Appendix C explains MAP386 error messages.

■■ ■■ ■■

Intel386 Family Utilities User's Guide Chapter 2 5

Using the Intel386™ Binder 2
The BND386 binder produces loadable or linkable modules by combining separately
translated, linkable object modules, including modules in library files.

You can create two kinds of loadable, single-task modules: a loadable module that
can be loaded on an Intel386 protected-mode system under control of the operating
system or a bootloadable object module in Intel386 Family Object Module Format
(OMF386).

As an option, you can create linkable modules. A linkable module can then become
input to BND386 or to the BLD386 System Builder for the next incremental linking
step or for final binding. In incremental linking two or more linkable modules output
by a compiler or assembler are combined into a single linkable module. This linkable
module then becomes input for the next incremental linking step or for final binding.

Major Functions of BND386
BND386 performs the following major functions:

• Creates a linkable module by combining linkable input modules. The linkable
module can be linked with other linkable modules through incremental linking.
A linkable file generated by BND386 can then become input to the BLD386
System Builder.

• Automatically selects required modules from specified libraries to resolve
symbolic references

• Resolves symbolic references from one input module to another. As an option,
BND386 performs type checking while resolving public-external symbols

• Creates a print file that contains the segment map and other information

• Creates an OMF386 bootloadable module targeted for an Intel386 operating
system

Chapter 2 Using the Intel386 Binder6

Input and Output
BND386 accepts linkable modules from either 80286 or Intel386 software
development products, including linkable modules produced by compilers or
assemblers such as ASM386 and PL/M-386, linkable files output by BND286 or
BND386, library files created by LIB286 or LIB386, or export files produced by
BLD286 or the BLD386 System Builder containing entry points to the operating
system. Export files are treated as ordinary linkable files and so are not discussed
separately in this manual.

BND386 does not accept incrementally built files created with BLD286 or the
BLD386 System Builder.

Input files are processed in the same order in which they are specified on the
BND386 invocation line.

Each input file can be a library file or a non-library file, and each one can be
followed by a list of modules. Both factors determine how BND386 processes the
input file.

A library file contains one or more object modules as well as control information. A
module in a library file is processed if the module is explicitly listed on the
invocation line. If a module list is not specified for a library file, the binder only
processes modules if previously processed modules contain one or more unresolved
externals. Then the binder scans the library file for modules containing public
symbols that match the unresolved externals. Each such module is processed when
found. The scanning continues until the modules in the library cannot satisfy any
more unresolved externals, including any more unresolved externals encountered
while processing modules from the library.

As output, BND386 creates either an OMF386 bootloadable file targeted for an
Intel386 operating system, or a linkable file that can become input to BND386 or the
BLD386 System Builder in a subsequent step. The BND386 RCONFIGURE control
produces an OMF386 bootloadable file. The LOAD control creates a single-task
loadable file that can be loaded on an Intel386 protected-mode system under the
control of the operating system.

In addition, BND386 creates a print file that contains a segment map and other
information.

Figure 2-1 illustrates BND386 input and output.

Intel Family Utilities User's Guide Chapter 2 7

Libraries
Print
File

BND386
Loadable

File

Linkable
File(s)

Linkable
File

OM02005

Console
Messages

Invocation
Line

Figure 2-1. BND386 Input and Output

▲▲! CAUTION
The maximum size of a BND386 output file is 8 Mbytes. If the
total of the combined image is greater than that, BND386 issues
Error 118: PAGE FILE OVERFLOW.

BND386 Processing
When BND386 creates a linkable or a loadable file, it performs the following
functions, which are not directed by invocation controls:

• Segment combination

• Reference resolution

• Fix-up processing

• Descriptor table creation (only for loadable files)

• Task state segment (TSS) creation (only for loadable files)

These functions are described in the following sections.

Chapter 2 Using the Intel386 Binder8

Segment and Segment Combination
The Intel386 processor uses a segmented memory scheme in which program
instructions and data are divided into logical units, or segments. There are two kinds
of segments: USE16 and USE32. A USE16 segment is output from 80286 utilities,
compilers, and assemblers and contains up to 64K bytes of code, data, or stack area.
A USE32 segment is output from Intel386 utilities, compilers, and assemblers and
contains up to 4 gigabytes of code, data, or stack area. The ASM386 assembler can
output both USE16 and USE32 segments.

Intel compilers and assemblers support the concept of logical segments and can
produce object code that is already segmented. BND386 uses the output produced by
a compiler or assembler to take segmentation one step further, combining segments
with the same name and similar characteristics. Because similar segments from
separately translated modules can be merged, the program as a whole consists of
fewer segments and becomes more efficient.

BND386 combines segments of the same kind: code, data, or stack (see Figure 2-2).
During processing, BND386 checks the characteristics of each input segment and
combines segments that satisfy its combination criteria. The following sections
describe these combination criteria in detail.

Segment Attributes

The code, data, stack and other segments that constitute a translated program have a
variety of characteristics, such as symbolic name, size, and access rights. These
characteristics are based in part on the kind of information in the segment and on the
features of the programming language in which the program is written.

The characteristics of a segment determine whether BND386 combines it with other
segments in modules processed during the same BND386 invocation. If the
characteristics of two or more segments satisfy the combination criteria, BND386
combines them into one segment. The characteristics of the two original segments
determine the characteristics of the resulting segment.

Intel Family Utilities User's Guide Chapter 2 9

BND386
Binder

Module 1

Code32
Data
Stack

OM02006

Module 2

Code32
Data
Stack

Module 3

Code32
Data
Stack

Output
Module

Code32
Code32
Code32

Data
Data
Data

Stack
Stack
Stack

Figure 2-2. BND386 Segment Combination

The following segment characteristics affect the process of segment combination:

• Segment name

• USE attribute

• Length (size)

• Access rights

• Combine type

• Align attribute

Segment Names
The name of a segment is the symbolic name assigned by the programmer in
ASM386 programs or by the compiler in high-level-language programs. For high-
level-language programs, the compiler assigns segment names according to the
model of segmentation used. Refer to the appropriate Intel compiler manual for the
names assigned to segments compiled under various segmentation models.

Chapter 2 Using the Intel386 Binder10

USE Attribute
USE16 segments have up to 64K bytes; USE32 segments have up to 4 gigabytes. A
USE16 segment cannot be combined with a USE32 segment that contains code (that
is, has an execute access right). A USE32 segment that does not have execute access
rights can be combined with a USE16 segment as long as the other combination
criteria are met. The resulting segment is a USE16 segment of up to 64K bytes.

Segment Length
Segment length is measured in bytes. The length of a given segment depends on how
much and what kind of information it contains. These factors in turn depend on the
design of the program or the individual module.

Access Rights
Each segment in a program is assigned one of the following access rights during
translation:

• Read-only (RO)

• Read-write (RW)

• Execute-only (EO)

• Execute-read (ER)

Code, data, and stack segments may be assigned access rights as follows:

• Code segments: EO or ER access

• Data segments: RO or RW access

• Stack segments: RW access

Intel Family Utilities User's Guide Chapter 2 11

Combine Type
Each segment in a program is assigned a combine type during compilation.
Segments can have the following combine types:

Combine Type Segment Description

stack All stack segments

no-combine Code or data segments cannot be combined: for example,
ASM386 segments that are not PUBLIC and PL/M-286
segments compiled under the LARGE model

common Segments contain named FORTRAN-386 common blocks

blank common Segments contain unnamed FORTRAN-386 common blocks

normal Code or data segments can be combined and do not contain
FORTRAN-386 common blocks: for example, ASM386
segments that are PUBLIC or segments created by PL/M386

debug Segments that contain information for debuggers. They are
combined like normal segments

Align Attribute
The align attribute specifies the boundary to which a segment is aligned. A byte-
aligned segment can be placed anywhere in memory. A word-aligned segment is
placed at an even address, and so on. During segment combination, if necessary,
BND386 inserts gaps between segments to comply with alignment requirements.

Privilege Level
Each segment has a privilege level between 0 and 3. Intel386 compilers and
assemblers set the privilege level of all segments to 3. BND386 creates a single task
with a single privilege level, and all segments have that privilege level, regardless of
original privilege level. The exception is gate descriptors exported from the
BLD386 System Builder, which retain their original privilege level.

Chapter 2 Using the Intel386 Binder12

Criteria for Segment Combination
BND386 combines two segments if all the following criteria are met:

• Both segments have the same name.

• Both segments have compatible access rights (see Table 2-1).

• Both segments have compatible USE attributes.

• Both segments have the same combine type and neither is of the type no-
combine.

Table 2-1. Matrix of Access Rights Assignments for Combined Segments

Original Segments RO RW EO ER

RO RO RW ER ER

RW RW RW • •

EO ER • EO ER

ER ER • ER ER
RO = Read only
RW = Read-write
EO = Execute only
ER = Execute-read

Attributes of the Resulting Segment
The attributes of the original segments determine the attributes of the combined
segment. The combined segment is assigned attributes as follows:

• The name of the original segments

• The combine type of the original segments, if both were of the same combine
type

The combined segment is also assigned access rights based on the access rights of the
original segments (see Table 2-1).

Code segments with different USE attributes cannot be combined. Data segments
with different USE attributes are assigned the USE16 attribute when combined.

Intel Family Utilities User's Guide Chapter 2 13

Length of the Resulting Segment
The length of the combined segment depends on the lengths, combine types, and
alignment attributes of the original segments, as explained below:

• When two normal segments are combined, BND386 starts by making the length
of the combined segment the sum of the lengths of the original segments. Then
BND386 adds bytes between segments, if necessary, to align the second segment
according to its alignment attribute. The combined segment may therefore be
longer than the sum of the lengths of the original segments.

• When two stack segments are combined, BND386 does not perform offset
relocation or alignment. The combined segment is as long as the sum of the
lengths of the original segments.

• When two common segments are combined, BND386 expects the segments to be
of the same length and does not perform offset relocation. The combined
segment is as long as either one of the original segments. An error is issued if
the segments are not of the same length.

• When two blank common segments are combined, BND386 makes the combined
segment as long as the longer of the two segments and does not perform
relocation or offsets.

BND386 can add up to three extra bytes to segments, in addition to the gaps
introduced for alignment. This length adjustment is called padding. BND386 adds
an extra byte to segments with both the USE16 attribute and RO, RW, or ER access
rights, so that 16-bit word references to the last byte in the segment remain valid.
BND386 adds three extra bytes to segments with both the USE32 attribute and RO,
RW, or ER access rights, so that 32-bit word references to the last byte in the
segment remain valid.

Chapter 2 Using the Intel386 Binder14

Reference Resolution
BND386 attempts to resolve symbolic references among input modules. A symbolic
reference is a declaration of a variable, procedure, or label, either external or public.
Names of variables, procedures, and labels are called symbols. References are
resolved when BND386 finds a public declaration in the input modules for each
external declaration of the same symbol.

When an external declaration such as an extern in C or a common in ANSI
FORTRAN has no matching public, the compiler or assembler gives the total size of
the symbol. BND386 then allocates the maximum size of external matching symbols
in the input and initializes the allocated area to zero. In effect, this procedure
generates a public declaration to resolve the externals.

An unresolved external causes a warning when a loadable module is built and the
reference is left undefined. However, unresolved externals are allowed in loadable
modules, because in some operating systems they can be resolved by the loader at
load-time. Multiple public symbols with the same name cause a warning.

Figure 2-3 shows a resolved public-external procedure pair in two linkable input
modules, one of them a main module.

MAIN$MOD: BUFF$HANDLER: do ;

DECLARE BUFF (5) BYTE; * FOO: PROCEDURE (BUFFER$ADDR) PUBLIC;*

* *

* FOO: PROCEDURE (BUFPTR) EXTERNAL;*

* * DECLARE BUFFER$ADDR POINTER;

* DECLARE BUFPTR POINTER; * .

* . * .

* . * .

* . * .

*END FOO; * .

. END FOO;

.

. .

CALL FOO (BUFF); .

. .

. END BUFF$HANDLER;

.

END MAIN$MOD;

Figure 2-3. A Resolved Public-External Procedure Pair

Intel Family Utilities User's Guide Chapter 2 15

Fix-up Processing
Input segments may contain references to an unresolved external or to a logical
address, which consists of a segment selector and an offset in the segment. The
compiler or assembler passes fix-up information on each reference to BND386.
BND386 adjusts the offsets of logical addresses in the fix-up information to reflect
segment combination.

In generating a linkable module, BND386 performs the following fix-up operations:

• Replaces satisfied external symbol names with the logical addresses of the
corresponding public symbols.

• Adjusts all logical addresses referring to the combined segments to reflect
segment combinations.

In generating a loadable module, BND386 processes the fix-ups as follows:

• If the target is specified by an external symbol that is satisfied by a matching
public symbol (either from the input or allocation by BND386), the external
symbol is replaced by the logical address of the matching public symbol.

• If the target refers to an unresolved symbol, the fix-up is output to the loadable
file, a warning is issued, and the fix-up is not applied. Fix-ups are output to the
loadable file in the section of the object that contains relocation information.

• If the target is specified by a gate, the fix-up is applied using the gate selector.

• If the target is specified by a global descriptor table (GDT) selector [internal
name], the fix-up is applied using the GDT selector.

Descriptor Table Creation
BND386 produces a descriptor table for loadable output. The table is either in the
format of a final LDT (local descriptor table) ready to be loaded by the loader or in
the format of a relocatable descriptor table, in which the entry number of each
descriptor is not fixed and is set at load time. When the table is not necessarily final,
BND386 adds relocation information to the object file. This procedure allows the
loader to update each selector reference.

Task State Segment Creation
A BND386 loadable output module contains the basic elements of a single task. In
each loadable module, BND386 provides information that enables the loader to
construct a task state segment (TSS) and an LDT.

Chapter 2 Using the Intel386 Binder16

Invoking BND386

DOS and iRMX OS Invocation Syntax
To invoke BND386 on a DOS and iRMX operating system, use the following syntax:

BND386 input_list [controls]

Where:

input_list
is one or more linkable modules or object library modules to be
processed by BND386. For DOS, the modules are specified as follows:

filename [(module_list | *])

filename(*) can replace the complete list of linkable or library
modules in the file called filename. BND386 then processes all
modules in a file.

controls consists of one or more of the specifications defined in BND386
Controls.

BND386 processes files in the input list in the order in which they are specified.
Therefore, only unresolved external symbols that come before a library file can be
resolved by the public symbols in the library.

If modules are specified with a library file in the invocation line, BND386 processes
specified modules only.

If filename(*) is specified with a library file in the invocation line, BND386
processes all modules in the library.

If no modules are specified with a library file in the invocation line, BND386
processes that library file only if previously processed modules contained at least one
unresolved external. The library is scanned for modules containing public symbols
that match unresolved externals and each such module is processed as if it were
specified. The process continues until the modules in the library cannot satisfy any
more unresolved externals (including externals encountered while processing
modules from the library).

If no modules are specified with a linkable file in the invocation line, BND386
processes all modules in the file exactly as if you had used filename(*).

BND386 issues an error message when it finds duplicate module names.

The input list can be omitted from the invocation command if the list is specified in at
least one control file.

Intel Family Utilities User's Guide Chapter 2 17

You can continue the invocation line on additional lines by entering the ampersand
(&) before you enter the line terminator. The continuation line then appears
automatically with the DOS or iRMX system prompt character.

▲▲! CAUTION
Long invocation lines can cause BND386 to fail with a general
protection fault. To specify many controls and/or input files, it is
better to use a control file than continuations of the command line.

Control Files
The BND386 invocation line is simplified when you can use the CONTROLFILE
control to include a control file. A control file is a text file containing controls, file
names, or controls and file names that would normally appear in the invocation line.
For example, instead of listing five controls in the BND386 invocation line, you can
place those controls in a single control file and then invoke the control file in place of
all five controls.

Using a Control File on DOS and iRMX= OS
To include a control file in the BND386 invocation line on a DOS operating system,
use the following syntax:

BND386 CONTROLFILE (filename[,...])

Where:

filename is the name of the control file containing controls, file names, or
controls and file names for the input list. You cannot nest control files:
that is, the CONTROLFILE control cannot appear in a control file.

A control file that contains only controls can be specified in any position in the
control list. A control file that contains only file names for the input list can be
specified in any position in the input list.

In a control file that contains both input files and controls, input files must come
before controls. In this case, specify the control file as part of the input list.

The following example shows how to specify the CONTROLFILE control in an input
list that contains the files named in CF1.DAT:

BND386 MOD.OBJ, CONTROLFILE (CF1.DAT) DEBUG

Chapter 2 Using the Intel386 Binder18

Within a control file, use a semicolon before a comment. Use the ampersand (&) to
continue to the next line. When the line terminator comes before the ampersand, it is
treated as if it were a blank space. BND386 ignores characters between a semicolon
or continuation character and the line terminator. Lines in a control file cannot
exceed 120 characters in length.

This example control file contains only file names for the input list:

util.lib, ; utility library&

system.lib ; system library

This example control file contains the last file names for the input list and controls
for the control list:

util.lib, ; utility library&

system.lib ; system library&

lo& ; loadable module&

ep& ; directs error messages&

; to the specified print&

; file specified&

oj (lbt.sys) ; name output file

Intel Family Utilities User's Guide Chapter 2 19

BND386 Defaults

Output File Names
If not specified in the invocation line, output file names are assigned by default, as
follows:

• The file that contains the output loadable module has the same name as the first
input file. Under DOS and iRMX OS, the output has no extension.

• The file that contains the output linkable module has the same input file name as
the first input file, with extension, or file type, .LNK.

• The print file has the same name as the output object file, with extension, or file
type, .MP1.

Controls
If no controls are specified on the invocation line, BND386 does the following:

• It creates a loadable output module. The output module is placed in a file having
the same file name as the first input module listed in the invocation line. Under
DOS and iRMX OS, the output has no extension.

• It creates a print file with the same name as the object file, with extension, or file
type, .MP1.

• It performs type checking between public and external symbols in input modules
and includes symbol type information in output modules.

• It includes debug information in output modules (if this information is in the
input modules).

Some BND386 controls imply that other controls are in effect by default. Refer to
BND386 Controls and individual control entries later in this chapter for more
information on default implementation.

Chapter 2 Using the Intel386 Binder20

Console Messages
BND386 displays console messages when signing on and signing off, as well as
during processing. During processing, BND386 issues warnings, error messages, or
fatal error messages if it encounters any problems.

Fatal error messages are always displayed at the console, even if you have directed
error messages to an error print file with the ERRORPRINT control.

When you invoke BND386 on a DOS or iRMX operating system, the binder displays
the following sign-on message:

system_id

iRMX III 386(TM) BINDER, Vx.y

Copyright years Intel Corporation

Where:

system_id is the identifier and version number of the operating system.

Vx.y is the BND386 version number.

years is the copyright year or years.

When BND386 encounters a fatal error condition, an error message and sign-off
message are displayed at the console. The sign-off message is as follows:

PROCESSING ABORTED

See Appendix A for additional information about error conditions.

When BND386 does not encounter a fatal error condition, BND386 signs off when
you exit or after processing is complete, as follows:

PROCESSING COMPLETED.n WARNINGS,m ERRORS

Where:

n and m represent the number of warning and nonfatal error conditions
encountered during processing. You can use the ERRORPRINT control
to display warning and error messages on the console or direct them to a
file.

Intel Family Utilities User's Guide Chapter 2 21

BND386 Controls
BND386 controls determine the extent and characteristics of BND386 output. Some
controls determine what kind of output is produced: a print file, an object file, or a
file containing error messages. Other controls affect the characteristics of the output
object module: size of segments, privilege level, whether debug information is
included, and other features.

Target controls determine the type of object file that BND386 is to produce. NOLOAD

produces a linkable output module. LOAD produces a loadable module. RCONFIGURE

produces an OMF386 bootloadable module specifically intended for the iRMX III
Operating System.

Table 2-2 summarizes BND386 controls for DOS and iRMX Operating Systems.
The default column shows the condition in effect when the control is not specified.
When an invocation contains duplicate control specifications, BND386 processes
only the rightmost specification on the invocation line.

Each BND386 control is listed alphabetically and described in detail in the section
following Table 2-2.

Chapter 2 Using the Intel386 Binder22

Table 2-2. BND386 Controls for DOS and iRMX= Operating Systems

Abbr. Command Line Syntax Description Default

CF CONTROLFILE (filename
[,...])

Specifies file for input
elements

None

DB
NODB

DEBUG
NODEBUG

Retains or removes debug
information

DEBUG

EP
NOEP

ERRORPRINT [(filename)]
NOERRORPRINT

Creates or does not create
error print file

NOERRORPRINT

I2 INT286 [mod_name[,...])] Provides interface control
to 80286 programs

None

LO
NOLO

LOAD
NOLOAD

Creates loadable (LOAD)
or linkable (NOLOAD)
module

LOAD

NA NAME (mod_name) Creates and names or
suppresses creation of
object module output

First input_
filename

OJ
NOOJ

OBJECT [(filename)]
NOOBJECT

Verifies input object module
meets Intel387
requirements or Intel386
requirements

MOD386

PR
NOPR

PRINT [(filename)]
NOPRINT

Creates and names or
suppresses creation of print
file

PRINT

PL[EC]

NOPL[EC]

PUBLICS [EXCEPT
(symbol [,...])]
NOPUBLICS [EXCEPT
(symbol [,...])]

Retains or removes public
symbol definitions in
linkable output modules

PUBLICS

RC[DM] RCONFIGURE
[(DYNAMICMEM
(memory_range))]

Produces loadable output
configured for an Intel386
operating system

None

RN RENAMESEG (old_seg
_name TO
new_seg_name [,...])

Renames an input segment None

SS SEGSIZE (seg_name
([+/-]size)[,...])

Changes length of stack or
data segment in output
object module by specified
size

None

TY
NOTY

TYPE
NOTYPE

Enables or suppresses type
checking

TYPE

CONTROLFILE

Intel Family Utilities User's Guide Chapter 2 23

CONTROLFILE
Specifies file for input elements

Syntax

CONTROLFILE (filename[,...])

Abbreviation

CF

Default

CONTROLFILE is not in effect.

Description

The CONTROLFILE control reads invocation specifications from a control file.
Invocation specifications can include input files and invocation controls, but cannot
include partial controls or partial input-list elements. BND386 returns to the
command line when it encounters the end of the control file.

A control file cannot contain the CONTROLFILE control.

See Control Files for content and format of control files.

Example

In the following example, control file CNTL1.DAT contains UTIL.LIB and
SYSTEM.LIB, and control file CNTL2.DAT contains PRINT(SAMPLE.MAP) and
DEBUG. The following pairs of invocation lines do the same thing:

BND386 SAMPLE.OBJ, CF(CNTL2.DAT) CF(CNTL1.DAT)

BND386 SAMPLE.OBJ, UTIL.LIB, SYSTEM.LIB PRINT(SAMPLE.MAP) DEBUG

For additional examples, see Chapter 4 on the mapper.

DEBUG/NODEBUG

Chapter 2 Using the Intel386 Binder24

DEBUG/NODEBUG
Retains or removes debug information

Syntax

DEBUG

NODEBUG

Abbreviations

DB

NODB

Default

DEBUG

Description

The DEBUG control places information used by symbolic debuggers in the output
object module. Debug information consists of the following:

• Symbolic names and source or listing line numbers generated by compilers or
assemblers

• Public and external symbols plus type and module information formatted by
BND386 for debuggers

The NODEBUG control purges symbolic debugging information from the output
module.

Debug information is needed by MAP386, so you can leave the information in place
and purge it with MAP386 later in the development process.

Examples

1. In the following example, compiler or assembler output for symbolic debugging
is included in the output linkable module in the file MOD1.LNK.

BND386 MOD1.OBJ, MOD2.OBJ NOLOAD DEBUG

2. In the following example, debugging information is removed from the output
loadable module in the file MOD3.

BND386 MOD3.OBJ, MOD4.OBJ NODEBUG

ERRORPRINT/NOERRORPRINT

Intel Family Utilities User's Guide Chapter 2 25

ERRORPRINT/NOERRORPRINT
Creates or does not create an error BND386:print file

Syntax

ERRORPRINT [(filename)]

NOERRORPRINT

Abbreviations

EP

NOEP

Default

NOERRORPRINT

Description

The ERRORPRINT control directs error messages to one of the following:

• The standard output device, if filename is not specified

• The file called filename

The NOERRORPRINT control does not produce a file containing error messages; error
messages appear in the normal print file.

No matter which of the two controls is in effect, fatal error messages are displayed on
the standard output device, and error and warning messages are included in the print
file. In the sign-off message BND386 reports the number of errors.

✏ Note
If the specified file name matches the name of a file on the input
list or the name of a control or output file, BND386 processing
aborts.

ERRORPRINT/NOERRORPRINT

Chapter 2 Using the Intel386 Binder26

Examples

1. In the following example, error or warning messages go to the error print file
MOD2.LIS and to the print file that contains the segment map.

BND386 MOD1.OBJ ERRORPRINT (MOD2.LIS).i.1.

2. In the following example, no error print file is created; by default, error
messages are included in the print file.

BND386 MOD3.OBJ, MOD4.OBJ

3. In the following example, error and warning messages are sent to the standard
output device.

BND386 MOD5.OBJ, MOD6.OBJ ERRORPRINT

INT286

Intel Family Utilities User's Guide Chapter 2 27

INT286
Provides interface control to 80286 programs

Syntax

INT286 [(mod_name [,...])]

Abbreviation

I2

Default

INT286 is not in effect.

Description

The INT286 control allows Intel386 programs to interface with 80286 programs and
ensures that data in specified modules resides in the combined USE16 segment in the
first 64K bytes of memory. Read-write segments in the specified modules and in all
stack segments become USE16 segments.

Only stack segments become USE16 segments when no module is specified.

Examples

1. In the following example, the data segments of the specified module become
USE16 segments. USE16 segments are placed below

BND386 MOD1.OBJ, MOD2.OBJ INT286 (MOD NAME)

2. In the following example, the stack is made up of USE16 segments, which are
placed below USE32 segments.

BND386 MOD.OBJ INT286

LOAD/NOLOAD

Chapter 2 Using the Intel386 Binder28

LOAD/NOLOAD
Creates a loadable (LOAD) or linkable (NOLOAD) module

Syntax

LOAD

NOLOAD

Abbreviations

LO

NOLO

Default

LOAD

Description

The LOAD control creates a loadable module containing an executable program and
data plus system items such as an LDT. The single-task module can be loaded on an
Intel386 protected-mode system under the control of the operating system. (Use the
RCONFIGURE control to create a loadable module targeted specifically for an
Intel386 operating system.)

The NOLOAD control creates a linkable module that can be used in subsequent
BND386 invocations or as input to the builder. By default, the linkable module is
placed in the file called first_input_filename.LNK.

Refer to the OBJECT entry later in this chapter for information on the assignment of
the name of the object file.

✏ Notes
RCONFIGURE is not effective when used with NOLOAD.

The NAME, PUBLICS, and NOPUBLICS controls work only when
NOLOAD is in effect.

LOAD/NOLOAD

Intel Family Utilities User's Guide Chapter 2 29

Examples

1. In the following example, a loadable module is produced; LOAD is in effect by
default. By default, MOD1 is the output file name.

BND386 MOD1.OBJ, MOD2.OBJ

2. In the following example, a linkable object module is produced. MOD3.LNK is
the output file name.

BND386 MOD3.OBJ, MOD4.OBJ NOLOAD

3. In the following example, the NOLOAD control produces a linkable object
module. Modules MOD1 and MOD2 in MOD3.OBJ are input along with
MOD4.OBJ.

BND386 MOD3.OBJ (MOD1,MOD2), MOD4.OBJ NOLOAD

NAME

Chapter 2 Using the Intel386 Binder30

NAME
Names the linkable output module

Syntax

NAME (mod_name)

Abbreviation

NA

Default

NAME(first_input_mod_name)

Description

The NAME control assigns a name to the linkable output module. When NOLOAD is in
effect and the NAME control is not specified, BND386 assigns the name of the first
input module (first_input_mod_name) encountered in the input list to the
linkable output module. NAME does not affect the file name of the file containing the
linkable module.

✏ Note
NAME is effective only when used with NOLOAD.

Examples

In the following example, MOD NAME is the output linkable module.

BND386 MOD1.OBJ, MOD2.OBJ NOLOAD NAME (MOD NAME)

OBJECT/NOOBJECT

Intel Family Utilities User's Guide Chapter 2 31

OBJECT/NOOBJECT
Creates and names or suppresses creation of the output object module

Syntax

OBJECT [(filename)]

NOOBJECT

Abbreviations

OJ

NOOJ

Default

Loadable output is OBJECT (first_input_filename) and linkable output is
OBJECT (first_input_filename.LNK)

Description

The OBJECT control creates an object file, either assigning the specified file name or
using the default file name when filename is not specified.

