RadiSys - Intel386 Family
Utilities User’s Guide

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0579-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is aregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 0 1999 by RadiSys Corporation

All rights reserved.

Quick Contents

Chapter 1. Introduction

Chapter 2. Using the Intel386 Binder
Chapter 3. Using the Intel386 Librarian
Chapter 4. Using the Intel386 Mapper
Appendix A. BND386 Error Messages
Appendix B. LIB386 Error Messages
Appendix C. MAP386 Error Messages
Glossary

Index

Intel386 Family Utilities User's Guide iii

Notational Conventions

The notational conventions described below are used throughout this manual :

UPPERCASE Characters shown in uppercase, monospace font must be entered in the

italics
[]

{}

[,
punctuation

order shown. The characters may be entered in either uppercase or
lowercase.

Monospaced italics indicate a metasymbol that may be replaced with an
item that fulfillsthe rules for that symbol. Metasymbolsin tables are
not always shown in italics.

Brackets indicate that the enclosed arguments or parameters are
optional.

Braces indicate that one and only one of the enclosed entries must be
selected unless the entire field is also surrounded by brackets, in which
case choosing an entry is optional .

The vertical bar separates options within brackets|[] or braces{ }.

Ellipses indicate that the preceding item may be followed by other like
items; the items must be separated by single spaces, but no additional
punctuation is required.

The brackets enclosing comma and ellipsis indicate that the preceding
item may be followed by other like items; the items must be separated
by commas.

Punctuation other than ellipses, braces, and brackets must be entered as
shown.

This typeface represents what you type in and is used for examples of
machine response or other computer displays.

Contents

1 Introduction
OVEIVIBIV ...ttt st b et bbb e et eae e e e e e eesee b e 1
Program Devel OPMENEccoueieiee et 1
Operational SUMMary: BND386ccccoieiirireieiesiese e 2
Operational SUMMAry: LIB386cccceeriieriieiesere e 3
Operational SUMMary: MAP386cccoeiiiiiiere e 3
2 Using the Intel386™ Binder
Major FUNCtions Of BND386cccccvvirereeeereeesieseesie e ssese e seeseeseeseenes 5
g 0L 1 =00 @ U 1 o RS 6
BND386 PrOCESSING. ... eeeveererueereereessessessessessesseeseessessessessesssssesssessessessessessessesses 7
Segment and Segment CoOMDINGLION.........ccccevererere e 8
Segment AtHDULES........coo e 8
SEOMENE NAIMES.....ceceieiiieeeie et e et e e te e sreesreesreenneaneas 9
USE ALIDULE. ...t e 10
SegMENt LENGEN......cceiecieee e e 10
ACCESS RIGNES ..ot st nneas 10
(©0 T o1 0T I8/ o= TS 11
ALIGN ARITDULE ... st nneas 11
PrivilegE LEVE ...t 11
Criteriafor Segment Combination..........ccccoevvvrenieneeeeieeee e 12
Attributes of the Resulting SEgMENtcocvveierereeceeererere e 12
Length of the Resulting Segment.........cccccvvieveeieveseseceeeeese e 13
Reference RESOIULION.........coeiiirieiriese e 14
FiX-UP PrOCESSING ...e.veveeeeeeeeeeiestestesesseeseeeeseeseessessessessesssessessessessesssssessessennes 15
DesCriptor Table Creation..........cocveeveieeriereeeeseesese e et e e sre e 15
Task State SegMENt CreatioN........coecevererie s 15
INVOKING BND3BBceeueeueeieieeereeiesiesee e seesses e seesaes e sressesaeseesseseeseesseseesnnns 16
DOS and IRMX OS INVOCALiON SYNAXccvvvvreereeeereeeeieneesieseeseeseeneens 16
CONLIOL FIES ..t 17
Using aControl Fileon DOSand iRMX OS.......ccccocvvvveeveerenenienee e 17
BND386 DEfALILS.......cveueeeireeieieriesiere e 19

Intel386 Family Utilities User’s Guide Contents

OULPUL FITE NBMES ...t 19

CONLIOIS.....e ettt b e e nneaeas 19
CONSOIE IMESSAGESeeeeieieeeeie ettt sttt se et e b ae e e e e e e 20
BND386 CONLIOIS.......ccuiiiiieiiriiieteriee ettt 21

CONTROLFILE ...ttt 23

DEBUG/NODEBUGcocooiiiiiitieintsiee e 24

ERRORPRINT/NOERRORPRINTcoctiiiririeinenieesiesieese e 25

INT28B......ccueeieeeiirieeet sttt bbb 27

LOAD/NOLOAD ..ottt 28

NAME ..o 30

OBJECT/NOOBUIECT ..ottt sttt sne s 31

PRINT/NOPRINT ..ottt 33

PUBLICS/NOPUBLICS ..ottt 35

RCONFIGUREooeiiiiiieiieieinte et 37

RENAMESEG ..ottt 39

SEGSIZE......o ettt e e 40

TYPE/NOTYPE......ctiiiiriiiett ettt 42
PrINE FTT. et 43

HEAOEY ... 45

SEOMENE MBD ... e et e 45

INPUE MOAUIES LISt ...t e e 47

Unresolved SymbolS Listc.ooiiiriieee e 47

Warning and Error MESSA0ESccceiuerieriererierieeeeie e 48
Using BND386: EXAMPIEScueiiiieiee e 48

3 Using the Intel386 Librarian

Major FUNCLIONS Of LIB3BB........ccccevuerierierieseiereeseeeeaeseese e ee e e sseseeneeneens 55
g 010100 @ U 1 o 56
The Target LIDrary ..cc.ccceceeeie et st 56
Library SESSIONS.......ccuiiereieieeseeteeieeeesteste s e ste e s e eeesaestestesrestesseeseseensenseseens 57
INVOKING LIB3B6ccvecviieiieciiie ettt ese e e e s sne s 58
DOS and IRMX [NVOCELION SYNAXccvvvveeeereeeeeeeeneeseseeseseeseesseeeeeeneens 58
[NVOCELION CONEFOIS.. ...ttt e 59
LIB386 DEfALILS......cveeereieeerieierieien e 59
CONSOIE MESSAGESveveveereeeeie e st se st e e et re e se e e sresresnesne e e e eneenes 60
QUETIES ..ttt sttt ettt e e et et e et e e besaaesbeesbeesbeetesanesaeeebeeteentenns 61
Display MESSAES.......eeeieerierieeeeiesiesesestesteseeseesaessesaeseestesseeneensenseneesnens 61
ErTOr IMESSAgES. ..o iveeiiee ettt ettt ae e sne e sneeneeeeesneennes 61
LIB386 COMIMANGSoiveuiriirieiirierieesiesieeete st ss e eens 62
Hierarchical LEVEIS.......coovieiieee e 62
Transfer Of LEVEIS.....ccciiiiieee s 62
Effect of Entering the Interrupt Character.........cccocevevceveneveseseeceeeneens 64

vi Contents

Summary of COMMENGS........ccciiiieiireeeeeee e 64
(0001010100 IS0 = QOSSP 64
N I] SRR 67
BACKUP. ..ottt st sttt st 70
COMPRESS.......cooiciitiieitsiesee st sae e s s se s senes 71
D] I TS 72
FIND <ottt ettt st sttt st e et e st et st nentenns 74
L SRS 76
HELP. ..ottt s sttt 78
01 USSR 79
L@ SRS 82
REPLACE ..ottt ettt sttt st sttt st naens 85
RS SRS 87
UPDATE ..ottt st sttt et e se et saesente e 90
UsiNg LIB386: EXAMPIESceoieiieie et e 91
SINGIE SESSION. ...ttt ettt se et ee st ne e se et see e e 9
MUILTPIE SESSION ...ttt s snn 93
DOS BACh SESSION.....coiiieiiiiiieeie e s enea 94
Using the Intel386 Mapper
Major FUNCtioNS Of MAPSBBE.........ccccoviireeeeiereee s e nes 95
g 010 1= a0 @ U 1 o | OSSP 96
MAP386 MOAUIE PrOCESSINGccveverieieieiesiesiesieseseesiesiesre e sesre e sse e sreseesnens 98
EXecUtable MOAUIES ..o 98
Linkable Modulesin Linkable FIles.........ccocooviniinnienneneee e 98
Linkable Modulesin Library FIles.........cccooeveieieeiicirieeeeeeeeeeeeeeeenens 99
INVOKING MAPSB6coecuieiieicieceeeeeetee et e e e s a et e ae e sneseeneeneens 100
DOS and iIRMX 1NVOCALiON SYNEAXcvververeerierieieesreseeeeeeseessessesseseeseens 100
CONLIOL FIES ..t 100
Using aControl File on DOS and iRMXcccovvvivveneneeieee e 101
MAPSB8E DEfAUILS......ccueeeeiriiierieeer e 101
(O 101§ o100 o L= (1= £ 102
L0011 0 1= SRS 102
CONS0IE MESSAGES......veveeveeieeeeie e e ste st s et e e e e et sreeae e e eaesaetesrenrenneens 103
MAPSBBE CONLIOIS......coueuiieirieiiriisieses e 104
CONTROLFILE. ..ottt 107
ERRORPRINT/NOERRORPRINTccoiiiririerene e 109
OBJECT/NOOBUIECTcoiitiieiiitinieierienieesiesee s seenes 110
OBJECTCONTROLoeitiiiieiiriiieiesieeeie s seens 111
OSINFO ..ottt st b e aens 114
PAGELENGTH ..ottt e 115
PAGEWIDTH ..ottt st s 116

Intel386 Family Utilities User’s Guide Contenis

PAGING/NOPAGING.......coieiiirieiritrieisie ettt 117

PRINT/NOPRINT ..ottt e 118
PRINTCONTROLS. ...ttt 120
SYMBOLSORT/NOSY MBOLSORTccctiirieiirieneeiesieesre e sreseere e 123
TITLE oot 124
TYPE/NOTYPE......ctiiiiiriiiet ettt 125
TYPECHECK/NOTYPECHECKcooiiriieeiriiieieneeeeseeeee s 126
XREF/INOXREF ...ttt 127
MAPSB8E Print FilES........cooiieiiieeeitiietesee s 128
HEAOEY ... 129
MOAUIE LISE ...ttt 129
TADIE M@D .. e e 130
SEOMENE MBD ...t e et e 131
GALE IMBP ...ttt e e e e e nre b 132
SYMBOI M8 ...t et 133
PUBIIC MG ..ot st 136
TASK M8, ... eeveeeieet et 136
Cross-REFEIrENCE Mapc.oiuerieieeeee e s 137
Warning and Error MESSA0ESccceiverieriereniereeeeie e 138
Descriptor Segment NamMiNGccoeoeiereneneeeereere e 139
DOS and iIRMX Examples Using MAPS386..........ccccoerirerieieneneneneseeie s 140

A BND386 Error Messages

System-Level EXCEPLIONS.......ccvieeeeeeeesesese e 148
Invocation or Input Object EXCEPLIONS........cccvreriereeieeeeeeseses e 148
Internal Processing EXCEPLIONS.........ccccvvviirieieeereee e 167

B LIB386 Error Messages

PrOCESSING EFTOS... ettt sttt e b e e e e e 157
LIB386 Processing Error MESSAgES.c.cvvererueriereeeeieeseesie s siesesneseeneesee e 158
System INterfaCe MESSAgES.ueiueruereeieieriesie ettt 165

C MAP386 Error Messages

System Interface LEVEl EFTOrS.......cvvveeeieerere et 179
Semantic and ODJECt-Fil@ EFTOrScccccvveeeiece e 180
Internal ProCeSSING EITOrSc.viuvivieeciese ettt e 187

Vil Contents

Glossary 197

Index 209

Intel386 Family Utilities User’s Guide Contenis

Tables

Table 2-1. Matrix of Access Rights Assignments for Combined Segments.................. 12
Table 2-2. BND386 Controlsfor DOS and iRMX Operating Systems.........cccceeverene 22
Table 3-1. LIB386 Commands for DOS and iIRMX Operating Systems..........cccceeeveene 65
Table 3-2. Abbreviationsfor LIB386 COMMENGS..........ccoureererrererrreinenrerereneeesesnenenes 66
Table 4-1. MAP386 Controlsfor DOS and iIRMX Operating Systems.........cccccceveveene 104
Table 4-2. Standard Abbreviations for MAP386 CONtrolS.........ccoueerreenrennenenenreeens 106
Figures

Figure 1-1. Development of an Application Module ..o 2
Figure 2-1. BND386 Input and OULPULcoceererieieereeeeiese e 7
Figure 2-2. BND386 Segment CoOmMbiNatioN..........cocceereerienerene e 9
Figure 2-3. A Resolved Public-External Procedure Pair...........cccooeeeieiieeienieescieneene. 14
Figure 2-4. Sample BND386 Print File.........cccooiiiriiieieee e 44
Figure 2-5. BND386 Print File HEatercocooiiiiieeeee e 45
Figure 2-6. BND386 Print File Segment Mapccccoeriiineienene e 47
Figure 2-7. BND386 Print File Input Module Map...........cccerereinineneeere e 47
Figure 2-8. BND386 Print File Unresolved Symbol List........ccoooooiiiiiiinincicicneaee 48
Figure 2-9. BND386 Print File for Linkable Output Containing Unresolved Symbols. 50
Figure 2-10. BND386 Print File for Loadable Modules...........coooviiineiciniencneiee 52
Figure 3-1. LIB386 INput and OULPULceeiueriirierieieiniesie e seeie e 57
Figure 3-2. Levelsof LIB386 Command Set.........cccooereriieienenene e 63
Figure 3-3. Interactive Execution Example: A Single SEeSSioncccooeeveveneseseene. 92
Figure 3-4. Interactive Execution Example: Multiple Sessions.........ccoccceveveieneieene. 93
Figure 4-1. MAP386 Input and OULPULcccooerererinene e 96
Figure 4-2. MAP386 Print File HEaOErcocoiiieieeeeee e 129
Figure 4-3. MAP386 MOAUIE LiSt......ceceiieieieieeeee e 129
Figure 4-4. MAP386 Table MapD......coooiiiiee et 130
Figure 4-5. MAP386 SegMeNt M@cc.coiieieiinieneeeeeeee e 131
Figure 4-6. MAP386 Gate M@c.ceoieeeiiiiere et see s 132
Figure 4-7. MAP386 SymbBol Mapccoooiiiiiiirese e 135
Figure 4-8. MAP386 PUDIIC M@D......cc.oiiiiiiieieieeeee e s 136
Figure 4-9. MAPS86 TaSsKk MaDccururueeririiiririee sttt st s 137
Figure 4-10. MAP386 Cross-ReferenCe Mapccoceeeeerieiereene e 138
Figure4-11. Print File Example on DOS and iRMXccooiiiiiiiinine e 141
X Contents

Introduction

Overview

This manual describes how to use the Intel386™ Family utilities on DOS and
iIRMX® operating systems. The utilities consist of the following software tools for
modular program development:

» The BND386 binder produces a single-task, bootloadable object module in
Intel 386 Family Object Module Format (OMF386) by linking modules created
on Intel compilers or assemblers. Linking isthe process of combining segments
and resolving references. As an option, BND386 can combine linkable modules,
which can then be used as input to BND386 or to the BLD386 System Builder to
produce loadable modules.

e TheLIB386 librarian organizes linkable modulesinto libraries and provides
utilities for adding, deleting, or replacing library modules. L1B386 supports
many useful functions related to library classification, identification, and
mai ntenance.

* The MAP386 mapper generates a variety of listings describing the features of
linkable or loadable object files.

Used together to devel op both application and system software, BND386, L1B386,
and MAP386 provide the flexibility to accommodate a wide variety of system
designs.

Program Development

The Intel 386 utilities can be most effectively used for modular program development,
an efficient, proven approach to writing software. When alarge program is written
as aset of smaller, inter-related modules, errors are reduced, testing and debugging
are smplified, and documentation is made easier. For more efficient project
management and product updating, modules can be created by several programmers
and can be written in different languages.

Intel386 Family Utilities User's Guide Chapter 1 1

Figure 1-1 shows the typical development of an application module using BND386,
L1B386, and MAP386.

Source Printed
Files Maps
Y
Compiler MAP386
or Assembler Mapper
| Y
Load Loadable
Object Bé\ilrl?d3§6 Object
Module Module
"oBJ) —
Noload
Y Linked
Object
LIB386 v Library Module
Librarian | File ("LNK™)

OMO02004

Figure 1-1. Development of an Application Module

Operational Summary: BND386

BND386 produces either linkable or |oadable output modules. Options available for
use during BND386 invocation allow you to perform the following operations:

* Produce OMF386 bootloadable output for execution on an Intel 386 operating
system

» Produce linkable output, which can be stored in object libraries or reprocessed
with BND386 or with the BLD386 System Builder to create loadable output

» Perform type checking while resolving external public symbols

e Obtain aprint file containing a segment map, module information, and any error
messages. Error messages can also be directed to a separate file

» Control the contents of the output object module

2 Chapter 1 Introduction

BND386 enables you to control the contents of the output object module in the
following ways:

Include or exclude debug information and public symbol definitions in the output
module

Change the length of selected input segments
Change segment names

Adjust loadable module characteristics related to the operating system on which
the modules will execute

Chapter 2 gives additional details and examples on BND386 functions and use.
Appendix A explains the BND386 error messages.

Operational Summary: LIB386

L1B386 executes both in interactive mode (for running in the foreground) and non-
interactive mode (for running in the background). LIB386 enables you to perform
the following operations:

Create anew library of linkable object modules

Update an existing library by adding, deleting, or replacing modules
Display information about each library

Change library names and version numbers

Obtain on-line summaries of the syntax of each L1B386 command

Chapter 3 gives additional details and examples on L1B386 functions and use.
Appendix B explains the LIB386 error messages.

Operational Summary: MAP386

MAP386 enables you to perform the following operations:

Obtain a variety of listings, or maps, describing the contents of linkable or
loadable input modules. The maps include the following:

— Table Map lists descriptor names and corresponding indexes for Global
Descriptor Tables (GDTSs), Interrupt Descriptor Tables (IDTs), and Local
Descriptor Tables (LDTS).

— Segment Map lists names of segmentsin the input file and characteristics of
each segment, such as descriptor table index, access type, base, descriptor
privilege level, USE16/32 attributes, align attributes, and others.

Intel386 Family Utilities User's Guide Chapter 1 3

— Gate Map lists symbolic gate names and the characteristics of each gatein
the input file, such as descriptor table name, descriptor table index, gate
type, and others.

— Public Map lists public symbolsin the input file and their characteristics,
such as symbol type, word count, and logical address (and physical address,
if applicable).

— Symbol Map lists names of local symbolsin the input file and characteristics
of each symbol, such as symbol type, address, and others.

— Task Map lists, for each task in an input file, task characteristics, such as
initial privilege stack, flags, initial values of CS and EIP registers, the task's
LDT selector, and others.

— Cross-Reference Map lists, for each symbol in an input file, the symbol's
name and type, as well as the name of the module containing the symbol's
public definition and the names of modules containing external declarations
for the symbol. Thisisthe only map produced for linkable modules.

* Modify loadable or bootloadable files by selectively purging debug information.
e Addinformation specific to the operating system to loadable files.
» Control page formatting (e.g., page width and page length).

Chapter 4 gives additional details and examples on MAP386 function and use.
Appendix C explains MAP386 error messages.

Chapter 1 Introduction

Using the Intel386™ Binder

The BND386 binder produces |oadable or linkable modules by combining separately
trandated, linkable object modules, including modulesin library files.

Y ou can create two kinds of loadable, single-task modules: aloadable module that
can be loaded on an Intel386 protected-mode system under control of the operating
system or a bootloadable object module in Intel 386 Family Object Module Format
(OMF386).

As an option, you can create linkable modules. A linkable module can then become
input to BND386 or to the BLD386 System Builder for the next incremental linking
step or for final binding. Inincremental linking two or more linkable modul es output
by a compiler or assembler are combined into a single linkable module. Thislinkable
module then becomes input for the next incremental linking step or for final binding.

Major Functions of BND386

BND386 performs the following major functions:

» Createsalinkable module by combining linkable input modules. The linkable
module can be linked with other linkable modules through incremental linking.
A linkable file generated by BND386 can then become input to the BLD386
System Builder.

« Automatically selects required modules from specified libraries to resolve
symbolic references

* Resolves symbolic references from one input module to another. As an option,
BND386 performs type checking while resolving public-external symbols

e Createsaprint file that contains the segment map and other information

» Creates an OMF386 bootloadable module targeted for an Intel 386 operating
system

Intel386 Family Utilities User's Guide Chapter 2 5

Input and Output

BND386 accepts linkable modules from either 80286 or Intel 386 software
development products, including linkable modules produced by compilers or
assemblers such as ASM 386 and PL/M-386, linkable files output by BND286 or
BND386, library files created by L1B286 or LIB386, or export files produced by
BLD286 or the BLD386 System Builder containing entry points to the operating
system. Export files are treated as ordinary linkable files and so are not discussed
separately in this manual .