The NOOBJECT control prevents the creation of an object file.

✏ Note
If the name of the specified file or the name of the default file
matches the name of an input file, print file, or control file,
BND386 processing aborts.

Examples

1. In the following example, BND386 places the loadable output module in a file
with the default file name MOD1.

BND386 MOD1.OBJ, MOD2.OBJ OBJECT

2. In the following example, BND386 outputs an object file with same name as the
first file in the control file CNTRL3.CF, with extension, or file type, .LNK.

BND386 CF (CNTRL3.CF) NOLOAD OBJECT

OBJECT/NOOBJECT

Chapter 2 Using the Intel386 Binder32

3. In the following example, BND386 outputs a loadable output module called
MOD6.LNK.

BND386 MOD4.OBJ, MOD5.OBJ OBJECT (MOD6.LNK)

4. In the following example, BND386 outputs only a print file.

BND386 MOD7.OBJ, MOD8.OBJ NOLOAD NOOBJECT

PRINT/NOPRINT

Intel Family Utilities User's Guide Chapter 2 33

PRINT/NOPRINT
Creates and names or suppresses creation of a print file

Syntax

PRINT [(filename)]

NOPRINT

Abbreviations

PR

NOPR

Default

PRINT

Description

The PRINT control creates and names a print file, which contains a segment map, a
module list, a list of unresolved symbols, and warning and error messages. When the
file name is specified, it is assigned to the print file. Otherwise, the file name of the
print file is assigned by default, as follows:

• When PRINT is not specified or is specified without a file name, the name of the
print file is the same as that of the file containing the output object module, with
extension, or file type, .MP1.

• When NOOBJECT is in effect, the print file is assigned the name of the first input
file, with extension, or file type, .MP1.

The NOPRINT control prevents the creation of a print file.

The contents and format of the print file are described later in this chapter in Print
File.

The ERRORPRINT control can be used to create a separate print file for error
messages only.

PRINT/NOPRINT

Chapter 2 Using the Intel386 Binder34

✏ Notes
When the name of the specified file or the name of the default file
matches the name of an output file or a file on the input list,
BND386 processing aborts.

A message about a fatal error condition is always displayed on the
standard output device.

The default file name of the print file is affected by any file name
specified with OBJECT.

Examples

1. In the following example, BND386 produces a print file called MOD3.MP1.

BND386 MOD1.OBJ, MOD2.OBJ OBJECT (MOD3.LNK)

2. In the following example, no print file is produced.

BND386 MOD4.OBJ, MOD5.OBJ NOPRINT

3. In the following example, BND386 produces a print file called MOD8.LIS.

BND386 MOD6.OBJ, MOD7.OBJ PRINT (MOD8.LIS)

4. In the following example, BND386 produces a print file called MOD9.MP1.

BND386 MOD9.OBJ NOOBJECT

PUBLICS/NOPUBLICS

Intel Family Utilities User's Guide Chapter 2 35

PUBLICS/NOPUBLICS
Retains or removes selected public symbol definitions in linkable output modules

Syntax

PUBLICS [EXCEPT (symbol[,...])]

NOPUBLICS [EXCEPT (symbol[,...])]

Abbreviations

PL [EC], NOPL [EC].

Default

PUBLICS

Description

The PUBLICS control keeps some or all of the public symbol definitions in the
linkable output module. You can use the EXCEPT specification to exclude a unique
symbol or, with the asterisk (*), to exclude a group of public symbol definitions with
a common prefix. For example, to purge all occurrences of publics with the prefix
DQ, you would simply enter:

DQ*

The NOPUBLICS control removes some or all public symbol definitions from the
linkable module. Again, you can use the EXCEPT specification to select public
symbol definitions to be included in the linkable module.

The NOPUBLICS EXCEPT construction is useful during modular program
development. For example, you can link some modules into a subsystem and grant
access to the subsystem only through specific entry points. This construction reduces
the chance of error and also allows different subsystems to use the same public name
for different purposes (just as you might allow local variables in different procedures
to have the same name).

The PUBLICS EXCEPT construction is useful when you want to hide a few names
from the rest of the application, but still keep most public names visible.

Public symbols that represent gates created by the builder cannot be specified with
EXCEPT.

PUBLICS/NOPUBLICS

Chapter 2 Using the Intel386 Binder36

✏ Note
PUBLICS and NOPUBLICS are effective only when used with
NOLOAD. When a loadable module is created, public symbol
definitions are removed from the output object module and retained
only as debug information for debuggers.

Examples

1. In the following example, the linkable module in MOD4.LNK contains no public
symbol definitions except SYMBOL2 and SYMBOL3. MOD1.OBJ is the input
file.

BND386 MOD1.OBJ NOLOAD NOPL EC (SYMBOL2, SYMBOL3) OJ (MOD4.LNK)

2. In the following example, public symbol definitions are included in MOD5.OBJ
and MOD6.OBJ by default.

BND386 MOD5.OBJ, MOD6.OBJ NOLOAD

3. In the following example, all publics except those starting with the prefix PLM
are purged.

BND386 MOD1.OBJ NOLOAD NOPUBLICS EXCEPT (PLM*)

RECONFIGURE

Intel Family Utilities User's Guide Chapter 2 37

RCONFIGURE
Produces bootloadable output for an Intel386 operating system

Syntax

RCONFIGURE [(DYNAMICMEM (memory_range))]

Abbreviation

RC[(DM)]

Default

RCONFIGURE is not in effect.

Description

The RCONFIGURE control produces an output file that can be loaded on iRMX III OS
or DOSRMX.

The DYNAMICMEM specification selects the memory range, which specifies the
minimum and maximum dynamic memory requirements of the output task. Specify
memory-range as follows:

min[,max]

Where:

min is an integer representing the minimum dynamic memory requirement
of the output task. When you specify min only, BND386 sets minimum
and maximum requirements to this value.

max is an integer representing the maximum dynamic memory requirement
of the output task. The max specification must be greater than or equal
to the minimum value or BND386 will issue an error message.

✏ Notes
LOAD is automatically in effect with RCONFIGURE, and LOAD or
NOLOAD controls in the invocation are ignored.

RCONFIGURE

Chapter 2 Using the Intel386 Binder38

Examples

1. In the following example, BND386 produces an output module that can be
loaded on an Intel386 operating system. BND386 instructs the operating system
to allocate 00AFH bytes of dynamic memory for the output task.

BND386 MOD1.OBJ RCONFIGURE (DYNAMICMEM(00AFH))

2. In the following example, BND386 produces an output module that can be
loaded on an iRMX operating system. BND386 instructs the operating system to
allocate at least 00AFH bytes and at most 0AF45H bytes for the output task.

BND386 MOD1.OBJ, MOD2.OBJ RC (DM(00AFH, 0AF45H))

RENAMESEG

Intel Family Utilities User's Guide Chapter 2 39

RENAMESEG
Renames code and/or data segment

Syntax

RENAMESEG (old_seg_name TO new_seg_name [,...])

Abbreviation

RN

Default

RENAMESEG is not in effect.

Description

The RENAMESEG control changes the names of input segments. All input segments
named old_seg_name are renamed new_seg_name to provide control over
segment combination. All input segments are first renamed and then combined as
necessary. The specified segment name cannot be longer than 40 characters.

Any reference to a renamed segment in other controls in the command line, should
refer to the new segment name.

Examples

In the following example, the segment MODCODE1 in MOD1.OBJ is renamed
MODCODE2. The new name is then used in the SEGSIZE control.

BND386 MOD1.OBJ RN (MODCODE1 TO MODCODE2) SS (MODCODE2 (+20))

SEGSIZE

Chapter 2 Using the Intel386 Binder40

SEGSIZE
Changes length of stack or data segment in output object module

Syntax

SEGSIZE (seg_name ([+/-]size)[,...])

Abbreviation

SS

Default

Segment size reflects combination, if any.

Description

The SEGSIZE control changes the length of one or more writable stack or data
segments in the BND386 output object module. The length of a segment is the
memory space it requires. Segment length can be increased, decreased, or set to a
specific decimal value for a specified segment-name, as follows:

• To increase segment length, set the size to a positive number, +n, where n is the
number of bytes by which the segment length is to be increased.

• To decrease segment length, set the size to a negative number, -n, where n is the
number of bytes by which the segment length is to be decreased.

• To specify a particular segment length, set the size to a hexadecimal number in
bytes. For USE16 segments, the size must be between 0 and 0FFFFH (64K
bytes). For USE32 segments, the size must be between 0 and 0FFFFFFFFH (4
gigabytes)

▲▲! CAUTION
The iRMX OS assumes stack sizes of at least 1024 bytes and
normally provides a minimum stack by increasing a stack of less
than 1 Kbyte up to 1 Kbyte. However, it does not do this when it is
passed an explicit stack pointer. If you set a SEGSIZE(STACK(x))
directive for a module, where x is less than 1024, the application
may fail to load with the Soft-Scope debugger. When you bind an
application with the SEGSIZE(STACK(x)) directive, always make
sure that x is at least 1024.

SEGSIZE

Intel Family Utilities User's Guide Chapter 2 41

BND386 pads all segments except those that are execute-only. The SEGSIZE control
supersedes this padding. Note that the addition of bytes due to alignment cannot be
suppressed, and the length of a segment is not the exact sum of all combined
segments.

Zero-length segments are purged from loadable modules but not from linkable
modules. Therefore, zero-length segments are not listed in the segment map in the
print file when the LOAD control is in effect.

BND386 issues a warning if the specified segment does not have the write attribute;
it also issues a warning whenever the size of a segment is decreased. BND386
ensures that references in the output module to any segment affected by SEGSIZE are
within the specified limits.

Examples

In the following example, the length of each loadable module segment is changed as
follows:

• SEG1 is increased by 47 bytes.

• SEG2 is decreased by 47 bytes.

• SEG3 is set to 511 bytes.

The length of every other segment depends on segment combination.

BND386 MOD3.OBJ, MOD4.OBJ SS (SEG1(+002FH), SEG2(-002FH), &

SEG3(01FFH))

TYPE/NOTYPE

Chapter 2 Using the Intel386 Binder42

TYPE/NOTYPE
Enables or suppresses type checking

Syntax

TYPE

NOTYPE

Abbreviations

TY

NOTY

Default

TYPE

Description

The TYPE control performs type checking between public and external symbols of the
same name. A warning is issued when a mismatch is found. When used with
NOLOAD, TYPE includes type definitions for all external and public symbols in the
linkable output module.

NOTYPE suppresses type checking and causes BND386 to omit type definitions from
the linkable output module. When NOTYPE is in effect, there is no type checking for
unresolved symbols in a loadable file.

Examples

1. In the following example, type checking is done on all external and public
symbols.

BND386 MOD1.OBJ, MOD2.OBJ TYPE

2. In the following example, no type checking is done.

BND386 MOD3.OBJ, MOD4.OBJ NOTYPE

Intel Family Utilities User's Guide Chapter 2 43

Print File
The print file contains the following sections (see Figure 2-4).

• Header

• Segment map

• Input module list

• Unresolved external symbol list (if BND386 has not been able to resolve one or
more external symbol references)

• Error and warning messages if present

• Summary of memory usage

Chapter 2 Using the Intel386 Binder44

386(TM) BINDER dd/mm/yy hh/mm/ss PAGE 1

system_id iRMX III 386(TM) BINDER, Vx.yVX

INPUT FILES: MAIN.OBJ, UTIL.OBJ

OUTPUT FILES: MAIN.LNK

CONTROLS SPECIFIED: NOLOAD, NAME=EXAMPLE_MAIN

*** WARNING 151: UNRESOLVED EXTERNAL SYMBOLS

SEGMENT MAP

LIMIT ACCESS ALIGN USE COMBINE TYPE COMBINE NAME

00000236H ER BYTE USE32 NORMAL CODE

000041CBH RW DWORD USE32 NORMAL DATA

FFFFDFFFH RW DWORD USE32 STACK STACK

INPUT MODULES INCLUDED:

MAIN (MAIN.OBJ)

UTIL (UTIL.OBJ)

UNRESOLVED EXTERNAL SYMBOLS:

SYMBOL NAME REFERRING MODULE

DQATTACH MAIN

DQCLOSE MAIN

DQCREATE MAIN

DQDETACH MAIN

DQEXIT MAIN

DQOPEN MAIN

DQREAD MAIN

DQWRITE MAIN

PROCESSING COMPLETED. 1 WARNING, 0 ERRORS

Figure 2-4. Sample BND386 Print File

The following explanations of the print file sections are accompanied by generic
examples of the print file format.

Intel Family Utilities User's Guide Chapter 2 45

Header
The print file header summarizes the invocation specifications (see Figure 2-5).

386(TM) BINDER mm/dd/yy hh:mm:ss PAGE number

system_id iRMX III 386(TM) BINDER, Vx.yVX

INPUT FILES: filename1, filename2 ...

OUTPUT FILES: filename_n

CONTROL SPECIFIED: control1, control2 ...

<------------ (warnings, if any, will appear here)

Figure 2-5. BND386 Print File Header

Segment Map
The segment map provides the following information for each segment in the output
object module (see Figure 2-6):

• LIMIT: the segment limit, in bytes, with a suffix of H (for hexadecimal). The
limit is the offset of the last byte in a segment. Unless the SEGSIZE control is
used to specify an exact segment length, the limit may be a few bytes longer than
the actual limit (to accommodate references to the last byte of the segment).

If a segment has the length of zero, then EMPTY is printed in the LIMIT
column. Zero-length segments are purged from loadable modules. Therefore,
they are not listed in the segment map when LOAD is in effect. Segments that
have expand down attribute will have a LIMIT of (0 - segment size - 1).

• DPL: the descriptor privilege level.

Chapter 2 Using the Intel386 Binder46

• ACCESS: one or more of the following segment attributes:

— C (conforming): a segment that can be shared by programs that execute at
lower (numerically higher) privilege levels without using gates.

— D (expand down): a nonexecutable segment whose limit can be extended
toward lower-order addresses at run time.

— EO (executable only): a code segment that can only be executed, not read.

— ER (executable and readable): a code segment that can be executed and
read.

— RO (readable only): a data segment that can only be read.

— RW (readable and writable): a data segment that can be read from and
written to.

• ALIGN: two segments are combined according to the stricter of the two
alignment types; e.g., if a byte and a word are combined, the new segment is
type word. (The following types are valid: byte, word, dword, quad, para,
inpage, and page.)

• USE: can be USE16 or USE32. USE16 segments have a limit of 64K bytes and
USE32 segments have a limit of 4 gigabytes. For code segments, this attribute
determines the default addressing width and the default operation width.

• COMBINE TYPE: one of the following, describing information in the segment:

— BLANKCOMMON: segments that contain FORTRAN-386 that are not
named.

— COMMON: segments that contain FORTRAN-386 common blocks that are
named.

— NOCOMBINE: code or data segments that cannot be combined: for
example, ASM386 segments that are not declared PUBLIC and PL/M-286
segments compiled under the LARGE model.

— NORMAL: code or data segments that can be combined; for example,
ASM386 segments that are public or PL/M-386 segments.

— STACK: stack segments.

• COMBINE NAME: the name of the segment. In assembler programs, this name
is given by the user. In high level language programs such as PL/M, the name is
given by the compiler, and depends on the model of segmentation used.

SEGMENT MAP

LIMIT ACCESS ALIGN USE COMBINE TYPE COMBINE NAME

Intel Family Utilities User's Guide Chapter 2 47

xxxxxxxxH xxxx xxxx xxxxx xxxxxxxxxxx xxxxxxxxxxxxxxxx

xxxxxxxxH xxxx xxxx xxxxx xxxxxxxxxxx xxxxxxxxxxxxxxxx

.

.

xxxxxxxxH xxxx xxxx xxxxx xxxxxxxxxxx xxxxxxxxxxxxxxxx

Figure 2-6. BND386 Print File Segment Map

Input Modules List
The print file contains a list of all input modules processed by BND386 and the file
name in which the modules appeared in the input list (see Figure 2-7). The order is
the same in which the input modules were encountered in the input list.

INPUT MODULES INCLUDED

"module_name1" ("filename1")

.

.

.

"module_name_n" ("filename_n")

Figure 2-7. BND386 Print File Input Module Map

Unresolved Symbols List
Figure 2-8 shows the format of the section that provides information for each
unresolved reference in the segments processed:

• SYMBOL NAME: the name of the referenced symbol.

• REFERRING MODULE: the name of the first input module that contains a
reference to the symbol.

Chapter 2 Using the Intel386 Binder48

UNRESOLVED EXTERNAL SYMBOLS:

SYMBOL NAME REFERRING MODULE

xxxxxxxxxxxxxx xxxxxxxxxxxxx

. .

. .

. .

xxxxxxxxxxxxxx xxxxxxxxxxxxx

<-------------(errors/warnings, if any, will appear here)

Figure 2-8. BND386 Print File Unresolved Symbol List

Warning and Error Messages
Appendix A defines the error and warning messages that can appear in the print file.

Using BND386: Examples
The example below illustrates the two stages in developing an application program.
First, modules that contain application code are linked together. The resulting
linkable module is then linked with a system file to create a loadable module. The
loadable module is a program that can be executed on an iRMX III operating system.

Figure 2-9 shows the BND386 print file produced when two linkable iC-386 modules
(named MAIN.OBJ and UTIL.OBJ) are processed with BND386. The DEBUG
compiler control provides symbolic information useful later during debugging. The
following sequence is used to invoke the compiler:

iC386 MAIN.C DEBUG

iC386 UTIL.C DEBUG

After compilation, the BND386 NOLOAD control is used to create a combined
linkable module from MAIN.OBJ and UTIL.OBJ. The linkable module that is
produced is placed in the file MAIN.LNK (by default) and named EXAMPLE.

BND386 MAIN.OBJ, UTIL.OBJ NOLOAD NAME (EXAMPLE)

The linkable output module contains three segments--an executable-readable segment
(code), a readable-writable data segment (data), and a readable-writable stack
segment (stack) (see Figure 2-9).

The value in the LIMIT column can be different from the sum of the lengths of the
input segments. BND386 will change the combined segment lengths as follows:

Intel Family Utilities User's Guide Chapter 2 49

• When determining the output segment limits during combination, BND386
aligns the second and third segments according to their alignment attribute.

• The segment limit (the offset of the last byte in a segment) is equal to the
segment size minus one.

• The segment can be padded by one to six bytes. In this example, code is padded
by one byte and data by two bytes.

Chapter 2 Using the Intel386 Binder50

386(TM) BINDER dd/mm/yy hh/mm/ss PAGE 1

system_id iRMX III 386(TM) BINDER Vx.yVX

INPUT FILES: MAIN.OBJ, UTIL.OBJ ...

OUTPUT FILES: MAIN.LNK

CONTROLS SPECIFIED: NOLOAD, NAME=EXAMPLE

*** WARNING 151: UNRESOLVED EXTERNAL SYMBOLS

SEGMENT MAP

LIMIT ACCESS ALIGN USE COMBINE TYPE COMBINE NAME

00000236H ER BYTE USE32 NORMAL CODE

000041CBH RW DWORD USE32 NORMAL DATA

FFFFBFFFH RW DWORD USE32 STACK STACK

INPUT MODULES INCLUDED:

MAIN (MAIN.OBJ)

UTIL (UTIL.OBJ)

UNRESOLVED EXTERNAL SYMBOLS:

SYMBOL NAME REFERRING MODULE

DQATTACH MAIN

DQCLOSE MAIN

DQCREATE MAIN

DQDETACH MAIN

DQEXIT MAIN

DQOPEN MAIN

DQREAD MAIN

DQWRITE MAIN

PROCESSING COMPLETED. 1 WARNING 0 ERRORS

Figure 2-9. BND386 Print File for Linkable Output Containing Unresolved Symbols

Because the modules MAIN.OBJ and UTIL.OBJ were linked with no errors, the
output module is valid and ready to convert to a loadable module. Linking the
module EXAMPLE with UDIIFC32.LIB resolves the external references because
UDIIFC32.LIB contains the iRMX OS UDI system call interfaces. The following
invocation creates a loadable program and the print file shown in Figure 2-10:

BND386 MAIN.LNK, UDIIFC32.LIB CF (EXMPL1.CFL) OBJECT (EXMPL1)

BND386 creates a loadable module, because LOAD is in effect by default.

Intel Family Utilities User's Guide Chapter 2 51

As "controls specified" in Figure 2-10 indicates, the control file contains the
following controls:

DEBUG

SEGSIZE (stack (5000H))

Using the control file in this case is equivalent to including DEBUG and SEGSIZE in
the invocation line.

The resulting output object module is placed in a file named EXMPL1, as specified
by the OBJECT control. This module contains segments from the module created in
the first BND386 invocation, EXAMPLE, and from the module in the system library
UDIIFC32.LIB.

The segment named font/size has a segment limit of 5000H bytes. This is due to the
SEGSIZE control used, which specifies that the limit of the segment named stack is to
be 5000H bytes.

Because the system library UDIIFC32.LIB contains public definitions for all symbols
declared external in EXAMPLE, no references remain unresolved. Any unresolved
references are listed in the print file.

The output module in file EXMPL1 is ready to load or debug on an iRMX OS. The
DEBUG control in effect during both compilation and binding produces symbolic
information that can be used by MAP386 and by a symbolic debugger like
Soft-Scope.

Chapter 2 Using the Intel386 Binder52

386(TM) BINDER dd/mm/yy hh/mm/ss PAGE 1

system_id iRMX III 386(TM) BINDER Vx.yVX

INPUT FILES: MAIN.LNK, UDIIFC32.LIB

OUTPUT FILES: EXMPL1.386

CONTROLS SPECIFIED: OJ(EXMPL1), DB, SS(STACK(5000H))

SEGMENT MAP

LIMIT ACCESS ALIGN USE COMBINE TYPE COMBINE NAME

00000236H ER BYTE USE32 NORMAL CODE

000041CBH RW DWORD USE32 NORMAL DATA

FFFFBFFFH RW DWORD USE32 STACK STACK

INPUT MODULES INCLUDED:

main (MAIN.LNK)

COPYRIGHT_YEAR(s)_INTEL_CORPORATION (udiifc32.lib)

PROCESSING COMPLETED. 0 WARNINGS, 0 ERRORS

Figure 2-10. BND386 Print File for Loadable Modules

■■ ■■ ■■

Intel386 Family Utilities User's Guide Chapter 3 55

Using the Intel386 Librarian 3
The LIB386 librarian organizes linkable object modules, which have been produced
by Intel386 compilers, assemblers, or other Intel386 utilities, into libraries. You can
then create, examine, change, search, copy, and otherwise manipulate library files
with LIB386 commands.

You can construct object libraries around modules with common characteristics (i.e.,
modules that perform similar functions or are required for a particular system). For
example, one library might contain modules that perform mathematical functions;
another, modules that perform I/O routines.

When invoking other Intel386 utilities such as BND386, MAP386, or the BLD386
System Builder, you can gain access to all the applicable modules in a library simply
by specifying the library file name, rather than having to type the names of all the
modules.

LIB386 operates in two modes: foreground (NOBATCH) or background (BATCH).
In foreground mode, LIB386 queries, provides intermediate displays, and expects
input from the keyboard. In background mode, LIB386 processes commands that
have been redirected from a command file (or some type of batch file), and does not
query you or expect interaction. Refer to the individual LIB386 commands for the
effects of background execution. See Using LIB386: Examples for a background
execution example.

Major Functions of LIB386
LIB386 performs the following major functions:

• Creates new libraries

• Updates existing libraries by adding, deleting, or replacing modules

• Backs up the library currently being processed before it is modified

• Examines information in the libraries (e.g., names of modules or names of public
symbols)

• Lists the names of library modules that contain specified public symbols

56 Chapter 3 Using the Intel386 Librarian

• Accesses or changes library-related information (e.g., the name or the version
number)

• Compresses the data structure of the library being processed, thereby speeding
up the retrieval operation of other Intel386 utilities (such as BND386) that access
library files

• Requests help and receives a brief description of the specified LIB386 command

Refer to Appendix B for LIB386 error messages.

Input and Output
LIB386 accepts object files as input. Object files contain a single object module, a
sequence of object modules, or libraries (see Figure 3-1).

LIB386 output consists of library files, backup library files, console messages, and a
listing file, depending on the commands and controls that are specified. A listing file
can list modules in a library, public symbols in a library, or public symbols in a
particular module.

The Target Library
The library file that LIB386 is processing at any given time is called the target
library. The file you specify in the invocation line or with the GET command
becomes the target library file. All LIB386 commands act on the target file. (The
LIST command is an exception to this processing rule; LIST can operate on library
files other than the target library file.)

A specified library file remains the target file until you exit LIB386 or specify
another library as the target library.

Intel386 Family Utilities User's Guide Chapter 3 57

LIB386
Librarian

Linkable
Object

Modules

OM02007

Library
File(s)

Backup
Library

File

Target
Library

File

Print
File of
Listing

Invocation
Line

Console
Messages

Figure 3-1. LIB386 Input and Output

Library Sessions
Single library file processing is referred to as a single LIB386 session. Only one
target library can be processed per session. However, multiple library files can be
processed sequentially without exiting LIB386. To do this sequential processing,
close the current target library and then initialize another target library file for the
next session. For more details on single and multiple sessions, see Using LIB386:
Examples.

58 Chapter 3 Using the Intel386 Librarian

Invoking LIB386

DOS and iRMX=

==

= Invocation Syntax
To invoke LIB386 on a DOS or iRMX operating system, use the following syntax:

LIB386 [filename] [BATCH | NOBATCH] [BACKUP | NOBACKUP]

Where:

filename is the name of the target library file. Specify the file name according to
the operating system requirements.

A library session is begun in one of two ways: by specifying a file
name, which will initialize the target library, or by using the GET
command to initialize the target library file. See the GET entry in this
chapter for details on initializing target library files.

BATCH (BA)
specifies non-interactive mode. LIB386 processes commands that have
been redirected from a command file.

NOBATCH (NOBA)
specifies interactive mode. LIB386 runs interactively and expects input
from the keyboard. NOBATCH is the default.

BACKUP (BU)
specifies that LIB386 create a backup file of the target library at the
start of a new session. The backup file contains the version of the target
library created during the last session, with extension .LBK. BACKUP is
the default. BACKUP can be executed at the command level or as an
invocation control.

NOBACKUP (NOBU)
specifies that LIB386 does not create a target library backup file when a
new session starts. NOBACKUP can be executed at the command level or
as an invocation control.

Intel386 Family Utilities User's Guide Chapter 3 59

Invocation Controls
BACKUP, NOBACKUP, BATCH, and NOBATCH are the only controls that can be specified
in the LIB386 invocation line. BACKUP and NOBATCH are the defaults.

BACKUP and NOBACKUP can be specified as invocation controls, and they can also be
used as commands.

BACKUP creates a backup copy of a target library file each time a LIB386 session
begins. LIB386 gives each backup file the same name as the original target library,
with extension .LBK.

When used as commands, BACKUP and NOBACKUP override the BACKUP or
NOBACKUP controls used in invoking LIB386. See the BACKUP entry in this chapter
for more details on using BACKUP and NOBACKUP.

LIB386 Defaults
When no controls are specified in the invocation line, LIB386 does the following:

• Begins operating in foreground mode

• Displays the sign-on message and the foreground prompt, an asterisk (*)

• At the beginning of a session, displays a line identifying the target library

• If BACKUP is specified or implied, creates a backup copy of the target library at
the beginning of a session, with extension .LBK

• Awaits command input

If no file name is specified in the invocation line, LIB386 waits until a target library
is initialized with the GET command.

60 Chapter 3 Using the Intel386 Librarian

Console Messages
In foreground mode, LIB386 displays sign-on and sign-off messages, queries for user
response, and presents display messages and error messages.

In background mode, LIB386 does not display queries for user response, because the
utility is not interactive. LIB386 displays all other messages, including sign-on and
sign-off messages, display messages, and error messages.

When you invoke LIB386 without specifying a file name, the librarian signs on as
follows:

system_id iRMX III 386(TM) LIBRARIAN, Vx.y

Copyright years Intel Corporation

*

Where:

system_id is the identifier and version number of the operating system.

Vx.y is the LIB386 version number

years is the copyright year or years.

* is the LIB386 prompt. The prompt appears only in foreground mode.

When you specify a file name, LIB386 displays the sign-on message and one of two
messages, as follows:

• If the file name is the name of a new library:

TARGET LIBRARY:[new_library] date/time_last_modified

**

• If the file name is the name of a library that already exists:

TARGET LIBRARY: target_lib-name version date/time_last_modified

**

Where:

target_lib_name
is the name of the target library in the invocation line.

version_number
is the version number of the target library.

date/time_last_modified
date and time the target library was last processed.

Intel386 Family Utilities User's Guide Chapter 3 61

During processing, LIB386 issues warnings, error messages, or fatal error messages
if it encounters any problems. When LIB386 encounters a fatal error condition, an
error message and the following sign-off message are displayed at the console:

PROCESSING ABORTED

See Appendix B for additional information about error conditions.

LIB386 signs off when you exit from the librarian or from the current LIB386
session, as follows:

library_filename date/time_last_modified

n MODULES ADDED, m MODULES DELETED

Where:

n and m are the numbers of added and deleted modules.

Queries
The following is an example of a LIB386 query:

All Changes Lost, OK? [Y/N]

This query appears when you specify the QUIT ABORT or QUIT INITIALIZE
command and the target library has been changed but not updated. See the QUIT
entry in this chapter for details on responses to this query.

Display Messages
An example of a display message is the target library's identification banner. A
banner is displayed in the following form when the target library file for the session
is initialized:

TARGET LIBRARY: target_lib_name version_date/time_last-modified

Another display example is the listing of the library module names. See the LIST
entry in this chapter for more details.

A third type of LIB386 display message is the help summary. The help summary
appears on screen when you enter the HELP command and briefly describes each
LIB386 command. See the HELP entry in this chapter for more details.

Error Messages
Error messages are displayed when LIB386 encounters error conditions. Appendix B
contains a listing and explanation of the LIB386 error messages.

62 Chapter 3 Using the Intel386 Librarian

LIB386 Commands

Hierarchical Levels
The LIB386 command set contains two elements: the invocation line and library
commands. These elements are organized into a hierarchical structure. The three
hierarchical levels are the operating system level, the initial command level, and the
action command level (see Figure 3-2).

The operating system level is the outermost level; you can invoke LIB386 and
specify the BATCH, NOBATCH, BACKUP, and NOBACKUP controls. When you
exit LIB386, control returns to the operating system.

When no file name is specified in the invocation line, control transfers to the initial
level. A single asterisk (*) prompt indicates that control is at the initial level. The
BACKUP, NOBACKUP, GET, HELP, LIST, and QUIT commands are available at
this level. Use the GET command at the initial level to initialize the action command
level. (See the GET entry in this chapter.) Use the QUIT command to return to the
operating system level.

If the file name is specified in the invocation line, control transfers directly to the
action command level, indicated by the double asterisk (**) prompt. Most of the
LIB386 commands are available at this level. Use these commands to alter the target
library contents. Use the QUIT command to return to the initial level or to the
operating system level.

Transfer of Levels
Control transfers inward from the operating system to the action command level
when the target library file is specified on the invocation line. A double asterisk
prompt (**) indicates the action command level. All action level commands are
available for execution. Invoking LIB386 contains details on specifying the target
library file.

Control transfers inward from the operating system to the initial command level if the
target library file is not specified with the invocation. A single asterisk prompt (*)
indicates the initial command level. All initial level commands (e.g., GET, LIST)
can be executed. GET transfers control from the initial command level to the action
command level.

The QUIT command sequence must be executed to transfer control outward from the
action or initial command level. See the QUIT entry in this chapter for details.

Intel386 Family Utilities User's Guide Chapter 3 63

Operating System Level

LIB386 Invocation

BATCH NOBATCH

BACKUP NOBACKUP

OM02008

GET

HELP

LIST publics
TO filename

QUIT
[ABORT]
[INITIALIZE]
[EXIT]

ADD

COMPRESS

DELETE

FIND

HELP

LIST publics
TO filename

 QUIT
[ABORT]
[INITIALIZE]
[EXIT]

REPLACE

SET
[NAME]
[VERSION]
{PAGELENGTH]

UPDATE

Initial Level

Action Level

no filename specified filename specified

Figure 3-2. Levels of LIB386 Command Set

64 Chapter 3 Using the Intel386 Librarian

Effect of Entering the Interrupt Character
The interrupt character terminates LIB386 activities (except for BACKUP), in
foreground mode. However, LIB386 completes the portion of the command that was
executing before the interrupt character was entered. For DOS systems, the interrupt
character is <Ctrl-Break>.

If BACKUP is specified either as a command or as a control and the interrupt
character is entered, LIB386 finishes backing up the library before interrupting itself.

Summary of Commands
Table 3-1 summarizes LIB386 commands for DOS and iRMX operating systems.
The default column shows the condition in effect when the control is not specified.

Table 3-2 lists abbreviations of LIB386 controls. Each LIB386 control is listed
alphabetically and described in detail in the section following Table 3-2.

Command Syntax
To invoke a LIB386 command, use the following syntax:

command [parameters] [;comments]

Where:

command is the command specified (e.g., ADD).

parameters
are one or more items required by the command. Separate parameters
by commas or blank spaces unless otherwise noted under the individual
command.

comments is the text between the semicolon (;) and a new line. LIB386 ignores
this text.

You can continue the invocation line on additional lines by typing an ampersand (&)
before the line terminator. When LIB386 encounters a line terminator, the command
executes.

Table 3-1 summarizes LIB386 commands for DOS and iRMX operating systems.
The default column shows the condition in effect when the command is not specified.

Each LIB386 command is listed alphabetically and described in detail in the section
following Table 3-2.

Table 3-2 lists abbreviations of LIB386 commands. These abbreviations are repeated
in the following sections describing each command in detail.

Intel386 Family Utilities User's Guide Chapter 3 65

Table 3-1. LIB386 Commands for DOS and iRMX=Operating Systems

Command Syntax Description Default

ADD {filename[(mod_name
[,...])]}[,...]

Adds object modules to target library
(at action level)

None

BACKUP
NOBACKUP

Enables or suppresses backup file for
target library file (at initial level)

BACKUP

COMPRESS Physically removes deleted No compression

DELETE {mod_name[,...]|*} Logically removes modules from
target library (at action level)

None

FIND symbol[,...] Searches target library for the public
symbol(s) (at action level)

None

GET filename Initializes target library for session (at
initial level)

None

HELP Summarizes each LIB386 command,
keyword, and control

None

LIST {filename1[(mod_name
[,...])]}[,...] [TO
filename2][PUBLICS]1

Lists module names of library files (at
initial level and action levels)

Console is default
output device.
No publics

QUIT [ABORT |
EXIT | INITIALIZE]

Terminates current session (at initial
and action levels). ABORT, EXIT,
and INITIALIZE are QUIT command
controls

EXIT control of
QUIT command
only in BATCH
mode

REPLACE mod_name1
BY filename
[(mod_name2[,...])]

Replaces one module from the target
library with one or more modules from
another object file (at action level)

None

SET [N] [V] [PL] [,...] Changes name (N) or version number
(V) of target library or changes the
page length (PL) of listings (at action
level)

N = 1 blank space
V = 4 blank spaces
PL = 23 lines

UPDATE Updates current target library file (at
action level)

None

1 filename1 is required at the initial level, but is optional at the action level. The target library is the
default for filename1.

66 Chapter 3 Using the Intel386 Librarian

Table 3-2. Abbreviations for LIB386 Commands

Commands Abbr. Commands Abbr.

ADD A QUIT Q

BACKUP BU ABORT [A]

COMPRESS C EXIT [E]

DELETE D INITIALIZE [I]

FIND F REPLACE R

GET G SET

HELP H NAME [N]

LIST L VERSION [V]

NOBACKUP NOBU PAGELENGTH [PL]

UPDATE U

ADD

Intel386 Family Utilities User's Guide Chapter 3 67

ADD
Add object modules to target library

Syntax

ADD {filename [(mod_name[,...])]} [,...]

Where:

filename is the input file. The input file must be a linkable or library file. The
file name must be specified according to operating system
requirements.

mod_name is the object modules or modules from the input file to be added to the
target library.

Abbreviation

A

Default

ADD is not in effect.

Description

The ADD command lets you add input object modules to the target library. Only
linkable object modules generated by Intel386 compilers, assemblers, or other
Intel386 utilities can be added. The input file specified may contain a single object
module or a sequence of object modules; or it may be another library file. The input
file cannot have the same name as the library. ADD is executable only at the action
command level.

Unless modules are specified in parentheses, all modules in the input file are added to
the target library. This is true whether or not the input file is a library. The target
library may be initialized with the invocation line, or with the GET command at the
initial level for the current LIB386 session. If modules are specified in parentheses,
only the specified modules are added to the target library.

Uninitialized global variables in C modules are BSS, not publics. (To make them
publics, you must initialize them.) BSS variables are not used by BND386 or the
builder to pull in library modules, which are not otherwise required to satisfy known
externals.

ADD

68 Chapter 3 Using the Intel386 Librarian

A module in an object library is active if it is both logically and physically available.
(See the DELETE entry in this chapter for details.) When a module specified with
the ADD command is not active in the input file, the following error message appears
at the console:

MODULE NOT FOUND

FILE: filename

MODULE: mod_name

If the specified module name is identical to the name of a module already in the
target library, the module is not added to the library. The following error message
appears at the console:

DUPLICATE MODULE

FILE: filename

MODULE: mod_name

If a public symbol name in the specified module is already active in the target library,
the module is not added to the library. The following error message appears at the
console:

DUPLICATE PUBLIC

FILE: filename

MODULE: mod_name

PUBLIC SYMBOL: public symbol name

If ADD is for a single object file that is invalid, LIB386 does not add any modules
from the file. If ADD is for two or more files and only one of the files is invalid,
LIB386 adds modules from all files but the invalid file.

In either case, LIB386 continues processing and the following error message appears
at the console:

INVALID OBJECT FILE

FILE: filename

If ADD is attempted for a file generated by an 80286 compiler, assembler, or utility,
the following error message appears at the console:

INPUT FILE IS A 286 OBJECT FILE

FILE: filename

ADD

Intel386 Family Utilities User's Guide Chapter 3 69

Examples

1. In the following example, all the modules in the files MOD1.OBJ and
MOD2.OBJ are added to the target library.

**ADD MOD1.OBJ, MOD2.OBJ

2. In the following example, FILE1.LIB is a library file. MOD1 and MOD2 from
this input file are added to the target library.

**A FILE1.LIB(MOD1, MOD2)

BACKUP

70 Chapter 3 Using the Intel386 Librarian

BACKUP
Enables or suppresses backup file for target library file

Syntax
BACKUP

NOBACKUP

Abbreviations
BU

NOBU

Default

BACKUP

Description

The BACKUP command tells LIB386 to create a backup file before the start of each
library session. When BACKUP is used with the GET command, LIB386 copies the
current contents of the target library file to the backup file before the session begins.
Backup files have the same file name as the target library, with extension .LBK.

BACKUP and NOBACKUP are the only LIB386 commands that remain in effect
during all sessions under a single LIB386 invocation.

The BACKUP command can be executed in the invocation line or at the initial
command level. See Invoking LIB386 for more information on using BACKUP or
NOBACKUP in the invocation line.

Examples

1. In the following example, the library file MOD2.LIB is initialized, and the GET
control identifies this file as the target library file. BACKUP is specified;
therefore, LIB386 copies MOD2.LIB to the backup file MOD2.LBK when the
library file is initialized for the session.

*BU
GET MOD2.LIB
target library : FROUTINES X110 05/15/86

2. In the following example, no backup files are created during this invocation of
LIB386.

LIB386 MOD1.LIB NOBU

COMPRESS

Intel386 Family Utilities User's Guide Chapter 3 71

COMPRESS
Physically removes deleted modules from target library

Syntax

COMPRESS

Abbreviation

C

Default

COMPRESS in not in effect.

Description

The COMPRESS command physically removes data that has already been logically
deleted or replaced. Execute COMPRESS after you have executed several deletes
and/or replaces; this will give LIB386 and other Intel386 utilities faster access to the
target library.

The DELETE command logically deletes a module but does not necessarily
physically remove it from the target library file. You can use the COMPRESS
command to physically remove the module from the object library. See the
description of the DELETE command for more information.

COMPRESS is executable only at the action command level.

Example

In the following example, the target library is compressed by executing COMPRESS
at the action command level. The target library is restructured for maximum
efficiency.

**C

DELETE

72 Chapter 3 Using the Intel386 Librarian

DELETE
Logically removes modules from target library

Syntax

DELETE mod_name[,...]

Where:

mod_name is the module to be deleted from the target library.

* deletes all modules from the target library.

Abbreviation

D

Default

DELETE is not in effect.

Description
The DELETE command logically removes specified modules from the target library.
Public symbols in deleted modules are also logically removed. DELETE does not
physically remove the modules, but there is no way to refer to modules that have
been deleted. Use the COMPRESS command to physically remove modules that
have already been logically deleted.

When you are in foreground mode and specify, "delete all modules" with the
construction, DELETE (*), LIB386 queries:

Are you sure? [Y/N]

Type y or yes to confirm that you want to delete all modules. Any response besides y
or yes causes LIB386 to ignore the DELETE command and issue the action
command level prompt (**). In batch mode, you will not have the opportunity to
confirm; LIB386 will delete all modules upon command.

An object library module is active if the module is both logically and physically
available. For each non-active module you specify, the following error message is
displayed:

MODULE NOT FOUND

FILE: filename

MODULE: mod_name

DELETE is executable only at the action command level.

DELETE

Intel386 Family Utilities User's Guide Chapter 3 73

Examples

1. In the following example, MOD1 and MOD2 are logically deleted from the
target library.

**D MOD1,MOD2

2. In the following example, LIB386 deletes all modules from the target library.

**D *

Are You Sure? [Y/N] y

FIND

74 Chapter 3 Using the Intel386 Librarian

FIND
Searches target library for public symbol

Syntax

FIND symbol[,...]

Where:

symbol is the name of the public symbol that LIB386 is to search for
in the target library.

Abbreviation

F

Default

FIND is not in effect.

Description

The FIND command first verifies whether the specified public symbol is active (that
is, logically and physically available) in the target library. If the symbol is active, the
symbol name and the name of the module containing the symbol are displayed.

If the symbol is not active in the target library, the following message appears at the
console:

public symbol, NOT FOUND

Where:

public symbol is the specified public symbol.

FIND is executable only at the action command level.

FIND

Intel386 Family Utilities User's Guide Chapter 3 75

Examples

1. In the following example, CHKSTATUS is the public symbol that is searched
for in the target library. The search finds CHKSTATUS in CHECKMOD.

**F CHKSTATUS

CHKSTATUS, IN MODULE CHECKMOD

2. In the following example, the search for CONVRBYTE finds that this public
symbol is not active in any of the target library's modules.

**F CONVRBYTE

CONVRBYTE, NOT FOUND

3. In the following example, the search for symbols A and B finds that both are
active in the target library's modules.

**F A,B

A, IN MODULE X

B, IN MODULE Y

GET

76 Chapter 3 Using the Intel386 Librarian

GET
Initializes target library file

Syntax

GET filename

Where:

filename is the library file that contains the target library. The file name must be
specified according to the host operating system requirements.

Abbreviation

G

Default

GET is not in effect.

Description

The GET command initiates a LIB386 session with the specified library file as the
target library. All subsequent modifications, such as deletions and additions, affect
the target library.

After executing GET, LIB386 does the following:

• Transfers control to the action command level, giving access to most LIB386
controls.

• Signals the start of the LIB386 session by identifying the target library with the
target library banner, which contains the name, version number, and last date of
modification of the target library.

The library file is automatically checked for read and write mode. If the target
library is write-protected, the GET command is successfully executed, but the
following warning appears at the console:

***WARNING: TARGET FILE IS WRITE PROTECTED

You can use GET to create a new library file: specify a new library file name, and
then add modules with the ADD command. Use the SET command to set the name
and version number of the library. The banner displayed for a new library is as
follows:

TARGET LIBRARY: [new_library] date_and_time_last_modified

GET

Intel386 Family Utilities User's Guide Chapter 3 77

To get another library file, you must first terminate the current session with the QUIT
command before you can request another GET.

GET is executable only at the initial option level.

Examples

1. In the following example, LIB386 initiates the library file named MOD2.LIB.
FPFUNCTIONS is the target library for this session.

*G MOD2.LIB

TARGET LIBRARY: FPFUNCTIONS X110 01/01/1986 10:04:55

2. In the following example, a new library file, MOD3.LIB, is created, because this
file does not already exist.

*G MOD3.LIB

TARGET LIBRARY: [new library] 09/17/86 11:45:07

HELP

78 Chapter 3 Using the Intel386 Librarian

HELP
Summarizes LIB386 commands, keywords controls

Syntax

HELP

Abbreviation

H

Default

The HELP summary is not displayed.

Description

The HELP command displays a summary of LIB386 commands. The summary lists
each LIB386 command and control with the command syntax, abbreviation, and a
brief description of its function.

HELP summaries are available on the following topics:

ABORT ADD BACKUP COMPRESS DELETE

EXIT FIND GET HELP INITIALIZE

LIST NAME PAGELENGTH PUBLICS QUIT

REPLACE SET UPDATE VERSION

The HELP command is available at both the initial and action command levels.

Example

In the following example, the HELP command summary is requested.

*H

LIST

Intel386 Family Utilities User's Guide Chapter 3 79

LIST
Lists module names of library files

Syntax

LIST {[file1] [(mod_name)]}[,...] [TO file2] [PUBLICS]

Where:

file1 is the name of the library file whose module information is to be listed.

mod_name is the module or modules to be listed. If no modules are specified, all
modules in the file are listed. Module names should be separated by
commas: for example, mod_name1, mod_name2.

file2 is the output print file.

PUBLICS lists all public symbols in the specified modules.

Abbreviation

L

Default

If file1 is not specified at the action command level, the target library is used. If
TO file2 is unspecified, list information is displayed at the standard output device.

The listing defaults are as follows:

• The names of all modules in the library are listed.

• Public symbol names are not listed unless the PUBLICS control is specified.

• The first portion of the list appears 23 lines per page in NOBATCH mode. The
listing is continuous in BATCH mode. The listing is also continuous if file2 is
specified.

LIST

80 Chapter 3 Using the Intel386 Librarian

Description

The LIST command displays the names of library modules and, as a control, public
symbols on the standard output device. When using LIST at the initial command
level, you must specify file1, because no target library has yet been initialized. At
the action command level, file1 defaults to the target library if not specified.

You can obtain a list of public symbols in an object module by specifying mod_name

and the PUBLICS control. You can also verify that a particular module resides in the
specified or default library by specifying the name of only one module without
PUBLICS. LIB386 prints the module name if the module is in the library.

In both foreground and background modes, LIST first identifies the library being
listed by printing a library identification banner.

In foreground mode, LIST prints the first page of the listing and then waits for input
from the keyboard to determine how the next page or line is to be displayed. Use the
following display controls:

• P--Displays one page at a time (the default)

• L--Displays one line at a time

• F--Displays with no breaks

• E--Ends display, immediately terminating LIST command processing.

When an input character other than P, L, F, or E is entered, LIB386 continues to list
in the previous display mode.

You can set page length with the SET control. See the SET entry in this chapter for
details.

In background mode, or when the TO file2 control is specified, LIB386 prints the
full list of modules and, if requested, public symbols. The display controls are
unavailable.

To obtain listings for other libraries without exiting from the current session, specify
the desired library's file name with the LIST command.

LIST can execute at both the initial and action command levels.

LIST

Intel386 Family Utilities User's Guide Chapter 3 81

Examples

1. In the following example, the target library's three module names are printed at
the standard output device.

** L

TARGET LIBRARY : FPFUNCTIONS X110 01/01/1986 02:45:07

MOD1

MOD2

MOD3

2. In the following example, MOD1.LIB's module names and public symbols are
printed to a file.

*L MOD1.LIB TO Z.LST P

File Z.LST contains the following:

NON_TARGET LIBRARY : LIBABC 1.2 12/04/86 06:54:34

MOD1

PUBA

PUBB

MOD2

PUBC

3. In the following example, LIB386 verifies that the specified module is in the
target library by displaying its name.

**L (MOD1)

TARGET LIBRARY : FPFUNCTIONS X110 01/01/1986 07:07:15

MOD1

QUIT

82 Chapter 3 Using the Intel386 Librarian

QUIT
Terminates current session

Syntax

QUIT [ABORT | EXIT | INITIALIZE]

Abbreviations

QUIT [A | E | I]

Default

The QUIT command is not in effect unless specified. If specified in background
mode, EXIT is the default control for the QUIT command. In foreground mode, you
must specify QUIT ABORT, QUIT EXIT, or QUIT INITIALIZE; there is no default
control.

Description

The QUIT command terminates the current LIB386 session. Three optional controls,
ABORT, EXIT, and INITIALIZE, are available.

When QUIT is specified at the action command level, LIB386 identifies the current
target library by displaying the target library file and the library banner, as follows:

filename library_name version_number date_time_last_modified

If the QUIT command is issued from the initial command level, no sign-off message
is displayed.

In foreground mode, LIB386 queries for a control if none is specified with the QUIT
command. The QUIT command is ignored if any character other than A, E, I, or the
unabbreviated form of these controls is entered. If A, E, or I is specified, LIB386
proceeds through the appropriate quit sequence as explained below.

In background mode, LIB386 does not query for a control if none is specified with
the QUIT command. If changes were made to the library file, an update is made
automatically before the exit. ABORT and INITIALIZE are available only if
specified with the QUIT command (for example, QUIT ABORT).

The ABORT control aborts update and transfers control to the operating system level.
However, in foreground mode, if an update is required, the following query is
displayed:

All Changes Lost, OK? [Y/N]

QUIT

Intel386 Family Utilities User's Guide Chapter 3 83

Select yes or y to complete the abort process and transfer control to the operating
system level. All changes to the target library since the last update are lost. Select
no, n, or any character other than y to cancel the QUIT command. Control remains at
the action command level.

The EXIT control updates the target library. LIB386 does not query, and control is
transferred to the operating system. In BATCH mode, EXIT is the default control.

The INITIALIZE control begins another session, transferring control from the action
command level to the initial command level. At this point you can initialize another
library file at the initial command level with the GET command.

When the INITIALIZE control is specified, LIB386 checks to see if the target library
needs to be updated. If so, the following query is displayed:

All Changes Lost, OK? [Y/N]

Select yes or y to transfer control from the action command level to the initial
command level. All changes made to the target library since the last update are lost
and a new LIB386 session is initiated.

Enter no, n or any character other than y to direct LIB386 to ignore the QUIT
command. Control remains at the action command level. (You can issue the UPDATE
command, then reissue the QUIT command.)

The QUIT command is executable at the initial and action command levels.

QUIT

84 Chapter 3 Using the Intel386 Librarian

Examples

1. In the following example, the current session is aborted. LIB386 discovers that
NEWLIB_NAME has been altered since the last update and queries:

All Changes Lost, OK? [Y/N]

Yes is selected, instructing LIB386 to ignore the changes and complete the abort
process. LIB386 returns control to the operating system.

**Q A
MOD1.LIB, NEWLIB_NAME V1.1 11/25/1986 01:03:08

All Changes Lost, OK? [Y/N] y

2. In the following example, DRIVERS is the target library name. In foreground
mode, LIB386 prompts for a control. INITIALIZE is specified and y is the
response to the query:

All Changes Lost, OK? [Y/N]

LIB386 returns to the initial command level from the action command level.

**QUIT

MOD2.LIB, DRIVERS ZZ93 11/25/1986 12:05:45

A(bort)/E(xit)/I(nitialize) = I

All Changes Lost, OK? [Y/N] y

REPLACE

Intel386 Family Utilities User's Guide Chapter 3 85

REPLACE
Replaces module from target library with module(s) from another object file

Syntax

REPLACE mod_name1 BY filename[(mod_name2[,...])]

Where:

mod_name1 is the name of the module to be replaced in the target library.

filename is the input object file to be added to the target library, or the file
containing mod_name2.

mod_name2 is the name or names of the module or modules to be added to the target
library.

Abbreviation

R

Default

REPLACE is not in effect.

Description

The REPLACE command logically deletes a module from the target library and
replaces it with one or more modules from the input object file. Unless specific
module names are listed with the input object file, all modules in that file are added
to the target library.

If mod_name1 and mod_name2 are not found, the replacement is not made; the target
library remains unchanged. The following error message is displayed at the console:

MODULE NOT FOUND

FILE: filename

MODULE: mod_name

If a public symbol name in the input module is already in the target library, the
module is not added to the target library.

REPLACE is executable only at the action command level.

REPLACE

86 Chapter 3 Using the Intel386 Librarian

Example

In the following example, LIB386 replaces MOD5 in the target library with MOD1
from the input object file.

**R MOD5 BY MOD1.LIB (MOD1)

SET

Intel386 Family Utilities User's Guide Chapter 3 87

SET
Changes name, version number, or page length of listing

Syntax

SET [NAME = library_name |

VERSION = version_number |

PAGELENGTH = lines]

Where:

NAME is the keyword that sets the name of the target library.

library_name
is the name of the library. The library_name can be up to 40
characters long.

VERSION is the keyword that sets the version number of the target library.

version_number
is the version number, up to four characters long.

PAGELENGTH
is the keyword that sets the length of a page of listing.

lines is the number of lines in a page of listing, from 1 to 65535 (decimal).

Abbreviations

T [N | V | P]

Default

NAME: one blank space in the library banner. Before the SET command is used to
name the target library, LIB386 displays the target library name as blank spaces in
the library banner.

VERSION: four blank spaces in the library banner.

PAGELENGTH: 23 lines.

Description

The NAME command lets you change the name of the target library. The library name
can be a string up to 40 characters long. A syntax error occurs if the specified name
exceeds the maximum number of characters. When this happens, LIB386 does not
change the old name.

SET

88 Chapter 3 Using the Intel386 Librarian

You can change the version number of the target library using the VERSION control.
The version number can be a string up to four characters long. A syntax error occurs
if the specified number exceeds the maximum number of characters. When this
happens, LIB386 does not change the old number. If less than the maximum number
of characters is used, the version number is left-justified and padded with blanks.

You can specify the number of lines in a page generated by the LIST command using
the PAGELENGTH control. The page length can be from 1 to 65,535 lines. A syntax
error occurs if the specified page length exceeds the maximum number of lines.
When this happens, LIB386 does not change the old page length.

To make multiple specifications (e.g., for a library name and a version number) with
the same execution of SET, separate one specification from the next with a comma.
If the same control is specified twice in one line, the rightmost specification takes
effect.

When you enter the SET command without controls, LIB386 responds by prompting
for SET specifications. Press the return key to cause LIB386 to issue successive
prompts for NAME, VERSION, and PAGELENGTH. LIB386 displays the following
prompts, in the sequence shown:

NAME = current_library_name. NEW VALUE:
VERSION = current_version_number. NEW VALUE:
LIST command PAGELENGTH = current_page_length. NEW VALUE:

To change a specification, enter the new name, version number, or page length at the
prompt.

To retain the current specification and proceed to the next prompt, press the return
key. After the PAGELENGTH prompt, LIB386 displays the library banner and returns
to the action command level.

LIB386 displays the new banner for the target library after the SET command has
successfully completed.

Once specified, the target library name and number can be changed only with the
SET command. The following characters can be used in library names and versions:

• All alphanumeric characters

• The following characters: @ . ? _

• Other characters provided they are enclosed by apostrophes (') or double
quotation marks (").

It is recommended that alphanumeric characters be used, because some operating
systems may not accept non-alphanumeric characters.

The SET command is executable only at the action command level.

SET

Intel386 Family Utilities User's Guide Chapter 3 89

Examples

1. In the following example, X201 is set as the version number of the target library.
LIB386 immediately displays the new banner for COMMONLIB.

**SET VERSION = X201

TARGET LIBRARY: COMMONLIB X201 04/23/1986 06:04:05

2. In the following example, PASCALIB and X100 are set as the name and version
number of the target library.

**S N = PASCALIB, VERSION = X100

TARGET LIBRARY: PASCALIB X100 05/06/1986 11:09:45

3. In the following example, a carriage return is entered after the SET command.
LIB386 prompts for the name, version number, and page length of the target
library. In this example, only the version number is changed.

**S

NAME = LIB1. NEW VALUE:

VERSION = 1. NEW VALUE: 2

LIST COMMAND PAGE LENGTH = 23. NEW VALUE:

TARGET LIBRARY: LIB1 2 12/02/1986 10:45:07

UPDATE

90 Chapter 3 Using the Intel386 Librarian

UPDATE
Updates current target library file

Syntax

UPDATE

Abbreviation

U

Default

UPDATE is not in effect.

Description

The UPDATE command writes the contents of the target library to the target library
file. A target library file can be updated at any time during a session.

When you attempt to update a write-protected target file, LIB386 does not update the
file and issues the following message:

ATTEMPT TO UPDATE WRITE-PROTECTED FILE

Updating the target library does not terminate the session: you must use the QUIT
command after UPDATE to end the session.

UPDATE is executable only at the action command level.

Example

In the following example, the GET command initializes FILE1.LIB as the target
library file. The object file MOD2.OBJ is added to the target library
FPFUNCTIONS. UPDATE incorporates this change into FILE1.LIB. The QUIT
command ends the session.