BND386 does not accept incrementally built files created with BLD286 or the
BLD386 System Builder.

Input files are processed in the same order in which they are specified on the
BND386 invocation line.

Each input file can be alibrary file or a non-library file, and each one can be
followed by alist of modules. Both factors determine how BND386 processes the
input file.

A library file contains one or more object modules as well as control information. A
module in alibrary file is processed if the moduleis explicitly listed on the
invocation line. If amodulelist is not specified for alibrary file, the binder only
processes modules if previoudly processed modules contain one or more unresolved
externals. Then the binder scans the library file for modules containing public
symbols that match the unresolved externals. Each such module is processed when
found. The scanning continues until the modules in the library cannot satisfy any
more unresolved externals, including any more unresolved externals encountered
while processing modules from the library.

As output, BND386 creates either an OMF386 bootloadable file targeted for an

Intel 386 operating system, or alinkable file that can become input to BND386 or the
BLD386 System Builder in a subsequent step. The BND386 RCONFI GURE control
produces an OMF386 bootloadable file. The LOAD control creates a single-task
loadable file that can be loaded on an Intel 386 protected-mode system under the
control of the operating system.

In addition, BND386 creates a print file that contains a segment map and other
information.

Figure 2-1 illustrates BND386 input and output.

6 Chapter 2 Using the Intel 386 Binder

Linkable Linkable
File(s) File
Invocation
Line

v

> Loadable

Y
A

BND386 File
Console
. . Messages Print
Libraries File

OMO02005

Figure 2-1. BND386 I nput and Output

CAUTION

The maximum size of aBND386 output fileis 8 Mbytes. If the
total of the combined image is greater than that, BND386 issues
Error 118: PACGE FI LE OVERFLOW

BND386 Processing

When BND386 creates alinkable or aloadablefile, it performs the following
functions, which are not directed by invocation controls:

Segment combination

Reference resolution

Fix-up processing

Descriptor table creation (only for loadable files)

Task state segment (TSS) creation (only for loadable files)

These functions are described in the following sections.

Intel Family Utilities User's Guide Chapter 2

Segment and Segment Combination

The Intel 386 processor uses a segmented memory scheme in which program
instructions and data are divided into logical units, or segments. There are two kinds
of segments: USE16 and USE32. A USE16 segment is output from 80286 utilities,
compilers, and assemblers and contains up to 64K bytes of code, data, or stack area.
A USE32 segment is output from Intel386 utilities, compilers, and assemblers and
contains up to 4 gigabytes of code, data, or stack area. The ASM 386 assembler can
output both USE16 and USE32 segments.

Intel compilers and assemblers support the concept of logical segments and can
produce object code that is already segmented. BND386 uses the output produced by
acompiler or assembler to take segmentation one step further, combining segments
with the same name and similar characteristics. Because similar segments from
separately trandated modules can be merged, the program as a whol e consists of
fewer segments and becomes more efficient.

BND386 combines segments of the same kind: code, data, or stack (see Figure 2-2).
During processing, BND386 checks the characteristics of each input segment and
combines segments that satisfy its combination criteria. The following sections
describe these combination criteriain detail.

Segment Attributes

The code, data, stack and other segments that constitute a translated program have a
variety of characteristics, such as symbolic name, size, and accessrights. These
characteristics are based in part on the kind of information in the segment and on the
features of the programming language in which the program is written.

The characteristics of a segment determine whether BND386 combines it with other
segments in modules processed during the same BND386 invocation. |If the
characteristics of two or more segments satisfy the combination criteria, BND386
combines them into one segment. The characteristics of the two original segments
determine the characteristics of the resulting segment.

8 Chapter 2 Using the Intel 386 Binder

Module 1 Output
Module
Code32
Data
Stack Code32
Code32
Code32
Module 2
BND386 ~ | Data
Code3?2 Binder “1 Dpata
Data Data
Stack
Stack
Stack
Module 3 Stack
Code32
Data
Stack
OM02006

Figure 2-2. BND386 Segment Combination

The following segment characteristics affect the process of segment combination:
e Segment name

* USE attribute

* Length (size)

e Accessrights

» Combinetype

e Align attribute

Segment Names

The name of a segment is the symbolic name assigned by the programmer in
ASM386 programs or by the compiler in high-level-language programs. For high-
level-language programs, the compiler assigns segment names according to the
model of segmentation used. Refer to the appropriate Intel compiler manual for the
names assigned to segments compiled under various segmentation models.

Intel Family Utilities User's Guide Chapter 2

USE Attribute

USE16 segments have up to 64K bytes, USE32 segments have up to 4 gigabytes. A
USE16 segment cannot be combined with a USE32 segment that contains code (that
is, has an execute access right). A USE32 segment that does not have execute access
rights can be combined with a USE16 segment as long as the other combination
criteriaare met. The resulting segment is a USE16 segment of up to 64K bytes.

Segment Length

Segment length is measured in bytes. The length of a given segment depends on how
much and what kind of information it contains. These factorsin turn depend on the
design of the program or the individual module.

Access Rights

10

Each segment in a program is assigned one of the following access rights during
translation:

* Read-only (RO)

* Read-write (RW)

» Execute-only (EO)

* Execute-read (ER)

Code, data, and stack segments may be assigned access rights as follows:
e Code segments. EO or ER access

» Datasegments: RO or RW access

e Stack segments. RW access

Chapter 2 Using the Intel 386 Binder

Combine Type

Each segment in a program is assigned a combine type during compilation.
Segments can have the following combine types:

Combine Type Segment Description
stack All stack segments

no-combine Code or data segments cannot be combined: for example,
ASM 386 segments that are not PUBLIC and PL/M-286
segments compiled under the LARGE model

common Segments contain named FORTRAN-386 common blocks
blank common Segments contain unnamed FORTRAN-386 common blocks
normal Code or data segments can be combined and do not contain

FORTRAN-386 common blocks: for example, ASM 386
segments that are PUBLIC or segments created by PL/M 386

debug Segments that contain information for debuggers. They are
combined like normal segments

Align Attribute

The align attribute specifies the boundary to which a segment isaligned. A byte-
aligned segment can be placed anywhere in memory. A word-aligned segment is
placed at an even address, and so on. During segment combination, if necessary,
BND386 inserts gaps between segments to comply with alignment requirements.

Privilege Level

Each segment has a privilege level between 0 and 3. Intel 386 compilers and
assemblers set the privilege level of all segmentsto 3. BND386 creates a single task
with asingle privilege level, and all segments have that privilege level, regardless of
original privilegelevel. The exception is gate descriptors exported from the
BLD386 System Builder, which retain their original privilege level.

Intel Family Utilities User's Guide Chapter 2 11

Criteria for Segment Combination
BND386 combines two segmentsiif all the following criteria are met:
» Both segments have the same name.
» Both segments have compatible access rights (see Table 2-1).
» Both segments have compatible USE attributes.
» Both segments have the same combine type and neither is of the type no-

combine.

Table2-1. Matrix of Access Rights Assignmentsfor Combined Segments

Original Segments RO RW EO ER
RO RO RW ER ER
RW RW RW . .
EO ER . EO ER
ER ER . ER ER

RO = Read only
RW = Read-write
EO = Execute only
ER = Execute-read

Attributes of the Resulting Segment

The attributes of the original segments determine the attributes of the combined
segment. The combined segment is assigned attributes as follows:

e Thename of the original segments

» The combine type of the original segments, if both were of the same combine
type

The combined segment is also assigned access rights based on the access rights of the
original segments (see Table 2-1).

Code segments with different USE attributes cannot be combined. Data segments
with different USE attributes are assigned the USE16 attribute when combined.

12 Chapter 2 Using the Intel 386 Binder

Length of the Resulting Segment

The length of the combined segment depends on the lengths, combine types, and
alignment attributes of the original segments, as explained below:

e When two normal segments are combined, BND386 starts by making the length
of the combined segment the sum of the lengths of the original segments. Then
BND386 adds bytes between segments, if necessary, to align the second segment
according to its alignment attribute. The combined segment may therefore be
longer than the sum of the lengths of the original segments.

* When two stack segments are combined, BND386 does not perform offset
relocation or alignment. The combined segment is as long as the sum of the
lengths of the original segments.

e When two common segments are combined, BND386 expects the segments to be
of the same length and does not perform offset relocation. The combined
segment is as long as either one of the original segments. An error isissued if
the segments are not of the same length.

* When two blank common segments are combined, BND386 makes the combined
segment as long as the longer of the two segments and does not perform
relocation or offsets.

BND386 can add up to three extra bytes to segments, in addition to the gaps
introduced for alignment. This length adjustment is called padding. BND386 adds
an extra byte to segments with both the USE16 attribute and RO, RW, or ER access
rights, so that 16-bit word references to the last byte in the segment remain valid.
BND386 adds three extra bytes to segments with both the USE32 attribute and RO,
RW, or ER access rights, so that 32-bit word referencesto the last byte in the
segment remain valid.

Intel Family Utilities User's Guide Chapter 2 13

Reference Resolution

BND386 attempts to resolve symbolic references among input modules. A symbolic
reference is a declaration of avariable, procedure, or label, either external or public.
Names of variables, procedures, and labels are called symbols. References are
resolved when BND386 finds a public declaration in the input modules for each
external declaration of the same symbol.

When an external declaration such as an externin C or acommon in ANS|
FORTRAN has no matching public, the compiler or assembler gives the total size of
the symbol. BND386 then allocates the maximum size of external matching symbols
in the input and initializes the allocated area to zero. In effect, this procedure
generates a public declaration to resolve the externals.

An unresolved external causes awarning when aloadable moduleis built and the
reference isleft undefined. However, unresolved externals are allowed in loadable
modules, because in some operating systems they can be resolved by the loader at
load-time. Multiple public symbols with the same name cause a warning.

Figure 2-3 shows aresolved public-external procedure pair in two linkable input
modules, one of them amain module.

VA NSMOD: BUFF$HANDLER do ;

K o e e e e e e e e e e e - - *
DECLARE BUFF (5) BYTE; * FOO. PROCEDURE (BUFFER$ADDR) PUBLI C; *

* *
K o e e e e e e e e e e e - - *

K e e e e e e e e e e e e - - *

* FOO PROCEDURE (BUFPTR) EXTERNAL; *

* * DECLARE BUFFER$ADDR POl NTER

* DECLARE BUFPTR PO NTER; *

* *

* *

* *

*END FOO, *

* *

END FQOG,

CALL FOO (BUFF);
END BUFF$HANDLER;

END MAI N$NbD,
Figure 2-3. A Resolved Public-External Procedure Pair

14 Chapter 2 Using the Intel 386 Binder

Fix-up Processing

Input segments may contain references to an unresolved external or to alogical
address, which consists of a segment selector and an offset in the segment. The
compiler or assembler passes fix-up information on each reference to BND386.
BND386 adjusts the offsets of logical addressesin the fix-up information to reflect
segment combination.

In generating a linkable module, BND386 performs the following fix-up operations:

» Replaces satisfied external symbol names with the logical addresses of the
corresponding public symbols.

* Adjustsall logical addresses referring to the combined segments to reflect
segment combinations.

In generating a loadable module, BND386 processes the fix-ups as follows:

» |f thetarget is specified by an external symbol that is satisfied by a matching
public symbol (either from the input or allocation by BND386), the external
symbol isreplaced by the logical address of the matching public symbal.

» |If thetarget refersto an unresolved symbol, the fix-up is output to the loadable
file, awarning isissued, and the fix-up is not applied. Fix-upsare output to the
loadable file in the section of the object that contains relocation information.

« |f thetarget is specified by a gate, the fix-up is applied using the gate selector.

» |If thetarget is specified by a global descriptor table (GDT) selector [internal
name], the fix-up is applied using the GDT selector.

Descriptor Table Creation

BND386 produces a descriptor table for loadable output. The table is either in the
format of afinal LDT (local descriptor table) ready to be loaded by the loader or in
the format of arelocatable descriptor table, in which the entry number of each
descriptor is not fixed and is set at |oad time. When the table is not necessarily final,
BND386 adds relocation information to the object file. This procedure allows the
loader to update each selector reference.

Task State Segment Creation

A BND386 loadable output module contains the basic elements of asingle task. In
each loadable module, BND386 provides information that enables the loader to
congtruct atask state segment (TSS) and an LDT.

Intel Family Utilities User's Guide Chapter 2 15

Invoking BND386

DOS and iRMX OS Invocation Syntax

16

To invoke BND386 on aDOS and iRM X operating system, use the following syntax:
BND386 i nput _|ist [controls]

Where:

i nput _|i st
is one or more linkable modules or object library modulesto be
processed by BND386. For DOS, the modules are specified as follows:

filename [(rmodule_list | *])

fi | ename(*) can replace the complete list of linkable or library
modulesin thefilecalledfi | ename. BND386 then processes all
modulesin afile.

control s consists of one or more of the specifications defined in BND386
Controls.

BND386 processes filesin the input list in the order in which they are specified.
Therefore, only unresolved external symbols that come before alibrary file can be
resolved by the public symbolsin the library.

If modules are specified with alibrary file in the invocation line, BND386 processes
specified modules only.

If fil ename(*) is specified with alibrary filein the invocation line, BND386
processes all modulesin the library.

If no modules are specified with alibrary file in the invocation line, BND386
processes that library file only if previously processed modules contained at |east one
unresolved external. Thelibrary is scanned for modules containing public symbols
that match unresolved externals and each such module is processed as if it were
specified. The process continues until the modulesin the library cannot satisfy any
more unresolved externals (including externals encountered while processing
modules from the library).

If no modules are specified with alinkable file in the invocation line, BND386
processes all modulesin thefile exactly asif you had used f i | ename(*).

BND386 issues an error message when it finds duplicate module names.

Theinput list can be omitted from the invocation command if the list is specified in at
least one control file.

Chapter 2 Using the Intel 386 Binder

Y ou can continue the invocation line on additional lines by entering the ampersand
(&) before you enter the line terminator. The continuation line then appears
automatically with the DOS or iRM X system prompt character.

A CAUTION
Long invocation lines can cause BND386 to fail with a general
protection fault. To specify many controls and/or input files, it is
better to use a control file than continuations of the command line.

Control Files

The BND386 invocation line is simplified when you can use the CONTROLFI LE
control to include a control file. A contral fileisatext file containing contrals, file
names, or controls and file names that would normally appear in the invocation line.
For example, instead of listing five controls in the BND386 invocation line, you can
place those controlsin a single contral file and then invoke the controal file in place of
all five controls.

Using a Control File on DOS and iRMX OS

To include a control file in the BND386 invocation line on a DOS operating system,
use the following syntax:

BND386 CONTROLFILE (filenane[,...])
Where:

fil ename isthe name of the control file containing controls, file names, or
controls and file names for the input list. Y ou cannot nest control files:
that is, the CONTROLFI LE control cannot appear in a control file.

A control file that contains only controls can be specified in any position in the
control list. A control file that contains only file names for the input list can be
specified in any position in the input list.

In acontral file that contains both input files and controls, input files must come
before controls. In this case, specify the control file as part of the input list.

The following exampl e shows how to specify the CONTRCOLFI LE control in an input
list that contains the files named in CF1.DAT:

BND386 MOD. OBJ, CONTROLFI LE (CF1. DAT) DEBUG

Intel Family Utilities User's Guide Chapter 2 17

18

Within a control file, use a semicolon before acomment. Use the ampersand (&) to
continue to the next line. When the line terminator comes before the ampersand, it is
treated as if it were a blank space. BND386 ignores characters between a semicolon
or continuation character and the line terminator. Linesin acontrol file cannot
exceed 120 charactersin length.

This example control file contains only file names for the input list:
util.lib, ;outility library&
systemlib ; systemlibrary

This example control file contains the last file names for the input list and controls
for the control list:

util.lib, ;outility library&
systemlib ; systemlibrary&
| 0& : | oadabl e nodul e&
ep& ; directs error messages&

; to the specified print&
; file specified&
oj (Ibt.sys) ; name output file

Chapter 2 Using the Intel 386 Binder

BND386 Defaults

Output File Names

If not specified in the invocation line, output file names are assigned by default, as
follows:

Controls

Thefile that contains the output loadable module has the same name as the first
input file. Under DOS and iRMX OS, the output has no extension.

The file that contains the output linkable module has the same input file name as
the first input file, with extension, or filetype, .LNK.

The print file has the same name as the output object file, with extension, or file
type, .MPL.

If no controls are specified on the invocation line, BND386 does the following:

It creates aloadable output module. The output moduleis placed in afile having
the same file name as the first input module listed in the invocation line. Under
DOS and iRMX OS, the output has no extension.

It creates a print file with the same name as the object file, with extension, or file
type, .MPL1.

It performs type checking between public and external symbolsin input modules
and includes symbol type information in output modules.

It includes debug information in output modules (if thisinformationisin the
input modules).

Some BND386 controls imply that other controls are in effect by default. Refer to
BND386 Controls and individual control entries later in this chapter for more
information on default implementation.

Intel Family Utilities User's Guide Chapter 2 19

Console Messages

BND386 displays console messages when signing on and signing off, aswell as
during processing. During processing, BND386 issues warnings, error messages, or
fatal error messagesif it encounters any problems.

Fatal error messages are always displayed at the console, even if you have directed
error messages to an error print file with the ERRORPRI NT control.

When you invoke BND386 on a DOS or iRM X operating system, the binder displays
the following sign-on message:

system.id
i RMX 111 386(TM BINDER, VX.y
Copyright years Intel Corporation

Where:

system i d istheidentifier and version number of the operating system.
VX.y isthe BND386 version number.

years isthe copyright year or years.

When BND386 encounters afatal error condition, an error message and sign-off
message are displayed at the console. The sign-off message is as follows:

PROCESSI NG ABORTED
See Appendix A for additional information about error conditions.

When BND386 does not encounter afatal error condition, BND386 signs off when
you exit or after processing is complete, as follows:

PROCESSI NG COVPLETED. n WARNI NGS, m ERRORS
Where:

n and m represent the number of warning and nonfatal error conditions
encountered during processing. Y ou can use the ERRORPRI NT control
to display warning and error messages on the console or direct them to a
file.

20 Chapter 2 Using the Intel 386 Binder

BND386 Controls

BND386 controls determine the extent and characteristics of BND386 output. Some
controls determine what kind of output is produced: a print file, an object file, or a
file containing error messages. Other controls affect the characteristics of the output
object module: size of segments, privilege level, whether debug information is
included, and other features.

Target controls determine the type of object file that BND386 isto produce. NOLOAD
produces alinkable output module. LOAD produces a loadable module. RCONFI GURE
produces an OMF386 bootloadable module specifically intended for the iIRMX 111
Operating System.

Table 2-2 summarizes BND386 controls for DOS and iRM X Operating Systems.
The default column shows the condition in effect when the control is not specified.
When an invocation contains duplicate control specifications, BND386 processes
only the rightmost specification on the invocation line.

Each BND386 control islisted alphabetically and described in detail in the section
following Table 2-2.

Intel Family Utilities User's Guide Chapter 2 21

Table 2-2. BND386 Controlsfor DOS and iRMX Operating Systems

Abbr. Command Line Syntax Description Default

CF CONTROLFILE (filename | Specifies file for input None
[...D elements

DB DEBUG Retains or removes debug | DEBUG

NODB NODEBUG information

EP ERRORPRINT [(filename)] | Creates or does not create | NOERRORPRINT

NOEP NOERRORPRINT error print file

12 INT286 [mod_name][,...])] | Provides interface control None

to 80286 programs
LO LOAD Creates loadable (LOAD) LOAD
NOLO NOLOAD or linkable (NOLOAD)
module
NA NAME (mod_name) Creates and names or First input_
suppresses creation of filename
object module output
oJ OBJECT [(filename)] Verifies input object module | MOD386
NOOJ NOOBJECT meets Intel387
requirements or Intel386
requirements

PR PRINT [(filename)] Creates and names or PRINT

NOPR NOPRINT suppresses creation of print

file

PL[EC] PUBLICS [EXCEPT Retains or removes public | PUBLICS
(symbol [,...])] symbol definitions in

NOPL[EC] NOPUBLICS [EXCEPT linkable output modules
(symbol [,...])]

RC[DM] RCONFIGURE Produces loadable output None
[(DYNAMICMEM configured for an Intel386
(memory_range))] operating system

RN RENAMESEG (old_seg Renames an input segment | None
_name TO
new_seg_name [,...])