**G FILE1.LIB

TARGET LIBRARY: FPFUNCTIONS X201 04/05/1986 10:22:43

**A MOD2.OBJ

**U

**Q I

Intel386 Family Utilities User's Guide Chapter 3 91

Using LIB386: Examples
Figures 3-3 and 3-4 show examples of LIB386 use.

Single Session
Figure 3-3 is an example of a single library session in foreground mode. In this
example, only one target library is processed before the QUIT command is invoked
and LIB386 is exited.

92 Chapter 3 Using the Intel386 Librarian

LIB386 COMMON.LIB <cr>

system_id iRMX III 386(TM) LIBRARIAN. Vx.yVX

Copyright year(s) Intel Corporation

TARGET LIBRARY : COMMONLIB X010 02/02/86

**ADD INIT.OBJ, ERRH.OBJ <cr>

**ADD UTIL.LIB(GETFLP,GETINT) <cr>

**DELETE STRCHK <cr>

**REPLACE START BY OLD.LIB(STARTUP) <cr>

**FIND OVRERR <cr>

OVERR, IN MODULE SETLST

**LIST PUBLICS <cr>

COMMONLIB X010 2/2/1986

IOMOD

PUB1INIOMOD

PUB2INIOMOD

PUB3INIOMOD

PUB4INIOMOD

PACMAN

WEIRDNOISE

COLOREXTRAVAGANZE

WASTEMONEY

SETLST

OVRERR

PUBINSETLST

GETFLP

PUB1INGETFLP

PUB2INGETFLP

PUB3INGETFLP

GETINT

PUBINGETINT

STARTUP

STARTANDKILL

**SET VERSION = X011 <cr>

COMMONLIB X011 02/02/1986 10:48:20

A(BORT)/E(XIT)/I(NITIALIZE) = E <cr>

5 MODULES ADDED, 2 MODULES DELETED

Figure 3-3. Interactive Execution Example: A Single Session

Intel386 Family Utilities User's Guide Chapter 3 93

Multiple Session
Figure 3-4 is an example of a multiple library session in foreground mode. In this
example, several libraries are sequentially processed, using the QUIT command with
the INITIALIZE command to transfer control from the action command level to the
initial command level. At the initial command level, the GET command initializes
another library as the target library for the next session.

LIB386 <cr>

system_id iRMX III 386(TM) LIBRARIAN, Vx.yVX

Copyright year(s) Intel Corporation

*GET FIRST.LIB <cr>

TARGET LIBRARY : MAINLIB X001 04/03/1986 9:40:07

**ADD IOPROC.OBJ (IO_DRIVER) <cr>

**DELETE DUMMY_IO_PROC <cr>

**SET VERSION = X002 <cr>

MAINLIB X002 04/03/1986 9:40:20

**UPDATE <cr>

**QUIT <cr>

FIRST.LIB, MAINLIB X002 04/03/1986 9:41:16

A(bort)/E(xit)/I(nitialize) = I <cr>

1 MODULE ADDED, 1 MODULE DELETED

**GET OVERLY.LIB <cr>

TARGET LIBRARY :SUBROUTINES X001 03/02/1986 9:42:42

**ADD NEWMOD.OBJ (LPDRIVE) <cr>

**UPDATE <cr>

**QUIT <cr>

OVERLY.LIB, SUBROUTINES X001 04/03/1986 9:43:42

A(bort)/E(xit)/I(nitialize) = E <cr>

1 MODULE ADDED, 0 MODULES DELETED

Figure 3-4. Interactive Execution Example: Multiple Sessions

94 Chapter 3 Using the Intel386 Librarian

DOS Batch Session
In this example, a batch file called MAKELIB.BAT and an input file called
MAKLIB.DAT contain the following:

• The LIB386 invocation line, which initializes NEW.LIB as the target library and
invokes BATCH mode

• The processing commands ADD (used twice) and COMPRESS

• The QUIT command to terminate execution

The contents of the DOS command file MAKELIB.BAT are as follows:

LIB386 NEW.LIB BATCH < MAKLIB.DAT

The contents of the DOS input file MAKLIB.DAT are as follows:

ADD UDIIFC32.LIB

ADD\MARK\LIB386\TEST\LKS\LKSLRG.T01

COMPRESS

QUIT EXIT

■■ ■■ ■■

Intel386 Family Utilities User's Guide Chapter 4 95

Using the Intel386 Mapper 4
The MAP386 mapper produces printed information about object modules, including
cross-reference maps, and, at your request, purges debug information from the object
modules.

MAP386 accepts, as input, object files created by other Intel386 utilities, BND386,
BLD386, and LIB386, or by 80286 utilities (except for 80286 loadable modules).
Input files can be linkable files, library files containing linkable modules, or loadable
files containing loadable or bootloadable modules. You can also specify individual
linkable modules within linkable or library files as input to MAP386.

Major Functions of MAP386
MAP386 performs the following major functions for loadable input files:

• Removes selected debug information, that is, information about public, external
and local symbol declarations, and lines of source code that are used by software
debuggers.

• Generates printed that describes the contents of the input file. This output can
include:

— Module list
— Table map
— Segment map
— Gate map
— Symbol map
— Public map
— Task map
— Cross-Reference map

• Inserts information for the target operating systems.

Chapter 4 Using the Intel386 Mapper96

Input and Output
MAP386 accepts the following as input:

• One loadable file (containing a single loadable or bootloadable module)
produced by one of the Intel386 utilities, or one or more linkable and/or library
files (containing one or more linkable modules. (See Figure 4-1.) For non-
loadable object modules, you may specify Intel386 and 80286 object files in the
same invocation.

• One or more MAP386 invocation controls described later in this chapter.

• Operating system information (osinfo) file if the input is loadable.

Loadable
Input File

(386)

osinfo
file

OM02009

Invocation Line,
Loadable Input

MAP386
MAPPER

Module List
Table Map
Segment Map
Gate Map
Symbol Map
Public Map
Task Map

Cross-
Reference
Map

Console
Messages

Output Object File (386)
with Debug information
selectively removed and
with osinfo added

286/386
Linkable

Input
(in Linkable
or Library

Files)

MAP386
MAPPER

Cross-
Reference

Map

Invocation Line,
Linkable Input

Console
Messages

Figure 4-1. MAP386 Input and Output

Intel386 Family Utilities User's Guide Chapter 4 97

For loadable and linkable input files, MAP386 outputs the following lists, as shown
in Figure 4-1:

Module List
For linkable input, lists modules input to MAP386. For loadable
modules, lists linkable modules that make up the expandable file

Cross-Reference
Provides name and type of each symbol in the input file, name of the
module containing the public definition, and names of modules
containing external declarations for the symbol. The cross-reference
map is the only map produced for linkable modules

For loadable files, MAP386 includes the following information in the print output, as
shown in Figure 4-1:

Table Map Descriptor names and corresponding indexes for global descriptor
table (GDT), interrupt descriptor table (IDT), and local descriptor
tables (LDTs)

Segment Map Names of segments in the input file and characteristics of each
segment, such as descriptor table index, access type, base,
descriptor privilege level (DPL), USE16/32 attributes, align
attributes, and others

Gate Map Symbolic gate names and characteristics of each gate in the input
file, such as descriptor table name, descriptor table index, gate
type, and others

Symbol Map Names of local symbols in the input file and characteristics of each
symbol, such as symbol type, address, and others

Public Map Public symbols in the input file and their characteristics, such as
symbol type, word count, and logical (and if applicable, physical)
address

Task Map Task characteristics for each task such as initial privilege stack,
flags, initial values of CS and EIP registers, LDT selector of the
task, and others

Chapter 4 Using the Intel386 Mapper98

The module list and each of these maps are described in more detail in MAP386 Print
Files later in this chapter.

If the file input to MAP386 contains a loadable module, MAP386 produces some or
all of the following output, as specified by the input controls:

• An output object file. Debug information, such as information about symbols
and line numbers, can be removed from the output file. Information relating to
the operating system can be added or updated.

• A print file containing a module list and one or more of the following maps:

 Table map

 Segment map

 Gate map

 Symbol map

 Public map

 Task map

• A cross-reference map that can be directed to the print file or another specified
file.

If the input file is linkable, MAP386 produces only a cross-reference map. The file
containing the cross-reference map includes a module list.

MAP386 Module Processing

Executable Modules
Executable files input to MAP386 contain a single loadable module produced by a
Intel386 utility. MAP386 accepts only one loadable input file per invocation.

Linkable Modules in Linkable Files
MAP386 processes modules in linkable files as specified in the invocation line.
MAP386 can process linkable files produced by any 80286 or Intel386 compiler,
assembler, or utility.

Intel386 Family Utilities User's Guide Chapter 4 99

Linkable Modules in Library Files
MAP386 processes linkable modules in library files if they are explicitly specified in
the invocation line or if they resolve external references made in modules previously
processed during the same MAP386 invocation.

The processing of an input file varies depending on whether it is a library or non-
library file. A non-library file may contain one object module or several object
modules concatenated by BND386 or the BLD386 System Builder. Since several
modules cannot reliably be concatenated with a copy command, a library file
contains control information in addition to object modules. A module in a non-
library file is processed by MAP386 if it is explicitly listed in the module list or if the
module list is not specified.

Processing a library file is more complicated. If a module list is specified for the
library file, it is processed in the same manner as a non-library file. If a module list is
not specified, the library file is processed only if the previously processed modules
contain an unresolved external. The library is scanned for modules containing public
symbols that match as-yet unresolved externals. Each such module is processed as if
it has been explicitly specified. The selection process continues until the modules in
the library cannot satisfy any more unresolved externals (including externals
encountered while processing modules from the library).

Chapter 4 Using the Intel386 Mapper100

Invoking MAP386

DOS and iRMX Invocation Syntax
To invoke MAP386 on a DOS or iRMX operating system, use the following syntax:

MAP386 input_list [controls]

Where:

input_list
is one or more linkable modules or object library modules, specified as
follows:

filename [(mod_name | *)]

* An asterisk (*) specifies all modules in the file named by filename.

controls is one or more of the MAP386 specifications described later in this
chapter.

When you are working with loadable files, you must specify the input list with the
file name only; you cannot specify module names. MAP386 accepts only one input
file in this case.

You can continue the invocation line on additional lines by typing the ampersand (&)
before the line terminator. This character causes the continuation line to appear with
the DOS or iRMX prompt character.

Control Files
The MAP386 invocation line is simplified when you can use the CONTROLFILE
control to invoke a control file. A control file is a text file containing any file names
or controls that would normally appear in the invocation line. For example, instead
of listing five controls in the MAP386 invocation line, you can place those controls in
a single control file and then invoke the control file in place of all five controls.

Intel386 Family Utilities User's Guide Chapter 4 101

Using a Control File on DOS and iRMX=

To include a control file in the map386 invocation line for a DOS or iRMX operating
system, use the following syntax:

map386 CONTROLFILE (filename[,...])

Where:

filename is the name of the control file containing controls, file names, or
controls and file names for the input list. You cannot nest control files:
that is, the CONTROLFILE control cannot appear in a control file.

A control file that contains only controls can be specified in any position in the input
list. A control file that contains only file names for the input list can be specified in
any position in the input list.

In a control file that contains both input files and controls, input files must come
before controls. In this case, specify the control file as part of the input list.

The following example shows how to specify the CONTROLFILE control in an input
list that contains the files named in cf1.dat:

MAP386 MOD.OBJ, CONTROLFILE (CF1.DAT) DEBUG

Within a control file, use a semicolon before a comment. Use the ampersand (&) to
continue to the next line. When the line terminator comes before the ampersand, it is
treated as if it were a blank space. MAP386 ignores characters between a semicolon
or continuation character and the line terminator. Lines in a control file cannot
exceed 120 characters in length.

This example control file contains only file names for the input list:

util.lib, & ; utility library
system.lib ; system library

This example control file contains the last file names for the input list and controls
for the control list:

util.lib,& & ; utility library
system.lib & ; system library
lo & ; loadable module
ep & ; directs error messages to the specified print

& ; file specified
oj (lbt.sys) ; name output file

MAP386 Defaults
If the input file is a loadable module, MAP386 processes the single module.

Chapter 4 Using the Intel386 Mapper102

If the input file is linkable and no modules are specified in the input list, MAP386
processes all modules.

If the input file is an object library and no modules are specified in the input list,
MAP386 processes only the modules that satisfy external symbol references already
encountered in the input. For a reference to be satisfied, a symbol must be declared
public in a module in the library.

Output Identifiers
If no output file names are specified in the invocation line (with controls PRINT,
OBJECT and ERRORPRINT), MAP386 creates output files as follows:

• MAP386 produces a print file with the same file name as the input file and
assigns the extension .MAP.

• If the input file is loadable, and OBJECT, OBJECTCONTROL or OSINFO have been
specified, MAP386 produces an output object file with the same file name as the
input file and assigns the extension .OUT.

• If ERRORPRINT is specified without a file name, all the error messages are
printed to the console.

Controls
When no controls are specified in the MAP386 invocation line, MAP386 performs
the functions described below:

When the input file is loadable, MAP386 does the following:

• Produces a module list, table map, symbol map, gate map, public map, task map,
and cross-reference map. These items and error messages are placed in a file
with the same name as the input object file, with extension .MAP.

When the input is a linkable file or modules, MAP386 does the following:

• Produces a cross-reference map and places it along with a module list and error
messages in a file with the same name as the input file and with the extension
.MAP.

Intel386 Family Utilities User's Guide Chapter 4 103

Regardless of whether file input is loadable, bootloadable, or linkable MAP386 does
the following by default:

• Displays only fatal error messages on the console.

• Produces output maps 120 columns wide with 60 lines per page. A header on
each page includes a title, date, and page number.

Console Messages
MAP386 generates sign-on/sign-off messages and error messages on the console.

MAP386 signs on to the system console with the following message:

system_id iRMX III 386(TM) MAPPER, Vx.y

Copyright years, Intel Corporation

Where:

system_id identifies the host operating system.

Vx.y is the MAP386 version number

years is the copyright year or years.

After processing is complete and if no fatal errors have occurred, MAP386 signs off
as follows:

PROCESSING COMPLETED.n WARNING(S),m ERROR(S)

Where:

n and m are the number of warnings and errors.

Fatal error messages are always displayed. If MAP386 encounters a fatal error
condition, an error message and the following sign-off message appears at the
console:

PROCESSING ABORTED

Although nonfatal error messages are included in the print file by default, they can be
directed to the console with the ERRORPRINT control. See the ERRORPRINT entry in
this chapter for more information.

Chapter 4 Using the Intel386 Mapper104

MAP386 Controls
Table 4-1 summarizes MAP386 controls for DOS and iRMX operating systems. The
default column shows the condition in effect when the control is not specified. When
an invocation contains duplicate control specifications, MAP386 processes only the
rightmost specification on the invocation line.

Table 4-2 lists abbreviations of MAP386 controls. Each MAP386 control is listed
alphabetically and described in detail in the section following Table 4-3.

Table 4-1. MAP386 Controls for DOS and iRMX= Operating Systems

Command Syntax Description Default

CONTROLFILE (filename[,...]) Specifies file for input elements None

ERRORPRINT (filename)
NOERRORPRINT

Creates or suppresses creation of
error print file

NOERRORPRINT

OBJECT [(filename)]
NOOBJECT

Creates output object file from
loadable or bootloadable input files

If OBJECT
CONTROLS or
OSINFO specified
OBJECT = (input_
filename.OUT);
otherwise,
NOOBJECT

OBJECTCONTROLS
(objectcontrol [EXCEPT]
(mod_name[,...])][,...])

Includes or removes debug
information in output object file

OBJECTCONTROL
(DEBUG) (includes
debug information)

object controls:

DEBUG NODEBUG

EXTERNALS NOEXTERNALS

LINES NOLINES

PUBLICS NOPUBLICS

SRCLINES NOSRCLINES

SYMBOLS NOSYMBOLS

OSINFO (filename) Creates or updates operating
system information section of
object file

None

PAGELENGTH (length) Sets lines per page for output
listing

PAGELENGTH (60)

continued

Intel386 Family Utilities User's Guide Chapter 4 105

Table 4-1. MAP386 Controls for DOS and iRMX= Operating Systems (continued)

Command Syntax Description Default

PAGEWIDTH (width) Sets characters per line for output
listing

PAGEWIDTH (120)

PAGING
NOPAGING

Creates page breaks in print files PAGING

PRINT (filename)
NOPRINT

Creates or suppresses creation of
print file

PRINT(first_input_
filename.MAP)

PRINTCONTROLS
(printcontrol)
[EXCEPT}(mod_name
[,...])[,...])

Includes or omits selected maps
from print file

PRINTCONTRTOLS
(DEBUG, TABLES,
TASKS)

print controls:

DEBUG NODEBUG

LINES NOLINES

PUBLICS NOPUBLICS

SRCLINES NOSRCLINES

SYMBOLS NOSYMBOLS

TABLES NOTABLES

TASKS NOTASKS

SYMBOLSORT
NOSYMBOLSORT

Prints symbol names in
alphabetical order
(SYMBOLSORT) or in order of
occurrence in (NOSYMBOLSORT)

SYMBOLSORT

TITLE (title) Places header line at top of each
print file page

No title

TYPE
NOTYPE

Ignores types TYPE

TYPECHECK
NOTYPECHECK

Enables or suppresses type
checking

TYPECHECK

XREF [(filename)]
NOXREF

Directs intermodule cross-
reference map between public and
external symbols to specified file

XREF(print_file
filename)

Chapter 4 Using the Intel386 Mapper106

Table 4-2. Standard Abbreviations for MAP386 Controls

Commands Abbr. Commands Abbr.

CONTROLFILE CF OBJECTCONTROLS OC

ERRORPRINT EP OSINFO OI

NOERRORPRINT NOEP PAGELENGTH PL

NOOBJECT NOOJ PAGING PG

NOPAGING NOPG PRINT PR

NOPRINT NOPR PRINTCONTROLS PR

NOSYMBOLSORT NOSS SYMBOLSORT SS

NOTYPE NOTY TITLE TT

NOTYPCHECK NOTC TYPE TY

NOXREF NOXREF TYPECHECK TC

OBJECT OJ XREF XREF

CONTROLFILE

Intel386 Family Utilities User's Guide Chapter 4 107

CONTROLFILE
Specifies file for input elements

Syntax

CONTROLFILE (filename[,...])

Abbreviation

CF

Default

CONTROLFILE is not in effect.

Description

The CONTROLFILE control directs MAP386 to the specified file for controls or
elements of the input list. A partial control or input list element is not allowed.
Nested control files are not allowed. MAP386 returns to the command line when it
encounters the end of a control file.

Refer to Control Files in this chapter for the content and format of control files.

Invocation Examples

In all of the following examples, four control files are invoked in three different
combinations. Control file CF1.DAT contains files and controls, as follows:

FILE1.OBJ, FILE2.OBJ, FILE3.OBJ NOSS EP

Control file CF2.DAT contains files only:

FILE4.OBJ, FILE5.OBJ, FILE6.OBJ

Control file CF3.DAT contains controls only:

NOSS PR (A1.MAP) TT ("THIS IS A TITLE")

Control file CF4.DAT contains files only, but with a comma after the last file name:

FILE7.OBJ, FILE8.OBJ, FILE9.OBJ,

CONTROLFILE

Chapter 4 Using the Intel386 Mapper108

Examples

1. In the following example, the PAGEWIDTH and NOXREF controls and the A.OBJ
input file are specified on the command line with CF4.DAT and CF2.DAT.

MAP386 A.OBJ, CF (CF4.DAT) CF (CF2.DAT) PAGEWIDTH (90)

NOXREF

2. In the following example, the PAGEWIDTH and NOXREF controls and the
B.OBJ input file are specified on the command line with CF4.DAT and
CF1.DAT.

MAP386 B.OBJ, CF (CF4.DAT) CF (CF1.DAT) PAGEWIDTH (90)

NOXREF

3. In the following example, all input files and controls except C.OBJ are specified
in the control files CF2.DAT and CF3.DAT.

MAP386 C.OBJ, CF (CF2.DAT,CF3.DAT)

ERRORPRINT/NOERRORPRINT

Intel386 Family Utilities User's Guide Chapter 4 109

ERRORPRINT/NOERRORPRINT
Creates or suppresses creation of error print file

Syntax

ERRORPRINT [(filename)]

NOERRORPRINT

Abbreviations

EP, NOEP

Default

NOERRORPRINT

Description

The ERRORPRINT control directs all error messages, including warnings, errors, and
fatal errors, to one of the following:

• The console, if no file name is specified

• The error print file specified by filename

The NOERRORPRINT control prevents nonfatal errors and warnings from being sent to
the error print file.

When the file name is the same as the name of an input file, control file, or output
file, processing aborts.

Whether ERRORPRINT is in effect or not, fatal error messages are displayed at the
console and all error and warning messages are included in the print file. The
number of error and warning messages is reported in the sign-off message.

Examples

1. In the following example, MAP386 sends all error messages and warnings to the
error print file MOD2.LIS. MOD1.OBJ is the input file.

MAP386 MOD1.OBJ ERRORPRINT (MOD2.LIS)

2. In the following example, MAP386 sends all error messages and warnings to the
console by default.

MAP386 MOD1.OBJ ERRORPRINT

OBJECT/NOOBJECT

Chapter 4 Using the Intel386 Mapper110

OBJECT/NOOBJECT
Creates output object file from loadable or bootloadable input files

Syntax

OBJECT [(filename)]

NOOBJECT

Abbreviations

OJ, NOOJ

Default

When OBJECTCONTROLS or OSINFO is specified: OBJECT

(input_filename.OUT). When neither OBJECTCONTROLS nor OSINFO is
specified: NOOBJECT

Description

The OBJECT control produces an output object file from a loadable input file.
MAP386 copies all sections of the input file to the output file, except when
OBJECTCONTROLS directs MAP386 to remove debug information. Refer to the
description of OBJECTCONTROLS for more information.

When only the output object file is required, specify NOPRINT; this suppresses the
print file and saves execution time and space. Otherwise, a print file is created as
well.

The NOOBJECT control suppresses creation of a loadable output module.

Examples

1. In the following example, MAP386 generates an output object file named
MOD2.DAT. By default, MAP386 also creates a print file. MOD1.OBJ is the
input file name.

MAP386 MOD1.OBJ OBJECT (MOD2.DAT)

2. In the following example, MOD3.OBJ is the input file name. Because no output
file name is specified, MAP386 generates an output object file named
MOD3.OUT.

MAP386 MOD3.OBJ OBJECT

OBJECTCONTROL

Intel386 Family Utilities User's Guide Chapter 4 111

OBJECTCONTROL
Includes or removes debug information in output object file

Syntax

OBJECTCONTROLS (objctrl [[EXCEPT]

(mod_name[,...])][,...])

Where:

objctrl Is one of the following:

Object Control Abbreviation
DEBUG DB
NODEBUG NODB
EXTERNALS ET
NOEXTERNALS NOET
LINES LI
NOLINES NOLI
PUBLICS PL
NOPUBLICS NOPL
SRCLINES SL
NOSRCLINES NOSL
SYMBOLS SB
NOSYMBOLS NOSB

mod_name is the name of a separately translated module that has been input to
BND386 or to the BLD386 System Builder to create the loadable file
named in the invocation line.

Abbreviations

OC [EC]

Default

OBJECTCONTROLS (DB). All debug information is retained.

Description

The OBJECTCONTROLS control removes specified debug information from a loadable
input file. MAP386 creates an output object file that is just like the input file, except
that the specified debug information is omitted. OBJECTCONTROLS has no tables or
tasks controls.

OBJECTCONTROL

Chapter 4 Using the Intel386 Mapper112

The DEBUG, EXTERNALS, LINES, PUBLICS, SRCLINES, and SYMBOLS object
controls direct MAP386 to retain various kinds of debug information; the NODEBUG,
NOEXTERNALS, NOLINES, NOPUBLICS, NOSRCLINES, and NOSYMBOLS object
controls direct MAP386 to remove certain information. Object controls may be
specified in any order. When invoking MAP386 to purge debug information, also
specify NOPRINT to save time and memory.

DEBUG includes all debug information in the output object file, including external
symbol definitions, line number definitions, public symbol definitions, source line
numbers, and symbol definitions. NODEBUG removes this information from the
output object file.

The construction EXCEPT mod_name [,...] excludes the listed modules from the
effects of the preceding object control.

EXTERNALS includes external symbol definitions in the output object file.
NOEXTERNALS removes external symbol definitions from the output object file.

LINES includes line number definitions in the output object file. NOLINES removes
line number definitions from the output object file.

PUBLICS includes public symbol definitions in the output object file. NOPUBLICS

removes public symbol definitions from the output object file.

SRCLINES includes source line numbers in the output object module. NOSRCLINES

omits source line numbers from the output object module.

SYMBOLS includes local symbol definitions in the output object file. NOSYMBOLS

removes local symbol definitions from the output object file.

You can select which debug information is to be retained or removed by specifying
the module name or list of module names plus the desired object control. Only the
information previously contained in the module is affected.

You can exclude selected modules from the effect of the object control. Specify
EXCEPT plus the module name or list of module names.

If you specify an object control without any module names, the control affects all the
debug information in the file.

OBJECTCONTROLS has no effect if the modules input to MAP386 are linkable
modules.

Because an output object file is produced with OBJECTCONTROLS, it is not necessary
to also specify the OBJECT control, except to direct the output to filename.

✏ Note
OBJECTCONTROLS is not effective when NOOBJECT is used, and no
object file is produced.

OBJECTCONTROL

Intel386 Family Utilities User's Guide Chapter 4 113

Examples

1. In the following example, MAP386 removes all debug information contained in
the input file. The output file is MOD1.OUT.

MAP386 MOD1.OBJ OBJECTCONTROLS (NODEBUG)

2. In the following example, MAP386 removes line numbers, local symbol
definitions originally contained in MOD3, and public symbols definitions
originally contained in all modules except MOD2 and MOD3.

MAP386 MOD2.OBJ OC (NOLI, NOSB(MOD3), NOPL EC(MOD2,MOD3))

OSINFO

Chapter 4 Using the Intel386 Mapper114

OSINFO
Creates or updates operating system information section of object file

Syntax

OSINFO (filename)

Abbreviation

OI

Default

The operating system information field in the object file is not created or updated.

Description

The OSINFO control creates or updates the operating system information field in the
object file by copying the contents of the file name (including its path) into the
OSINFO field in the object file. For a large file, only the first 4K bytes are written to
OSINFO and a warning is issued. See documentation on your target operating system
for more details.

✏ Note
OSINFO is not effective when used with NOOBJECT.

Examples

In the following example, operating system information for the file MOD1.OBJ is
copied into the osinfo field in the object file. MOD2.OBJ is the input file name.

MAP386 MOD2.OBJ OSINFO (MOD1.OBJ)

PAGELENGTH

Intel386 Family Utilities User's Guide Chapter 4 115

PAGELENGTH
Sets lines per page for output listing

Syntax

PAGELENGTH (length)

Abbreviation

PL

Default

A page is 60 lines long.

Description

The PAGELENGTH control specifies the number of lines per page in MAP386 output
listings (e.g., print and cross-reference files). Headings are included in the lines per
page specification. Page length may be set to from 10 to 65535 lines.

✏ Note
PAGELENGTH is not effective when used with NOPAGING.

Examples

1. In the following example, the page length in output listings is set to 120 lines per
page.

MAP386 MOD1.OBJ PAGELENGTH (120)

2. In the following example, the page length in output listings is set to 60 lines per
page by default.

MAP386 MOD1.OBJ

PAGEWIDTH

Chapter 4 Using the Intel386 Mapper116

PAGEWIDTH
Sets characters per line for output listing

Syntax

PAGEWIDTH (width)

Abbreviation

PW

Default

A page is 120 characters wide.

Description

The PAGEWIDTH control specifies the maximum number of characters per line in
MAP386 output listings (e.g., print and cross-reference file). Page width may be set
to from 80 to 132 characters per line. (The system will accept widths from 72 to 80
as well, but these settings are not recommended, due to the width of the map.) If the
number of characters in a line exceeds the physical width of the page, the extra
characters wrap to the following line.

✏ Note
PAGEWIDTH is not effective when used with NOPAGING.

Examples

1. In the following example, the line width in output listings is set to 100
characters.

MAP386 MOD1.OBJ PAGEWIDTH (100)

2. In the following example, the line width in output listings is set to 120 characters
by default.

MAP386 MOD1.OBJ

PAGING/NOPAGING

Intel386 Family Utilities User's Guide Chapter 4 117

PAGING/NOPAGING
Creates page breaks in print file

Syntax

PAGING

NOPAGING

Abbreviations

PG, NOPG

Default

PAGING

Description

The PAGING control prints the output map with page breaks. Each output page
contains the number of lines specified by the PAGELENGTH control (with default at 60
lines). Each new output page has a heading containing the label 386(TM) MAPPER,
a title (specified with the TITLE control), the date, and a page number.

NOPAGING prints the output file printed continuously and the heading appears on the
first page only.

With NOPAGING, PAGELENGTH and PAGEWIDTH are not in effect, and page length
and width are unspecified.

Examples

1. In the following example, MAP386 produces a print file with pages that are 55
lines long. A heading appears at the top of each page.

MAP386 MOD1.OBJ PAGELENGTH (55)

2. In the following example, MAP386 produces a print file that is not separated by
page breaks. MOD2.OBJ and MOD3.OBJ are input files.

MAP386 MOD2.OBJ, MOD3.OBJ NOPAGING XREF (MOD1.LIS)

PRINT/NOPRINT

Chapter 4 Using the Intel386 Mapper118

PRINT/NOPRINT
Creates or suppresses creation of print file

Syntax

PRINT [(filename)]

NOPRINT

Abbreviations

PR, NOPR

Default

PRINT (first_input_filename.MAP)

Description

The PRINT control creates a print file, which contains the Module List and output
maps, including the Table Map, Segment Map, Gate Map, Symbol Map, Public Map,
Task Map, and error messages. The Cross-Reference Map is included in the print file
if directed there with the XREF control. You can also use XREF to create a separate
cross-reference file for the cross-reference map. If XREF and the file name for the
cross-reference file are specified, the cross-reference map is placed in that file rather
than the print file.

The print file begins with a heading containing the label 386(TM) MAPPER, a title
(specified with the TITLE control), the date, and page number. The file also includes
error and warning messages.

When filename is specified, MAP386 assigns that name to the print file.
Otherwise, by default, if the PRINT control is not specified or if PRINT is specified
without a file name, the name of the print file is the same as input_filename, with
extension .MAP. The contents and format of the print file are described later in this
chapter.

The NOPRINT control suppresses creation of a print file. NOPRINT has no effect on
the cross-reference map when the print file and cross-reference file are different.
You can use NOPRINT to save time when purging debug information or adding the
osinfo section.

Use ERRORPRINT to create a separate error print file for error messages. Should a
fatal error condition occur, the fatal error message is displayed on screen.

PRINT/NOPRINT

Intel386 Family Utilities User's Guide Chapter 4 119

✏ Note
If the default file name or a specified file name matches the name
of the input file or any other output file, MAP386 processing
aborts.

Examples

1. In the following example, the cross-reference map, error messages, and print file
information (e.g., input and output identifiers, control list and modules
processed) are directed to the print file MOD2.LIS. MOD1.OBJ is the input file.

MAP386 MOD1.OBJ PRINT (MOD2.LIS)

2. In the following example, MAP386 print file information and cross-reference
map are sent to the default print file. MOD1.MAP is the default print file.

MAP386 MOD1.OBJ

3. In the following examples, the file is written to the standard output device.

MAP386 MOD.OBJ PRINT (:CO:)

PRINTCONTROLS

Chapter 4 Using the Intel386 Mapper120

PRINTCONTROLS
Includes or omits selected maps from print file

Syntax

PRINTCONTROLS (prtctrl [[EXCEPT] (mod_name [,...])][,...])

Where:

prtctrl is one of the following print controls:

Print Control Abbreviation
DEBUG DB
NODEBUG NODB
LINES LI
NOLINES NOLI
PUBLICS PL
NOPUBLICS NOPL
SRCLINES SL
NOSRCLINES NOSL
SYMBOLS SB
NOSYMBOLS NOSB
TABLES TB
NOTABLES NOTB
TASKS TA
NOTASKS NOTA

mod_name is the name of a separately translated module that has been input to
BND386 or to the BLD386 System Builder to create the loadable file
named in the invocation line.

Abbreviation

PC

Default

PRINTCONTROLS (DEBUG, TABLES, TASKS)

PRINTCONTROLS

Intel386 Family Utilities User's Guide Chapter 4 121

Description

The PRINTCONTROLS control modifies the contents of the print file. (It does not
affect the contents of the cross-reference map.) Specified print controls include or
omit specified maps from the print file. The print controls DEBUG, LINES, PUBLICS,
SRCLINES, SYMBOLS, TABLES, and TASKS cause certain maps to be included.
Specify a module name or list of module names after a print control to print maps
describing only the information originally contained in that module or modules. If
you do not specify a module name, the print controls affect the contents of the entire
file, regardless of the linkable module from which the information originated. The
controls NODEBUG, NOLINES, NOPUBLICS, NOSRCLINES, NOSYMBOLS, NOTABLES,
and NOTASKS cause certain maps to be omitted. Print controls can be specified in
any order.

You can exclude a module or modules from the effect of a print control with EXCEPT,
by specifying a print control followed by the EXCEPT control followed by a module
name or list of module names. The information previously contained in the module
or modules is excluded from the effect of the print control. For example,
PRINTCONTROLS can be specified in the invocation line as follows:

PRINTCONTROLS (NOPAGELENGTH EXCEPT(MOD1, MOD3))

In this case, the public map would include public symbol information for symbols
originally declared in modules MOD1 and MOD3.

You cannot limit TASKS, NOTASKS, TABLES, and NOTABLES by specifying a module
name; all modules will be affected by the specified print control.

DEBUG includes a symbol map and public map in the print file. NODEBUG omits the
symbol map and public map from the print file.

LINES includes a section in the symbol map that contains line number definitions and
their logical addresses. NOLINES omits this section.

PUBLICS includes a public map in the print file. NOPUBLICS omits the public map.

SRCLINES includes a section in the print file that contains source line definitions.
NOSRCLINES omits this section.

SYMBOLS includes a section in the symbol map that lists symbols and their types and
addresses. NOSYMBOLS omits this section.

TABLES includes a table map, gate map, and segment map in the print file.
NOTABLES omits these maps. You cannot specify mod_names for TABLES or for
NOTABLES.

TASKS includes a task map in the print file. NOTASKS omits the task map. You
cannot specify module names for TASKS or NOTASKS.

PRINTCONTROLS

Chapter 4 Using the Intel386 Mapper122

✏ Notes

PRINTCONTROLS is not effective when used with NOPRINT.

SYMBOLS, NOSYMBOLS, LINES and NOLINES are not effective
when used with NODEBUG.

Any input file specified on the MAP386 invocation line must be
loadable.

Examples

In the following examples, MOD1.OBJ is a loadable input file. A print file is created
and contains the following:

• Module list

• Public map for all original input modules except MOD5 and MOD6

• Symbol map for all original input modules except MOD5 and MOD6, which
will, however, include lines. The symbol map describes local symbols for all
original modules, and contains source line numbers and addresses for all original
modules except MOD3.

• Table map, gate map, and segment map for all modules. The task map is not be
printed.

MAP386 MOD1.OBJ PC (DB EC(MOD5,MOD6), LI EC(MOD3), NOTA)

SYMBOLSORT/NOSYMBOLSORT

Intel386 Family Utilities User's Guide Chapter 4 123

SYMBOLSORT/NOSYMBOLSORT
Prints symbol names in alphabetical order or in order of occurrence

Syntax

SYMBOLSORT

NOSYMBOLSORT

Abbreviations

SS, NOSS

Default

SYMBOLSORT

Description

The SYMBOLSORT control prints lists of symbol names in alphabetical order in output
maps.

NOSYMBOLSORT prints symbol names in the order in which they occur in the input
object file. This preserves scoping information.

Examples

In the following example, symbol names appear in the symbol map and cross-
reference map in alphabetical order.

MAP386 MOD1.OBJ SYMBOLSORT

TITLE

Chapter 4 Using the Intel386 Mapper124

TITLE
Places header line at top of each print file page

Syntax

TITLE (title)

Abbreviation

TT

Default

TITLE is not in effect and the title string is left blank.

Description

The TITLE control specifies the page title of the page heading. The title must be an
alphanumeric string of 80 characters or less. When you use spaces or other
delimiters in the title, you must enclose the whole title in apostrophes (').

The title is truncated on the right when the specified page width does not allow
enough room for the complete title.

If the cross-reference map and the print file are separate files, the same title appears
in the headings of both files.

Examples

1. In the following examples, when the file is printed, the title that appears at the
top of each page is CROSS-REF MAP FOR PL/M PROG XYZ.

MAP386 MOD1.OBJ TITLE ('CROSS-REF MAP FOR PL/M PROG XYZ')

2. In the following examples, when the file is printed, the title CROSS-REF MAP
appears at the top of each page. A cross-reference map is generated and sent to
the cross-reference file MOD2.LIS. MOD1.OBJ is the input file and
MOD1.MAP is the print file.

MAP386 MOD1.OBJ TITLE ('CROSS_REF MAP') XREF (MOD2.LIS)

TYPE/NOTYPE

Intel386 Family Utilities User's Guide Chapter 4 125

TYPE/NOTYPE
Ignores types

Syntax

TYPE

NOTYPE

Abbreviations

TY, NOTY

Default

TYPE

Description

The TYPE control specifies that type information be printed. NOTYPE suppresses the
checking and printing of type information.

✏ Note
TYPECHECK is not effective when used with NOTYPE.

Examples

In the following example, NOTYPE is specified so that type information is neither
checked nor printed.

MAP386 MOD.OBJ NOTYPE

TYPECHECK/NOTYPECHECK

Chapter 4 Using the Intel386 Mapper126

TYPECHECK/NOTYPECHECK
Enables or suppresses type checking

Syntax

TYPECHECK

NOTYPECHECK

Abbreviations

TC, NOTC

Default

TYPECHECK

Description

The TYPECHECK control performs type checking between public and external
symbols of the same name in the input file. If a mismatch is found, MAP386 issues a
warning message. Type mismatches are detected even if the BND386 or BLD386
NOTYPE control has been used to purge type information from the input file. This
type checking is less comprehensive than the type checking performed by BND386.

NOTYPECHECK suppresses type checking, and the error file will not notify you of
mismatches between public and external symbol types

TYPECHECK and NOTYPECHECK do not affect the information about public and
external symbols in output maps. For example, the cross-reference map lists symbol
types even when NOTYPECHECK is specified.

Examples

In the following example, type checking is suppressed; MAP386 does not issue
warnings about type mismatches. MOD2.LIS is the print file; MOD1.OBJ is the
input file.

MAP386 MOD1.OBJ NOTYPECHECK PRINT (MOD2.LIS)

XREF/NOXREF

Intel386 Family Utilities User's Guide Chapter 4 127

XREF/NOXREF
Directs intermodule cross-reference map between public and external symbols to a
specified file

Syntax

XREF [(filename)]

NOXREF

Abbreviations

XR, NOXR

Default

XREF and the cross-reference map file have the same name as the print file.

Description

The XREF control generates an intermodule cross-reference map between public and
external symbols. When a file name is specified, the map is sent to that file.
Otherwise, the map is sent to the print file.

NOXREF suppresses the generation of cross-reference maps.

✏ Note
The cross-reference map is not printed when XREF is used with
NOPRINT.

Examples

1. In the following examples, the cross-reference map is generated and sent to the
XREF file MOD2.LIS. Other maps and print file information are sent to the
default print file, MOD1.MAP.

MAP386 MOD1.OBJ XREF (MOD2.LIS)

2. In the following examples, the generation of cross-reference maps is suppressed
and the remaining print file information is directed to MOD2.MAP. MOD1.OBJ
is the input file.

MAP386 MOD1.OBJ NOXREF PRINT (MOD2.MAP)

Chapter 4 Using the Intel386 Mapper128

MAP386 Print Files
MAP386 produces maps each time it is invoked, unless the NOPRINT control is
specified. MAP386 places the cross-reference map in the file specified by the XREF
control or, by default, in the file implied by the PRINT control.

When the input file is linkable, MAP386 produces only one print file containing a
module list and the cross-reference map. When the input file is loadable, MAP386
can create any of the following maps: table map, segment map, gate map, task map,
symbol map, public map, and cross-reference map.

All maps except the cross-reference map appear in the print file, whose file name is
specified with the PRINT control. When PRINT does not provide a file name,
MAP386 by default gives the print file the same file name as the input file, with
extension .MAP. The cross-reference map can be included in the print file, but it can
also be directed to another file with the XREF control.

The print file can contain the following sections, in this order:

Header
Module list
Table map
Segment map
Gate map
Symbol map
Public map
Task map
Cross-reference
Error messages

The cross-reference map can be directed to another file or excluded altogether with
NOXREF. Error messages can be directed to another file with ERRORPRINT and also
appear in the print file. Selected maps (table, segment, gate, symbol, public, or task)
can be excluded from the print file by the use of print controls.

The following sections describe and give format examples of each part of the print
file. In the examples, Xs indicate the space allotted to an entry; they are replaced by
names or numbers in actual print files. Minuses are printed in the field if the absolute
value has not yet been defined.

Intel386 Family Utilities User's Guide Chapter 4 129

Header
The print file header summarizes the MAP386 invocation specifications by listing
input and output file names and controls specified. Figure 4-2 shows the format of
the print file header.

386(TM) MAPPER title date PAGE number

system_id iRMX III 386(TM) MAPPER, Vx.yVX

INPUT FILE: filename [, . . .]

INPUT OSINFO FILES: filename

OUTPUT OBJECT FILE: filename

OUTPUT PRINT FILE: filename

OUTPUT XREF FILE: filename

CONTROLS SPECIFIED: control1, control2 ...

<------------(warnings, if any, appear here)

Figure 4-2. MAP386 Print File Header

Module List
The module list names the input files and the modules contained in each file. Files
are listed in the order in which they appear in the input list. MAP386 prints a
question mark (?) to the left of the names of modules containing no debug
information. Figure 4-3 shows the format of the module list.

MODULES INCLUDED:

FILE NAME MODULE NAME(S)

xxxxxxxxx xxxxxxxxxxxxxx xxxxxxxxxxxxxx

xxxxxxxxxxxxxx xxxxxxxxxxxxxx

xxxxxxxxx xxxxxxxxxxxxxx xxxxxxxxxxxxxx

xxxxxxxxxxxxxx xxxxxxxxxxxxxx

. . .

. . .

Figure 4-3. MAP386 Module List

Chapter 4 Using the Intel386 Mapper130

Table Map
The table map contains information about GDTs, IDTs, and LDTs. For each
descriptor table in the input, the table map lists table indexes, selector values (except
IDT) for table descriptors, and descriptor names. Table indexes appear in decimal
notation in ascending numerical order. Selector values appear in hexadecimal
notation.

The table map lists information about the GDT first, information about the IDT
second, and information about the LDT third. LDT descriptions include a decimal
value labeled SEQ. NO.; this value is the sequence number of the LDT in the GDT.
MAP386 lists only indexes that have valid descriptor entries. Figure 4-4 shows the
format of the table map.

DESCRIPTOR TABLE MAP

TABLE = GDT BASE = xxxxxxxxH LIMIT = xxxxH

TABLE INDEX SELECTOR DESCRIPTOR NAME

xxxx xxxxH xxxxxxxxxxxx

. . .

. . .

. . .

xxxx xxxxH xxxxxxxxxxxx

TABLE = IDT BASE = xxxxxxxxH LIMIT = xxxxH

TABLE INDEX DESCRIPTOR NAME

xxxx xxxxxxxxxxxx

. .

. .

. .

xxxx xxxxxxxxxxxx

TABLE = xxxxxxxxx SEQ. NO. = n BASE xxxxxxxxH LIMIT = xxxxH

TABLE INDEX SELECTOR DESCRIPTOR NAME

xxxx xxxxH xxxxxxxxxxxx

. . .

. . .

. . .

xxxx xxxxH xxxxxxxxxxxx

Figure 4-4. MAP386 Table Map

Intel386 Family Utilities User's Guide Chapter 4 131

Segment Map
The segment map lists each input segment alphabetically and according to descriptor
table. For each segment, the map includes the segment name, its index (slot number)
in the descriptor table, present bit (PBIT), descriptor privilege level (DPL),
USE16/32 attribute, align attribute, access type, base or relocation information (an
eight-digit hexadecimal number), limit of the page-fixed part (an eight-digit The
segment map lists each input segment alphabetically and according to hexadecimal
number for USE32 or a four-digit hexadecimal number for USE16), limit (an eight-
digit hexadecimal number for USE32 or four-digit hexadecimal number for USE16).
If the map does not fit on one line, the SEGMENT name will be printed on a separate
line. Access types (listed under the heading ACCESS) are denoted as follows:

EO Executable only
ER Executable and readable
C Conforming
RO Read only
RW Readable and writable
D Expand-down

For example, ERC indicates that a segment is loadable, readable, and conforming.
RWD indicates that a segment is readable, writable, and expand-down. Figure 4-5
shows the format of the segment map.

SEGMENT MAP

TABLE : xxxxxxxx

SEGMENT NAME TABLE INDEX PBIT USE DPL ALIGN ACCESS ** LIMIT

xxxxxxxx xxxx x xxxxx x xxxx xxx xxxxxxxxH xxxxxxxH

.

.

.

xxxxxxxx xxxx x xxxxx x xxxx xxx xxxxxxxxH xxxxxxxH

TABLE : xxxxxxxx

SEGMENT NAME TABLE INDEX PBIT USE DPL ALIGN ACCESS ** LIMIT

xxxxxxxx xxxx x xxxxx x xxxx xxx xxxxxxxxH xxxxxxxH

.

.

.

xxxxxxxx xxxx x xxxxx x xxxx xxx xxxxxxxxH xxxxxxxH

Figure 4-5. MAP386 Segment Map

Chapter 4 Using the Intel386 Mapper132

Gate Map
The Gate Map lists each gate alphabetically and according to descriptor table. For
each gate, the map contains the gate's name, descriptor table name, index (slot
number) in the descriptor table, present bit (PBIT), descriptor privilege level (DPL),
type of gate, word count (WC), selector of the gate entry point, and offset of the gate
entry point. Gate types are listed as 286CALL, 386CALL, 286INTR (for interrupt),
386INTR, 286TRAP, 386TRAP, or TASK. Figure 4-6 shows the format of the gate
map.

GATE MAP

TABLE: xxxxxxxxx

GATE NAME TABLE INDEX PBIT DPL TYPE WC SELECTOR OFFSET

xxxxxxxxxxxxx xxxx x x xxxxxxx xx GDT(xxxx) xxxxxxxxH

xxxxxxxxxxxxx xxxx x x xxxxxxx xx GDT(xxxx) xxxxxxxxH

xxxxxxxxxxxxx xxxx x x xxxxxxx xx LDT(xxxx) xxxxxxxxH

.

.

xxxxxxxxxxxxx xxxx x x xxxxxxx xx GDT(xxxx) xxxxxxxxH

TABLE: xxxxxxxxx

GATE NAME TABLE INDEX PBIT DPL TYPE WC SELECTOR OFFSET

xxxxxxxxxxxxx xxxx x x xxxxxxx xx GDT(xxxx) xxxxxxxxH

xxxxxxxxxxxxx xxxx x x xxxxxxx xx GDT(xxxx) xxxxxxxxH

xxxxxxxxxxxxx xxxx x x xxxxxxx xx LDT(xxxx) xxxxxxxxH

.

.

xxxxxxxxxxxxx xxxx x x xxxxxxx xx GDT(xxxx) xxxxxxxxH

Figure 4-6. MAP386 Gate Map

Intel386 Family Utilities User's Guide Chapter 4 133

Symbol Map
The symbol map, which MAP386 produces on a per-module basis, consists of three
sections: the first section describes local symbols; the second section describes line
numbers and their offsets in the object code; the third section describes line numbers
and their offsets in the source code.

The first section of the symbol map lists the name of each local symbol, its logical
address (given by values in the columns labeled BASE and OFFSET), and its type
(such as word, byte, selector, pointer, procedure, etc.). If no type has been assigned
to the symbol, the word NULL appears in the column labeled TYPE. The symbol
map includes absolute addresses if they have been assigned to listed symbols by
BLD386. Symbols are listed by name (under the SYMBOL NAME column) in the
order in which they occur in the input module.

If a module contains a GDT, the first section of the symbol map indicates the GDT
slot (index) that points to the module's LDT.

The symbol map indicates the logical address of each symbol, in the columns labeled
BASE and OFFSET. The BASE column lists the symbol base, which represents the
selector of the symbol, in terms of the symbol's descriptor table and the table slot
(index) within that descriptor table. The OFFSET column lists the offset in the
segment indicated by the selector. Together the offset and selector form the logical
address of the symbol.

If the offset of the symbol is relative to the current stack, SS:EBP is printed in the
BASE column.

The symbol map indicates when a symbol is a based symbol, that is, a symbol whose
logical address is determined by a value residing at the address of another symbol.
For example, PL/M based variables are based symbols.

Depending on the declarations made in the source program, the contents of the
symbol's base can be any of the following:

• The value of the selector portion of the symbol's address. The symbol is referred
to as a selector-based symbol.

• The value of the offset portion of the symbol's address. The symbol is referred
to as an offset-based symbol.

• The value of both the selector and the offset of the symbol's address. The
symbol is referred to as a pointer-based symbol.

Chapter 4 Using the Intel386 Mapper134

The symbol map indicates that a symbol is based by displaying one of the following
characters to the right of the hexadecimal value in the OFFSET column:

P Indicates a pointer-based symbol; the symbol's full logical address (composed of
a selector and offset) is the value found at run time at the location given by the
BASE and the OFFSET listings.

O Indicates an offset-based symbol; the base of the symbol's logical address is the
selector contained at location listed in the BASE column; the offset of the
symbol's logical address is given by the value found at run time at the location
given by BASE and OFFSET listings.

S Indicates a selector-based symbol; the value found at run time at the location
given by the BASE and OFFSET listings contains the selector of the symbol.
The symbol's implicit offset is zero.

If a module has symbols from more than one LDT, the absolute addresses for the
symbols are unknown and are marked with a question mark (?). The absolute address
of symbols that refer to the IDT or constant symbols are also unknown.

The absolute address of a symbol that refers to an unknown entry in the LDT or GDT
is marked ** ERROR **. An undefined absolute address from a loadable file
created by the BLD386 System Builder that has no base value is marked
"--------". The absolute address of a gate symbol (the gate selector entry in the GDT
or IDT) is the address of the gate entry.

The second section of the symbol map lists lines of loadable source code and their
offsets within code segments. The column labeled LINE lists line numbers (in
multiples of five) corresponding to the line or statement numbers of the original
source program. Under the heading OFFSET, MAP386 prints the offset portions of
the logical addresses of the of loadable code that corresponds to each original source
line (or source statement, depending on the compiler or assembler). Note that for
highly optimizing compilers this information can be misleading. The logical address
of each line is the code segment (given at the top of this section of the symbol map as
a descriptor table name and index) plus the offset. Line numbers to which the offsets
correspond ascend from left to right, beginning with the line listed in the LINE
column.

The third section of the symbol map lists source lines and their offset to the source
file. The column labeled LINE gives line numbers in multiples of five that
correspond to the source line. The column labeled OFFSET prints the offset portions
of the logical addresses containing each source line. Line numbers to which the
offsets correspond ascend from left to right, beginning with the line listed in the
LINE column. Figure 4-7 shows the format of the symbol map.

Intel386 Family Utilities User's Guide Chapter 4 135

SYMBOL MAP

MODULE = xxxxxxxxx

SYMBOL NAME BASE OFFSET TYPE ABSOLUTE ADDRESS

xxxxxxxxxx LDT(xxxx) xxxxxxxxH xxxxx xxxxxxxxH

xxxxxxxxxx CUR. STACK xxxxxxxxH xxxxx xxxxxxxxH

xxxxxxxxxx GDT(xxxx) xxxxxxxxH xxxxx xxxxxxxxH

.

.

MODULE = xxxxxxxxxx CODE SEGMENT = "table(index)"

LINE OFFSET IN CODE SEGMENT

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH

. .

. .

MODULE = xxxxxxxxx

SOURCE PATHNAME = xxxxxxxxxxxxxxx

LINE OFFSET IN SOURCE FILE

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH xxxxxxxxH

xxxx xxxxxxxxH xxxxxxxxH xxxxxxxxH

. .

. .

Figure 4-7. MAP386 Symbol Map

Chapter 4 Using the Intel386 Mapper136

Public Map
The public map alphabetically lists the name of each public symbol in input modules.
For each public symbol, the map includes its symbol name, symbol type, word count
(if applicable), and the logical address, including selector and offset. The absolute
address, if any, is displayed with the logical address. NULL in the type column
indicates that the symbol type was not declared.

Figure 4-8 shows the format of the public map.

PUBLIC MAP

MODULE = xxxxxxxxx

PUBLIC NAME BASE OFFSET TYPE WC ABSOLUTE ADDRESS

xxxxxxxxx LDT(xxxx) xxxxxxxH xxxxx xx xxxxxxxxH

xxxxxxxxx GDT(xxxx) xxxxxxxH xxxxx xx xxxxxxxxH

.

.

Figure 4-8. MAP386 Public Map

Task Map
For each task in an input module, the task map contains the initial stacks for all
privileges, flags, initial CS and EIP values, the task's LDT selector, initial segment
register specifications, and the task's page directory register.

The task map lists tasks alphabetically. Figure 4-9 shows the format of the task map.

Intel386 Family Utilities User's Guide Chapter 4 137

TASK MAP

task name TSS = GDT (index) DPL = number PBIT = x

BASE = xxxxxxxxH

LIMIT = xxxxxxxxH

SSO:ESPO = "table (index)";xxxxxxxxH

SS1:ESP1 = "table (index)";xxxxxxxxH

SS2:ESP2 = "table (index)";xxxxxxxxH

SS:ESP = "table (index)";xxxxxxxxH

CS:EIP = "table (index)";xxxxxxxxH

DS = "table (index)";

FLAGS = xxxxxxxxH

LDTSEL = ldt_name AT GDT (index)

PDR = xxxxxxxxH

DEBUG TRAP NOT ENABLED

.

.

.

Figure 4-9. MAP386 Task Map

Cross-Reference Map
The cross-reference map can be included in the print file or directed to a separate file
with the XREF control. If the NOPRINT control is specified and XREF is not specified
with a different file name, the map is not printed.

The cross-reference map lists the name of each symbol in the specified input module
or modules, the type of each symbol, the name of the module containing the symbol's
public definition, and the names of any modules containing external references for
the symbol.

A warning is issued if a type mismatch occurs between two symbols. If a type
mismatch occurs between a public definition and an external reference, the type used
in the public definition is the symbol type listed in the cross-reference map. If a
symbol has not been assigned a type, NULL appears in the type column. If the type
is not defined in the public definition, the cross-reference map lists the type used in
the external declaration.

Chapter 4 Using the Intel386 Mapper138

If the public definition of a symbol is not found in the input modules, MAP386 prints
the following message in the column labeled DEFINING MODULES:

**** UNRESOLVED ****

If a public symbol is defined more than once, MAP386 prints the following message:

**** DUPLICATE DECLARATION **** : mod_name.

Figure 4-10 shows the format of the cross-reference map.

CROSS REFERENCE MAP FOR: filename

SYMBOL NAME TYPE DEFINING MODULE REFERRING MODULES

xxxxxxxxxxxxxx xxxxxxxx xxxxxxxxx xxxxxxx xxxxx

xxxxxx xxxxxx

. . . .

. . . .

. . . .

Figure 4-10. MAP386 Cross-Reference Map

Warning and Error Messages
The last item in the print file is the message PROCESSING COMPLETED and the
number of error and warning messages generated during processing. See Appendix C
for descriptions of MAP386 error and warning messages.

Intel386 Family Utilities User's Guide Chapter 4 139

Descriptor Segment Naming
If descriptors are unnamed, MAP386 assigns qualified names with a question mark
(?) as the first character. The format of the qualified descriptor is as follows:

?xxxx.n

Where:

xxxx is the descriptor type

n is a sequence number assigned to the descriptor.

Descriptor types can be one of the following:

SEGMENT (code and data segments)
LDT
TASK
286CALL_GATE
386CALL_GATE
TASK_GATE
286INTR_GATE
386INTR_GATE
286TRAP_GATE
386TRAP_GATE

The sequence numbers start from one and increase in order of the segment's
occurrence in the object file. The LDT segments are an exception; their names are
qualified as ?LDT.n where n is the sequence number assigned to the LDT in the table
map.

Chapter 4 Using the Intel386 Mapper140

DOS and iRMX= Examples Using MAP386
The following example shows a sample MAP386 invocation and the resulting print
file.