SS SEGSIZE (seg_name Changes length of stack or | None
([+/-]size)],...]) data segment in output

object module by specified
size
TY TYPE Enables or suppresses type | TYPE
NOTY NOTYPE checking
22 Chapter 2 Using the Intel 386 Binder

CONTROLFILE

CONTROLFILE

Specifiesfile for input elements

Syntax
CONTROLFI LE (filenare[,...])

Abbreviation
CF

Default
CONTROLFI LE isnot in effect.

Description

The CONTROLFI LE control reads invocation specifications from a contral file.
Invocation specifications can include input files and invocation controls, but cannot
include partial controls or partial input-list elements. BND386 returns to the
command line when it encounters the end of the control file.

A control file cannot contain the CONTROLFI LE control.

See Control Filesfor content and format of control files.

Example

In the following example, control file CNTL1.DAT contains UTIL.LIB and
SYSTEM.LIB, and control file CNTL2.DAT contains PRINT(SAMPLE.MAP) and
DEBUG. The following pairs of invocation lines do the same thing:

BND386 SAMPLE. OBJ, CF(CNTL2. DAT) CF(CNTL1. DAT)
BND386 SAMPLE. OBJ, UTIL.LIB, SYSTEM LI B PRI NT(SAMPLE. VAP) DEBUG

For additional examples, see Chapter 4 on the mapper.

Intel Family Utilities User's Guide Chapter 2 23

DEBUG/NODEBUG

DEBUG/NODEBUG

Retains or removes debug information

Syntax
DEBUG
NODEBUG

Abbreviations

DB
NODB

Default
DEBUG

Description

The DEBUG control places information used by symbolic debuggersin the output

object module. Debug information consists of the following:

e Symbolic names and source or listing line numbers generated by compilers or

assemblers

* Public and external symbols plus type and module information formatted by

BND386 for debuggers

The NODEBUG control purges symbolic debugging information from the output

module.

Debug information is needed by MAP386, so you can leave the information in place

and purge it with MAP386 later in the development process.

Examples

1. Inthefollowing example, compiler or assembler output for symbolic debugging

isincluded in the output linkable module in the file MOD1.LNK.
BND386 MOD1. OBJ, MOD2. OBJ NOLQAD DEBUG

2. Inthefollowing example, debugging information is removed from the output

|loadable module in the file MOD3.
BND386 MOD3. OBJ, MOD4. OBJ NODEBUG

24 Chapter 2 Using the Intel 386 Binder

ERRORPRINT/NOERRORPRINT

ERRORPRINT/NOERRORPRINT

Creates or does not create an error BND386:print file

Syntax

ERRORPRI NT [(fil enane)]
NOERRORPRI NT

Abbreviations

EP
NOEP

Default
NOERRORPRI NT

Description
The ERRORPRI NT control directs error messages to one of the following:
e The standard output device, if fi | ename isnot specified
* Thefilecalledfil ename

The NOERRORPRI NT control does not produce a file containing error messages; error
messages appear in the normal print file.

No matter which of the two controlsisin effect, fatal error messages are displayed on
the standard output device, and error and warning messages are included in the print
file. Inthe sign-off message BND386 reports the number of errors.

|:| Note

If the specified file name matches the name of afile on the input
list or the name of a control or output file, BND386 processing
aborts.

Intel Family Utilities User's Guide Chapter 2 25

ERRORPRINT/NOERRORPRINT

Examples

26

1

In the following example, error or warning messages go to the error print file
MOD?2.LIS and to the print file that contains the segment map.

BND386 MOD1. OBJ ERRORPRINT (MOD2.LIS).i.1.

In the following example, no error print fileis created; by default, error
messages are included in the print file.

BND386 MOD3. OBJ, MOD4. OBJ

In the following example, error and warning messages are sent to the standard
output device.

BND386 MOD5. OBJ, MOD6. OBJ ERRORPRI NT

Chapter 2 Using the Intel 386 Binder

INT286

INT286

Provides interface control to 80286 programs
Syntax

I NT286 [(nmod_name [,...])]

Abbreviation
|2

Default
| NT286 is not in effect.

Description

The | NT286 control allows Intel 386 programs to interface with 80286 programs and
ensures that data in specified modules resides in the combined USE16 segment in the
first 64K bytes of memory. Read-write segmentsin the specified modules and in all
stack segments become USE16 segments.

Only stack segments become USE16 segments when no module is specified.

Examples

1. Inthefollowing example, the data segments of the specified module become
USE16 segments. USE16 segments are placed below

BND386 MOD1. OBJ, MOD2. OBJ | NT286 (MOD NAME)

2. Inthefollowing example, the stack is made up of USE16 segments, which are
placed below USE32 segments.

BND386 MOD. OBJ | NT286

Intel Family Utilities User's Guide Chapter 2 27

LOAD/NOLOAD

LOAD/NOLOAD

Creates aloadable (LOAD) or linkable (NOLOAD) module

Syntax

LOAD
NOLOAD

Abbreviations

LO
NCLO

Default
LOAD

Description

The LOAD control creates aloadable module containing an executable program and
data plus system items such asan LDT. The single-task module can be loaded on an
Intel 386 protected-mode system under the control of the operating system. (Usethe
RCONFIGURE control to create aloadable module targeted specifically for an

Intel 386 operating system.)

The NOLOAD control creates alinkable module that can be used in subsequent
BND386 invocations or asinput to the builder. By default, the linkable moduleis
placed inthefilecalled fi rst _i nput _fil ename. LNK.

Refer to the OBJECT entry later in this chapter for information on the assignment of
the name of the object file.

|:| Notes
RCONFI GURE is not effective when used with NOLOAD.

The NAME, PUBLI CS, and NOPUBLI CS controls work only when
NOLOAD s in effect.

28 Chapter 2 Using the Intel 386 Binder

LOAD/NOLOAD

Examples

1

In the following example, aloadable module is produced; LOAD isin effect by
default. By default, MOD1 isthe output file name.

BND386 MOD1. OBJ, MOD2. OBJ

In the following example, alinkable object moduleis produced. MOD3.LNK is
the output file name.

BND386 MOD3. OBJ, MOD4. OBJ NOLQOAD

In the following example, the NOLOAD control produces a linkable object
module. Modules MOD1 and MOD2 in MOD3.0BJ are input along with
MOD4.0BJ.

BND386 MOD3. OBJ (MOD1, MOD2), MOD4. OBJ NOLOAD

Intel Family Utilities User's Guide Chapter 2 29

NAME

NAME

Names the linkable output module

Syntax
NAME (nod_nane)

Abbreviation
NA

Default

NAME(first_i nput _nod_nane)

Description

The NAME control assigns a name to the linkable output module. When NOLOAD isin
effect and the NAME control is not specified, BND386 assigns the name of the first
input module (fi r st _i nput _nod_nane) encountered in the input list to the
linkable output module. NAME does not affect the file name of the file containing the
linkable module.

|:| Note

NAME is effective only when used with NOLOAD.

Examples
In the following example, MOD NAME is the output linkable module.
BND386 MOD1. CBJ, MOD2. OBJ NOLOAD NAME (MOD NAME)

30 Chapter 2 Using the Intel 386 Binder

OBJECT/NOOBJECT

OBJECT/NOOBJECT

Creates and names or suppresses creation of the output object module

Syntax
OBJECT [(filenane)]
NOOBJECT
Abbreviations

a
NOOJ

Default
Loadable output isOBJECT (first _i nput _fil enanme) and linkable output is
OBJECT (first_input_fil enane. LNK)

Description

The OBJECT control creates an object file, either assigning the specified file name or
using the default file name when f i | enane is not specified.

The NOOBJECT control prevents the creation of an object file.

|:| Note

If the name of the specified file or the name of the default file
matches the name of an input file, print file, or control file,
BND386 processing aborts.

Examples

1. Inthefollowing example, BND386 places the loadable output modulein afile
with the default file name MOD1.

BND386 MOD1. OBJ, MOD2. OBJ OBJECT

2. Inthefollowing example, BND386 outputs an object file with same name asthe
first filein the control file CNTRL3.CF, with extension, or file type, .LNK.

BND386 CF (CNTRL3.CF) NOLOAD OBJECT

Intel Family Utilities User's Guide Chapter 2 31

OBJECT/NOOBJECT

3. Inthefollowing example, BND386 outputs a loadable output module called
MODG6.LNK.

BND386 MOD4. OBJ, MOD5. OBJ OBJECT (MOD6. LNK)
4. Inthefollowing example, BND386 outputs only a print file.
BND386 MOD7. CBJ, MOD8. OBJ NCLOAD NOOBJECT

32 Chapter 2 Using the Intel 386 Binder

PRINT/NOPRINT

PRINT/NOPRINT

Creates and names or suppresses creation of a print file

Syntax

PRINT [(filenane)]
NOPRI NT

Abbreviations

PR
NOPR

Default
PRI NT

Description

The PRI NT control creates and names a print file, which contains a segment map, a
module list, alist of unresolved symbols, and warning and error messages. When the
file nameis specified, it is assigned to the print file. Otherwise, the file name of the
print file is assigned by default, as follows:

e When PRI NT is not specified or is specified without a file name, the name of the
print file is the same as that of the file containing the output object module, with
extension, or file type, .MPL.

* When NOOBJECT isin effect, the print file is assigned the name of the first input
file, with extension, or file type, .MPL1.

The NOPRI NT control prevents the creation of a print file.

The contents and format of the print file are described later in this chapter in Print
File.

The ERRORPRI NT control can be used to create a separate print file for error
messages only.

Intel Family Utilities User's Guide Chapter 2 33

PRINT/NOPRINT

|:| Notes
When the name of the specified file or the name of the defaullt file
matches the name of an output file or afile on the input list,
BND386 processing aborts.
A message about a fatal error condition is always displayed on the
standard output device.
The default file name of the print file is affected by any file name
specified with OBJECT.

Examples
1. Inthefollowing example, BND386 produces a print file called MOD3.MP1.

BND386 MOD1. OBJ, MOD2. OBJ OBJECT (MOD3. LNK)
In the following example, no print file is produced.

BND386 MOD4. OBJ, MOD5. OBJ NOPRI NT
In the following example, BND386 produces a print file called MODS.LIS.

BND386 MOD6. OBJ, MOD7. OBJ PRI NT (MODS. LI S)
In the following example, BND386 produces a print file called MOD9.MP1.

BND386 MOD9. OBJ NOOBJECT

Chapter 2 Using the Intel 386 Binder

PUBLICS/NOPUBLICS

PUBLICS/NOPUBLICS

Retains or removes selected public symbol definitions in linkable output modules

Syntax

PUBLI CS [EXCEPT (synbol[,...])]
NOPUBLI CS [EXCEPT (synbol [,...]1)]

Abbreviations
PL [EC], NOPL [EC].

Default
PUBLI CS

Description

The PUBLI CS control keeps some or all of the public symbol definitionsin the
linkable output module. Y ou can use the EXCEPT specification to exclude a unique
symbol or, with the asterisk (*), to exclude a group of public symbol definitions with
acommon prefix. For example, to purge al occurrences of publics with the prefix
DQ, you would simply enter:

DQ*

The NOPUBLI CS control removes some or all public symbol definitions from the
linkable module. Again, you can use the EXCEPT specification to select public
symbol definitionsto be included in the linkable module.

The NOPUBLI CS EXCEPT construction is useful during modular program
development. For example, you can link some modulesinto a subsystem and grant
access to the subsystem only through specific entry points. This construction reduces
the chance of error and also allows different subsystems to use the same public name
for different purposes (just as you might allow local variablesin different procedures
to have the same name).

The PUBLI CS EXCEPT construction is useful when you want to hide a few names
from the rest of the application, but still keep most public names visible.

Public symbols that represent gates created by the builder cannot be specified with
EXCEPT.

Intel Family Utilities User's Guide Chapter 2 35

PUBLICS/NOPUBLICS

|:| Note
PUBLI CS and NOPUBLI CS are effective only when used with
NOLQAD. When aloadable moduleis created, public symbol
definitions are removed from the output object module and retained
only as debug information for debuggers.
Examples
1. Inthefollowing example, the linkable module in MOD4.LNK contains no public

36

symbol definitions except SYMBOL2 and SYMBOL3. MOD1.0OBJisthe input
file.

BND386 MOD1. OBJ NOLOAD NOPL EC (SYMBOL2, SYMBOL3) QI (MOD4. LNK)

In the following example, public symbol definitions are included in MOD5.0BJ
and MOD6.0OBJ by defaullt.

BND386 MOD5. OBJ, MOD6. OBJ NOLOAD

In the following example, all publics except those starting with the prefix PLM
are purged.

BND386 MOD1. OBJ NOLOAD NOPUBLI CS EXCEPT (PLM)

Chapter 2 Using the Intel 386 Binder

RECONFIGURE

RCONFIGURE

Produces bootloadable output firm i ety ssen

Syntax
RCONFI GURE [(DYNAM CMVEM (nenory_range)) |

Abbreviation
RC (DM]

Default
RCONFI GURE is not in effect.

Description

The RCONFI GURE control produces an output file that can be loaded on iIRMX 111 OS
or DOSRMX.

The DYNAM CMEMspecification selects the memory range, which specifies the
minimum and maximum dynamic memory requirements of the output task. Specify
memory-range as follows:

m n[, max]

Where:

mn isan integer representing the minimum dynamic memory requirement
of the output task. When you specify mi nonly, BND386 sets minimum
and maximum requirements to this value.

max is an integer representing the maximum dynamic memory requirement
of the output task. The max specification must be greater than or equal
to the minimum value or BND386 will issue an error message.

|:| Notes

LOAD is automatically in effect with RCONFI GURE, and LOAD or
NOLQAD controlsin the invocation are ignored.

Intel Family Utilities User's Guide Chapter 2 37

RCONFIGURE

Examples

38

1

In the following example, BND386 produces an output module that can be
loaded on an Intel 386 operating system. BND386 instructs the operating system
to allocate 00AFH bytes of dynamic memory for the output task.

BND386 MODL. OBJ RCONFI GURE (DYNAM CVEM 00AFH))

In the following example, BND386 produces an output module that can be
loaded on an iIRM X operating system. BND386 instructs the operating system to
allocate at least 00AFH bytes and at most 0AF45H bytes for the output task.

BND386 MODL. OBJ, MOD2. OBJ RC (DM 00AFH, OAF45H))

Chapter 2 Using the Intel 386 Binder

RENAMESEG

RENAMESEG

Renames code and/or data segment

Syntax

RENAMESEG (ol d_seg_nane TO new_seg_nane [,...])

Abbreviation
RN

Default

RENAMESEG s not in effect.

Description

The RENAMESEG control changes the names of input segments. All input segments
named ol d_seg_nane are renamed new_seg_nare to provide control over
segment combination. All input segments are first renamed and then combined as
necessary. The specified segment name cannot be longer than 40 characters.

Any reference to arenamed segment in other controls in the command line, should
refer to the new segment name.
Examples

In the following example, the segment MODCODEL in MOD1.0BJis renamed
MODCODE2. The new nameisthen used in the SEGSI ZE control.

BND386 MODL. OBJ RN (MODCODEL TO MODCODE2) SS (MODCODE2 (+20))

Intel Family Utilities User's Guide Chapter 2 39

SEGSIZE

SEGSIZE

Changes length of stack or data segment in output object module

Syntax
SEGSI ZE (seg_nane ([+/-]size)[,...])

Abbreviation
Ss

Default

Segment size reflects combination, if any.

Description

The SEGSI ZE control changes the length of one or more writable stack or data
segments in the BND386 output object module. The length of a segment isthe
memory space it requires. Segment length can be increased, decreased, or set to a
specific decimal value for a specified segment-name, as follows:

» Toincrease segment length, set the size to a positive number, +n, where n isthe
number of bytes by which the segment length is to be increased.

e To decrease segment length, set the size to a negative number, - n, wheren isthe
number of bytes by which the segment length is to be decreased.

e To specify aparticular segment length, set the size to a hexadecimal number in
bytes. For USE16 segments, the size must be between 0 and OFFFFH (64K
bytes). For USE32 segments, the size must be between 0 and OFFFFFFFFH (4
gigabytes)

A CAUTION
TheiRMX OS assumes stack sizes of at least 1024 bytes and
normally provides a minimum stack by increasing a stack of less
than 1 Kbyte up to 1 Kbyte. However, it does not do thiswhen it is
passed an explicit stack pointer. If you set a SEGSIZE(STACK(x))
directive for amodule, where x is less than 1024, the application
may fail to load with the Soft-Scope debugger. When you bind an
application with the SEGSIZE(STACK(x)) directive, always make
surethat x is at least 1024.

40 Chapter 2 Using the Intel 386 Binder

SEGSIZE

BND386 pads all segments except those that are execute-only. The SEGSI ZE control
supersedes this padding. Note that the addition of bytes due to alignment cannot be
suppressed, and the length of a segment is not the exact sum of all combined
segments.

Zero-length segments are purged from loadable modules but not from linkable
modules. Therefore, zero-length segments are not listed in the segment map in the
print file when the LOAD control isin effect.

BND386 issues awarning if the specified segment does not have the write attribute;
it also issues awarning whenever the size of a segment is decreased. BND386
ensures that references in the output module to any segment affected by SEGSI ZE are
within the specified limits.

Examples

In the following example, the length of each loadable module segment is changed as
follows:

» SEGlisincreased by 47 bytes.

e SEG2isdecreased by 47 bytes.

* SEG3issetto511 bytes.

The length of every other segment depends on segment combination.

BND386 MOD3. OBJ, MOD4. OBJ SS (SEGL(+002FH), SEG2(-002FH), &
SEG3(01FFH))

Intel Family Utilities User's Guide Chapter 2 41

TYPE/NOTYPE

TYPE/NOTYPE

Enables or suppresses type checking

Syntax
TYPE
NOTYPE
Abbreviations
TY
NOTY
Default

TYPE

Description

The TYPE control performs type checking between public and external symbols of the
same name. A warning isissued when amismatch isfound. When used with
NOLQAD, TYPE includes type definitions for all external and public symbolsin the
linkable output module.

NOTYPE suppresses type checking and causes BND386 to omit type definitions from
the linkable output module. When NOTYPE isin effect, there is no type checking for
unresolved symbolsin aloadablefile.

Examples

1. Inthefollowing example, type checking is done on all external and public
symbols.

BND386 MOD1. OBJ, MOD2. OBJ TYPE
2. Inthefollowing example, no type checking is done.

BND386 MOD3. CBJ, MOD4. OBJ NOTYPE

42 Chapter 2 Using the Intel 386 Binder

Print File

The print file contains the following sections (see Figure 2-4).
e Header

e Segment map

e Input modulelist

» Unresolved external symbol list (if BND386 has not been able to resolve one or
more external symbol references)

e Error and warning messages if present

e Summary of memory usage

Intel Family Utilities User's Guide Chapter 2 43

386(TM BI NDER dd/ mm yy hh/ nmi ss
systemid iR Il 386(TM BI NDER, Vx.yVX
| NPUT FI LES: MAI N. OBJ, UTI L. OBJ

QUTPUT FI LES: MAI' N. LNK
CONTROLS SPECI FI ED: NOLOAD, NAME=EXAMPLE_MNAI N

*** WARNI NG 151: UNRESCLVED EXTERNAL SYMBOLS
SEGVENT NMAP

LIMT ACCESS ALI GN USE COMBI NE TYPE
00000236H ER BYTE USE32 NORVAL
000041CBH RW DWORD USES32 NORVAL
FFFFDFFFH RW DWORD USES32 STACK

I NPUT MODULES | NCLUDED:

MAIN (MAIN OBJ)
UTIL (UTIL. 0BJ)

UNRESCLVED EXTERNAL SYMBOLS:

SYMBOL NAME REFERRI NG MODULE
DQATTACH MAI N
DQCLOSE MAI N
DQCREATE MAI N
DQDETACH MAI N
DQEXI T MAI N
DQOPEN MAI N
DQREAD MAI N
DOWRI TE MAI N
PROCESSI NG COVPLETED. 1 WARNI NG,

Figure 2-4. Sample BND386 Print File

PAGE 1

COVBI NE NAME

CCDE
DATA
STACK

0 ERRORS

The following explanations of the print file sections are accompanied by generic

examples of the print file format.

44 Chapter 2 Using the Intel 386 Binder

Header

The print file header summarizes the invocation specifications (see Figure 2-5).

386(TM BI NDER m dd/ yy hh: nm ss PAGE nunber
systemid i RMX |11 386(TM Bl NDER, VX. yVX
| NPUT FI LES: filenanel, filenane2

QUTPUT FI LES: filenanme_n
CONTROL SPECI FIED: controll, control2 ...