MAP386 TESTC2.386 PRINT (TEST.MAP) NOTYPECHECK&

PAGEWIDTH (100) OSINFO (OSFILE)&

OBJECTCONTROLS (NOLINES, NOSRCLINES)

MAP386 uses TESTC2.386 as input modules. The output consists of all maps,
including a cross-reference map, and the maps are directed to the print file,
TEST.MAP. Because the input file is linkable, MAP386 does not create an output
object file. The default PAGELENGTH and PAGING controls are in effect. Page width
is set to 100 with the PAGEWIDTH control, resulting in printed pages 60 lines long and
100 columns wide, with headings, but no title, at the top of each page. The contents
of the file OSFILE are included in the operating system information field of the
output object file named TESTC2.OUT. The object controls specify that no line or
source line information is included in the output file. No type checking is done. The
name of the print file is TEST.MAP.

Figure 4-11 shows the print file for DOS and iRMX.

Intel386 Family Utilities User's Guide Chapter 4 141

386(TM) MAPPER

system_id iRMX III 386(TM) MAPPER, Vx.yVX

INPUT FILE(S): TESTC2.386
INPUT OSINFO FILE: OSFILE
OUTPUT OBJECT FILE: TESTC2.OUT
OUTPUT PRINT FILE: TEST.MAP
OUTPUT XREF FILE: TEST.MAP
CONTROLS SPECIFIED: PR((COST.MAP) NOTC PW(100) OSINFO(INFILE) OC(NOLI.NOSL)

MODULES INCLUDED:

FILE NAME MODULE NAME(S)

TESTC2.386 MAIN HELP MOD2 ?DEBUG_INFO

DESCRIPTOR TABLE MAP

TABLE = GDT BASE = --------- LIMIT = 002FH

TABLE INDEX SELECTOR DESCRIPTOR NAME

1 0008H CODE
2 0013H PLMPROC1
3 0018H PLMPROC2
4 0020H LDT?
5 0028H TASK1

TABLE = IDT BASE = --------- LIMIT = 00F7H

TABLE INDEX DESCRIPTOR NAME

0 TRAPGATE

TABLE = LDT? SEQ. NO. = 1 BASE = --------- LIMIT = 0027H

TABLE INDEX SELECTOR DESCRIPTOR NAME
1 000CH LDT?
2 0017H CODE32
3 001FH DATA
4 0027H DATA

Figure 4-11. Print File Example on DOS and iRMX=

Chapter 4 Using the Intel386 Mapper142

SEGMENT MAP

TABLE = GDT

SEGMENT NAME TABLE INDEX PBIT USE DPL ALIGN ACCESS BASE LIMIT FIX

CODE 1 1 USE16 3 WORD ER 00003000H 004BH 0

TABLE = LDT?

SEGMENT NAME TABLE INDEX PBIT USE DPL ALIGN ACCESS BASE LIMIT FIX

CODE32 2 1 USE32 3 PARA ER 00001000H 000000DAH 00000
DATA 3 1 USE32 3 PARA RWD 00005000H FFFFFFFFH 00000
DATA 4 1 USE16 3 WORD RWD FFFF4012H FFFDH 0
LDT?: 1 1 USE16 0 NONE RW --------- 0027H 0

GATE MAP

TABLE = GDT

GATE NAME TABLE INDEX PBIT DPL TYPE WC SELECTOR OFFSET

PLMPROC1 2 1 3 CALL286 4 GDT(1) 0000H
PLMPROC2 3 1 3 CALL286 4 GDT(1) 0000H

TABLE = IODT

GATE NAME TABLE INDEX PBIT DPL TYPE WC SELECTOR OFFSET

TRAPGATE 0 1 3 INTR386 --- LDT(2) 0000H

SYMBOL MAP

MODULE = MAIN, LTD = GDT (4)

SYMBOL NAME BASE OFFSET TYPE ABSOLUTE ADDRESS

A SS:EBP FFFFFFFEH INTEGER(2) ---------
AB. LDT(3) FFFFFFE6H INTEGER(4) 00004FE6H
CFUNC LDT(2) 0000005BH C FUNCTION INTEGER(4) NEAR32 0000105BH
IN1 SS:EBP 00000008H INTEGER(4) ---------
IN2 SS:EBP 0000000CH INTEGER(4) ---------
MAIN. LDT(2) 00000000H C FUNCTION INTEGER(4) NEAR32 00001000H

Figure 4-11. Print File Example on DOS and iRMX= (continued)

Intel386 Family Utilities User's Guide Chapter 4 143

MODULE = MAIN, CODE SEGMENT = LDT(2)

LINE OFFSET IN CODE SEGMENT

5 00000000H 00000006H 00000010H
10 000000019H 0000002FH 00000038H 00000044H 00000059H
15 00000005BH 0000005EH 00000066H 00000068H

MODULE - MAIN

SOURCE FILENAME = MAIN.C

LINE OFFSET IN CODE SEGMENT

5 00000028H 00000033H 0000003CH 0000004BH
10 00000005EH 00000078H 00000087H 0000009DH 000000BBH
15 0000000C5H 000000E5H 000000EDH 00000106H 0000010EH

MODULE = HELP, LDT = GDT(4)

SYMBOL NAME BASE OFFSET TYPE ABSOLUTE ADDRESS

A SS:EBP FFFFFFFEH INTEGER(2) ---------
ABC LDT(3) FFFFFFE6H INTEGER(4) 00004FF6H
CFUNC1. . . . LDT(2) 000000CBH C FUNCTION INTEGER(4) NEAR32 000010CBH
HELPFUNC. . . LDT(2) 00000070H C FUNCTION INTEGER(4) NEAR 32 00001070H
IN1 SS:EBP 00000008H INTEGER(4) ---------
IN2 SS:EBP 0000000CH INTEGER(4) ---------

MODULE = HELP, CODE SEGMENT = LDT(2)

LINE OFFSET IN CODE SEGMENT

5 00000070H 00000076H 00000080H
10 000000089H 0000009FH 000000A8H 000000B4H 000000C9H
15 0000000CBH 000000CEH 000000D6H 000000D8H

MODULE = HELP

SOURCE FILENAME: HELP.C

LINE OFFSET IN CODE SEGMENT

5 00000029H 00000038H 00000041H 00000050H
10 000000063H 0000007EH 0000008DH 000000A3H 000000C1H
15 0000000CBH 000000EBH 000000F3H 0000010CH 00000114H

Figure 4-11. Print File Example on DOS and iRMX= (continued)

Chapter 4 Using the Intel386 Mapper144

MODULE = MOD2, LDT = GDT(4)

SYMBOL NAME BASE OFFSET TYPE ABSOLUTE ADDRESS

B LDT(3) 00000022H INTEGER(4) 00005022H
C LDT(3) 00000026H INTEGER(2) 00005026H
PLMPROC1. . . GDT(2) 00000000H NULL 00003000H
PLMPROC2. . . GDT(3) 00000000H NULL 00003000H
TASK1 GDT(5) 00000000H NULL 00002000H
TRAPGATE. . . IDT(?) 00000000H NULL ?

PUBLIC MAP

MODULE = MAIN

PUBLIC NAME BASE OFFSET TYPE

CFUNC2. . . . LDT(2) 0000005BH C FUNCTION INTEGER(4) NEAR32 255 0000105BH
MAIN. LDT(2) 00000000H C FUNCTION INTEGER(4) NEAR32 255 00001070H

MODULE = HELP

PUBLIC NAME BASE OFFSET TYPE WC ABSOLUTE ADDRESS

CFUNC1. . . . LDT(2) 000000CBH C FUNCTION INTEGER(4) NEAR32 255 000010CBH
HELPFUNC. . . LDT(2) 00000070H C FUNCTION INTEGER(4) NEAR32 255 00001070H

MODULE = MOD2

PUBLIC NAME BASE OFFSET TYPE WC ABSOLUTE ADDRESS

PLMPROC . . . GDT(1) 0000H C FUNCTION FAR16 2 00003000H

MODULE = ?DEBUG_INFO

PUBLIC NAME BASE OFFSET TYPE WC ABSOLUTE ADDRESS

B LDT(3) 0000003CH INTEGER(4) 0 0000503CH
C LDT(3) 00000040H INTEGER(2) 0 00005040H
PLMPROC1. . . GDT(2) 00000000H NULL - 00003000H
PLMPROC2. . . GDT(3) 00000000H NULL - 00003000H
TASK1 GDT(5) 00000000H NULL - 00002000H
TRAPGATE. . . IDT(?) 00000000H NULL - ?

Figure 4-11. Print File Example on DOS and iRMX= (continued)

Intel386 Family Utilities User's Guide Chapter 4 145

TASK MAP

TASK1 TSS = GDT(5) DPL = 0 PBIT = 1
BASE = 00002000H

LIMIT = 00000067H
SS0:ESP0 = ----------------
SS1:ESP1 = ----------------
SS2:ESP2 = ----------------
SS:ESP = ----------------
CS:EIP = LDT(2):00000000H
DS = LDT(3)
FLAGS = 00000200H
LDTSEL = ------
PDR = 00000000H
DEBUG TRAP NOT ENABLED

CROSS REFERENCE MAP FOR: TESTC2.386

SYMBOL NAME TYPE DEFINING MODULE REFERRING MODULE

B INTEGER(4) ?DEBUG_INFO MOD2 HELP

C INTEGER(2) ?DEBUG_INFO MOD2 HELP
CFUNC1. . . . C FUNCTION INTEGER(4) NEAR32 HELP MAIN
CFUNC2. . . . C FUNCTION INTEGER(4) NEAR32 MAIN HELP

HELPFUNC. . . C FUNCTION INTEGER(4) NEAR32 HELP;

MAIN. C FUNCTION INTEGER(4) NEAR32 MAIN;

PLMPROC . . . C FUNCTION FAR16 MOD2;
PLMPROC1. . . NULL ?DEBUG_INFO MAIN
PLMPROC2. . . NULL ?DEBUG_INFO HELP

TASK1 NULL ?DEBUG_INFO;
TRAPGATE. . . NULL ?DEBUG_INFO;
PROCESSING COMPLETED. 0 WARNINGS, 0 ERRORS

Figure 4-11. Print File Example on DOS and iRMX= (continued)

■■ ■■ ■■

146 Chapter 4 Using the Intel386 Mapper

Intel386 Family Utilities User's Guide Appendix A 147

BND386 Error Messages A
BND386 issues a message when it encounters one of the following conditions:

• WARNING: Although a questionable condition exists, the output object file is
valid.

• ERROR: The output object file is probably invalid even though BND386
processing can continue.

• FATAL ERROR: BND386 processing aborts. All open files are closed. The
object file created, if any, is not complete.

Numbers that accompany the messages indicate the location of the exception, as
follows:

• No number: Exception is at the system interface level.

• 100-199: Exception is in the invocation line or in an input object file.

• 300-399: Exception is in internal BND386 processing.

Messages appear in the print file and any file created with ERRORPRINT. Fatal
error messages also appear at the console.

This appendix provides up to four kinds of information for each message:

• MEANING: how to interpret the message.

• CAUSE: the probable reason for the message.

• EFFECT: the state of the output file(s) and the status of BND386.

• ACTION: suggestions for correcting the condition.

Messages are listed in numerical order.

148 Appendix A BND386 Error Messages

System-Level Exceptions
SYSTEM INTERFACE ERROR

error text

FILE: filename

MEANING: This fatal error occurs in a call to the host operating system. The
error text contains a message issued by the operating system. The filename is
present only if the error is an I/O error.

CAUSE: Such problems as an I/O error, invalid parameters, or insufficient
memory can cause this condition.

EFFECT: BND386 processing is aborted, and control is returned to the operating
system.

ACTION: Refer to host operating system documentation for interpretation.
Correct the error and reinvoke BND386.

Invocation or Input Object Exceptions
ERROR 100: INPUT FILE MISSING

MEANING: This fatal error occurs because no linkable input file is provided.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Specify at least one linkable input file, and then reinvoke.

ERROR 101: FILENAME TOO LONG

NEAR: token string

MEANING: This fatal error occurs because there are too many characters in a
filename in the invocation line near the token string.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Use a valid filename, and then reinvoke.

ERROR 102: MISSING LEFT PARENTHESIS

NEAR: token string

MEANING: This fatal error occurs because a left parenthesis is missing after the
token string.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Insert a left parenthesis in the proper location, and then reinvoke.

Intel386 Family Utilities User's Guide Appendix A 149

ERROR 103: MISSING RIGHT PARENTHESIS

NEAR: token string

MEANING: This fatal error occurs because a right parenthesis is missing after
the token string.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Insert a right parenthesis in the proper location, and then reinvoke.

ERROR 105: FILE ALREADY SPECIFIED IN COMMAND TAIL

FILE: filename

MEANING: This fatal error occurs because the filename is already specified
in the input file list. One of the duplicate filenames is explicit in or implied by
the controls.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Ensure that none of the explicit or default file names match, and then
reinvoke.

ERROR 106: INVALID DELIMITER IN COMMAND TAIL

NEAR: token string

MEANING: This fatal error occurs because the invocation line contains an
improperly placed delimiter or uses an illegal character as a delimiter. The
invalid delimiter is detected either before or after the token string.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Use valid delimiters, including properly placed left and right
parentheses and commas, and then reinvoke.

ERROR 107: LINE TOO LONG IN CONTROL FILE

FILE: filename

MEANING: This fatal error occurs because the control file named by filename

contains a line longer than 128 characters.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Correct the control file, making sure that all lines, except for
comments, are less than 128 characters long, and then reinvoke.

150 Appendix A BND386 Error Messages

ERROR 108: TOKEN TOO LONG

NEAR: token string

MEANING: This fatal error occurs because the specified token string

contains too many characters, e.g., a module name exceeding 40 characters.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Use a token string of valid length, and then reinvoke.

ERROR 109: UNKNOWN CONTROL IN COMMAND TAIL

NEAR: token string

MEANING: This fatal error occurs because the control indicated in token

string in the invocation line is invalid.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Spell the control correctly or use the proper abbreviation, and then
reinvoke.

ERROR 110: SYNTAX ERROR

NEAR: token string

MEANING: This fatal error occurs because the structure of the invocation line
near token string is incorrect.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Make sure that the information in the invocation line is complete,
appears in the proper order, and is spelled correctly, and then reinvoke.

ERROR 112: NUMBER OF SYMBOLS EXCEEDS INTERNAL LIMIT

MEANING: This fatal error occurs because the maximum number of symbols
BND386 can process has been exceeded.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Invoke BND386 with fewer input modules, or use incremental
binding with the NOPUBLICS control.

Intel386 Family Utilities User's Guide Appendix A 151

ERROR 114: INVALID OBJECT FILE

FILE: filename

MODULE: mod_name

MEANING: This fatal error indicates that the mod_name contained in the file
referred to by the file name has an invalid format.

CAUSE: This condition occurs because a non-object file, such as a source file, or
a loadable module has been specified as the input file. It can also occur because
of an internal translator or utility error.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Verify that the input list specifies the correct files and retranslate the
source files with 80286/Intel386 translators to create linkable input modules for
BND386. If the problem persists, contact RadiSys.

ERROR 115: DUPLICATE MODULE NAME

NEAR: mod_name

MEANING: This fatal error occurs because the specified module appears more
than once in the input list.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Make sure that mod_name is selected only once in the input list, and
then reinvoke. If you need both selected modules, pre-link one of them,
changing its name with the NAME control.

ERROR 116: NESTED CONTROL FILES

FILE: filename

MEANING: This fatal error occurs because the control file identified by the
filename contains a reference to another control file.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Eliminate the nesting in the control file, and then reinvoke BND386.

ERROR 118: PAGE FILE OVERFLOW

MEANING: This error occurs because an attempt was made to build an image
greater than 8M bytes.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Rewrite your program so that it occupies less than 8M bytes, and then
reinvoke.

152 Appendix A BND386 Error Messages

ERROR 121: MISMATCHED SEGMENT ATTRIBUTES

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error condition exists because segments with the same
seg_name but with incompatible segment attributes are detected. The segment
that triggered this error condition is in mod_name and filename.

EFFECT: Processing continues, but the output object module is not usable.

ACTION: Assign compatible attributes. Reinvoke BND386 with the adjusted
input file or files.

ERROR 122: SAME SEGMENT PLACED AT TWO DIFFERENT ENTRIES IN LDT

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error condition occurs because duplicate selectors for
seg_name in the input_list are detected. The segment whose selector
caused this condition is in mod_name and filename.

CAUSE: The input list may contain multiple system files (e.g., export modules
from the system builder) that have ambiguities.

EFFECT: Processing continues, but the output object module is not usable.

ACTION: Use only the essential system files, and then reinvoke.

ERROR 123: SEGMENT OVERFLOW DUE TO SEGSIZE VALUE

SEGMENT: seg_name

MEANING: This error occurs because the SEGSIZE specification is too large.
The limit for USE16 segments is 64K bytes; the limit for USE32 segments is 4G
bytes.

EFFECT: Processing continues, and the output module may be valid; however,
other errors may occur while processing fixups.

ACTION: Ensure that the size value used in the SEGSIZE specification is
accurate. Reinvoke if necessary.

Intel386 Family Utilities User's Guide Appendix A 153

ERROR 124: SEGMENT UNDERFLOW DUE TO SEGSIZE VALUE

SEGMENT: seg_name

MEANING: This error indicates that the SEGSIZE specification caused the
segment size to go below zero.

EFFECT: Processing continues; however, later processing may be affected, e.g.,
when the sum of all segment sizes in input is calculated.

ACTION: Use a different segment size control, and reinvoke BND386 if
necessary.

ERROR 125: SAME SYMBOL DEFINED TO BE IN DIFFERENT SEGMENTS

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

SYMBOL: symbol name

MEANING: This error condition occurs because the specified symbol is defined
in a segment different from the segment used in the public definition. The
module and file containing the symbol name declaration are defined by
mod_name and filename. This usually occurs because of incompatibilities in the
segmentation models.

EFFECT: Processing continues, but the output object module is invalid. The
first symbol address remains effective.

ACTION: Verify that the correct libraries for the model of segmentation are
used. Correct the source file public-external declarations, retranslate, and then
reinvoke.

WARNING 126: SYMBOL TYPES MISMATCH

FILE: filename

MODULE: mod_name

SYMBOL: symbol name

MEANING: This warning condition occurs because there are two symbols of
different types with the same name.

EFFECT: Processing continues.

ACTION: Set the symbols to the same type (special care must be taken when the
modules are produced by different translators), recompile the modules, and then
reinvoke.

154 Appendix A BND386 Error Messages

WARNING 127: DUPLICATE PUBLIC SYMBOL

FILE: filename

MODULE: mod_name

SYMBOL: symbol name

MEANING: This warning condition exists because a symbol is defined as public
in more than one input module. The module containing the definition causing
this warning is identified by mod_name, which is in filename.

EFFECT: Processing continues, and the output is valid. The first instance of the
public symbols remains effective for later processing.

ACTION: Remove the unneeded public definition and reinvoke.

WARNING 128: SPECIFIED MODULE NOT FOUND IN INPUT FILE

FILE: filename

MODULE: mod_name

MEANING: This warning occurs because a module is specified in the input list,
but cannot be found in the associated file, identified by filename.

EFFECT: Processing continues as if the module had not been specified.

ACTION: If it is necessary to include the referenced module in the output
module, reinvoke BND386, using a file containing the module.

ERROR 129: CS REGISTER INITIALIZED BY NON-EXECUTABLE SEGMENT

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error condition occurs because a segment is not executable, but
is identified in the main module named by mod_name, as the initial code
segment. The module named by mod_name resides in filename.

EFFECT: Processing continues, but the output object module is not usable.

ACTION: Ensure that CS register initialization requirements are correctly
specified in the input module or modules, and then reinvoke BND386.

Intel386 Family Utilities User's Guide Appendix A 155

ERROR 130: SS REGISTER INITIALIZED BY NON-WRITABLE SEGMENT

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error condition occurs because seg_name is not writable, but
is identified in the specified main module (named by mod_name) as an initial
stack segment. The module named by mod_name resides in filename. This is
almost always due to an invalid END directive in the assembly program.

EFFECT: Processing continues, but the output module is unusable.

ACTION: Ensure that SS register initialization requirements are correctly
specified in the input module or modules, and then reinvoke BND386.

WARNING 131: REFERENCE TO UNRESOLVED EXTERNAL SYMBOL

FILE: filename

MODULE: mod_name

REFERRING LOCATION: location

REFERENCED LOCATION: target

MEANING: This warning occurs when BND386 creates loadable output and
finds reference to an unresolved external symbol in an input file. The target
specifies the unresolved external symbol name.

EFFECT: Processing continues, but the output module might not be usable if the
loader does not resolve the external.

ACTION: If the symbol cannot (or should not) be resolved at load time, reinvoke
BND386, using a file that resolves the external reference.

ERROR 132: REFERENCED LOCATION BEYOND LIMIT

FILE: filename

MODULE: mod_name

REFERRING LOCATION: location

REFERENCE LOCATION: target

MEANING: This error occurs because the target information is not contained in
the referenced segment, probably because one of the segment limit values is too
small. The referring location is in mod_name and filename.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Correct the size of the segment being referred to, e.g., by using the
SEGSIZE control when you reinvoke BND386.

156 Appendix A BND386 Error Messages

WARNING 133: SEGMENT LIMIT DECREASED DUE TO SEGSIZE VALUE

SEGMENT: seg_name

MEANING: This warning occurs because the size of the segment named by
seg_name is decreased because of a SEGSIZE specification.

EFFECT: Processing continues, and the output module is valid. The user-
specified value overrides the existing segment size.

ACTION: Ensure the segment size specification is accurate, reinvoking BND386
if necessary to respecify the size.

ERROR 135: ENTRY POINT SPECIFIED IN GATE IS NON-EXECUTABLE

FILE: filename

MODULE: mod_name

REFERRING LOCATION: location

REFERENCE LOCATION: target

MEANING: This error condition occurs because the entry point identified by
target is in a nonexecutable segment. Gates are used to mediate access to code
segments only.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Reinvoke BLD386 to revise the gate and/or segment in the input
system file or files to make the access possible; e.g., make the segment
containing the entry point executable. Reinvoke BND386 using the corrected
input module or modules.

ERROR 136: ENTRY POINT SPECIFIED IN GATE IS LESS PRIVILEGED

THAN GATE

FILE: filename

MODULE: mod_name

REFERRING LOCATION: location

REFERENCED LOCATION: target

MEANING: This error occurs because a gate is not pointing to an executable
entry point with a higher privilege level (numerically smaller) than the gate
itself.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Reinvoke BND386 with the correct system interface file.

Intel386 Family Utilities User's Guide Appendix A 157

ERROR 137: BAD SELF RELATIVE REFERENCE

FILE: filename

MODULE: mod_name

REFERRING LOCATION: location

REFERENCE LOCATION: target

MEANING: This error occurs because target and location are not in the same
segment. The location is in mod_name in filename.

CAUSE: This condition may be caused by a translator error or an erroneous
ASM386 code.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Retranslate the module, and then reinvoke BND386 with the new
input file.

ERROR 138: REFERRING LOCATION BEYOND LIMIT

FILE: filename

MODULE: mod_name

REFERRING LOCATION: location

REFERENCE LOCATION: target

MEANING: This error occurs because the location referring to target is outside
the limits of the segment. The location is in mod_name in filename.

CAUSE: This condition may exist because the SEGSIZE control specified a
segment size that is too small, or it may be due to a translator error.

EFFECT: Processing continues, but the output module is not valid.

ACTION: Retranslate the module if necessary, and then reinvoke BND386 using
a valid SEGSIZE control specification.

ERROR 139: CONSTANT VALUE OVERFLOW

FILE: filename

MODULE: mod_name

REFERRING LOCATION: location

REFERENCE LOCATION: target

MEANING: This error occurs because the sum of two constant values,
represented by a public symbol at target, and an incremental value in the
instruction at location, cause a byte or word overflow, depending on the input
specification.

EFFECT: Processing continues, and the output module is valid.

ACTION: Reassign values if required, and then reinvoke.

158 Appendix A BND386 Error Messages

ERROR 140: TEXT LENGTH IS GREATER THAN SEGMENT LENGTH

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This fatal error occurs because the limit of the segment named by
seg_name is not large enough. The text may be an actual text item or may be
represented by a fixup. The segment is contained in mod_name in filename.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Increase the limit of the segment, e.g., by reinvoking BND386 with an
appropriate SEGSIZE control parameter.

ERROR 141: CS REGISTER NOT INITIALIZED

FILE: filename

MODULE: mod_name

MEANING: This error occurs because BND386 cannot find an initialization
value for the CS register in the module named by mod_name in filename. This
usually happens with input that includes ASM386 main modules, but it may also
happen if the input does not include a main module.

EFFECT: Processing continues, but the output module is not valid.

ACTION: Include a main module or provide ASM386 CS initialization
information, and then reinvoke.

WARNING 142: SS REGISTER NOT INITIALIZED

FILE: filename

MODULE: mod_name

MEANING: This error occurs because the module named by mod_name does
not contain SS register initialization information. This usually happens with
input that includes ASM386 main modules; it may also happen if the input does
not include a main module.

EFFECT: Processing continues, but the output module is not valid.

ACTION: Include a main module or provide ASM386 SS initialization
information, and then reinvoke.

Intel386 Family Utilities User's Guide Appendix A 159

WARNING 143: DS REGISTER NOT INITIALIZED

FILE: filename

MODULE: mod_name

MEANING: This warning occurs because the module identified by mod_name
does not contain DS initialization information. This warning usually happens
with input that includes ASM386 main modules, but it may also happen if the
input does not include a main module.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Include a main module or provide ASM386 DS initialization
information. and then reinvoke.

ERROR 144: SEGMENT OVERFLOW DUE TO SEGMENT COMBINATION

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error occurs because the combination of segments identified
by seg_name results in a physical segment larger than 64K bytes for USE16
segments, or larger than 4G bytes for USE32 segments. The segment causing
the overflow condition is in mod_name.

EFFECT: Processing continues, but the output module is not usable. Such
overflow may cause errors during fixup processing.

ACTION: Remove modules and/or segments that are not needed. Modify the
size of the input segments or rearrange their contents. Use RENAMESEG to
prevent unnecessary segment combination. Reinvoke.

ERROR 145: TEXT FOUND IN STACK SEGMENT

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error occurs because the stack segment named by seg_name

in mod_name contains text.

EFFECT: Processing continues, but the effect on the output module is not
known.

ACTION: Ensure that the result is acceptable, reinvoking BND386 if necessary.

160 Appendix A BND386 Error Messages

ERROR 146: TYPE DESCRIPTION TOO LONG

FILE: filename

MODULE: mod_name

MEANING: This fatal error indicates that the type definition is too long and
requires space that exceeds an internal limit of BND386.

EFFECT: Processing is aborted, and control returns to the operating system.

ACTION: Simplify the type of the symbol and retranslate. Use the NOTYPE
control.

WARNING 147: SEGMENT SPECIFIED IN SEGSIZE CONTROL NOT FOUND

NEAR: token string

MEANING: This warning indicates that the seg_name specified in a SEGSIZE
control specification is not in any of the input modules.

EFFECT: Processing continues, and the output module is valid.

ACTION: Use a different input list or a different SEGSIZE control and reinvoke
BND386.

WARNING 149: SEGMENT IN SEGSIZE CONTROL IS NON-WRITABLE

SEGMENT: seg_name

MEANING: This error occurs because seg_name is found in a SEGSIZE
control specification, but the segment is not writable.

EFFECT: Processing continues, and the output module is valid.

ACTION: Reinvoke BND386 after changing the attribute of the segment, if
required, using the correct SEGSIZE specification.

ERROR 150: INPUT HAS TWO MODULES WITH SAME NAME

FILE: filename

MODULE: mod_name

MEANING: This error occurs because the input-list contains two modules with
the same name.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Eliminate the duplication of names and reinvoke.

Intel386 Family Utilities User's Guide Appendix A 161

WARNING 151: UNRESOLVED EXTERNAL SYMBOLS

MEANING: This warning occurs because the input contains references to public
symbols that are not defined in the input.

EFFECT: Processing continues, and the output module is valid.

ACTION: If this message is not accompanied by "WARNING 131:
REFERENCE TO UNRESOLVED EXTERNAL SYMBOL", the symbol is
never used and the only thing you need to do is remove its definitions.
Otherwise, when creating a loadable module, ensure that BND386 is invoked
with input modules that contain public definitions for all external declarations in
the input, unless this symbol is supposed to be resolved at load time.

WARNING 152: PUBLIC GATE CANNOT BE EXCLUDED FROM OUTPUT

SYMBOL: symbol name

MEANING: This warning occurs because an attempt has been made to purge a
public symbol associated with a gate.

EFFECT: Processing continues, and the output module is valid. The public
symbol is not purged.

ACTION: Respecify the PUBLICS control to ensure that the public gates are not
excluded from the output.

ERROR 153: REGISTER INITIALIZED BY AN EMPTY SEGMENT

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error occurs because the segment identified by seg_name is
empty.

EFFECT: Processing continues, but the output module is not valid. Message
141, 142, or 143 also appears.

ACTION: Provide adequate initialization information in the input segments, and
then reinvoke.

162 Appendix A BND386 Error Messages

ERROR 154: REFERENCED GATE IS AT HIGHER PRIVILEGE

FILE: filename

MODULE: mod_name

GATE: gate name

REFERRING LOCATION: location

REFERENCED LOCATION: target

MEANING: This error occurs if a reference to a gate at a higher privilege level
(that is, numerically lower) is found in a loadable case.

EFFECT: Output may not be valid.

ACTION: Reinvoke BND386 with the correct system interface file.

ERROR 156: MULTIPLE REGISTER INITIALIZATIONS IN INPUT

FILE: filename

MODULE: mod_name

MEANING: This error occurs because the input list contains more than one main
module.

EFFECT: Processing continues, and the output module is valid. BND386
extracts initialization information from the first main module in the input.

ACTION: Use input containing only one main module, and then reinvoke
BND386.

ERROR 157: REFERENCE TO SYMBOL ON STACK FOUND

FILE: filename

MODULE: mod_name

REFERRING LOCATION: location

REFERENCED LOCATION: target

MEANING: This error occurs because a public symbol is defined to be in stack
and this public symbol is referred to in a fixup.

EFFECT: Processing continues, but BND386's actions are undefined and the
output module is not valid.

ACTION: Correct the input module, and then reinvoke BND386.

Intel386 Family Utilities User's Guide Appendix A 163

ERROR 159: REFERENCE TO AN EMPTY SEGMENT

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error occurs because an empty segment, identified by
seg_name, is referred to in the input.

EFFECT: Processing continues, but the output may not be valid.

ACTION: Ensure that the reference is correct, reinvoking BND386 with
different input modules if necessary.

✏ Note
If a module contains an empty data segment and the selector of the
segment is used as a parameter in a PUSH instruction (e.g., PUSH
DS), the output contents may still be usable. This is legal if no
other references to the specified segment exist. This case occurs by
default if a main module is written in a high-level language (e.g.,
PL/M) and the module contains no data. Only in these specific
cases may this error message be ignored.

WARNING 161: SPECIFIED SYMBOL IN PUBLICS CONTROL NOT FOUND

SYMBOL: symbol name

MEANING: This warning occurs because BND386 cannot find symbol name,
named in a PUBLICS control, in the input modules.

EFFECT: Processing continues and the output module is valid. BND386 ignores
the control referring to this symbol.

ACTION: Ensure that the desired effect has been achieved, reinvoking BND386
with a different PUBLICS control specification if required.

ERROR 165: NO REGISTER INITIALIZATION IN INPUT

MEANING: This error occurs because the input contains no main module.

EFFECT: Processing continues, but the loadable output module cannot be
executed.

ACTION: Reinvoke BND386 using input that contains one main module.

164 Appendix A BND386 Error Messages

ERROR 166: INCREMENTAL BUILD INPUT FILES ARE NOT ALLOWED

FILE: filename

MEANING: This fatal error occurs because the file in input is an incrementally
built file produced by BLD286/386 and cannot be processed by BND386.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Remove the incrementally built file from the input list. You may need
to use an export file in the input list. Reinvoke.

ERROR 167: OFFSET OF SYMBOL BEYOND SEGMENT LIMIT

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

SYMBOL: symbol name

MEANING: This error condition occurs because the offset of the specified
symbol is located beyond the segment limit.

EFFECT: Processing continues, but the output may not be usable.

ACTION: Reposition the symbol offset and check the SEGSIZE control.
Reinvoke.

ERROR 168: SEGMENTS WITH COMMON ATTRIBUTE HAVE DIFFERENT

LENGTHS

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error occurs because the input module contains FORTRAN
common segments that do not have the same length. The module name identifies
the second module containing a common segment.

EFFECT: Processing continues and the output module is usable. The lengths of
the segments remain unchanged.

ACTION: Make the segments the same length or define them as blank common
segments, and then reinvoke.

WARNING 170: SEGMENT SPECIFIED IN RENAMESEG CONTROL NOT FOUND

SEGMENT: seg_name

MEANING: This warning occurs because the segment to be renamed with the
RENAMESEG control is not found in the input.

EFFECT: Processing continues and the output module is usable.

ACTION: Specify the correct seg_name in the RENAMESEG control, and then
reinvoke.

Intel386 Family Utilities User's Guide Appendix A 165

ERROR 171: INVALID PRIVILEGE LEVEL

NEAR: token string

MEANING: This fatal error occurs because the privilege level is not within the
range 0 to 3.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Use a privilege level in the range 0 to 3, and then reinvoke.

ERROR 172: SYMBOL TYPE INFORMATION IS TOO COMPLEX

FILE: filename

MODULE: mod_name

MEANING: This error occurs because the length of the type definitions in the
input exceeds internal limits.

EFFECT: No type checking on these type definitions is performed. The output
module is usable.

ACTION: Recompile the module in filename using the NOTYPE control and
reinvoke BND386, or reinvoke BND386 using the NOTYPE control.

WARNING 174: CONFLICT IN SYMBOL SIZE REQUIREMENTS

FILE: filename

MODULE: mod_name

SYMBOL: symbol name

MEANING: This warning occurs because external symbols of the same name
have different lengths.

EFFECT: BND386 allocates the longer length to the symbol.

ACTION: Make sure multiple declarations of the same symbol have the same
length.

ERROR 177: INVALID USAGE OF THE RCONFIGURE CONTROL

NEAR: token string

MEANING: This error occurs because of invalid usage of the RCONFIGURE
control.

EFFECT: Processing aborts and control returns to the operating system.

ACTION: Respecify the RCONFIGURE control.

166 Appendix A BND386 Error Messages

ERROR 180: FIXUP OVERFLOW

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This error occurs because an overflow due to segment combination
occurred during fixup.

EFFECT: Processing continues; the fixup is not applied, and the output module
is usable.

ACTION: This might happen in ASM386 programs, when, for example, a
WORD is used to hold an address of an object whose address is above 64K
bytes. It can also happen when 16-bit addressing is used for such objects. The
first example is corrected by using DWORDS. The second example is corrected
by using 32-bit addressing.

WARNING 181: SEGMENTS WITH DIFFERENT USE32 ATTRIBUTES WERE

COMBINED

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This warning occurs because an attempt was made to combine data
or stack segments with different USE attributes.

EFFECT: Processing continues; the combined segment has USE16 attributes.

ACTION: If segment must be larger than 64K bytes, use a different name for the
segment to avoid segment combination.

WARNING 182: SEGMENT ACCESS RIGHTS WERE RELAXED

FILE: filename

MODULE: mod_name

SEGMENT: seg_name

MEANING: This warning occurs because the access rights of the specified
segments were changed due to segment combinations. For example, when a
segment that was read-only is combined with a segment that is writable, the new
segment is writable; thus the protection against accidental writing is lost.

EFFECT: Processing continues and the output module is valid.

ACTION: If you need the original access rights, change the input so that the
segments will not be combined.

Intel386 Family Utilities User's Guide Appendix A 167

ERROR 183: INPUT MODULE HAS DUPLICATE SEGMENT NAMES

MEANING: This error occurs because the specified module has more than one
segment with the same combine name.

EFFECT: Processing aborts and control returns to the operating system.

ACTION: This is usually an error in the translator, the input module, or the
controls used with the translator. Check the translation process.

Internal Processing Exceptions
If you encounter an error message that has the following format, contact RadiSys for
assistance:

* * * ERROR 3xx: INTERNAL PROCESSING ERROR, message

Where:

3xx is the error number

message is a string containing the text of the message

All these messages are caused by fatal errors.

Following is the list of internal processing exceptions, along with their assigned
numbers:

ERROR 300: INTERNAL ERROR IN PASS1

ERROR 301: INTERNAL ERROR IN PASS2

ERROR 302: INTERNAL ERROR IN OUTPUT

ERROR 303: INTERNAL ERROR IN OBJECT MODULE INTERFACE

ERROR 304: INTERNAL ERROR IN SYMBOL PROCESSING

ERROR 305: UNKNOWN ERROR

■■ ■■ ■■

156 Appendix A BND386 Error Messages

Intel386 Family Utilities User's Guide Appendix B 157

LIB386 Error Messages B
LIB386 issues two types of error messages:

• Error and warning messages related to LIB386 processing

• Messages related to the operating system interface

All messages are sent to the current console.

Processing Errors
These errors are detected when LIB386 encounters an invocation error or an illegal
input file. LIB386 processing errors also occur because of improper command
syntax or semantics. A problem that is treated as a warning is any condition that
could lead to an error, such as an empty target library. Each processing error message
contains the following:

• The word *** ERROR or *** WARNING

• A unique error number

• A brief explanation of the problem

An error message may also contain one or more of the following items that describe
the problem:

- filename

- mod_name

- public_symbol_name

158 Appendix B LIB386 Error Messages

LIB386 has two types of processing error messages:

• 1xx: syntax or semantic errors and object-file errors, and warnings

• 3xx: internal processing errors

Errors designated 1xx may or may not be fatal, depending on the particular problem.
Errors designated 3xx are always fatal; these are internal to LIB386. You should
report errors designated 3xx to an RadiSys representative. The following message is
displayed for fatal errors:

PROCESSING ABORTED

This appendix provides up to three kinds of information for each message:

MEANING: how to interpret the message

EFFECT: the status of LIB386

ACTION: suggestions for correcting the condition. Error messages are listed in
numerical order.

LIB386 Processing Error Messages
ERROR 100: INVALID DELIMITER IN INVOCATION LINE

NEAR: token

MEANING: This error occurs because the delimiter used in the invocation line is
not valid. Spaces and carriage returns are the only valid delimiters for the
invocation line.

EFFECT: Execution aborts and control is returned to the operating system.

ACTION: Retype the command and then reinvoke.

ERROR 101: UNKNOWN CONTROL IN INVOCATION LINE

NEAR: token

MEANING: This error occurs because an invalid control is specified in the
LIB386 invocation line. The only valid controls for the LIB386 invocation line
are BACKUP, NOBACKUP, BATCH, and NOBATCH.

EFFECT: Execution aborts and control is returned to the operating system.

ACTION: Retype the command and then reinvoke.

Intel386 Family Utilities User's Guide Appendix B 159

ERROR 102: PATHNAME TOO LONG

NEAR: filename

MEANING: This error occurs because the specified filename is too long. A
filename cannot have more than 45 characters.

EFFECT: The command is not executed.

ACTION: Retype the command line with a shorter filename and then reinvoke.

ERROR 103: NUMBER OF SYMBOLS EXCEEDS INTERNAL PROCESSING LIMIT

MEANING: This error occurs because virtual memory is not sufficient for the
number of symbols used.

EFFECT: Execution aborts.

ACTION: Reduce the number of public symbols in the target library or allocate
more memory, and then reinvoke.

ERROR 104: PREMATURE END OF COMMAND STREAM

MEANING: This error occurs because the command input file ended before the
LIB386 session ended.

EFFECT: Execution aborts.

ACTION: In batch mode, make sure a correct QUIT command is present. In
interactive mode, exit with a QUIT command, not a Ctrl-Break. Reinvoke.

ERROR 105: INVALID OBJECT FILE

FILE: filename

MEANING: This error occurs because the specified input file does not conform
to the Intel386 object module format specifications.

EFFECT: The portion of the command pertaining to the offending file is not
executed.

ACTION: Verify that the file was created properly. If the file was improperly
created, recreate the file with the appropriate translator or Intel386 utility.
Reinvoke.

160 Appendix B LIB386 Error Messages

ERROR 106: MODULE NOT FOUND

FILE: filename
MODULE: mod_name

MEANING: This error occurs if the module specified in the command line is not
in the indicated file.

EFFECT: The portion of the command that pertains to the unfound module is not
executed.

ACTION: Use the LIST command to verify that the module exists in the
specified file, and then reinvoke.

ERROR 107: DUPLICATE MODULE

FILE: filename
MODULE: mod_name

MEANING: This error occurs because the module specified to be added or
replaced already exists in the target library.

EFFECT: The portion of the command pertaining to the offending module is not
executed.

ACTION: Delete the existing module before adding the specified module to the
library.

ERROR 108: DUPLICATE PUBLIC

FILE: filename
MODULE: mod_name
PUBLIC SYMBOL: public_symbol_name

MEANING: This error occurs because the module specified to be added or
replaced has a public symbol that already exists in the target library.

EFFECT: The portion of the command pertaining to the offending public symbol
is not executed.

ACTION: Delete the existing module before adding the module containing the
public symbol to the library.

ERROR 109: UNABLE TO CREATE BACKUP FILE

FILE: filename

MEANING: This error occurs because LIB386 is unable to create the backup
file. This can be caused if the file already exists and is write-protected.

EFFECT: No backup file is created, but the session proceeds.

ACTION: If a backup file is desired, exit LIB386 and either delete or write-
enable the backup file, then reinvoke LIB386.

Intel386 Family Utilities User's Guide Appendix B 161

ERROR 110: UNABLE TO ACCESS NON-TARGET LIBRARY FILE

FILE: filename

MEANING: This error occurs when LIB386 is processing the LIST command,
and LIB386 cannot open the specified file. This error occurs because the file
does not exist or is already open.

EFFECT: The command is not executed.

ACTION: Check that the file is closed and exists and then reinvoke.

ERROR 111: NON-TARGET FILE IS NOT A LIBRARY

FILE: filename

MEANING: This error occurs because an attempt was made to list a file that is
not a library file.

EFFECT: The command is not executed.

ACTION: Files that are not libraries cannot be listed.

ERROR 112: UNABLE TO CREATE LIST FILE

FILE: filename

MEANING: This error occurs because the LIST TO filename command is
specified, and LIB386 is unable to create the filename. Probable causes are that
filename is either already open or is an existing, write-protected file.

EFFECT: The command is not executed.

ACTION: Check that the file is closed and write-enabled or make sure that the
file does not exist, and then reinvoke.

ERROR 113: PATHNAME EXPECTED

MEANING: This error occurs because the LIST command is issued at the initial
command level with no filename specified.

EFFECT: The command is not executed.

ACTION: Specify a filename with the LIST command at the initial command
level or initialize a library with the GET command, and then obtain a listing of
the library.

WARNING 114: TARGET LIBRARY FILE IS EMPTY

MEANING: This warning occurs because an UPDATE command is issued and
the target library is empty.

EFFECT: No update is performed.

ACTION: Use the ADD command to add modules to the target library.

162 Appendix B LIB386 Error Messages

ERROR 115: ATTEMPT TO UPDATE WRITE PROTECTED FILE

FILE: filename

MEANING: This error occurs because an attempt was made to update a file that
is write protected.

EFFECT: The UPDATE command is not executed.

ACTION: Do not specify UPDATE, QUIT EXIT, or QUIT INITIALIZE for the
file, or remove the write protection.

WARNING 116: TARGET LIBRARY NOW EMPTY

MEANING: This warning occurs because the COMPRESS command was
specified after all modules were deleted from the target library.

EFFECT: If no other modules are added, the next update produces an empty and
invalid library file.

ACTION: Use the ADD command to add modules to the target library.

ERROR 117: INPUT FILE IS A 286 OBJECT FILE

FILE: filename

MEANING: An ADD or REPLACE was attempted using a 286 object file.

EFFECT: The file is not updated.

ACTION: Recompile the file with a 386 translator or relink it with BND386, and
then try again.

ERROR 118: UNKNOWN COMMAND, TRY AGAIN

MEANING: This error occurs because LIB386 does not understand the
command.

EFFECT: The command is not executed.

ACTION: Check the command syntax and then reinvoke. Use the HELP
command if necessary.

ERROR 119: MODULE OR SYMBOL NAME TOO LONG

MEANING: This error occurs because the mod_name specified with the LIST
command or the public symbol name specified with the FIND command is too
long. The maximum number of characters is 40.

EFFECT: The command is not executed.

ACTION: Specify a module or symbol name that has 40 characters or less and
then reinvoke.

Intel386 Family Utilities User's Guide Appendix B 163

ERROR 120: IMPROPER COMMAND SYNTAX

MEANING: This error occurs because LIB386 detects a command syntax error.

EFFECT: The command is not executed.

ACTION: Check the syntax, and then reinvoke.

ERROR 121: INPUT FILE IS NEITHER LINKABLE NOR LIBRARY

MEANING: This error occurs because the file specified with the ADD or
REPLACE command contains no library module or linkable module. Only
Intel386 libraries or linkable modules can be added to the target library.

EFFECT: The portion of the command pertaining to the offending file is not
executed.

ACTION: Specify an input file that contains either linkable modules or a library,
and then reinvoke.

ERROR 122: COMMAND NOT ALLOWED AT CURRENT LEVEL

MEANING: This error occurs because the command specified is not valid at the
current command level (e.g., the initial level GET command is specified at the
action command level).

EFFECT: The command is not executed.

ACTION: Use the GET or the QUIT command to return control to the proper
command level, and then reinvoke.

ERROR 123: UNKNOWN OPTION FOR QUIT

MEANING: This error occurs because LIB386 does not understand the response
to the query of the QUIT command.

EFFECT: The command is not executed.

ACTION: Check the command syntax, and then reinvoke.

164 Appendix B LIB386 Error Messages

ERROR 124: TARGET FILE IS NOT A LIBRARY

MEANING: This error occurs because the file specified in the GET command is
a 386 object file, but it is not a library. LIB386 can output only libraries.

EFFECT: The command is not executed.

ACTION: Specify a valid, existing library file or specify a name for the new
library file, and then reinvoke.

WARNING 125: TARGET FILE IS WRITE-PROTECTED

MEANING: This warning occurs because the target library file specified with
the GET command is write-protected.

EFFECT: The session proceeds and you can inspect the library, but an attempt to
update the target library file will cause an error.

ACTION: To make updates, write-enable the target library file.

ERROR 126: TARGET FILE IS A 286 LIBRARY

FILE: filename

MEANING: An attempt was made to use GET to call a 80286 library.

EFFECT: The command is not executed.

ACTION: Specify a valid, existing Intel386 library file or specify a name for a
new library file, and then reinvoke.

ERROR 127: ATTEMPT TO LIST TO TARGET FILE

MEANING: This error occurs because the LIST TO filename command is issued
and filename is the name of the target library file.

EFFECT: The command is not executed.

ACTION: Choose another filename for the LIST TO command, and then
reinvoke.

ERROR 128: VERSION MAY BE UP TO 4 CHARACTERS IN LENGTH

MEANING: This error occurs because too many characters have been specified
for the version number.

EFFECT: The version of the library is not updated.

ACTION: Respecify with a version of up to four characters (e.g., V1.0), and then
reinvoke.

Intel386 Family Utilities User's Guide Appendix B 165

ERROR 129: INTERACTIVE SET IS UNAVAILABLE IN BATCH MODE

MEANING: An interactive SET (i.e., SET without any additional parameters)
was specified in batch mode.

EFFECT: The command is not executed.

ACTION: In batch mode, specify all items you wish to set with their new values,
using the SET command.

System Interface Messages
These errors may be I/O errors, illegal file name problems, or other problems related
to the host operating system. These error messages have the following format:

*** SYSTEM INTERFACE ERROR

UDI error code and text

FILE: filename

Refer to the operating system reference manual for the cause of the problem.

■■ ■■ ■■

178 Appendix B LIB386 Error Messages

Intel386 Family Utilities User's Guide Appendix C 179

MAP386 Error Messages C
MAP386 issues a message when it encounters one of the following types of errors in
the invocation line or a control file:

• System interface level errors

• Semantic and object-file errors

• Internal processing errors

This appendix provides up to three types of information for each semantic and object-
file error:

• MEANING: how to interpret the message

• EFFECT: the status of MAP386

• ACTION: suggestions for correcting the condition

Messages are listed in numerical order.

System Interface Level Errors
If an error in a call to the host operating system is detected, MAP386 issues a fatal
error message to the console file, to the file created by ERRORPRINT (if open), and
to the print file (if open). The error has the following format:

SYSTEM INTERFACE ERROR

error text

FILE: filename

The error text is operating-system dependent. The file name is present only if the
error is an I/O error.

Appendix C MAP386 Error Messages180

Semantic and Object-File Errors
Messages appear in the print file and any ERRORPRINT file, if specified. Fatal
error messages also appear at the console.

ERROR 100: INPUT FILE MISSING

MEANING: This fatal error occurs because no input file is provided in the
invocation line or control file command-tail.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reinvoke, specifying the filename of an input file.

ERROR 101: FILENAME TOO LONG

NEAR: token string

MEANING: This fatal error occurs because the indicated filename is too long.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reinvoke, using a shortened filename.

ERROR 102: MISSING LEFT PARENTHESIS

NEAR: token string

MEANING: This fatal error occurs because a left parenthesis was expected, but
was not found.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reinvoke MAP386, using the expected left parenthesis.

ERROR 103: MISSING RIGHT PARENTHESIS

NEAR: token string

MEANING: This fatal error occurs because a right parenthesis was expected, but
was not found.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reinvoke, using the expected right parenthesis.

Intel386 Family Utilities User's Guide Appendix C 181

ERROR 105: FILE ALREADY SPECIFIED IN COMMAND TAIL

FILE: filename

MEANING: This fatal error occurs because the indicated filename was already
specified.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reinvoke, being sure that the indicated filename is specified only
once.

ERROR 106: INVALID DELIMITER IN COMMAND TAIL

NEAR: token string

MEANING: This fatal error occurs because the indicated invalid delimiter was
used in the invocation line or control file.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reinvoke, using only valid delimiters.

ERROR 107: LINE TOO LONG IN CONTROL FILE

FILE: filename

MEANING: This fatal error occurs because the control file named by filename

contains a line that is too long. The maximum length is 128 characters.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Prepare the control file again, shortening the indicated line. Then
reinvoke MAP 386 with CONTROLFILE, using the corrected filename of the
control file.

ERROR 108: TOKEN TOO LONG

NEAR: token string

MEANING: This fatal error occurs because the indicated token is too long.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Shorten the indicated token to the proper length, then reinvoke
MAP386.

Appendix C MAP386 Error Messages182

ERROR 109: UNKNOWN CONTROL IN COMMAND TAIL

NEAR: token string

MEANING: This fatal error occurs because the indicated control is invalid.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reexamine the input, being sure that only valid controls (as described
in Chapter 4) are used, then reinvoke MAP386.

ERROR 110: SYNTAX ERROR

NEAR: token string

MEANING: This fatal error occurs because a mistake or typographical error in
syntax was made.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reexamine your input, being sure that only correct syntax is used,
then reinvoke MAP386.

ERROR 112: NUMBER OF SYMBOLS EXCEEDS INTERNAL LIMIT

MEANING: This fatal error occurs because the available memory space is not
sufficient for the number of symbols used.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reduce the number of symbols used if you still want a cross-reference
map, then reinvoke MAP386.

ERROR 114: INVALID OBJECT FILE

FILE: filename

MODULE: mod_name

MEANING: This fatal error occurs because the object file module in the input
object file is invalid or is specified incorrectly.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reconsider your input, trying to determine in what way the object file
is invalid. Revise, then reinvoke MAP386.

Intel386 Family Utilities User's Guide Appendix C 183

ERROR 116: NESTED CONTROL FILES

FILE: filename

MEANING: This fatal error occurs because the control file specifies control file.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reconstruct your input, making sure your control file does not refer to
a second control file. Reinvoke MAP386.

ERROR 121: PAGE WIDTH OUT OF RANGE

NEAR: token string

MEANING: This fatal error occurs because width is too large or small. The
value must be between 72 and 132.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Specify a correct width value, then reinvoke MAP386.

ERROR 122: PAGE LENGTH OUT OF RANGE

NEAR: token string

MEANING: This fatal error occurs because page length is too large or small.
The value must be between 10 and 65535.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Use a correct length value, then reinvoke MAP386.

ERROR 123: OSINFO FILE IS GREATER THAN 4K BYTES

FILE: osinfo filename

MEANING: This error occurs because the osinfo file is larger than 4K bytes.

EFFECT: Only the first 4K bytes of the osinfo file are written into the osinfo
section.

ACTION: Make sure that you do not need any information that comes after the
first 4K bytes.

Appendix C MAP386 Error Messages184

ERROR 124: NO MODULES IN INPUT FILE FOUND

FILE: filename

MEANING: This fatal error occurs because the executable input file does not
contain a module.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Correct the input file and reinvoke MAP386.

WARNING 126: SYMBOL TYPE MISMATCH

FILE: filename

MODULE: mod_name

SYMBOL: symbol name

MEANING: This warning occurs because two symbols of the same name have
different types.

EFFECT: None, advisory information only.

ACTION: None.

ERROR 128: INPUT CONTAINS DUPLICATE MODULES

FILE: filename

MODULE: mod_name

MEANING: This error occurs because two modules of the same name occur in
MAP386's input.

EFFECT: None, advisory information only.

ACTION: None.

WARNING 129: EXPORTED OR UNRESOLVED EXTERNAL SYMBOLS

MEANING: This warning occurs because external symbols found in MAP386's
input have no corresponding public symbol definition or referred-to export
modules from BLD386.

EFFECT: None, advisory information only.

ACTION: None.

Intel386 Family Utilities User's Guide Appendix C 185

WARNING 130: ASSIGNING UNKNOWN DESCRIPTOR NAMES

MEANING: This warning is issued because of unnamed descriptors in the input
file. It is always issued for boot-loadable files, since there is no name
information and all names are assigned by MAP386. For loadable files, it is
issued if there is no name information in DESNAM.

EFFECT: None, advisory information only.

ACTION: None.

ERROR 131: OVERLAPPING DESCRIPTORS IN TABLE

MEANING: This error occurs because there is more than one descriptor
assigned to a slot in a table.

EFFECT: The descriptor information in the map is incorrect.

ACTION: The build language contains an error. Correct the error and then
reinvoke MAP386.

WARNING 132: NO DEBUG INFORMATION IN INPUT FILE

FILE: filename

MEANING: This warning is issued because there is no debug information and
consequently no information for the cross-reference map.

EFFECT: There will be no information on symbols, publics or externals.

ACTION: If this information is required, run BND386 or BLD386 with the
DEBUG control.

WARNING 133: MODULE NOT FOUND IN INPUT FILE

FILE: filename

MODULE: mod_name

MEANING: This warning is issued because the mod_name specified in the
invocation line is not found in the input file.

EFFECT: None-advisory information only.

ACTION: None.

Appendix C MAP386 Error Messages186

ERROR 134: MORE THAN ONE FILE FOUND WITH EXECUTABLE INPUT

FILE: filename

MEANING: This fatal error occurs because more than one executable file was
specified in the invocation line.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Specify only one executable file in the invocation line, and then
reinvoke MAP386.

ERROR 135: EXECUTABLE FILE FOUND IN INPUT FILE LIST

FILE: filename

MEANING: This fatal error occurs because an executable file was found after
one or more nonexecutable files.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Correct the input file list, and then reinvoke MAP386.

ERROR 136: ERRONEOUS SYMBOL INFORMATION IN OBJECT MODULE

FILE: filename

MODULE: mod_name

MEANING: This error occurs because there is an error in symbol debug
information, nesting mismatch or missing block end.

EFFECT: Processing continues, but there may be errors in the debug
information.

ACTION: None.

WARNING 137: SYMBOL INFORMATION MISSING IN SOME MODULES

FILE: filename

MEANING: This warning is issued because there is no public or external symbol
information in a linkable file.

EFFECT: None-advisory information only.

ACTION: None.

Intel386 Family Utilities User's Guide Appendix C 187

WARNING 138: PUBLIC INFORMATION MISSING IN SOME MODULES

FILE: filename

MEANING: This warning is issued because external symbols were encountered
in the input to MAP386 with no corresponding public symbol definition. Also,
no indication for unresolved external symbols was found. Public symbol
information is probably missing in the input file.

EFFECT: None, advisory information only.

ACTION: If the information is required, find out whether BND386 was invoked
with NODEBUG, or whether the information was purged.

Internal Processing Errors
Internal processing errors are unusual occurrences. You can not correct these errors.
If such errors occur, you should report the problem to an RadiSys representative.

When internal processing errors occur, the format of the error message is as follows:

ERROR 3xx: INTERNAL PROCESSING ERROR, message

The following error messages are 3xx errors. The assigned numbers accompany the
error message.

ERROR 300: IN OBJECT MODULE INTERFACE

ERROR 301: IN SYMBOL PROCESSING

ERROR 302: UNKNOWN ERROR

■■ ■■ ■■

Appendix C MAP386 Error Messages188

Intel386 Family Utilities User's Guide Glossary 189

Glossary

absolute address the physical location at which code or data resides in
memory; in protected virtual address mode, the Intel386
processor supports 32-bit absolute addresses.

absolute object code code or data to which absolute addresses have been assigned.

access rights the attributes that describe how a segment can be accessed by
other segments; access rights for stack and data segments
include read-only and read-write; access rights for code
segments include execute-only, executable and readable, and
conforming.

action level the structural level at which the majority of LIB386
commands are available. This command level includes, for
example, commands for adding, deleting, and replacing
modules in the target library.

active module when using the LIB386 utility, a module is designated as
active if it is both logically and physically available.