S (warnings, if any, will appear here)

Figure 2-5. BND386 Print File Header

Segment Map

The segment map provides the following information for each segment in the output
object module (see Figure 2-6):

e LIMIT: the segment limit, in bytes, with asuffix of H (for hexadecimal). The
limit isthe offset of the last byte in a segment. Unless the SEGSI ZE control is
used to specify an exact segment length, the limit may be a few bytes longer than
the actual limit (to accommodate referencesto the last byte of the segment).

If asegment has the length of zero, then EMPTY isprinted inthe LIMIT
column. Zero-length segments are purged from loadable modules. Therefore,
they are not listed in the segment map when LOAD isin effect. Segments that
have expand down attribute will have aLIMIT of (0 - segment size - 1).

» DPL: the descriptor privilege level.

Intel Family Utilities User's Guide Chapter 2 45

e ACCESS: one or more of the following segment attributes:

— C (conforming): a segment that can be shared by programs that execute at
lower (numerically higher) privilege levels without using gates.

— D (expand down): a nonexecutable segment whose limit can be extended
toward lower-order addresses at run time.

— EO (executable only): a code segment that can only be executed, not read.

— ER (executable and readable): a code segment that can be executed and
read.

— RO (readable only): a data segment that can only be read.

— RW (readable and writable): a data segment that can be read from and
written to.

* ALIGN: two segments are combined according to the stricter of the two
alignment types; e.g., if abyte and aword are combined, the new segment is
type word. (The following types are valid: byte, word, dword, quad, para,

inpage, and page.)

e USE: can be USE16 or USE32. USE16 segments have alimit of 64K bytes and
USE32 segments have alimit of 4 gigabytes. For code segments, this attribute
determines the default addressing width and the default operation width.

 COMBINE TYPE: one of the following, describing information in the segment:

— BLANKCOMMON: segmentsthat contain FORTRAN-386 that are not
named.

— COMMON: segments that contain FORTRAN-386 common blocks that are
named.

— NOCOMBINE: code or data segments that cannot be combined: for
example, ASM 386 segments that are not declared PUBLIC and PL/M-286
segments compiled under the LARGE model.

— NORMAL : code or data segments that can be combined; for example,
ASM 386 segments that are public or PL/M-386 segments.

— STACK: stack segments.

e« COMBINE NAME: the name of the segment. In assembler programs, this name
isgiven by the user. In high level language programs such as PL/M, the name is
given by the compiler, and depends on the model of segmentation used.

SEGMVENT MAP
LIMT ACCESS ALl GN USE COMVBI NE TYPE COVBI NE NAME

46 Chapter 2 Using the Intel 386 Binder

XXXXXXXXH XXXX XXXX XXXXX XXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXH XXXX XXXX XXXXX XXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXH XXXX XXXX XXXXX XXXXXXXXXXX XXXXXXXXXXXXXXXX

Figure 2-6. BND386 Print File Segment Map

Input Modules List

The print file contains alist of all input modules processed by BND386 and the file
name in which the modul es appeared in the input list (see Figure 2-7). The order is
the same in which the input modules were encountered in the input list.

| NPUT MODULES | NCLUDED

"nmodul e_namel" ("fil enanel")

"modul e_nanme_n" ("filenane_n")

Figure 2-7. BND386 Print File Input Module Map

Unresolved Symbols List

Figure 2-8 shows the format of the section that provides information for each
unresolved reference in the segments processed:

e SYMBOL NAME: the name of the referenced symbol.

* REFERRING MODULE: the name of the first input module that contains a
reference to the symbol.

Intel Family Utilities User's Guide Chapter 2 47

UNRESCLVED EXTERNAL SYMBOLS:

SYMBOL NAME REFERRI NG MODULE
XXXXXXXXXXXXXX XXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXX
R L (errors/warnings, if any, will appear here)

Figure 2-8. BND386 Print File Unresolved Symbol List

Warning and Error Messages
Appendix A defines the error and warning messages that can appear in the print file.

Using BND386: Examples

The example below illustrates the two stages in devel oping an application program.
First, modules that contain application code are linked together. The resulting
linkable module is then linked with a system file to create aloadable module. The
loadable module is a program that can be executed on an iRMX |11 operating system.

Figure 2-9 shows the BND386 print file produced when two linkable iC-386 modules
(named MAIN.OBJ and UTIL.OBJ) are processed with BND386. The DEBUG
compiler control provides symbolic information useful later during debugging. The
following sequence is used to invoke the compiler:

i C386 MAI N. C DEBUG
i C386 UTI L. C DEBUG

After compilation, the BND386 NOLOAD control is used to create a combined
linkable module from MAIN.OBJand UTIL.OBJ. The linkable module that is
produced is placed in the file MAIN.LNK (by default) and named EXAMPLE.

BND386 MAIN. CBJ, UTIL. OBJ NOLOAD NAME (EXAMPLE)

The linkable output module contains three segments--an executabl e-readable segment
(code), areadable-writable data segment (data), and a readabl e-writable stack
segment (stack) (see Figure 2-9).

Thevaueinthe LIMIT column can be different from the sum of the lengths of the
input segments. BND386 will change the combined segment lengths as follows:

48 Chapter 2 Using the Intel 386 Binder

e When determining the output segment limits during combination, BND386
aligns the second and third segments according to their alignment attribute.

* The segment limit (the offset of the last byte in a segment) is equal to the
segment size minus one.

e The segment can be padded by one to six bytes. In this example, code is padded
by one byte and data by two bytes.

Intel Family Utilities User's Guide Chapter 2 49

386(TM BI NDER dd/ m yy hh/ nmm ss PACE 1

system.id i RMX 111 386(TM BI NDER Vx. yVX

I NPUT FI LES: MAI N. OBJ, UTIL.OBJ ...

QUTPUT FI LES: MAI N. LNK

CONTROLS SPECI FI ED: NOLOAD, NAME=EXAMPLE

**% WARNI NG 151: UNRESCLVED EXTERNAL SYMBCLS

SEGVENT MAP

LIMT ACCESS ALIGN USE COMVBI NE TYPE COVBI NE NAVE
00000236H ER BYTE USE32 NORMVAL CODE
000041CBH RW DWORD USE32 NORMVAL DATA
FFFFBFFFH RW DWORD USE32 STACK STACK

I NPUT MODULES | NCLUDED:

MAIN (MAIN OBJ)
UTIL (UTIL. 0BJ)

UNRESCLVED EXTERNAL SYMBOLS:

SYMBOL NAME REFERRI NG MODULE

DQATTACH MAI N

DQCLOSE MAI N

DQCREATE MAI N

DQDETACH MAI N

DQEXI T MAI N

DQOPEN MAI N

DQREAD MAI N

DOWRI TE MAI N

PROCESSI NG COVPLETED. 1 WARNI NG 0 ERRORS

Figure 2-9. BND386 Print Filefor Linkable Output Containing Unresolved Symbols

Because the modules MAIN.OBJ and UTIL.OBJ were linked with no errors, the
output module is valid and ready to convert to aloadable module. Linking the
module EXAMPLE with UDIIFC32.L1B resolves the external references because
UDIIFC32.LIB containsthe iRMX OS UDI system call interfaces. The following
invocation creates aloadable program and the print file shown in Figure 2-10:

BND386 MAI N. LNK, UDI | FC32.LIB CF (EXMPL1. CFL) OBJECT (EXMPL1)
BND386 creates a loadable module, because LOAD isin effect by default.

50 Chapter 2 Using the Intel 386 Binder

As"controls specified" in Figure 2-10 indicates, the control file contains the
following controls:

DEBUG
SEGS| ZE (stack (5000H))

Using the control filein this case is equivalent to including DEBUG and SEGSI ZE in
theinvocation line.

The resulting output object moduleis placed in afile named EXMPL 1, as specified
by the OBJECT control. This module contains segments from the module created in
the first BND386 invacation, EXAMPLE, and from the module in the system library
UDIIFC32.LIB.

The segment named font/size has a segment limit of 5000H bytes. Thisis due to the
SEGSI ZE control used, which specifies that the limit of the segment named stack isto
be 5000H bytes.

Because the system library UDIIFC32.L1B contains public definitions for all symbols
declared external in EXAMPLE, no references remain unresolved. Any unresolved
references are listed in the print file.

The output module in file EXMPL1 isready to load or debug on an iRMX OS. The
DEBUG control in effect during both compilation and binding produces symbolic
information that can be used by MAP386 and by a symbolic debugger like
Soft-Scope.

Intel Family Utilities User's Guide Chapter 2 51

386(TM BI NDER dd/ mm yy hh/ nmi ss PAGE

system.id i RMX 111 386(TM BI NDER Vx. yVX

| NPUT FI LES: MAI N. LNK, UDI | FC32. LI B

QUTPUT FI LES: EXMPL1. 386

CONTROLS SPECI FI ED: QJ(EXWPL1), DB, SS(STACK(5000H))

SEGVENT MAP

LIMT ACCESS ALIGN USE COVBI NE TYPE COVBI NE NAMVE
00000236H ER BYTE USE32 NORMAL CODE
000041CBH RW DWORD USE32 NORMAL DATA
FFFFBFFFH RW DWORD USE32 STACK STACK

I NPUT MODULES | NCLUDED:

mai n (MAI' N. LNK)
COPYRI GHT_YEAR(s) _| NTEL_CORPORATI ON (udi i fc32.1ib)
PROCESSI NG COVPLETED. 0 WARNI NGS, 0 ERRORS

Figure 2-10. BND386 Print Filefor L oadable Modules

52 Chapter 2 Using the Intel 386 Binder

Using the Intel386 Librarian

The L1B386 librarian organizes linkable object modules, which have been produced
by Intel 386 compilers, assemblers, or other Intel386 utilities, into libraries. You can
then create, examine, change, search, copy, and otherwise manipulate library files
with L1B386 commands.

Y ou can construct object libraries around modules with common characteristics (i.e.,
modules that perform similar functions or are required for a particular system). For
example, one library might contain modules that perform mathematical functions;
another, modules that perform 1/0 routines.

When invoking other Intel 386 utilities such as BND386, MAP386, or the BL D386
System Builder, you can gain access to all the applicable modulesin alibrary ssimply
by specifying the library file name, rather than having to type the names of all the
modules.

L1B386 operatesin two modes: foreground (NOBATCH) or background (BATCH).
In foreground mode, L1B386 queries, provides intermediate displays, and expects
input from the keyboard. In background mode, LIB386 processes commands that
have been redirected from a command file (or some type of batch file), and does not
guery you or expect interaction. Refer to the individual LI1B386 commands for the
effects of background execution. See Using LI1B386: Examples for a background
execution example.

Major Functions of LIB386

L1B386 performs the following major functions:

* Createsnew libraries

» Updates existing libraries by adding, deleting, or replacing modules
» Backsupthelibrary currently being processed before it is modified

e Examinesinformation in the libraries (e.g., names of modules or names of public
symbols)

* Liststhe names of library modules that contain specified public symbols

Intel386 Family Utilities User's Guide Chapter 3 55

e Accessesor changes library-related information (e.g., the name or the version
number)

» Compresses the data structure of the library being processed, thereby speeding
up the retrieval operation of other Intel 386 utilities (such as BND386) that access
library files

» Requests help and receives a brief description of the specified LIB386 command
Refer to Appendix B for LIB386 error messages.

Input and Output

L1B386 accepts abject files asinput. Object files contain a single object module, a
sequence of object modules, or libraries (see Figure 3-1).

L1B386 output consists of library files, backup library files, console messages, and a
listing file, depending on the commands and controls that are specified. A listing file
can list modulesin alibrary, public symbolsin alibrary, or public symbolsin a
particular module.

The Target Library

Thelibrary file that LIB386 is processing at any given timeis called the target
library. Thefile you specify in the invocation line or with the GET command
becomes the target library file. All LIB386 commands act on the target file. (The
LIST command is an exception to this processing rule; LIST can operate on library
files other than the target library file))

A specified library file remains the target file until you exit LIB386 or specify
another library asthe target library.

56 Chapter 3 Using the Intel386 Librarian

Invocation

Line
. Backup
Linkable Library
Object File
Modules
>
Target
l.‘IBS% Library
Librarian Eile
>
Library Print
File(s) I'_:ii?ir?;
Console
Messages

OMO02007

Figure 3-1. LIB386 I nput and Output

Library Sessions

Single library file processing isreferred to asasingle LIB386 session. Only one
target library can be processed per session. However, multiple library files can be
processed sequentially without exiting LIB386. To do this sequential processing,
close the current target library and then initialize another target library file for the
next session. For more details on single and multiple sessions, see Using L1B386:
Examples.

Intel386 Family Utilities User's Guide Chapter 3 57

Invoking LIB386

DOS and iRMX Invocation Syntax
Toinvoke LIB386 on aDOS or iRMX operating system, use the following syntax:

LI B386 [filename] [BATCH | NOBATCH] [BACKUP | NOBACKUP]
Where:

filename isthe name of thetarget library file. Specify the file name according to
the operating system requirements.

A library session is begun in one of two ways: by specifying afile
name, which will initialize the target library, or by using the GET
command to initialize the target library file. Seethe GET entry in this
chapter for details on initializing target library files.

BATCH (BA)
specifies non-interactive mode. L1B386 processes commands that have
been redirected from a command file.

NOBATCH (NOBA)
specifiesinteractive mode. LIB386 runs interactively and expects input
from the keyboard. NOBATCH is the default.

BACKUP (BU)
specifiesthat L1B386 create a backup file of the target library at the
start of anew session. The backup file contains the version of the target
library created during the last session, with extension .LBK. BACKUP is
the default. BACKUP can be executed at the command level or asan
invocation control.

NOBACKUP (NOBU)
specifies that L1B386 does not create atarget library backup file when a

new session starts. NOBACKUP can be executed at the command level or
as an invocation control.

58 Chapter 3 Using the Intel386 Librarian

Invocation Controls

BACKUP, NOBACKUP, BATCH, and NOBATCH are the only controls that can be specified
in the L1B386 invocation line. BACKUP and NOBATCH are the defaullts.

BACKUP and NOBACKUP can be specified as invocation controls, and they can also be
used as commands.

BACKUP creates a backup copy of atarget library file each time a LIB386 session
begins. LIB386 gives each backup file the same name as the original target library,
with extension .LBK.

When used as commands, BACKUP and NOBACKUP override the BACKUP or
NOBACKUP controls used in invoking LIB386. See the BACKUP entry in this chapter
for more details on using BACKUP and NOBACKUP.

LI1B386 Defaults
When no controls are specified in the invocation line, LIB386 does the following:
» Begins operating in foreground mode
» Displaysthe sign-on message and the foreground prompt, an asterisk (*)
» At the beginning of asession, displays alineidentifying the target library

e |f BACKUP is specified or implied, creates a backup copy of the target library at
the beginning of a session, with extension .LBK

e Awaits command input

If no file name is specified in the invocation line, L1B386 waits until atarget library
isinitialized with the GET command.

Intel386 Family Utilities User's Guide Chapter 3 59

Console Messages

60

In foreground mode, L1B386 displays sign-on and sign-off messages, queries for user
response, and presents display messages and error messages.

In background mode, L1B386 does not display queries for user response, because the
utility is not interactive. LIB386 displaysall other messages, including sign-on and
sign-off messages, display messages, and error messages.

When you invoke LI1B386 without specifying afile name, the librarian signs on as
follows:

systemid iRMX Il 386(TM LIBRARI AN, Vx.y
Copyright years Intel Corporation

*

Where:

system i d istheidentifier and version number of the operating system.

VX.y isthe LIB386 version number
years isthe copyright year or years.
* isthe LIB386 prompt. The prompt appears only in foreground mode.

When you specify afile name, L1B386 displays the sign-on message and one of two
messages, as follows:

e |f thefile nameisthe name of anew library:

TARGET LI BRARY:[new_ |ibrary] date/tine_last_nodified

* %

« |If thefile nameisthe name of alibrary that already exists:

TARCGET LI BRARY: target |ib-nane version date/tinme_|last_nodified

* *

Where:

target _|ib_name
is the name of the target library in the invocation line.

ver si on_nunber
isthe version number of the target library.

date/time_l ast_nodified
date and time the target library was last processed.

Chapter 3 Using the Intel386 Librarian

During processing, L1B386 issues warnings, error messages, or fatal error messages
if it encounters any problems. When LIB386 encounters afatal error condition, an
error message and the following sign-off message are displayed at the console:

PROCESSI NG ABORTED
See Appendix B for additional information about error conditions.

L1B386 signs off when you exit from the librarian or from the current L1B386
session, as follows:

library filenane date/tinme_|last_nodified
n MODULES ADDED, m MODULES DELETED

Where:
nandm are the numbers of added and deleted modules.

Queries
The following is an example of aLIB386 query:
Al'l Changes Lost, OK? [Y/N]

This query appears when you specify the QUI T ABORT or QUI T I NI TI ALI ZE
command and the target library has been changed but not updated. SeetheQUI T
entry in this chapter for details on responses to this query.

Display Messages

An example of adisplay message is the target library's identification banner. A
banner is displayed in the following form when the target library file for the session
isinitialized:

TARCGET LI BRARY: target |ib _nane version_date/tinme_|ast-nodified

Another display exampleisthelisting of the library module names. Seethe LIST
entry in this chapter for more details.

A third type of LIB386 display message is the help summary. The help summary
appears on screen when you enter the HEL P command and briefly describes each
LI1B386 command. Seethe HELP entry in this chapter for more details.

Error Messages

Error messages are displayed when L1B386 encounters error conditions. Appendix B
contains a listing and explanation of the LIB386 error messages.

Intel386 Family Utilities User's Guide Chapter 3 61

LIB386 Commands

Hierarchical Levels

The LI1B386 command set contains two elements:. the invocation line and library
commands. These elements are organized into a hierarchical structure. The three
hierarchical levels are the operating system level, the initial command level, and the
action command level (see Figure 3-2).

The operating system level is the outermost level; you can invoke LIB386 and
specify the BATCH, NOBATCH, BACKUP, and NOBACKUP controls. When you
exit LIB386, contral returns to the operating system.

When no file name is specified in the invocation line, control transfers to the initial
level. A single asterisk (*) prompt indicates that control is at theinitial level. The
BACKUP, NOBACKUP, GET, HELP, LIST, and QUIT commands are available at
thislevel. Usethe GET command at theinitial level to initialize the action command
level. (Seethe GET entry in this chapter.) Usethe QUIT command to return to the
operating system level.

If the file nameis specified in the invocation line, control transfers directly to the
action command level, indicated by the double asterisk (**) prompt. Most of the
L1B386 commands are available at thislevel. Use these commands to alter the target
library contents. Use the QUIT command to return to theinitial level or to the
operating system level.

Transfer of Levels

62

Control transfers inward from the operating system to the action command level
when the target library file is specified on the invocation line. A double asterisk
prompt (**) indicates the action command level. All action level commands are
available for execution. Invoking L1B386 contains details on specifying the target
library file.

Control transfers inward from the operating system to the initial command level if the
target library file is not specified with the invocation. A single asterisk prompt (*)
indicates the initial command level. All initial level commands (e.g., GET, LIST)
can be executed. GET transfers control from the initial command level to the action
command level.

The QUIT command sequence must be executed to transfer control outward from the
action or initial command level. Seethe QUIT entry in this chapter for details.

Chapter 3 Using the Intel386 Librarian

Y
A

Operating System Level
LIB386 Invocation
BATCH NOBATCH
BACKUP NOBACKUP
no filename specified | filename specified
¢ A

Initial Level

GET > Action Level

HELP ADD

LIST publics COMPRESS

TO filename DELETE

QUIT

[ABORT] FIND

[INITIALIZE]

[EXIT] HELP
LIST publics
TO filename
QUIT

7 [ABORT]
——— [INITIALIZE]

[EXIT]
REPLACE
SET
[NAME]
[VERSION]
{PAGELENGTH]
UPDATE

OMO02008

Figure 3-2. Levelsof LIB386 Command Set

Intel386 Family Utilities User's Guide Chapter 3 63

Effect of Entering the Interrupt Character

Theinterrupt character terminates LI1B386 activities (except for BACKUP), in
foreground mode. However, L1B386 completes the portion of the command that was
executing before the interrupt character was entered. For DOS systems, the interrupt
character is <Ctrl-Break>.

If BACKUP is specified either as a command or as a control and the interrupt
character is entered, L1B386 finishes backing up the library before interrupting itself.

Summary of Commands

Table 3-1 summarizes L1B386 commands for DOS and iRMX operating systems.
The default column shows the condition in effect when the control is not specified.

Table 3-2 lists abbreviations of LIB386 controls. Each LI1B386 control islisted
alphabetically and described in detail in the section following Table 3-2.

Command Syntax
To invoke a L1B386 command, use the following syntax:
conmand [paraneters] [;comrents]
Where:
command isthe command specified (e.g., ADD).

par aneters
are one or more items required by the command. Separate parameters
by commas or blank spaces unless otherwise noted under the individual
command.

coment s isthetext between the semicolon (;) and anew line. LIB386 ignores
thistext.

Y ou can continue the invocation line on additional lines by typing an ampersand (&)
before the line terminator. When L1B386 encounters a line terminator, the command
executes.

Table 3-1 summarizes L1B386 commands for DOS and iRMX operating systems.
The default column shows the condition in effect when the command is not specified.

Each L1B386 command is listed al phabetically and described in detail in the section
following Table 3-2.

Table 3-2 lists abbreviations of LIB386 commands. These abbreviations are repeated
in the following sections describing each command in detail.

64 Chapter 3 Using the Intel386 Librarian

Table 3-1. L1B386 Commandsfor DOS and iRM X Operating Systems

Command Syntax Description Default

ADD {filename[(mod_name | Adds object modules to target library | None

L---DBL--] (at action level)

BACKUP Enables or suppresses backup file for | BACKUP

NOBACKUP target library file (at initial level)

COMPRESS Physically removes deleted No compression

DELETE {mod_name][,...]|*} Logically removes modules from None
target library (at action level)

FIND symboll,...] Searches target library for the public | None
symbol(s) (at action level)

GET filename Initializes target library for session (at | None
initial level)

HELP Summarizes each LIB386 command, | None

keyword, and control

LIST {filenamel[(mod_name | Lists module names of library files (at | Console is default

L---DBL---]1[TO initial level and action levels) output device.

filename2][PUBLICS]! No publics

QUIT [ABORT | Terminates current session (at initial | EXIT control of

EXIT | INITIALIZE] and action levels). ABORT, EXIT, QUIT command
and INITIALIZE are QUIT command | only in BATCH
controls mode

REPLACE mod_namel Replaces one module from the target | None

BY filename library with one or more modules from

[(mod_name?2],...])] another object file (at action level)

SET [N] [V] [PL] [,---] Changes name (N) or version number | N = 1 blank space

(V) of target library or changes the V = 4 blank spaces
page length (PL) of listings (at action | PL =23 lines
level)

UPDATE Updates current target library file (at | None
action level)

1 filenamel is required at the initial level, but is optional at the action level. The target library is the

default for filenamel.

Intel386 Family Utilities User's Guide Chapter 3 65

Table 3-2. Abbreviationsfor LI1B386 Commands

Commands Abbr. Commands Abbr.
ADD A QUIT Q
BACKUP BU ABORT [A]
COMPRESS C EXIT [E]
DELETE D INITIALIZE m
FIND F REPLACE R
GET G SET
HELP H NAME [N]
LIST L VERSION \Y|
NOBACKUP NOBU PAGELENGTH [PL]
UPDATE U

66 Chapter 3 Using the Intel386 Librarian

ADD

ADD
Add object modules to target library

Syntax
ADD {filenane [(nmod_nane[,...])]1} [....]
Where:

filename istheinputfile. Theinput file must bealinkableor library file. The
file name must be specified according to operating system
reguirements.

mod_nane isthe object modules or modules from the input file to be added to the
target library.

Abbreviation
A

Default
ADD is not in effect.
Description

The ADD command lets you add input object modules to the target library. Only
linkable object modules generated by Intel 386 compilers, assemblers, or other

Intel 386 utilities can be added. The input file specified may contain a single object
module or a sequence of object modules; or it may be another library file. The input
file cannot have the same name asthe library. ADD is executable only at the action
command level.

Unless modules are specified in parentheses, all modulesin the input file are added to
the target library. Thisistrue whether or not the input fileisalibrary. The target
library may be initialized with the invocation line, or with the GET command at the
initial level for the current LIB386 session. If modules are specified in parentheses,
only the specified modules are added to the target library.

Uninitialized global variablesin C modules are BSS, not publics. (To make them
publics, you must initialize them.) BSS variables are not used by BND386 or the
builder to pull in library modules, which are not otherwise required to satisfy known
externals.

Intel386 Family Utilities User's Guide Chapter 3 67

ADD

A module in an object library is activeif it is both logically and physically available.
(Seethe DELETE entry in this chapter for details.) When a module specified with
the ADD command is not active in the input file, the following error message appears
at the console:

MODULE NOT FOUND
FILE: filenane
MODULE: nod_nane

If the specified module nameisidentical to the name of a module already in the
target library, the module is not added to the library. The following error message
appears at the console:

DUPLI CATE MODULE
FILE: filenane
MODULE: nod_nane

If apublic symbol name in the specified module is already active in the target library,
the module is not added to the library. The following error message appears at the
console:

DUPLI CATE PUBLI C

FILE: filenane

MODULE: nod_nane

PUBLI C SYMBOL: public synbol nane

If ADD isfor asingle object filethat isinvalid, L1B386 does not add any modules
fromthefile. If ADD isfor two or more files and only one of thefilesisinvalid,
L1B386 adds modules from al files but the invalid file.

In either case, LIB386 continues processing and the following error message appears
at the console:

| NVALI D OBJECT FI LE
FILE: filenane

If ADD is attempted for afile generated by an 80286 compiler, assembler, or utility,
the following error message appears at the console;

INPUT FILE IS A 286 OBJECT FI LE
FILE: filenane

68 Chapter 3 Using the Intel386 Librarian

ADD

Examples

1. Inthefollowing example, all the modulesin the filesMOD1.0BJ and
MOD2.0BJ are added to the target library.

**ADD MCD1. OBJ, MOD2. OBJ

2. Inthefollowing example, FILEL.LIB isalibrary file. MOD1 and MOD2 from
thisinput file are added to the target library.

** A FI LEL. LI B(MODL, MODY2)

Intel386 Family Utilities User's Guide Chapter 3 69

BACKUP

BACKUP

Enables or suppresses backup file for target library file
Syntax

BACKUP

NOBACKUP

Abbreviations

BU
NOBU

Default
BACKUP

Description

The BACKUP command tells LIB386 to create a backup file before the start of each
library session. When BACKUP is used with the GET command, L1B386 copies the
current contents of the target library file to the backup file before the session begins.
Backup files have the same file name as the target library, with extension .LBK.

BACKUP and NOBACKUP are the only LIB386 commands that remain in effect
during all sessions under a single L1B386 invocation.

The BACKUP command can be executed in the invocation line or at the initial
command level. See Invoking LIB386 for more information on using BACKUP or
NOBACKUP in the invocation line.

Examples

1. Inthefollowing example, thelibrary file MOD2.LIB isinitialized, and the GET
control identifiesthisfile asthe target library file. BACKUP is specified;
therefore, LIB386 copies MOD2.LIB to the backup file MOD2.LBK when the
library fileisinitialized for the session.

*BU
GET MOD2. LI B
target library : FROUTINES X110 05/ 15/ 86

2. Inthefollowing example, no backup files are created during this invocation of
L1B386.

LI B386 MODL. LI B NOBU

70 Chapter 3 Using the Intel386 Librarian

COMPRESS

COMPRESS

Physically removes deleted modules from target library

Syntax
COVPRESS

Abbreviation
C

Default
COVPRESS in not in effect.

Description

The COMPRESS command physically removes data that has already been logically
deleted or replaced. Execute COMPRESS after you have executed several deletes
and/or replaces; thiswill give LIB386 and other Intel 386 utilities faster accessto the
target library.

The DELETE command logically deletes a module but does not necessarily
physically remove it from the target library file. Y ou can use the COMPRESS
command to physically remove the module from the object library. Seethe
description of the DELETE command for more information.

COMPRESS is executable only at the action command level.

Example

In the following example, the target library is compressed by executing COMPRESS
at the action command level. The target library is restructured for maximum
efficiency.

**C

Intel386 Family Utilities User's Guide Chapter 3 71

DELETE

DELETE

Logically removes modules from target library

Syntax

DELETE nod_nane[, ...]

Where:

mod_nane isthe module to be deleted from the target library.
* deletes all modules from the target library.

Abbreviation

D

Default

DELETE isnot in effect.

Description

72

The DELETE command logically removes specified modules from the target library.
Public symbolsin deleted modules are also logically removed. DELETE does not
physically remove the modules, but there is no way to refer to modules that have
been deleted. Use the COMPRESS command to physically remove modul es that
have already been logically deleted.

When you are in foreground mode and specify, "delete all modules* with the
construction, DELETE (*), LIB386 queries:

Are you sure? [Y/N]
Typey or yesto confirm that you want to delete all modules. Any response besidesy
or yes causes L1B386 to ignore the DELETE command and issue the action
command level prompt (**). In batch mode, you will not have the opportunity to
confirm; L1B386 will delete all modules upon command.
An object library module is active if the moduleis both logically and physically
available. For each non-active module you specify, the following error message is

displayed:

MODULE NOT FOUND
FILE: filenane
MODULE: nod_nane

DELETE is executable only at the action command level.

Chapter 3 Using the Intel386 Librarian

DELETE

Examples
1. Inthefollowing example, MOD1 and MOD?2 are logically deleted from the
target library.
**D MOD1, MOD2
2. Inthefollowing example, LIB386 deletes all modules from the target library.

**D*
Are You Sure? [Y/N vy

Intel386 Family Utilities User's Guide Chapter 3 73

FIND

FIND
Searches target library for public symbol
Syntax
FI ND synbol [, ...]
Where:
synbol is the name of the public symbol that LIB386 is to search for

in the target library.

Abbreviation
F

Default

FI NDis not in effect.

Description

The FI ND command first verifies whether the specified public symbol is active (that
is, logically and physically available) in the target library. If the symbol is active, the
symbol name and the name of the module containing the symbol are displayed.

If the symbol is not active in the target library, the following message appears at the
console:

public symbol, NOT FOUND
Where:
publ i ¢ synbol isthe specified public symbol.

FI NDis executable only at the action command level.

74 Chapter 3 Using the Intel386 Librarian

FIND

Examples

1. Inthefollowing example, CHKSTATUS sthe public symbol that is searched
for in the target library. The search finds CHKSTATUS in CHECKMOD.

**F CHKSTATUS
CHKSTATUS, | N MODULE CHECKMOD

2. Inthefollowing example, the search for CONVRBY TE finds that this public
symbol is not active in any of the target library's modules.

**F CONVRBYTE
CONVRBYTE, NOT FOUND

3. Inthefollowing example, the search for symbols A and B finds that both are
active in the target library's modules.

**F A B
A, I N MODULE X
B, IN MODULE Y

Intel386 Family Utilities User's Guide Chapter 3 75

GET

GET

Initializes target library file

Syntax
CET fil enanme
Where:

filename isthelibrary filethat contains the target library. The file name must be
specified according to the host operating system requirements.

Abbreviation
G

Default

GET isnot in effect.

Description

The GET command initiates a L1B386 session with the specified library file asthe
target library. All subsequent modifications, such as deletions and additions, affect
the target library.

After executing GET, L1B386 does the following:

e Transfers control to the action command level, giving access to most LI1B386
controls.

» Signalsthe start of the LIB386 session by identifying the target library with the
target library banner, which contains the name, version number, and last date of
modification of the target library.

Thelibrary file is automatically checked for read and write mode. If the target
library iswrite-protected, the GET command is successfully executed, but the
following warning appears at the console:

***WARNI NG TARGET FILE I S WRI TE PROTECTED

You can use GET to create anew library file: specify anew library file name, and
then add modules with the ADD command. Usethe SET command to set the name
and version number of the library. The banner displayed for anew library isas
follows:

TARGET LI BRARY: [new_library] date_and_tinme_|last_nodified

76 Chapter 3 Using the Intel386 Librarian

GET

To get another library file, you must first terminate the current session with the QUIT
command before you can request another GET.

GET isexecutable only at the initial option level.

Examples

1. Inthefollowing example, LIB386 initiates the library file named MOD2.LIB.
FPFUNCTIONS isthe target library for this session.

*G MOD2. LI B
TARGET LI BRARY: FPFUNCTI ONS X110 01/01/1986 10:04:55

2. Inthefollowing example, anew library file, MOD3.LIB, is created, because this
file does not already exist.

*G MOD3. LI B
TARGET LI BRARY: [new library] 09/17/86 11:45:07

Intel386 Family Utilities User's Guide Chapter 3 77

HELP

HELP

Summarizes L1B386 commands, keywords controls

Syntax
HELP

Abbreviation
H

Default
The HELP summary is not displayed.

Description

The HELP command displays a summary of LIB386 commands. The summary lists
each L1B386 command and control with the command syntax, abbreviation, and a
brief description of its function.

HEL P summaries are available on the following topics:

ABORT ADD BACKUP COVWPRESS DELETE
EXIT FI ND GET HELP INITIALI ZE
LI ST NAME PAGELENGTH PUBLICS QU T
REPLACE SET UPDATE VERSI ON

The HELP command is available at both the initial and action command levels.

Example

In the following example, the HELP command summary is requested.
*H

78 Chapter 3 Using the Intel386 Librarian

LIST

LIST
Lists module names of library files
Syntax
LIST {[filel] [(nod_name)]}[,...] [TOfile2] [PUBLICS]
Where:
filel is the name of the library file whose module information is to be listed.

mod_nane isthe module or modulesto be listed. If no modules are specified, all
modulesin the file are listed. Module names should be separated by
commas. for example, nod_namel, nod_name2.

file2 isthe output print file.
PUBLI CS listsall public symbolsin the specified modules.

Abbreviation
L

Default

If filelisnot specified at the action command level, the target library isused. If
TOfi | e2 isunspecified, list information is displayed at the standard output device.

The listing defaults are as follows:
* Thenamesof al modulesin thelibrary are listed.
e Public symbol names are not listed unless the PUBLICS contral is specified.

e Thefirst portion of the list appears 23 lines per pagein NOBATCH mode. The
listing is continuous in BATCH mode. Thelisting isalso continuousif fil e2is

specified.

Intel386 Family Utilities User's Guide Chapter 3 79

LIST

Description

The Ll ST command displays the names of library modules and, as a control, public
symbols on the standard output device. When using LIST at the initial command
level, you must specify f i | e1, because no target library has yet been initialized. At
the action command level, f i | el defaultsto thetarget library if not specified.

Y ou can obtain alist of public symbolsin an object module by specifying nod_nane
and the PUBLICS control. You can also verify that a particular module resides in the
specified or default library by specifying the name of only one module without
PUBLICS. LIB386 printsthe module name if the module isin the library.

In both foreground and background modes, LIST first identifies the library being
listed by printing alibrary identification banner.

In foreground mode, LIST prints the first page of the listing and then waits for input
from the keyboard to determine how the next page or lineisto be displayed. Usethe
following display controls:

e P--Displays one page at atime (the default)

e L--Displaysonelineat atime

e F--Displayswith no breaks

* E--Endsdisplay, immediately terminating LIST command processing.

When an input character other than P, L, F, or E is entered, LIB386 continuesto list
in the previous display mode.

Y ou can set page length with the SET control. Seethe SET entry in this chapter for
details.

In background mode, or when the TOf i | e2 control is specified, LIB386 prints the
full list of modules and, if requested, public symbols. The display controls are
unavailable.

To obtain listings for other libraries without exiting from the current session, specify
the desired library's file name with the L1 ST command.

LI ST can execute at both the initial and action command levels.

80 Chapter 3 Using the Intel386 Librarian

LIST

Examples

1. Inthefollowing example, the target library's three module names are printed at
the standard output device.

* % L
TARGET LI BRARY : FPFUNCTI ONS X110 01/01/1986 02:45: 07
MOD1
MOD2
MOD3

2. Inthefollowing example, MOD1.LIB's module names and public symbols are
printed to afile.

*L MODL.LIB TO Z. LST P
File Z.LST contains the following:

NON_TARGET LI BRARY : LIBABC 1.2 12/04/86 06:54: 34
MOD1

PUBA

PUBB
MOD2

PUBC

3. Inthefollowing example, L1B386 verifies that the specified moduleisin the
target library by displaying its name.

**| (MODL)
TARGET LI BRARY : FPFUNCTI ONS X110 01/01/1986 07:07: 15
MODL

Intel386 Family Utilities User's Guide Chapter 3 81

QUIT

QUIT

Terminates current session

Syntax
QUIT [ABORT | EXIT | INITIALIZE]

Abbreviations
QUT[A] E I]

Default

The QUI T command is not in effect unless specified. |f specified in background
mode, EXI T isthe default control for the QUI T command. In foreground mode, you
must specify QUI T ABORT, QUI T EXI T, or QUI T | NI TI ALI ZE; there is no default
control.

Description

The QUI T command terminates the current LIB386 session. Three optional controls,
ABORT, EXI T, and | NI Tl ALI ZE, are available.

When QUI T is specified at the action command level, LIB386 identifies the current
target library by displaying the target library file and the library banner, as follows:

filename library_nane version_nunber date_tine_| ast_nodified

If the QUI T command isissued from the initial command level, no sign-off message
is displayed.

In foreground mode, L1B386 queries for a control if noneis specified with the QUIT
command. The QUIT command isignored if any character other than A, E, |, or the
unabbreviated form of these controlsisentered. If A, E, or | is specified, LIB386
proceeds through the appropriate quit sequence as explained below.

In background mode, L1B386 does not query for a control if none is specified with
the QUIT command. If changes were made to the library file, an update is made
automatically before the exit. ABORT and | NI TI ALI ZE are available only if
specified with the QUI T command (for example, QUI T ABORT).

The ABORT control aborts update and transfers control to the operating system level.
However, in foreground mode, if an update is required, the following query is

displayed:
Al'l Changes Lost, OK? [Y/N

82 Chapter 3 Using the Intel386 Librarian

QUIT

Select yes or y to complete the abort process and transfer control to the operating
system level. All changesto the target library since the last update are lost. Select
no, n, or any character other thany to cancel the QUI T command. Control remains at
the action command level.

The EXI T control updates the target library. L1B386 does not query, and control is
transferred to the operating system. In BATCH mode, EXI T isthe default control.

Thel NI TI ALI ZE control begins another session, transferring control from the action
command level to the initial command level. At this point you can initialize another
library file at theinitial command level with the GET command.

When the | NI TI ALI ZE control is specified, LIB386 checksto seeif the target library
needs to be updated. If so, the following query is displayed:

Al'l Changes Lost, OK? [Y/ N

Select yes or y to transfer control from the action command level to the initial
command level. All changes made to the target library since the last update are lost
and anew L1B386 session isinitiated.

Enter no, n or any character other than y to direct LIB386 to ignorethe QUI T
command. Control remains at the action command level. (Y ou can issue the UPDATE
command, then reissue the QUI T command.)

The QUI T command is executable at the initial and action command levels.

Intel386 Family Utilities User's Guide Chapter 3 83

QUIT

Examples

1

In the following example, the current session is aborted. L1B386 discovers that
NEWLIB_NAME has been altered since the last update and queries:

Al'l Changes Lost, OK? [Y/N]

Yesis selected, instructing LIB386 to ignore the changes and compl ete the abort
process. LIB386 returns control to the operating system.

**Q A
MODL. LI B, NEW.I B_NAME V1.1 11/25/1986 01: 03: 08
Al'l Changes Lost, OK? [Y/N vy

In the following example, DRIVERS is the target library name. In foreground
mode, LI1B386 prompts for a control. INITIALIZE is specified and y isthe
response to the query:

Al'l Changes Lost, OK? [Y/N]

LIB386 returnsto the initial command level from the action command level.

**QUIT
MOD2. LI B, DRI VERS 7793 11/25/1986 12:05: 45

A(bort)/E(xit)/I(nitialize) = |
Al'l Changes Lost, OK? [Y/N vy

Chapter 3 Using the Intel386 Librarian

REPLACE

REPLACE

Replaces module from target library with module(s) from another object file
Syntax

REPLACE nod_nanel BY fil enane[(nod_nanme2[,...])]

Where:

mod_nanel isthe name of the module to be replaced in the target library.

filename istheinput object fileto be added to the target library, or the file
containing nod_namne2.

mod_nane2 isthe name or names of the module or modules to be added to the target
library.
Abbreviation
R

Default

REPLACE is not in effect.

Description

The REPLACE command logically deletes a module from the target library and
replaces it with one or more modules from the input object file. Unless specific
module names are listed with the input object file, all modulesin that file are added
to the target library.

If mod_nanel and mod_nane2 are not found, the replacement is not made; the target
library remains unchanged. The following error message is displayed at the console:

MODULE NOT FOUND
FILE: filenane
MODULE: nod_nane

If apublic symbol name in the input module is aready in the target library, the
module is not added to the target library.

REPLACE is executable only at the action command level.

Intel386 Family Utilities User's Guide Chapter 3 85

REPLACE

Example

In the following example, LIB386 replaces MOD5 in the target library with MOD1
from the input object file.