ASM386 see Intel386 Macro Assembler.

attribute an item defined by a descriptor: base address, limit, and
access byte parameters; segment use that violates an attribute
causes an exception or interrupt.

base address the 32-bit address at which a segment starts.

based symbol a symbol whose logical address is determined by a value
residing at the address of another symbol.

binder see Intel386 binder.

blank common the combine-type applied to segments containing unnamed
FORTRAN common blocks.

BLD386 see Intel386 System Builder.

BND386 see Intel386 binder.

190 Glossary

bootloadable module a module that contains absolute object code in a simple
format, to expedite the loading of coldstart modules.
BLD386 is the only Intel386 utility that can be used to create
bootloadable modules.

builder see Intel386 System Builder.

call gate the gate used to transfer control to more privileged code.

combine-name the symbolic name of a segment. During binding, segments
with the same combine-name and compatible combine-types
are combined to form a single segment.

combine-type the attribute specifying how a segment is to be combined.
No-combine, normal, stack, common, blank common, and
debug are the acceptable combine-types.

common the combine type associated with segments that contain
named FORTRAN common blocks.

conforming segment the segment that can be shared by programs that execute at
different privilege levels without using gates.

control any of several binder, librarian, or mapper options, each of
which performs a specific function when used in the
invocation line.

control file the input file containing the file names of input files and/or
controls.

control transfer descriptors call gates, task gates, interrupt gates, and trap gates.

current privilege level the privilege level of a task at a specific instant, indicated by
the CS register's lower two bits and by its descriptor privilege
level.

debug information symbolic information used by debuggers. This information,
which is housed in an object module, includes symbol names,
line numbers, and public symbol information.

default value the value assigned automatically if no value is specified.

descriptor the eight-byte item that defines memory use in an Intel386
protected-virtual-address-mode system. Descriptors include
segment descriptors and system control descriptors.

descriptor privilege level the privilege level defined in the descriptor for a segment or
in a gate. Also called DPL.

Intel386 Family Utilities User's Guide Glossary 191

DPL see descriptor privilege level.

dynamically loadable
module

an executable object module created by BND386. The
module can be loaded onto an Intel386-based system running
under control of an iRMX operating system.

entry point the code segment offset that represents the starting point for
execution.

error condition a condition that causes BND386, LIB386, or MAP386 to
issue a warning or error message, or that causes BND386 or
MAP386 to issue a fatal error message.

error message a BND386, LIB386, or MAP386 message that flags a
condition that may cause the output object module to be
invalid.

executable and readable
segment

a code segment that can be read and executed.

executable file a file containing a loadable or bootloadable module.

executable module a loadable module.

executable segment a code segment.

execute-only segment a code segment that can be executed but not read.

expand-down segment a nonexecutable segment whose limit can be extended toward
lower-order addresses at run time.

expand-up segment a nonexecutable segment whose limit can be extended toward
higher-order addresses at run time.

export file a file created with the Intel386 System Builder containing
system interface. See exportation.

exportation information placed in a file system to be used when creating
loadable modules; this process makes system interface
available to application programs.

extension a term used in DOS operating systems. The extension is a
period and three letter acronym added to a file name to
identify the type of file. An extension is added by the user,
or, in certain cases, by a utility if no extension is specified.

external reference a reference to a symbol, procedure, or location that must be
defined as public in another module.

192 Glossary

external symbol an address imported by a linkable module. The address
imported is that of a public symbol with the same symbolic
name that occurs in a different module.

fatal error message a BND386 or MAP386 message that indicates an error
condition prohibiting the completion of processing. The
result is that processing aborts.

file name a generic term for pathname. The name of a file.

file-spec see file name.

file-type see extension.

gate a descriptor used to mediate access to code at a higher
privilege level (call gate), to code in a different task (task
gate), or to interrupt service routines (interrupt or trap gates).

GDT see global descriptor table.

generalized address an address that has an internal name and an offset in the item
specified by the internal name.

global descriptor table a table that houses descriptors available to all tasks; this table
can contain as many as 8190 descriptors of the following
types segment descriptors, TSS descriptors, LDT descriptors,
call gates, and task gates. Also called GDT.

IDT see interrupt descriptor table.

illegal access an attempted code or data access that causes an exception
condition because it violates hardware protection
mechanisms; protection is implemented by enforcing
segment access rights, page access rights, and privilege and
descriptor usage rules.

incremental linking the process in which several linkable modules are merged
into a single linkable module. The module that results from
linking may be used as input to another stage of incremental
linking or to final binding.

index the portion of a selector that points to a location in a
descriptor table.

initial level the structural level at which a LIB386 session with a new
target library can begin.

initialization information register values that must be established before task execution
can begin.

Intel386 Family Utilities User's Guide Glossary 193

Intel386 binder the Intel386 program development utility used to link
modules and/or create loadable, single-task output modules.
Also called BND386.

Intel386 librarian the interactive Intel386 program development utility used to
organize linkable modules into libraries and to allow existing
libraries to be modified by adding, deleting, or replacing
modules. Also called LIB386.

Intel386 macro assembler the assembler used to produce linkable object modules
executable on Intel386 and Intel387 processors in protected
mode. Also called ASM386.

Intel386 mapper the Intel386 program development utility used to generate
intermodule cross-reference maps between public and
external symbols. Also called MAP386.

Intel386 microprocessor the Intel386, an advanced, 32-bit high-performance
microprocessor optimized for multiple-user and multitask
systems; the processor has built-in virtual memory support
and memory protection for isolating memory space from task
to task. The 80287 or the Intel387 Numeric Processor
Extension provides high-speed floating-point capabilities.

Intel386 System Builder the system configuration utility for Intel386 protected-mode
systems.

Intel386 Utilities the Intel386 binder, librarian, and mapper.

interactive the execution mode in which input in accepted from the
keyboard.

internal-name a fixed-length name, having as scope a single module.
Segments, externals, types, gates, and descriptors all have
internal names.

interrupt descriptor table the descriptor table that houses up to 256 interrupt, trap,
and/or task gates. It is used to mediate access to routines that
handle interrupt and exception conditions. Also called IDT.

interrupt gate the descriptor that points to an interrupt service routine, the
use of which disables interrupts.

intersegment reference a reference to a location in a different segment from the
segment that contains the reference.

intrasegment reference a reference to a location in the same segment as the segment
that contains the reference.

194 Glossary

LDT see local descriptor table.

LDT selector a selector installed in a TSS that points to a particular LDT.

LIB386 see Intel386 librarian.

librarian see Intel386 librarian.

library an object library consisting of one or more sets of linkable
modules. Object libraries are produced by LIB386 and reside
in library files.

library command levels the hierarchical structure of the LIB386 command set. The
three levels are operating system level, initial command level,
and action command level.

library file a file that contains a collection of linkable object modules
indexed by module names at least.

library name the name of a library that resides in a library file.

library section a portion of an object library containing a set of linkable
modules and corresponding directories.

limit the segment attribute that defines the offset of the last byte in
the segment.

linkable file a file containing a sequence of linkable modules. Through
incremental linking, BND386 can combine linkable modules
produced by translators into a single linkable module.

linkable modules an object module created by Intel386 translators or by
BND386 during incremental linking; a linkable module
requires further processing before it can be executed.

linking a process of BND386, in which segments from one or more
linkable input modules are combined and references between
them are resolved.

loadable file a file containing a single loadable module. Loadable files are
produced by BND386 or by the BLD386 System Builder.
They are consumed by loaders, debuggers, and mappers.

loadable module see dynamically loadable module. A module for loading onto
a running system.

loader a system utility that loads the user's program into the system's
memory and initiates its execution.

load-time-expandable
segment

a segment whose limit can be extended up or down at load
time.

Intel386 Family Utilities User's Guide Glossary 195

local descriptor table a table that houses up to 8191 descriptors that can be private
to a task; an LDT can contain only segment descriptors, task
gates, and call gates.

local symbols all symbols that are found in the SYMBOLS subsection of
the DEBTXT section in an input object module.

logical segment portions of object code that contain logically similar
information created by translators.

MAP386 see Intel386 mapper.

mapper see Intel386 mapper.

module name the programmer-assigned name for a linkable module.

no-combine the combine-type associated with code and data segments
that BND386 does not combine; these include ASM386
segments that are not PUBLIC, and PL/M-286 segments
compiled under the LARGE model of segmentation.

non-executable file an object file in a non-loadable format. Files in the
"linkable" or "library" format.

non-executable module an object module in a non-loadable format. Modules in files
in the "linkable" or "library" format.

non-interactive the execution mode in which input is redirected from a
command (batch) file.

non-sharable segment a segment whose access attribute is read-write.

normal the combine type associated with code or data segments that
contain ASM386 PUBLIC information or PL/M-286
information not compiled under the LARGE model of
segmentation.

object library a set of library sections.

object module format the structure of an object module.

offset a byte address in a segment.

osinfo the operating system information field in the object file.

page heading information placed at the top of each page, including product
name, optional title string, system date and time, page
number, and several blank lines.

pathname see file name.

196 Glossary

physical segment a contiguous piece of memory that cannot exceed 64 K bytes
in length for USE16 attribute or 4 gigabytes for USE32
attribute.

PL/M-286 the compiler used to generate 80286 modules from source
programs written in the high-level block-structured PL/M-
286 language. These programs can run on the 80286 as well
as on the Intel386.

PL/M-386 the compiler used to generate Intel386 modules from source
programs written in the high-level block-structured PL/M-
386 language. These programs can run on the 80286 as well
as on the Intel386.

privilege hierarchy an aspect of the Intel386 protected-mode memory protection
scheme that provides up to four different levels of access to
segments.

privilege level an attribute that ranges from 0 to 3 and controls the use of
privileged instructions as well as access to descriptors and
their segments; access in a protected-mode system uses three
kinds of privilege levels current privilege level, descriptor
privilege level, and requested privilege level.

privilege rules rules that govern how and when a task can access a segment
These rules employ the following parameters: the type of
segment to be accessed, the instruction used, the type of
descriptor used, the current privilege level, the requested
privilege level, and the descriptor privilege level.

protected mode see protected virtual address mode.

protected mode architecture the Intel386 processor configuration that supports virtual
memory addressing and protection.

protected virtual address
mode

the Intel386 processor mode of operation that provides virtual
memory addressing and memory protection; system data
structures recognized by the processor are implemented in
this mode.

protection Intel386 protected-mode mechanisms ensuring that code and
data segments are insulated from improper usage and that the
critical CPU execution state control instructions are properly
implemented.

public (1) a symbol or procedure available for intersegment or
intrasegment references; (2) a kind of ASM386 segment.

Intel386 Family Utilities User's Guide Glossary 197

public definition a public symbol's translator definition.

public symbol an address exported by a linkable module. The address is
imported by modules through use of an external symbol with
matching symbolic name.

readable segment a code segment that can be read.

read-only segment a data segment that can be read only.

read-write segment a data or stack segment that can be written to.

real address an address that specifies an absolute location in memory: in
Intel386 protected mode, the real address has 32 bits.

reference resolution the process by which public definitions are paired with
external references.

relocatable information code or data whose location is defined at load- or run-time.

requested privilege level the privilege level defined by a selector's two least-significant
bits; it is used with the descriptor privilege level to establish
the privilege levels a task can access.

RPL see requested privilege level.

run time the time of program execution.

section a portion of an object module containing all information of a
particular kind about that module; debug information,
descriptors for segments and gates, program text (i.e., code
and data), symbolic names for descriptors, program text,
debug text, fix-ups, etc.

segment see logical segment and physical segment.

segment attributes see attributes.

segment base the 32-bit address at which a segment begins.

segment descriptor a descriptor referring to code, stack, and data segments in a
program.

segment limit the offset of the last byte in a segment.

segment map the BND386 print file section that provides information for
all segments in the output module.

selector an index into a descriptor table; GDT and LDT selectors are
16-bit pointers that index the GDT and LDT.

198 Glossary

sequence number a decimal number indicating the sequence of local descriptor
tables in the GDT.

session creating a new library, and adding, replacing, or deleting
modules to/from a single target library file with the LIB386
Utility. Multiple sessions can occur sequentially in a single
LIB386 invocation.

sharable segment a segment whose access attribute is read-only, execute-only,
or execute-read.

slot a location in a descriptor table.

special system data segment
descriptors

TSS and LDT descriptors.

standard output device a generic term for console, used in DOS operating systems,
and :co: in iRMX operating systems. The system display or
print medium.

symbol (1) a variable in a module; (2) an internal representation in
BND386 of an object module entity.

stack a combine type associated with stack segments.

system builder see Intel386 System Builder.

system building the configuration of a system, especially the selective
definition of system data structures and tasks and the
allocation of privilege among segments and descriptors.

system data structures descriptor tables, segment and system descriptors, and task
state segments.

system descriptors special system data segment descriptors and control transfer
descriptors.

system file the file that contains the information an operating system
must have for system calls to be possible; in the Intel386
Utilities, system files are linkable files created by Intel386
System Builder; they are called export files.

table indicator a bit in a 16-bit selector that defines whether the selector
points to the GDT or an LDT.

target library the library file specified by LIB386 in the invocation line or
specified in the latest GET library command.

Intel386 Family Utilities User's Guide Glossary 199

task a single sequence of execution. A task has an associated
processor state and a well-defined address space that has
specific access parameters. The processor state is defined by
the contents of the TSS; the address space and access
parameters are defined by descriptors.

task gate a gate used to transfer control to another task; a task gate
refers to a TSS.

task state segment the special system segment that stores a task's initialization
and restart values; the TSS saves a task's entire execution
state, e.g., registers, address space, and a link to the previous
task.

text program code and data.

translator an assembler or compiler.

trap gate a descriptor that points to an interrupt service routine. A trap
gate does not disable interrupts.

TSS see task state segment.

TSS descriptor a descriptor that defines and points to a TSS.

USE16 a segment with 32-bit attribute off. The segment is limited to
64K bytes. For code segments, the default data width and
address width is 16 bits.

USE32 a segment with 32-bit attribute on. The segment is limited to
4G bytes. For code segments, the default data width and
address width is 32 bits.

virtual address an address that contains a selector and an offset value.

warning message a BND386, LIB386, or MAP386 message indicating that a
user error may have occurred. The output object file is valid.

writable segment a stack or data segment that can be written to.

■■ ■■ ■■

200 Glossary

Intel386 Family Utilities User’s Guide Index 201

Index

A
absolute address, 133, 134, 136
ACCESS, 46
access rights, 8, 10, 12
Access rights, 9
action command level, 62
ADD command, 67

LIB386, 67
align attribute, 11
alignment types, 46
ASM286, 9
ASM386, 8, 9, 11, 46

B
BACKUP, 59
BACKUP command

LIB386, 70
BACKUP control

LIB386, 59
backup files, 70
BATCH control

LIB386, 59
BLD386, 5, 6, 95, 99
BND386

console messages, 20
control files, 17
controls, 21
debug information, 11
error messages, 20
examples, 48
input, 6
invocation line, 6
major functions, 5
Operational summary, 2
output, 6
print file, 5, 19, 21, 25

sign-off message, 20, 25
sign-on message, 20

BND386 controls
CONTROLFILE, 23
DEBUG, 24
debug information, 19, 21, 24, 36, 51
ERRORPRINT, 20, 25, 33
EXCEPT, 35
INT286, 27
LOAD, 28, 37
NAME, 28, 30
NOLOAD, 28
NOOBJECT, 31, 33
NOPRINT, 33
NOPUBLICS, 35
NOPUBLICS EXCEPT construction, 35
NOTYPE, 42
OBJECT, 31, 34
PRINT, 33
PUBLICS, 35
PUBLICS EXCEPT, 35
RCONFIGURE, 28, 37
RENAMESEG, 39
SEGSIZE, 40
TYPE, 42

BND386 error messages, 147
bootloadable modules, 95
BSS variables, 67
byte-aligned, 11

C
Code segments, 10, 12
COMBINE NAME, 46
combine type, 11
COMBINE TYPE, 46
command syntax

LIB386, 64

202 Index

common blocks, 11, 46

common segments, 13

COMPRESS command

LIB386, 71

console messages

BND386, 20

LIB386, 60

MAP386, 103

control files

BND386, 17

MAP386, 100

CONTROLFILE control
BND386, 23
MAP386, 100, 107

controls
MAP386, 102, 104

cross-reference, 95, 98, 102
Cross-reference, 128
Cross-Reference, 95, 97

D

data segments, 11, 40
Data segments, 10, 12
DEBUG control

BND386, 24
debug information, 95
Debug information, 98
defaults

LIB386, 59
MAP386, 101

DELETE command
LIB386, 72

Descriptor names, 97
descriptor privilege level (DPL), 97, 131
descriptor segment naming, 139
descriptor table, 15
Descriptor table creation, 7
DOS and iRMX invocation syntax

BND386, 16
LIB386, 58
MAP386, 100

E
error messages
MAP386, 102, 103, 109
Error messages, 128
ERRORPRINT control

BND386, 25
MAP386, 109

examples
BND386, 48
LIB386, 91

Background session, 94
Multiple session, 93

MAP386
DOS, 140

EXCEPT, 112, 121
export files, 6
external declaration, 14
external symbols, 16, 19, 24, 42, 126, 127

F
fatal error, 20
FIND command

LIB386, 74
Fix-up processing, 7

G
gaps, 11, 13
gate map, 102, 121, 132
Gate map, 95, 98, 128
Gate Map, 97, 118
GET command

LIB386, 76
global descriptor table (GDT), 15

H
header

BND386, 45
MAP386, 103

Header, 128
HELP command

LIB386, 78

Intel386 Family Utilities User’s Guide Index 203

hierarchical levels
Action, 62
Initial, 62
Operating system, 62

I
iC-386 modules, 48
IDT, 97, 130, 134
incremental linking, 5
incrementally built files, 6
initial command level, 62
input

BND386, 5, 6
LIB386, 56
MAP386, 95

Input file, 6
INT286 control, 27
interface, 27
interrupt character, 64
invocation line, 56, 98

L
LDT, 15, 97, 130, 133, 134, 136, 139
LIB386

Command syntax, 64
Console messages, 60
defaults, 59
Examples

Background session, 94
Multiple session, 93
Single session, 91

Hierarchical levels, 62
input, 56
Invocation controls, 59
Major functions, 55
Operational summary, 3
output, 56
Prompt, 60
Queries, 61
Summary of commands, 64
Transfer of levels, 62

LIB386 commands
ADD, 67
BACKUP, 70
COMPRESS, 71

DELETE, 72
FIND, 74
GET, 76
HELP, 78
LIST, 79
QUIT, 82
REPLACE, 85
SET, 87
UPDATE, 90

LIB386 error messages, 157
LIB386 invocation controls

BACKUP, 59
BATCH, 59
NOBACKUP, 59
NOBATCH, 59

library files, 5, 6, 55, 95, 96
processing, 56, 57

LIMIT, 45
line numbers, 98, 112, 113, 122, 133, 134
linkable file, 67
linkable files, 95, 98
linkable modules, 5, 6, 16, 36, 41, 95, 96, 97, 99,

100
linkable object modules, 55, 67
LIST command

LIB386, 79
LOAD, 6
LOAD control, 21

BND386, 28
loadable modules, 14, 41, 45
local descriptor table, 15
local symbols, 97, 122, 133
log address, 136
logical address, 133, 134

M
major functions

BND386, 5
LIB386, 55
MAP386, 95

MAP386
console messages, 103
control files, 100
controls, 102, 104
defaults, 101
DOS and iRMX invocation syntax, 100

204 Index

error messages, 102, 103, 109
Examples, 140
major functions, 95
Operational summary, 3
output, 95, 97, 98
print files, 128

MAP386 control
NOSYMBOLSORT, 123
SYMBOLSORT, 123

MAP386 controls
CONTROLFILE, 107
ERRORPRINT, 109
NOERRORPRINT, 109
NOOBJECT, 110
NOPAGING, 117
NOPRINT, 118
NOTYPE, 125
NOTYPECHECK, 126
NOXREF, 127
OBJECT, 110
OBJECTCONTROL, 111
OSINFO, 114
PAGELENGTH, 115
PAGEWIDTH, 116
PAGING, 117
PRINT, 118
PRINTCONTROLS, 120
TITLE, 124
TYPE, 125
TYPECHECK, 126
XREF, 127

MAP386 error messages, 179
modular program development, 1, 35
module list, 6, 98, 99, 102
Module list, 95, 128

N
NAME control

BND386, 30
NOBACKUP control

LIB386, 59
NOBATCH control

LIB386, 59
NOCOMBINE, 46
NODEBUG control

BND386, 24

NOERRORPRINT control
BND386, 25
MAP386, 109

NOLOAD control, 21
BND386, 28

NOOBJECT control
BND386, 32
MAP386, 110

NOPAGING control
MAP386, 117

NOPRINT control
BND386, 33
MAP386, 118

NOPUBLICS control
BND386, 35

normal segments, 11, 13
NOSYMBOLSORT control

MAP386, 123
NOTYPE control

BND386, 42
MAP386, 125

NOTYPECHECK control
MAP386, 126

NOXREF control
MAP386, 127

O
OBJECT control

BND386, 32
MAP386, 110

OBJECTCONTROL controls
DEBUG, 111
EXTERNAL, 111
LINE, 111
MAP386, 111
NODEBUG, 111
NOEXTERNAL, 111
NOLINE, 111
NOPUBLICS, 111
NOSRCLINES, 111
NOSYMBOLS, 111
PUBLICS, 111
SRCLINES, 111
SYMBOLS, 111

offset-based symbol, 133
OMF386, 5

Intel386 Family Utilities User’s Guide Index 205

operating system level, 62
operational summary

BND386, 2
LIB386, 3
MAP386, 3

osinfo, 96
OSINFO control

MAP386, 114
output

BND386, 6
LIB386, 56
MAP386, 95, 97, 98

Overview
Utilities, 1

P
padding, 13
PAGELENGTH control

MAP386, 115
PAGEWIDTH control

MAP386, 116
PAGING control

MAP386, 117
PL/M-286, 11, 46
PL/M-386, 6, 11, 46
pointer-based symbol, 133
present bit, 131
PRINT control

BND386, 33
MAP386, 118

print file, 98, 102, 103
print files

MAP386, 128
PRINTCONTROLS, 120
privilege level, 11, 21
program development, 1
prompt, LIB386, 60
public declaration, 14
public map, 102, 121, 136
Public map, 95, 98, 128
Public Map, 97, 118
public symbol, 6, 14, 15, 16, 35, 36, 112, 121,

136, 138
public-external symbols, 5
PUBLICS control

BND386, 35

Q
queries

LIB386, 61
QUIT command

ABORT, 82
EXIT, 82
INITIALIZE, 82
LIB386, 82

R
RCONFIGURE control

BND386, 37
RCONFIGURE control

BND386, 6, 21
relocatable descriptor table, 15
RENAMESEG control

BND386, 39
REPLACE command

LIB386, 85

S
scoping information, 123
segment, 8
segment combination, 9, 11, 15, 39, 41

blank common, 11
common, 11
normal, 11

segment length, 40, 45
segment limit, 45, 49
segment map, 5, 26, 33, 41, 45
Segment map, 95, 98, 128
Segment Map, 97, 118
SEGSIZE control

BND386, 40
selector values, 130
SET command

LIB386, 87
NAME, 87
PAGELENGTH, 87
version, 87

sign-off message
LIB386, 60, 61

sign-off messages
BND386, 20

206 Index

MAP386, 103
sign-on message

BND386, 20
LIB386, 59

sign-on messages
MAP386, 103

slot number, 131
source line numbers, 112
stack segment, 11
stack segments, 40
Stack segments, 10
subsystems, 35
summary of commands

LIB386, 64
symbol map, 102, 121, 122, 123, 133
Symbol map, 95, 98, 128
Symbol Map, 97, 118
symbol name, 136
symbol type, 97, 136
SYMBOLSORT control

MAP386, 123

T
table index, 97
table map, 102, 121, 130
Table map, 95, 98, 128
Table Map, 97, 118
target library, 56, 57
target operating system, 95, 114
task map, 102, 121, 136
Task map, 95, 98, 128
Task Map, 97, 118
task state segment (TSS), 15
TITLE control

MAP386, 124
transfer of levels

LIB386, 62

TSS, 7
TSS:, 15
type checking, 5, 19, 42, 126
TYPE control

BND386, 42
MAP386, 125

type mismatch, 137
TYPECHECK control

MAP386, 126

U
unresolved externals, 6, 14, 16
unresolved symbols, 33, 42
UPDATE command

LIB386, 90
USE attribute, 9, 10
USE16, 8, 10, 12, 13, 27
USE32, 10, 13, 27
Utilities

Overview, 1

W
warnings, 20
word count, 97, 132, 136
word-aligned, 11
write-protected, 76, 90

X
XREF control

MAP386, 127

Z
zero-length segments, 41

	Intel386 Family Utilities User’s Guide
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Introduction
	Overview
	Program Development
	Operational Summary: BND386
	Operational Summary: LIB386
	Operational Summary: MAP386

	Chapter 2: Using the Intel386™ Binder
	Major Functions of BND386
	Input and Output
	BND386 Processing
	Segment and Segment Combination
	Segment Attributes
	Segment Names
	USE Attribute
	Segment Length
	Access Rights
	Combine Type
	Align Attribute
	Privilege Level
	Criteria for Segment Combination
	Attributes of the Resulting Segment
	Length of the Resulting Segment

	Reference Resolution
	Fix-up Processing
	Descriptor Table Creation
	Task State Segment Creation
	Invoking BND386
	DOS and iRMX OS Invocation Syntax

	Control Files
	Using a Control File on DOS and iRMX(OS

	BND386 Defaults
	Output File Names
	Controls

	Console Messages
	BND386 Controls
	CONTROLFILE
	DEBUG/NODEBUG
	ERRORPRINT/NOERRORPRINT
	INT286
	LOAD/NOLOAD
	NAME
	OBJECT/NOOBJECT
	PRINT/NOPRINT
	PUBLICS/NOPUBLICS
	RCONFIGURE
	RENAMESEG
	SEGSIZE
	TYPE/NOTYPE

	P
	Print File
	Header
	Segment Map
	Input Modules List
	Unresolved Symbols List
	Warning and Error Messages

	Using BND386: Examples

	Chapter 3: Using the Intel386 Librarian
	Major Functions of LIB386
	Input and Output
	The Target Library
	Library Sessions
	Invoking LIB386
	DOS and iRMX(Invocation Syntax
	Invocation Controls
	LIB386 Defaults

	Console Messages
	Queries
	Display Messages
	Error Messages

	LIB386 Commands
	Hierarchical Levels
	Transfer of Levels
	Effect of Entering the Interrupt Character
	Summary of Commands
	Command Syntax
	ADD
	BACKUP
	COMPRESS
	DELETE
	FIND
	GET
	HELP
	LIST
	QUIT
	REPLACE
	SET
	UPDATE

	Using LIB386: Examples
	Single Session
	Multiple Session
	DOS Batch Session

	Chapter 4: Using the Intel386 Mapper
	Major Functions of MAP386
	Input and Output
	MAP386 Module Processing
	Executable Modules
	Linkable Modules in Linkable Files
	Linkable Modules in Library Files

	Invoking MAP386
	DOS and iRMX Invocation Syntax

	Control Files
	Using a Control File on DOS and iRMX(

	MAP386 Defaults
	Output Identifiers
	Controls

	Console Messages
	MAP386 Controls
	CONTROLFILE
	ERRORPRINT/NOERRORPRINT
	OBJECT/NOOBJECT
	OBJECTCONTROL
	OSINFO
	PAGELENGTH
	PAGEWIDTH
	PAGING/NOPAGING
	PRINT/NOPRINT
	PRINTCONTROLS
	SYMBOLSORT/NOSYMBOLSORT
	TITLE
	TYPE/NOTYPE
	TYPECHECK/NOTYPECHECK
	XREF/NOXREF

	MAP386 Print Files
	Header
	Module List
	Table Map
	Segment Map
	Gate Map
	Symbol Map
	Public Map
	Task Map
	Cross-Reference Map
	Warning and Error Messages

	Descriptor Segment Naming
	DOS and iRMX(Examples Using MAP386

	Appendix A: BND386 Error Messages
	System-Level Exceptions
	Invocation or Input Object Exceptions
	Internal Processing Exceptions

	Appendix B: LIB386 Error Messages
	Processing Errors
	LIB386 Processing Error Messages
	System Interface Messages

	Appendix C: MAP386 Error Messages
	System Interface Level Errors
	Semantic and Object-File Errors
	Internal Processing Errors

	Glossary
	Index