**R MOD5 BY MODL1. LI B (MOD1)

86 Chapter 3 Using the Intel386 Librarian

SET

SET

Changes name, version number, or page length of listing

Syntax

SET [NAME = |ibrary_nanme |
VERSI ON = ver si on_nunber |
PAGELENGTH = | i nes]

Where:

NAVE isthe keyword that sets the name of the target library.

l'ibrary_nane
isthe name of thelibrary. The Ii brary_nane can beupto 40
characterslong.

VERSI ON isthe keyword that sets the version number of the target library.

ver si on_numnber
isthe version number, up to four characterslong.

PACELENGTH
isthe keyword that sets the length of a page of listing.

lines is the number of linesin a page of listing, from 1 to 65535 (decimal).

Abbreviations
TIN| V] P

Default

NAME: one blank space in the library banner. Before the SET command is used to
name the target library, L1B386 displays the target library name as blank spacesin
the library banner.

VERSI ON: four blank spacesin the library banner.
PAGELENGTH. 23 lines.

Description

The NAMVE command |ets you change the name of the target library. The library name
can be a string up to 40 characterslong. A syntax error occursif the specified name
exceeds the maximum number of characters. When this happens, L1B386 does not
change the old name.

Intel386 Family Utilities User's Guide Chapter 3 87

SET

88

Y ou can change the version number of the target library using the VERSI ON control.
The version number can be a string up to four characterslong. A syntax error occurs
if the specified number exceeds the maximum number of characters. When this
happens, L1B386 does not change the old number. If less than the maximum number
of charactersis used, the version number is left-justified and padded with blanks.

Y ou can specify the number of linesin a page generated by the LIST command using
the PAGELENGTH control. The page length can be from 1 to 65,535 lines. A syntax
error occurs if the specified page length exceeds the maximum number of lines.
When this happens, LI1B386 does not change the old page length.

To make multiple specifications (e.g., for alibrary name and a version number) with
the same execution of SET, separate one specification from the next with a comma.
If the same control is specified twice in one line, the rightmost specification takes
effect.

When you enter the SET command without controls, L1B386 responds by prompting
for SET specifications. Pressthe return key to cause L1B386 to issue successive
prompts for NAME, VERSI ON, and PAGELENGTH. LIB386 displays the following
prompts, in the sequence shown:

NAME = current _|library_nanme. NEW VALUE:
VERSI ON = current_version_nunmber. NEW VALUE:
LI ST conmand PAGELENGTH = current _page_|l ength. NEW VALUE:

To change a specification, enter the new name, version number, or page length at the
prompt.

To retain the current specification and proceed to the next prompt, press the return
key. After the PAGELENGTH prompt, LI1B386 displays the library banner and returns
to the action command level.

L1B386 displays the new banner for the target library after the SET command has
successfully completed.

Once specified, the target library name and number can be changed only with the
SET command. The following characters can be used in library names and versions:

e All aphanumeric characters
» Thefollowing characters: @ .7 _

e Other characters provided they are enclosed by apostrophes (*) or double
quotation marks ().

It is recommended that al phanumeric characters be used, because some operating
systems may not accept non-alphanumeric characters.

The SET command is executable only at the action command level.

Chapter 3 Using the Intel386 Librarian

SET

Examples

1

In the following example, X201 is set as the version number of the target library.
L1B386 immediately displays the new banner for COMMONLIB.

**SET VERSI ON = X201
TARGET LI BRARY: COWONLI B X201 04/23/1986 06: 04: 05

In the following example, PASCALIB and X100 are set as the name and version
number of the target library.

**S N = PASCALI B, VERSI ON = X100
TARGET LI BRARY: PASCALI B X100 05/06/1986 11:09: 45

In the following example, a carriage return is entered after the SET command.
L1B386 prompts for the name, version number, and page length of the target
library. Inthisexample, only the version number is changed.

**S

NAME = LI Bl. NEW VALUE:

VERSION = 1. NEWVALUE: 2

LI ST COVWAND PAGE LENGTH = 23. NEW VALUE:
TARGET LIBRARY: LIB1 2 12/02/1986 10: 45: 07

Intel386 Family Utilities User's Guide Chapter 3 89

UPDATE

UPDATE

Updates current target library file

Syntax

UPDATE

Abbreviation

U

Default

UPDATE is not in effect.

Description

The UPDATE command writes the contents of the target library to the target library
file. A target library file can be updated at any time during a session.

When you attempt to update a write-protected target file, LIB386 does not update the
file and issues the following message:

ATTEMPT TO UPDATE WRI TE- PROTECTED FI LE

Updating the target library does not terminate the session: you must usethe QUI T
command after UPDATE to end the session.

UPDATE is executable only at the action command level.

Example

90

In the following example, the GET command initializes FILEL.LIB as the target
library file. The object file MOD2.0BJis added to the target library
FPFUNCTIONS. UPDATE incorporates thischangeinto FILELLIB. TheQUI T
command ends the session.

**G FILEL. LI B

TARGET LI BRARY: FPFUNCTI ONS X201 04/05/1986 10: 22: 43
**A MOD2. OBJ

**U

**Q I

Chapter 3 Using the Intel386 Librarian

Using LIB386: Examples

Figures 3-3 and 3-4 show examples of L1B386 use.

Single Session

Figure 3-3 isan example of asingle library session in foreground mode. In this
example, only onetarget library is processed before the QUIT command is invoked
and L1B386 is exited.

Intel386 Family Utilities User's Guide Chapter 3 91

LI B386 COWVMON. LI B <cr>
systemid iRMX I Il 386(TM LIBRARIAN. Vx.yVX
Copyright year(s) Intel Corporation
TARGET LI BRARY : COVMONLI B X010 02/ 02/ 86
**ADD | NI T. OBJ, ERRH. OBJ <cr>
**ADD UTI L. LI B(GETFLP, GETI NT) <cr >
**DELETE STRCHK <cr >
** REPLACE START BY OLD. LI B(STARTUP) <cr >
**F| ND OVRERR <cr >
OVERR, | N MODULE SETLST
**| | ST PUBLICS <cr>
COVMONLI B X010 2/ 2/ 1986
| OMCD
PUBLI NI OMOD
PUB2I NI OMOD
PUB3I NI OMOD
PUB41 NI OMOD
PACVAN
VEI RDNOI SE
COLOREXTRAVAGANZE
WASTEMONEY
SETLST
OVRERR
PUBI NSETLST
GETFLP
PUBLI NGETFLP
PUB2I NGETFLP
PUB3I NGETFLP
GETI NT
PUBI NGETI NT
STARTUP
STARTANDKI LL
**SET VERSI ON = X011 <cr>
COWMONLI B X011 02/02/1986 10:48: 20
A(BORT) /E(XIT)/I (NI TI ALI ZE) = E <cr>

5 MODULES ADDED, 2 MODULES DELETED

Figure 3-3. Interactive Execution Example: A Single Session

92 Chapter 3 Using the Intel386 Librarian

Multiple Session

Figure 3-4 is an example of amultiple library session in foreground mode. In this
example, severa libraries are sequentially processed, using the QUIT command with
the INITIALIZE command to transfer control from the action command level to the
initial command level. At theinitial command level, the GET command initializes
another library asthe target library for the next session.

LI B386 <cr>
systemid i RMX IIl 386(TM LIBRARI AN, Vx.yVX
Copyright year(s) Intel Corporation

*GET FIRST.LIB <cr>
TARGET LI BRARY : MAINLI B X001 04/03/1986 9:40: 07
** ADD | OPROC. OBJ (1 O DRI VER) <cr>

** DELETE DUMWY_| O PROC <cr >

**SET VERSI ON = X002 <cr>

MAI NLI B X002 04/03/1986 9: 40: 20

** UPDATE <cr >

**QUI T <cr>
FI RST. LI B, MAI NLI B X002 04/03/1986 9:41:16
A(bort)/E(xit)/I(nitialize) =1 <cr>

1 MODULE ADDED, 1 MODULE DELETED
**GET OVERLY. LI B <cr>

TARGET LI BRARY : SUBROUTI NES X001 03/ 02/ 1986 9:42:42
** ADD NEWMOD. OBJ (LPDRI VE) <cr>

** UPDATE <cr >

**QUI T <cr>

OVERLY. LI B, SUBROUTI NES X001 04/03/1986 9:43:42
A(bort)/E(xit)/I(nitialize) = E <cr>

1 MODULE ADDED, 0 MODULES DELETED

Figure 3-4. Interactive Execution Example: Multiple Sessions

Intel386 Family Utilities User's Guide Chapter 3 93

DOS Batch Session

In this example, a batch file called MAKELIB.BAT and an input file called
MAKLIB.DAT contain the following:

e TheLIB386 invocation line, which initializes NEW.LIB as the target library and
invokes BATCH mode

* The processing commands ADD (used twice) and COVPRESS

e The QUIT command to terminate execution

The contents of the DOS command file MAKELIB.BAT are asfollows:
LI B386 NEW LI B BATCH < MAKLI B. DAT

The contents of the DOS input file MAKLIB.DAT are as follows:

ADD UDI | FC32. LI B

ADD\ MARK\ LI B386\ TEST\ LKS\ LKSLRG. T01
COVPRESS

QUITEXT

94 Chapter 3 Using the Intel386 Librarian

Using the Intel386 Mapper

The MAP386 mapper produces printed information about object modules, including
cross-reference maps, and, at your request, purges debug information from the object
modules.

MAP386 accepts, asinput, object files created by other Intel 386 utilities, BND386,
BLD386, and L1B386, or by 80286 tilities (except for 80286 |oadable modules).
Input files can be linkable files, library files containing linkable modules, or loadable
files containing loadable or bootloadable modules. Y ou can also specify individual
linkable modules within linkable or library files as input to MAP386.

Major Functions of MAP386

MAP386 performs the following major functions for loadable input files:

* Removes selected debug information, that is, information about public, external
and local symbol declarations, and lines of source code that are used by software
debuggers.

e Generatesprinted that describes the contents of the input file. This output can
include:

— Modulelist

— Tablemap

— Segment map

— Gate map

— Symbol map

— Public map

— Task map

— Cross-Reference map

* Insertsinformation for the target operating systems.

Intel386 Family Utilities User's Guide Chapter 4 95

Input and Output
MAP386 accepts the following as input:

96

Loadable
Input File
(386)

Invocation Line,
Loadable Input

One loadable file (containing a single |oadable or bootloadable module)
produced by one of the Intel386 utilities, or one or more linkable and/or library
files (containing one or more linkable modules. (See Figure 4-1.) For non-
loadable object modules, you may specify Intel 386 and 80286 object filesin the
same invocation.

One or more MAP386 invocation controls described later in this chapter.

Operating system information (osinfo) file if the input isloadable.

osinfo
file

286/386
Linkable

\L Module List
Table Map
MAP386 Segment Map
MAPPER Gate Map
Symbol Map
Public Map
\L Task Map
Console Cross-
Messages Reference
Map

Y

Output Object File (386)
with Debug information
selectively removed and
with osinfo added

Invocation Line,

Linkable Input

Input
(in Linkable

MAP386
MAPPER

or Library
Files)

Cross-

v

Console
Messages

Reference
Map

OMO02009

Figure 4-1. MAP386 | nput and Output

Chapter 4

Using the Intel 386 M apper

For loadable and linkable input files, MAP386 outputs the following lists, as shown
in Figure 4-1:

Module List
For linkable input, lists modules input to MAP386. For loadable
modules, lists linkable modules that make up the expandable file

Cross-Reference
Provides name and type of each symbol in the input file, name of the
module containing the public definition, and names of modules
containing external declarations for the symbol. The cross-reference
map is the only map produced for linkable modules

For loadable files, MAP386 includes the following information in the print output, as
shown in Figure 4-1:

Table Map Descriptor names and corresponding indexes for global descriptor
table (GDT), interrupt descriptor table (IDT), and local descriptor
tables (LDTs)

Segment Map Names of segmentsin the input file and characteristics of each
segment, such as descriptor table index, accesstype, base,
descriptor privilege level (DPL), USE16/32 attributes, align
attributes, and others

Gate Map Symbolic gate names and characteristics of each gate in the input
file, such as descriptor table name, descriptor table index, gate
type, and others

Symbol Map Names of local symbolsin the input file and characteristics of each
symbol, such as symbol type, address, and others

Public Map Public symbolsin the input file and their characteristics, such as
symbol type, word count, and logical (and if applicable, physical)
address

Task Map Task characteristics for each task such asinitial privilege stack,

flags, initial values of CS and EIP registers, LDT selector of the
task, and others

Intel386 Family Utilities User's Guide Chapter 4 97

The module list and each of these maps are described in more detail in MAP386 Print
Fileslater in this chapter.

If the file input to MAP386 contains a loadable module, MAP386 produces some or
all of the following output, as specified by the input controls:

e Anoutput object file. Debug information, such asinformation about symbols
and line numbers, can be removed from the output file. Information relating to
the operating system can be added or updated.

* A print file containing a module list and one or more of the following maps:
0 Tablemap

Segment map
Gate map

Symbol map
Public map
0 Task map

e A crossreference map that can be directed to the print file or another specified
file.

O 0o o d

If theinput fileislinkable, MAP386 produces only a cross-reference map. Thefile
containing the cross-reference map includes a module list.

MAP386 Module Processing

Executable Modules

Executable files input to MAP386 contain a single |oadable module produced by a
Intel 386 utility. MAP386 accepts only one loadable input file per invocation.

Linkable Modules in Linkable Files

MAP386 processes modulesin linkable files as specified in the invocation line.
MAP386 can process linkable files produced by any 80286 or Intel 386 compiler,
assembler, or utility.

98 Chapter 4 Using the Intel 386 M apper

Linkable Modules in Library Files

MAP386 processes linkable modulesin library filesif they are explicitly specified in
the invocation line or if they resolve external references made in modules previously
processed during the same M AP386 invocation.

The processing of an input file varies depending on whether it isalibrary or non-
library file. A non-library file may contain one object module or several object
modules concatenated by BND386 or the BLD386 System Builder. Since several
modules cannot reliably be concatenated with a copy command, alibrary file
contains control information in addition to object modules. A module in a non-
library fileis processed by MAP386 if it is explicitly listed in the module list or if the
module list is not specified.

Processing alibrary file is more complicated. 1f amodulelist is specified for the
library file, it is processed in the same manner as anon-library file. If amodulelistis
not specified, the library fileis processed only if the previously processed modules
contain an unresolved external. The library is scanned for modules containing public
symbols that match as-yet unresolved externals. Each such moduleis processed as if
it has been explicitly specified. The selection process continues until the modulesin
the library cannot satisfy any more unresolved externals (including externals
encountered while processing modules from the library).

Intel386 Family Utilities User's Guide Chapter 4 99

Invoking MAP386

DOS and iRMX Invocation Syntax

To invoke MAP386 on a DOS or iRMX operating system, use the following syntax:
MAP386 i nput _|ist [control s]

Where:

i nput _|i st
is one or more linkable modules or object library modules, specified as
follows:
filename [(nmod_name| *)]

* An asterisk (*) specifiesall modulesin the file named by fi | enane.

control s isoneor more of the MAP386 specifications described later in this
chapter.

When you are working with loadable files, you must specify the input list with the
file name only; you cannot specify module names. MAP386 accepts only one input
fileinthis case.

Y ou can continue the invocation line on additional lines by typing the ampersand (&)
before the line terminator. This character causes the continuation line to appear with
the DOS or iRMX prompt character.

Control Files

The MAP386 invocation lineis simplified when you can use the CONTROLFI LE
control to invoke a control file. A control file isatext file containing any file names
or controls that would normally appear in the invocation line. For example, instead
of listing five controlsin the MAP386 invocation line, you can place those controlsin
asingle control file and then invoke the control filein place of all five controls.

100 Chapter 4 Using the Intel 386 M apper

Using a Control File on DOS and iRMX

To include a control file in the map386 invocation line for aDOS or iRM X operating
system, use the following syntax:

map386 CONTROLFILE (fil ename[,...])
Where:

filename isthe name of the control file containing controls, file names, or
controls and file names for the input list. Y ou cannot nest control files:
that is, the CONTROLFI LE control cannot appear in a control file.

A control file that contains only controls can be specified in any position in the input
list. A control filethat contains only file names for the input list can be specified in
any positionin the input list.

In acontral file that contains both input files and controls, input files must come
before controls. In this case, specify the control file as part of the input list.

The following example shows how to specify the CONTRCOLFI LE control in an input
list that contains the files named in cf1.dat:

MAP386 MOD. OBJ, CONTROLFI LE (CFl1. DAT) DEBUG

Within a control file, use a semicolon before acomment. Use the ampersand (&) to
continue to the next line. When the line terminator comes before the ampersand, it is
treated asif it were a blank space. MAP386 ignores characters between a semicolon
or continuation character and the line terminator. Linesin acontrol file cannot
exceed 120 charactersin length.

This example control file contains only file names for the input list:
util.lib, & ; utility library
system.lib ; system library

This example control file contains the last file names for the input list and controls
for the control list:

util.lib,& & ; utility library

system.lib & ; system library

lo & ; loadable module

ep & ; directs error messages to the specified print
& ; file specified

oj (Ibt.sys) ; hame output file

MAP386 Defaults

If theinput file is aloadable module, MAP386 processes the single module.

Intel386 Family Utilities User's Guide Chapter 4 101

If the input file is linkable and no modules are specified in the input list, MAP386
processes all modules.

If the input file is an object library and no modules are specified in the input list,
MAP386 processes only the modules that satisfy external symbol references already
encountered in the input. For areference to be satisfied, a symbol must be declared
public inamodulein the library.

Output Identifiers

If no output file names are specified in the invocation line (with controls PRI NT,
OBJECT and ERRORPRI NT), MAP386 creates output files as follows:

* MAP386 produces a print file with the same file name as the input file and
assigns the extension .MAP.

e If theinput fileisloadable, and OBJECT, OBJECTCONTROL or OSI NFO have been
specified, MAP386 produces an output object file with the same file name as the
input file and assigns the extension .OQUT.

» |f ERRORPRI NT is specified without afile name, all the error messages are
printed to the console.

Controls

When no controls are specified in the MAP386 invocation line, MAP386 performs
the functions described below:

When the input file is loadable, MAP386 does the following:

* Produces amodule list, table map, symbol map, gate map, public map, task map,
and cross-reference map. These items and error messages are placed in afile
with the same name as the input object file, with extension .MAP.

When the input is alinkable file or modules, MAP386 does the following:

» Produces a cross-reference map and places it along with amodule list and error
messages in a file with the same name as the input file and with the extension
.MAP.

102 Chapter 4 Using the Intel 386 M apper

Regardless of whether file input is loadable, bootloadable, or linkable MAP386 does
the following by default:

» Displaysonly fatal error messages on the console.

* Produces output maps 120 columns wide with 60 lines per page. A header on
each page includes atitle, date, and page number.

Console Messages
MAP386 generates sign-on/sign-off messages and error messages on the console.
MAP386 signs on to the system consol e with the following message:

systemid i RMX I |1 386(TM MAPPER, Vx.y
Copyright years, Intel Corporation

Where:

system i d identifiesthe host operating system.
VX.y isthe MAP386 version number
years isthe copyright year or years.

After processing is complete and if no fatal errors have occurred, MAP386 signs off
asfollows:

PROCESSI NG COMPLETED. n WARNI N&(S) , m ERROR(S)
Where:
n and m are the number of warnings and errors.

Fatal error messages are always displayed. If MAP386 encounters afatal error
condition, an error message and the following sign-off message appears at the
console:

PROCESSI NG ABORTED

Although nonfatal error messages are included in the print file by default, they can be
directed to the console with the ERRORPRI NT control. See the ERRORPRI NT entry in
this chapter for more information.

Intel386 Family Utilities User's Guide Chapter 4 103

MAP386 Controls

Table 4-1 summarizes MAP386 controls for DOS and iRM X operating systems. The
default column shows the condition in effect when the control is not specified. When
an invocation contains duplicate control specifications, MAP386 processes only the

rightmost specification on the invocation line.

Table 4-2 lists abbreviations of MAP386 controls. Each MAP386 control islisted
alphabetically and described in detail in the section following Table 4-3.

Table4-1. MAP386 Controlsfor DOSand iRM X Operating Systems

Command Syntax

Description

Default

CONTROLFILE (filenamel,...])

Specifies file for input elements

None

ERRORPRINT (filename)
NOERRORPRINT

Creates or suppresses creation of
error print file

NOERRORPRINT

OBJECT [(filename)]
NOOBJECT

Creates output object file from
loadable or bootloadable input files

If OBJECT
CONTROLS or
OSINFO specified
OBJECT = (input_
filename.OUT);
otherwise,
NOOBJECT

OBJECTCONTROLS
(objectcontrol [EXCEPT]
(mod_namel,...])I[....])

object controls:

DEBUG NODEBUG
EXTERNALS NOEXTERNALS
LINES NOLINES
PUBLICS NOPUBLICS
SRCLINES NOSRCLINES
SYMBOLS NOSYMBOLS

Includes or removes debug
information in output object file

OBJECTCONTROL
(DEBUG) (includes
debug information)

OSINFO (filename)

Creates or updates operating
system information section of
object file

None

PAGELENGTH (length)

Sets lines per page for output
listing

PAGELENGTH (60)

104 Chapter 4

continued

Using the Intel 386 M apper

Table4-1. MAP386 Controlsfor DOS and iRM X Operating Systems (continued)

Command Syntax

Description

Default

PAGEWIDTH (width)

Sets characters per line for output
listing

PAGEWIDTH (120)

PAGING Creates page breaks in print files PAGING
NOPAGING

PRINT (filename) Creates or suppresses creation of | PRINT(first_input_
NOPRINT print file filename.MAP)

PRINTCONTROLS
(printcontrol)
[EXCEPT}mod_name

L--DE-D)

print controls:

Includes or omits selected maps
from print file

PRINTCONTRTOLS
(DEBUG, TABLES,
TASKS)

DEBUG NODEBUG
LINES NOLINES
PUBLICS NOPUBLICS
SRCLINES NOSRCLINES
SYMBOLS NOSYMBOLS
TABLES NOTABLES
TASKS NOTASKS
SYMBOLSORT Prints symbol names in SYMBOLSORT
NOSYMBOLSORT alphabetical order
(SYMBOLSORT) or in order of
occurrence in (NOSYMBOLSORT)
TITLE (title) Places header line at top of each No title
print file page
TYPE Ignores types TYPE
NOTYPE
TYPECHECK Enables or suppresses type TYPECHECK
NOTYPECHECK checking
XREF [(filename)] Directs intermodule cross- XREF(print_file
NOXREF reference map between public and | filename)
external symbols to specified file
Intel386 Family Utilities User's Guide Chapter 4 105

Table4-2. Standard Abbreviationsfor MAP386 Controls

Commands Abbr. Commands Abbr.
CONTROLFILE CF OBJECTCONTROLS ocC
ERRORPRINT EP OSINFO Ol
NOERRORPRINT NOEP PAGELENGTH PL
NOOBJECT NOOJ PAGING PG
NOPAGING NOPG PRINT PR
NOPRINT NOPR PRINTCONTROLS PR
NOSYMBOLSORT NOSS SYMBOLSORT SS
NOTYPE NOTY TITLE TT
NOTYPCHECK NOTC TYPE TY
NOXREF NOXREF TYPECHECK TC
OBJECT oJ XREF XREF

106 Chapter 4 Using the Intel 386 M apper

CONTROLFILE

CONTROLFILE

Specifiesfile for input elements

Syntax
CONTROLFI LE (filenare[,...])

Abbreviation
CF

Default
CONTROLFI LE isnot in effect.

Description

The CONTROLFI LE control directs MAP386 to the specified file for controls or
elements of theinput list. A partial control or input list element is not allowed.
Nested control files are not allowed. MAP386 returns to the command line when it
encounters the end of a control file.

Refer to Control Filesin this chapter for the content and format of control files.

Invocation Examples

In all of the following examples, four contral files are invoked in three different
combinations. Control file CF1.DAT contains files and controls, as follows:

FI LE1. OBJ, FILE2.0BJ, FILE3.0BJ NOSS EP
Control file CF2.DAT contains filesonly:
FI LE4. OBJ, FILE5.0BJ, FILE6.OBJ
Control file CF3.DAT contains controls only:
NOSS PR (Al.MAP) TT ("THIS IS A TITLE")
Control file CF4.DAT contains files only, but with a comma after the last file name:

FI LE7. OBJ, FILES8.0BJ, FILES. CBJ,

Intel386 Family Utilities User's Guide Chapter 4 107

CONTROLFILE

Examples

108

1

In the following example, the PAGEW DTH and NOXREF controls and the A.OBJ
input file are specified on the command line with CF4.DAT and CF2.DAT.

MAP386 A. OBJ, CF (CF4.DAT) CF (CF2.DAT) PAGEW DTH (90)
NOXREF

In the following example, the PAGEWIDTH and NOXREF controls and the
B.OBJinput file are specified on the command line with CF4.DAT and
CF1.DAT.

MAP386 B. OBJ, CF (CF4.DAT) CF (CF1.DAT) PAGEW DTH (90)
NOXREF

In the following example, all input files and controls except C.OBJ are specified
in the control files CF2.DAT and CF3.DAT.

MAP386 C. OBJ, CF (CF2.DAT, CF3. DAT)

Chapter 4 Using the Intel 386 M apper

ERRORPRINT/NOERRORPRINT

ERRORPRINT/NOERRORPRINT

Creates or suppresses creation of error print file

Syntax
ERRORPRI NT [(fil enane)]
NOERRORPRI NT
Abbreviations
EP, NCEP

Default
NOERRORPRI NT

Description

The ERRORPRI NT control directs all error messages, including warnings, errors, and
fatal errors, to one of the following:

e Theconsole, if nofile nameis specified
» Theerror print file specified by f i | ename

The NOERRORPRI NT control prevents nonfatal errors and warnings from being sent to
the error print file.

When the file name is the same as the name of an input file, control file, or output
file, processing aborts.

Whether ERRORPRI NT isin effect or not, fatal error messages are displayed at the

console and all error and warning messages are included in the print file. The

number of error and warning messages is reported in the sign-off message.
Examples

1. Inthefollowing example, MAP386 sends al error messages and warnings to the
error print file MOD2.LIS. MOD1.0OBJistheinput file.

MAP386 MOD1. OBJ ERRORPRI NT (MOD2. LI S)

2. Inthefollowing example, MAP386 sends all error messages and warnings to the
console by default.

MAP386 MOD1. OBJ ERRORPRI NT

Intel386 Family Utilities User's Guide Chapter 4 109

OBJECT/NOOBJECT

OBJECT/NOOBJECT

Creates output object file from loadable or bootloadable input files
Syntax

OBJECT [(filenane)]
NOOBJECT

Abbreviations
QJ, NOQJ

Default

When OBJECTCONTROLS or OSI NFOis specified: OBJECT
(i nput _fil ename.OUT). When neither OBJECTCONTROLS nor OSI NFOis
specified: NOOBJECT

Description

The OBJECT control produces an output object file from aloadable input file.
MAP386 copies all sections of the input file to the output file, except when
OBJECTCONTROLS directs MAP386 to remove debug information. Refer to the
description of OBJECTCONTROLS for more information.

When only the output object file is required, specify NOPRI NT; this suppresses the
print file and saves execution time and space. Otherwise, aprint file is created as
well.

The NOOBJECT control suppresses creation of aloadable output module.

Examples

1. Inthefollowing example, MAP386 generates an output object file named
MOD2.DAT. By default, MAP386 also createsaprint file. MOD1.0OBJisthe
input file name.

MAP386 MOD1. OBJ OBJECT (MOD2. DAT)

2. Inthefollowing example, MOD3.0BJisthe input file name. Because no output
file name is specified, MAP386 generates an output object file named
MOD3.0UT.

MAP386 MOD3. CBJ OBJECT

110 Chapter 4 Using the Intel 386 M apper

OBJECTCONTROL

OBJECTCONTROL

Includes or removes debug information in output object file

Syntax

OBJECTCONTRCLS (objctrl [[EXCEPT]
(mod_nanme[,...]1)I1[.,...1)

Where:

objctrl Is one of the following:
Object Control Abbreviation
DEBUG DB
NODEBUG NODB
EXTERNALS ET
NOEXTERNALS NOET
LINES LI
NOLINES NOLI
PUBLICS PL
NOPUBLICS NOPL
SRCLINES SL
NOSRCLINES NOSL
SYMBOLS SB
NOSYMBOLS NOSB

mod_nane isthe name of a separately transated module that has been input to
BND386 or to the BLD386 System Builder to create the loadable file
named in the invocation line.
Abbreviations

oC [EC]

Default
OBJECTCONTROLS (DB). All debug information is retained.

Description

The OBJECTCONTROLS control removes specified debug information from aloadable
input file. MAP386 creates an output object file that isjust like the input file, except
that the specified debug information is omitted. OBJECTCONTROLS has no tables or
tasks controls.

Intel386 Family Utilities User's Guide Chapter 4 111

OBJECTCONTROL

112

The DEBUG, EXTERNALS, LI NES, PUBLI CS, SRCLI NES, and SYMBOLS object
controls direct MAP386 to retain various kinds of debug information; the NODEBUG,
NOEXTERNALS, NOLI NES, NOPUBLI CS, NOSRCLI NES, and NOSYMBOLS object
controls direct MAP386 to remove certain information. Object controls may be
specified in any order. When invoking MAP386 to purge debug information, also
specify NOPRI NT to save time and memory.

DEBUG includes all debug information in the output object file, including external
symbol definitions, line number definitions, public symbol definitions, source line
numbers, and symbol definitions. NODEBUG removes this information from the
output object file.

The construction EXCEPT nod_nane [, ...] excludesthe listed modulesfrom the
effects of the preceding object control.

EXTERNALS includes external symbol definitions in the output object file.
NOEXTERNALS removes external symbol definitions from the output object file.

LI NES includes line number definitions in the output object file. NOLI NES removes
line number definitions from the output object file.

PUBLI CS includes public symbol definitionsin the output object file. NOPUBLI CS
removes public symbol definitions from the output object file.

SRCLI NES includes source line numbers in the output object module. NOSRCLI NES
omits source line numbers from the output object module.

SYMBOLS includes local symbol definitionsin the output object file. NOSYMBOLS
removes local symbol definitions from the output object file.

Y ou can select which debug information is to be retained or removed by specifying
the module name or list of module names plus the desired object control. Only the
information previously contained in the module is affected.

Y ou can exclude selected modules from the effect of the object control. Specify
EXCEPT plus the module name or list of module names.

If you specify an object control without any module names, the control affects all the
debug information in thefile.

OBJECTCONTROLS has no effect if the modules input to MAP386 are linkable
modules.

Because an output object file is produced with OBJECTCONTROLS, it is not necessary
to also specify the OBJECT control, except to direct the output to f i | enane.

|:| Note

OBJECTCONTROLS is not effective when NOOBJECT is used, and no
object fileis produced.

Chapter 4 Using the Intel 386 M apper

OBJECTCONTROL

Examples

1. Inthefollowing example, MAP386 removes al debug information contained in
theinput file. The output fileisMOD1.0OUT.

MAP386 MOD1. OBJ OBJECTCONTROLS (NODEBUG

2. Inthefollowing example, MAP386 removes line numbers, local symbol
definitions originally contained in MOD3, and public symbols definitions
originally contained in all modules except MOD2 and MOD3.

MAP386 MOD2. OBJ OC (NOLI, NOSB(MOD3), NOPL EC(MOD2, MOD3))

Intel386 Family Utilities User's Guide Chapter 4 113

OSINFO

OSINFO

Creates or updates operating system information section of object file

Syntax
CSI NFO (fil enane)

Abbreviation
a

Default
The operating system information field in the object fileis not created or updated.

Description

The OsI NFO control creates or updates the operating system information field in the

object file by copying the contents of the file name (including its path) into the

oSl NFOfield in the object file. For alargefile, only the first 4K bytes are written to
OSI NFOand awarning isissued. See documentation on your target operating system
for more details.

|:| Note

OSl NFOis not effective when used with NOOBJECT.

Examples

In the following example, operating system information for the file MOD1.0BJis
copied into the osinfo field in the object file. MOD2.0BJisthe input file name.

MAP386 MOD2. OBJ OSI NFO (MOD1. OBJ)

114 Chapter 4 Using the Intel 386 M apper

PAGELENGTH

PAGELENGTH

Setslines per page for output listing

Syntax
PAGELENGTH (| engt h)

Abbreviation
PL

Default
A pageis 60 lineslong.

Description

The PAGELENGTH control specifies the number of lines per page in MAP386 output
listings (e.g., print and cross-reference files). Headings are included in the lines per
page specification. Page length may be set to from 10 to 65535 lines.

|:| Note

PAGELENGTH is not effective when used with NOPAG NG.

Examples

1. Inthefollowing example, the page length in output listingsis set to 120 lines per
page.

MAP386 MODL. OBJ PAGELENGTH (120)

2. Inthefollowing example, the page length in output listingsis set to 60 lines per
page by default.

VAP386 MOD1. OBJ

Intel386 Family Utilities User's Guide Chapter 4 115

PAGEWIDTH

PAGEWIDTH

Sets characters per line for output listing

Syntax
PAGEW DTH (wi dt h)

Abbreviation
PW

Default
A page is 120 characters wide.

Description

The PAGEW DTH control specifies the maximum number of characters per linein
MAP386 output listings (e.g., print and cross-reference file). Page width may be set
to from 80 to 132 characters per line. (The system will accept widths from 72 to 80
aswell, but these settings are not recommended, due to the width of the map.) If the
number of charactersin aline exceeds the physical width of the page, the extra
characters wrap to the following line.

|:| Note

PAGEW DTH is not effective when used with NOPAG NG.

Examples

1. Inthefollowing example, the line width in output listingsis set to 100
characters.

MAP386 MOD1. OBJ PAGEW DTH (100)

2. Inthefollowing example, the line width in output listingsis set to 120 characters
by defaullt.

VAP386 MOD1. OBJ

116 Chapter 4 Using the Intel 386 M apper

PAGING/NOPAGING

PAGING/NOPAGING

Creates page breaksin print file

Syntax
PAG NG
NOPAG NG
Abbreviations
PG NOPG

Default
PAG NG

Description

The PAG NG control prints the output map with page breaks. Each output page
contains the number of lines specified by the PAGELENGTH control (with default at 60
lines). Each new output page has a heading containing the label 386(TM) MAPPER,
atitle (specified with the TI TLE control), the date, and a page number.

NOPAG NG prints the output file printed continuously and the heading appears on the
first page only.

With NOPAG NG, PAGEL ENGTH and PAGEW DTH are not in effect, and page length
and width are unspecified.
Examples

1. Inthefollowing example, MAP386 produces a print file with pages that are 55
lineslong. A heading appears at the top of each page.

MAP386 MOD1. OBJ PAGELENGTH (55)

2. Inthefollowing example, MAP386 produces a print file that is not separated by
page breaks. MOD2.0BJand MOD3.0BJ are input files.

MAP386 MOD2. CBJ, MOD3. OBJ NOPAG NG XREF (MODL. LI S)

Intel386 Family Utilities User's Guide Chapter 4 117

PRINT/NOPRINT

PRINT/NOPRINT

Creates or suppresses creation of print file

Syntax

PRINT [(filenane)]
NOPRI NT

Abbreviations

PR, NOPR

Default

PRINT (first_input_fil enane. MAP)

Description

118

The PRI NT control creates a print file, which contains the Module List and output
maps, including the Table Map, Segment Map, Gate Map, Symbol Map, Public Map,
Task Map, and error messages. The Cross-Reference Map isincluded in the print file
if directed there with the XREF control. Y ou can also use XREF to create a separate
cross-reference file for the cross-reference map. 1f XREF and the file name for the
cross-reference file are specified, the cross-reference map is placed in that file rather
than the print file.

The print file begins with a heading containing the label 386(TM) MAPPER, atitle
(specified with the TI TLE control), the date, and page number. The file aso includes
error and warning messages.

Whenfi | ename is specified, MAP386 assigns that name to the print file.
Otherwise, by default, if the PRI NT control is not specified or if PRI NT is specified
without a file name, the name of the print fileisthe same asi nput _fi | enane, with
extension .MAP. The contents and format of the print file are described later in this
chapter.

The NOPRI NT control suppresses creation of aprint file. NOPRI NT has no effect on
the cross-reference map when the print file and cross-reference file are different.

Y ou can use NOPRI NT to save time when purging debug information or adding the
osinfo section.

Use ERRORPRI NT to create a separate error print file for error messages. Should a
fatal error condition occur, the fatal error message is displayed on screen.

Chapter 4 Using the Intel 386 M apper

PRINT/NOPRINT

|:| Note

If the default file name or a specified file name matches the name
of theinput file or any other output file, MAP386 processing
aborts.

Examples

1. Inthefollowing example, the cross-reference map, error messages, and print file
information (e.g., input and output identifiers, control list and modules
processed) are directed to the print file MOD2.LIS. MOD1.0OBJisthe input file.

MAP386 MODL. OBJ PRI NT (MOD2. LI S)

2. Inthefollowing example, MAP386 print file information and cross-reference
map are sent to the default print file. MOD1.MAP isthe default print file.

VAP386 MOD1. OBJ

3. Inthefollowing examples, the file is written to the standard output device.

MAP386 MOD. OBJ PRINT (:CO)

Intel386 Family Utilities User's Guide Chapter 4 119

PRINTCONTROLS

PRINTCONTROLS

Includes or omits selected maps from print file

Syntax

PRI NTCONTROLS (prtctrl

Where:

prtctrl

nod_nane

Abbreviation
PC

Default

[[EXCEPT] (mod_nane [,...1)10....1)

is one of the following print controls:

Print Control
DEBUG
NODEBUG
LINES
NOLINES
PUBLICS
NOPUBLICS
SRCLINES
NOSRCLINES
SYMBOLS
NOSYMBOLS
TABLES
NOTABLES
TASKS
NOTASKS

Abbreviation
DB
NODB
LI
NOLI
PL
NOPL
SL
NOSL
SB
NOSB
TB
NOTB
TA
NOTA

is the name of a separately trandated module that has been input to
BND386 or to the BLD386 System Builder to create the loadable file
named in the invocation line.

PRI NTCONTROLS (DEBUG, TABLES, TASKS)

120 Chapter 4

Using the Intel 386 M apper

PRINTCONTROLS

Description

The PRI NTCONTRCLS control modifies the contents of the print file. (It does not
affect the contents of the cross-reference map.) Specified print controls include or
omit specified maps from the print file. The print controls DEBUG, LI NES, PUBLI CS,
SRCLI NES, SYMBOLS, TABLES, and TASKS cause certain maps to be included.
Specify amodule name or list of module names after a print control to print maps
describing only the information originally contained in that module or modules. If
you do not specify a module name, the print controls affect the contents of the entire
file, regardless of the linkable module from which the information originated. The
controls NODEBUG, NOLI NES, NOPUBLI CS, NOSRCLI NES, NOSYMBOLS, NOTABLES,
and NOTASKS cause certain maps to be omitted. Print controls can be specified in
any order.

Y ou can exclude a module or modules from the effect of a print control with EXCEPT,
by specifying a print control followed by the EXCEPT control followed by a module
name or list of module names. The information previously contained in the module
or modulesis excluded from the effect of the print control. For example,

PRI NTCONTROLS can be specified in the invocation line as follows:

PRI NTCONTROLS (NOPAGELENGTH EXCEPT(MOD1, MOD3))

In this case, the public map would include public symbol information for symbols
originally declared in modules MOD1 and MOD3.

Y ou cannot limit TASKS, NOTASKS, TABLES, and NOTABLES by specifying a module
name; all modules will be affected by the specified print control.

DEBUG includes a symbol map and public map in the print file. NODEBUG omits the
symbol map and public map from the print file.

LI NES includes a section in the symbol map that contains line number definitions and
their logical addresses. NOLI NES omits this section.

PUBLI CS includes a public map in the print file. NOPUBLI CS omits the public map.

SRCLI NES includes a section in the print file that contains source line definitions.
NOSRCLI NES omits this section.

SYMBOLS includes a section in the symbol map that lists symbols and their types and
addresses. NOSYMBOLS omits this section.

TABLES includes a table map, gate map, and segment map in the print file.
NOTABLES omits these maps. Y ou cannot specify nod_nanes for TABLES or for
NOTABLES.

TASKS includes atask map in the print file. NOTASKS omits the task map. You
cannot specify module names for TASKS or NOTASKS.

Intel386 Family Utilities User's Guide Chapter 4 121

PRINTCONTROLS

[

Notes
PRI NTCONTROLS is not effective when used with NOPRI NT.

SYMBOLS, NOSYMBOLS, LI NES and NOLI NES are not effective
when used with NODEBUG.

Any input file specified on the MAP386 invocation line must be
loadable.

Examples

In the following examples, MOD1.0OBJis aloadable input file. A print fileis created
and contains the following:

122

Module list
Public map for all original input modules except MOD5 and MOD6

Symbol map for al original input modules except MOD5 and MODG6, which
will, however, include lines. The symbol map describes local symbols for all
original modules, and contains source line numbers and addresses for al origina
modules except MOD3.

Table map, gate map, and segment map for all modules. The task map is not be
printed.

MAP386 MODL. OBJ PC (DB EC(MOD5, MOD6), LI EC(MOD3), NOTA)

Chapter 4 Using the Intel 386 M apper

SYMBOLSORT/NOSYMBOLSORT

SYMBOLSORT/NOSYMBOLSORT

Prints symbol names in alphabetical order or in order of occurrence

Syntax
SYMBOLSORT
NOSYMBOL SORT
Abbreviations
SS, NOSS

Default
SYMBOLSORT

Description

The SYMBOLSORT control printslists of symbol namesin alphabetical order in output
maps.

NOSYMBOL SORT prints symbol namesin the order in which they occur in the input
object file. This preserves scoping information.

Examples

In the following example, symbol names appear in the symbol map and cross-
reference map in al phabetical order.

VAP386 MOD1. OBJ SYMBOLSORT

Intel386 Family Utilities User's Guide Chapter 4 123

TITLE

TITLE

Places header line at top of each print file page

Syntax
TITLE (title)

Abbreviation
TT

Default
TI TLE isnot in effect and thetitle string is left blank.

Description

The TI TLE control specifies the page title of the page heading. Thetitle must be an
alphanumeric string of 80 characters or less. When you use spaces or other
delimiters in the title, you must enclose the whole title in apostrophes ().

Thetitle istruncated on the right when the specified page width does not allow
enough room for the complete title.

If the cross-reference map and the print file are separate files, the same title appears
in the headings of both files.
Examples

1. Inthefollowing examples, when the fileis printed, the title that appears at the
top of each page is CROSS-REF MAP FOR PL/M PROG XYZ.

MAP386 MOD1. OBJ Tl TLE (' CROSS- REF MAP FOR PL/ M PROG XYZ')

2. Inthefollowing examples, when thefile is printed, the title CROSS-REF MAP
appears at the top of each page. A cross-reference map is generated and sent to
the cross-reference file MOD2.LIS. MOD1.OBJisthe input file and
MOD1.MAP isthe print file.

MAP386 MOD1. OBJ Tl TLE (' CROSS_REF MAP') XREF (MOD2.LIS)

124 Chapter 4 Using the Intel 386 M apper

TYPE/NOTYPE

TYPE/NOTYPE

Ignores types

Syntax
TYPE
NOTYPE
Abbreviations
TY, NOTY

Default
TYPE

Description

The TYPE control specifies that type information be printed. NOTYPE suppresses the
checking and printing of type information.

|:| Note

TYPECHECK is not effective when used with NOTYPE.

Examples

In the following example, NOTYPE is specified so that type information is neither
checked nor printed.

MAP386 MOD. OBJ NOTYPE

Intel386 Family Utilities User's Guide Chapter 4 125

TYPECHECK/NOTYPECHECK

TYPECHECK/NOTYPECHECK

Enables or suppresses type checking

Syntax

TYPECHECK
NOTYPECHECK

Abbreviations

TC, NOTIC

Default

TYPECHECK

Description

The TYPECHECK control performs type checking between public and external
symbols of the same namein the input file. If amismatch isfound, MAP386 issues a
warning message. Type mismatches are detected even if the BND386 or BLD386
NOTYPE control has been used to purge type information from the input file. This
type checking is less comprehensive than the type checking performed by BND386.

NOTYPECHECK suppresses type checking, and the error file will not notify you of
mismatches between public and external symbol types

TYPECHECK and NOTYPECHECK do hot affect the information about public and
external symbolsin output maps. For example, the cross-reference map lists symbol
types even when NOTYPECHECK is specified.

Examples

126

In the following example, type checking is suppressed; MAP386 does not issue
warnings about type mismatches. MOD2.LIS isthe print file; MOD1.0OBJisthe
input file.

MAP386 MODL1. OBJ NOTYPECHECK PRI NT (MOD2. LI S)

Chapter 4 Using the Intel 386 M apper

XREF/NOXREF

XREF/NOXREF

Directs intermodul e cross-reference map between public and external symbolsto a
specified file
Syntax
XREF [(fil enane)]
NOXREF
Abbreviations
XR, NOXR

Default

XREF and the cross-reference map file have the same name as the print file.

Description

The XREF control generates an intermodul e cross-reference map between public and
external symbols. When afile name is specified, the map is sent to that file.
Otherwise, the map is sent to the print file.

NOXREF suppresses the generation of cross-reference maps.

|:| Note
The cross-reference map is not printed when XREF is used with
NOPRI NT.
Examples

1. Inthefollowing examples, the cross-reference map is generated and sent to the
XREF file MOD2.LIS. Other maps and print file information are sent to the
default print file, MOD1.MAP.

MAP386 MODL. OBJ XREF (MOD2. LIS)

2. Inthefollowing examples, the generation of cross-reference maps is suppressed
and the remaining print file information is directed to MOD2.MAP. MOD1.0BJ
istheinput file.

MAP386 MODL1. OBJ NOXREF PRI NT (MOD2. MAP)

Intel386 Family Utilities User's Guide Chapter 4 127

MAP386 Print Files

MAP386 produces maps each time it isinvoked, unless the NOPRI NT control is
specified. MAP386 places the cross-reference map in the file specified by the XREF
control or, by default, in the file implied by the PRI NT control.

When the input file is linkable, MAP386 produces only one print file containing a
module list and the cross-reference map. When the input file is loadable, MAP386
can create any of the following maps: table map, segment map, gate map, task map,
symbol map, public map, and cross-reference map.

All maps except the cross-reference map appear in the print file, whose file nameis
specified with the PRI NT control. When PRI NT does not provide afile name,
MAP386 by default gives the print file the same file name as the input file, with
extension .MAP. The cross-reference map can be included in the print file, but it can
also be directed to another file with the XREF control.

The print file can contain the following sections, in this order:

Header
Module list
Table map

Segment map
Gate map

Symbol map
Public map
Task map
Cross-reference
Error messages

The cross-reference map can be directed to another file or excluded altogether with
NOXREF. Error messages can be directed to another file with ERRORPRI NT and also
appear in the print file. Selected maps (table, segment, gate, symbol, public, or task)
can be excluded from the print file by the use of print controls.

The following sections describe and give format examples of each part of the print
file. Inthe examples, Xsindicate the space allotted to an entry; they are replaced by
names or numbersin actual print files. Minuses are printed in the field if the absolute
value has not yet been defined.

128 Chapter 4 Using the Intel 386 M apper

Header

The print file header summarizes the MAP386 invocation specifications by listing
input and output file names and controls specified. Figure 4-2 shows the format of
the print file header.

386(TM MAPPER title dat e PAGE nunber
system.id iRMX |1l 386(TM MAPPER, Vx.yVX
INPUT FILE: filename [, . . .]

I NPUT OSI NFO FILES: filenane

OQUTPUT OBJECT FILE: fil enane

OQUTPUT PRINT FILE: filenane

OUTPUT XREF FILE: filenane

CONTROLS SPECI FI ED: control 1, control2 ...

S (warnings, if any, appear here)

Figure4-2. MAP386 Print File Header

Module List

The module list names the input files and the modules contained in each file. Files
are listed in the order in which they appear in the input list. MAP386 printsa
question mark (?) to the left of the names of modules containing no debug
information. Figure 4-3 shows the format of the module list.

MODULES | NCLUDED:

FI LE NAME MODULE NAME(S)

XXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXX

Figure4-3. MAP386 Module List

Intel386 Family Utilities User's Guide Chapter 4 129

Table Map

The table map contains information about GDTS, IDTs, and LDTs. For each
descriptor table in the input, the table map lists table indexes, selector values (except
IDT) for table descriptors, and descriptor names. Table indexes appear in decimal
notation in ascending numerical order. Selector values appear in hexadecimal
notation.

The table map lists information about the GDT first, information about the IDT
second, and information about the LDT third. LDT descriptions include a decimal
value labeled SEQ. NO.; thisvalue is the sequence number of the LDT in the GDT.
MAP386 lists only indexes that have valid descriptor entries. Figure 4-4 shows the

format of the table map.

DESCRI PTOR TABLE MAP

TABLE = GDT
TABLE | NDEX

XXXX

XXXX
TABLE = | DT
TABLE | NDEX

XXXX

XXXX

TABLE = XXXXXXXXX

TABLE | NDEX

XXXX

XXXX

BASE = XXXXXXXXH
SELECTOR

XXXXH

XXXXH
BASE = XXXXXXXXH
DESCRI PTOR NANME

XXXXXXXXXXXX

XXXXXXXXXXXX
SEQ NO. =n
SELECTOR

XXXXH

XXXXH

LIMT = xxxxH
DESCRI PTOR NANME

XXXXXXXXXXXX

XXXXXXXXXXXX

LIMT = xxxxH

BASE XXXXXXXXH LIMT = xxxxH

DESCRI PTOR NAME

XXXXXXXXXXXX

XXXXXXXXXXXX

Figure4-4. MAP386 Table Map

130 Chapter 4

Using the Intel 386 M apper

Segment Map

The segment map lists each input segment alphabetically and according to descriptor
table. For each segment, the map includes the segment name, itsindex (slot number)
in the descriptor table, present bit (PBIT), descriptor privilege level (DPL),
USE16/32 attribute, align attribute, access type, base or relocation information (an
eight-digit hexadecimal number), limit of the page-fixed part (an eight-digit The
segment map lists each input segment alphabetically and according to hexadecimal
number for USE32 or afour-digit hexadecimal number for USE16), limit (an eight-
digit hexadecimal number for USE32 or four-digit hexadecimal number for USE16).
If the map does not fit on one ling, the SEGVENT name will be printed on a separate
line. Accesstypes (listed under the heading ACCESS) are denoted as follows:

EO Executable only

ER Executable and readable
C Conforming

RO Read only

RW Readable and writable
D Expand-down

For example, ERC indicates that a segment is loadable, readable, and conforming.
RWD indicates that a segment is readable, writable, and expand-down. Figure 4-5
shows the format of the segment map.

SEGVENT MAP

TABLE : XXXXXXXX

SEGVENT NAME TABLE INDEX PBIT USE DPL ALIGN ACCESS *x LIMT
XXXXXXXX XXXX X XXXXX X XXXX XXX XXXXXXXXH XXXXXXXH
XXXXXXXX XXXX X XXXXX X XXXX XXX XXXXXXXXH XXXXXXXH

TABLE : XXXXXXXX

SEGVENT NAME TABLE INDEX PBIT USE DPL ALIGN ACCESS *x LIMT
XXXXXXXX XXXX X XXXXX X XXXX XXX XXXXXXXXH XXXXXXXH
XXXXXXXX XXXX X XXXXX X XXXX XXX XXXXXXXXH XXXXXXXH

Figure 4-5. MAP386 Segment Map

Intel386 Family Utilities User's Guide Chapter 4 131

Gate Map
The Gate Map lists each gate alphabetically and according to descriptor table. For
each gate, the map contains the gate's name, descriptor table name, index (dot
number) in the descriptor table, present bit (PBIT), descriptor privilege level (DPL),
type of gate, word count (WC), selector of the gate entry point, and offset of the gate
entry point. Gatetypesare listed as286CALL, 386CALL, 286INTR (for interrupt),
386INTR, 286TRAP, 386TRAP, or TASK. Figure 4-6 shows the format of the gate

map.

GATE MAP

TABLE: XXXXXXXXX

GATE NAME TABLE INDEX PBIT DPL TYPE WC SELECTOR OFFSET

XXXXXXXXXXXXX XXXX X X XXXXXXX XX GDT(XXXX) XXXXXXXXH
XXXXXXXXXXXXX XXXX X X XXXXXXX XX GDT(XXXX) XXXXXXXXH
XXXXXXXXXXXXX XXXX X X XXXXXXX XX LDT(xxxX) XXXXXXXXH
XXXXXXXXXXXXX XXXX X X XXXXXXX XX GDT(XXXX) XXXXXXXXH

TABLE: XXXXXXXXX

GATE NAME TABLE INDEX PBIT DPL TYPE WC SELECTOR OFFSET

XXXXXXXXXXXXX XXXX X X XXXXXXX XX GDT(XXXX) XXXXXXXXH
XXXXXXXXXXXXX XXXX X X XXXXXXX XX GDT(XXXX) XXXXXXXXH
XXXXXXXXXXXXX XXXX X X XXXXXXX XX LDT(xxXX) XXXXXXXXH
XXXXXXXXXXXXX XXXX X X XXXXXXX XX GDT(XXXX) XXXXXXXXH

Figure4-6. MAP386 Gate Map

132 Chapter 4 Using the Intel 386 M apper

Symbol Map

The symbol map, which MAP386 produces on a per-module basis, consists of three
sections: the first section describes local symbols; the second section describes line
numbers and their offsetsin the object code; the third section describes line numbers
and their offsetsin the source code.

The first section of the symbol map lists the name of each local symboal, its logical
address (given by valuesin the columns labeled BASE and OFFSET), and its type
(such asword, byte, selector, pointer, procedure, etc.). If no type has been assigned
to the symbol, the word NUL L appears in the column labeled TYPE. The symbol
map includes absolute addresses if they have been assigned to listed symbols by
BLD386. Symbolsare listed by name (under the SYMBOL NAME column) in the
order in which they occur in the input module.

If amodule contains a GDT, the first section of the symbol map indicates the GDT
dot (index) that points to the module's LDT.

The symbol map indicates the logical address of each symboal, in the columns labeled
BASE and OFFSET. The BASE column lists the symbol base, which represents the
selector of the symboal, in terms of the symbol's descriptor table and the table dot
(index) within that descriptor table. The OFFSET column lists the offset in the
segment indicated by the selector. Together the offset and selector form the logical
address of the symbol.

If the offset of the symbol isrelative to the current stack, SS:EBP is printed in the
BASE column.

The symbol map indicates when a symbol is abased symbol, that is, a symbol whose
logical addressis determined by avalue residing at the address of another symboal.
For example, PL/M based variables are based symbols.

Depending on the declarations made in the source program, the contents of the
symbol's base can be any of the following:

» Thevalue of the selector portion of the symbol's address. The symbol isreferred
to as a selector-based symbol.

» Thevalue of the offset portion of the symbol's address. The symbol isreferred
to as an offset-based symbol.

e Thevalue of both the selector and the offset of the symbol's address. The
symbol isreferred to as a pointer-based symbol.

Intel386 Family Utilities User's Guide Chapter 4 133

134

The symbol map indicates that a symbol is based by displaying one of the following
charactersto the right of the hexadecimal value in the OFFSET column:

P Indicates a pointer-based symbol; the symbol's full logical address (composed of
a selector and offset) is the value found at run time at the location given by the
BASE and the OFFSET listings.

O Indicates an offset-based symbol; the base of the symbol'slogical addressisthe
selector contained at location listed in the BASE column; the offset of the
symbol'slogical addressis given by the value found at run time at the location
given by BASE and OFFSET listings.

S Indicates a selector-based symbol; the value found at run time at the location
given by the BASE and OFFSET listings contains the selector of the symbol.
The symbol's implicit offset is zero.

If amodule has symbols from more than one LDT, the absolute addresses for the
symbols are unknown and are marked with a question mark (?). The absolute address
of symbolsthat refer to the IDT or constant symbols are also unknown.

The absolute address of a symbol that refersto an unknown entry in the LDT or GDT
ismarked ** ERROR **. An undefined absolute address from aloadablefile
created by the BLD386 System Builder that has no base value is marked

Qe ". The absolute address of a gate symbol (the gate selector entry in the GDT
or IDT) isthe address of the gate entry.

The second section of the symbol map lists lines of |oadable source code and their
offsets within code segments. The column labeled LINE lists line numbers (in
multiples of five) corresponding to the line or statement numbers of the original
source program. Under the heading OFFSET, MAP386 prints the offset portions of
the logical addresses of the of loadable code that corresponds to each original source
line (or source statement, depending on the compiler or assembler). Note that for
highly optimizing compilers this information can be miseading. The logical address
of each line is the code segment (given at the top of this section of the symbol map as
a descriptor table name and index) plus the offset. Line numbersto which the offsets
correspond ascend from left to right, beginning with the line listed in the LINE
column.

The third section of the symbol map lists source lines and their offset to the source
file. The column labeled LINE gives line numbersin multiples of five that
correspond to the source line. The column labeled OFFSET prints the offset portions
of the logical addresses containing each source line. Line numbers to which the
offsets correspond ascend from left to right, beginning with the line listed in the
LINE column. Figure 4-7 shows the format of the symbol map.

Chapter 4 Using the Intel 386 M apper

SYMBOL MAP
MODULE = XXXXXXXXX

SYMBOL NANME BASE OFFSET TYPE ABSOLUTE ADDRESS
XXXXXXXXXX LDT(xxxXx) XXXXXXXXH XXXXX XXXXXXXXH
XXXXXXXXXX CUR. STACK XXXXXXXXH XXXXX XXXXXXXXH
XXXXXXXXXX GDT(XXXX) XXXXXXXXH XXXXX XXXXXXXXH
MODULE = XXXXXXXXXX CODE SEGMENT = "tabl e(index)"
LI NE OFFSET | N CODE SEGVENT
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH
MODULE = XXXXXXXXX
SOURCE PATHNAME = XXXXXXXXXXXXXXX
LI NE OFFSET | N SOURCE FI LE
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH XXXXXXXXH
XXXX XXXXXXXXH XXXXXXXXH XXXXXXXXH
Figure4-7. MAP386 Symbol Map
Intel386 Family Utilities User's Guide Chapter 4 135

Public Map

The public map alphabetically lists the name of each public symbol in input modules.
For each public symbol, the map includesits symbol name, symbol type, word count
(if applicable), and the logical address, including selector and offset. The absolute
address, if any, is displayed with the logical address. NULL in the type column

indicates that the symbol type was not declared.
Figure 4-8 shows the format of the public map.

PUBLI C VAP

MODULE = XXXXXXXXX

PUBLI C NAME BASE OFFSET TYPE WC
XXXXXXXXX LDT(xxxXx) XXXXXXXH XXXXX XX
XXXXXXXXX GDT(XXXX) XXXXXXXH XXXXX XX

Figure 4-8. MAP386 Public Map

Task Map

ABSOLUTE ADDRESS
XXXXXXXXH
XXXXXXXXH

For each task in an input module, the task map contains the initial stacks for all
privileges, flags, initial CS and EIP values, the task's LDT selector, initial segment

register specifications, and the task's page directory register.

The task map lists tasks alphabetically. Figure 4-9 shows the format of the task map.

136 Chapter 4 Using the Intel 386 M apper

TASK NMAP

task name TSS = @GDT (index) DPL = nunber PBIT = x
BASE = XXXXXXXXH
LIMT = XXXXXXXXH

SSO ESPO = "tabl e (index)"; xXxxxxxxxH
SS1: ESP1 = "table (index)"; xXxxxxxxH
SS2: ESP2 = "tabl e (index)"; xXxxxxxxH

SS:ESP = "table (index)"; xxxxxxxxH
CSSEIP = "table (index)"; xxxxxxxxH
DS = "table (index)";

FLAGS = XXXXXXXXH

LDTSEL = | dt _name AT GDT (i ndex)
PDR = XXXXXXXXH

DEBUG TRAP NOT ENABLED

Figure4-9. MAP386 Task Map

Cross-Reference Map

The cross-reference map can be included in the print file or directed to a separate file
with the XREF control. |f the NOPRI NT control is specified and XREF is not specified
with a different file name, the map is not printed.

The cross-reference map lists the name of each symboal in the specified input module
or modules, the type of each symbol, the name of the module containing the symbol's
public definition, and the names of any modules containing external references for
the symbol.

A warning isissued if atype mismatch occurs between two symbols. If atype
mismatch occurs between a public definition and an external reference, the type used
in the public definition is the symbol type listed in the cross-reference map. If a
symbol has not been assigned atype, NULL appearsin the type column. If the type
isnot defined in the public definition, the cross-reference map lists the type used in
the external declaration.

Intel386 Family Utilities User's Guide Chapter 4 137

If the public definition of a symbal is not found in the input modules, MAP386 prints
the following message in the column labeled DEFINING MODULES:

****x UNRESOLVED ****
If apublic symbol is defined more than once, MAP386 prints the following message:

%* DUPLI CATE DECLARATI ON ** : ppd_nane.
Figure 4-10 shows the format of the cross-reference map.
CROSS REFERENCE MAP FOR fil enane
SYMBOL NAME TYPE DEFI NIl NG MODULE REFERRI NG MODULES

XXXXXXXXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXX XXXXX
XXXXXX XXXXXX

Figure 4-10. MAP386 Cross-Reference Map

Warning and Error Messages

Thelast item in the print file is the message PROCESSI NG COMPLETED and the
number of error and warning messages generated during processing. See Appendix C
for descriptions of MAP386 error and warning messages.

138 Chapter 4 Using the Intel 386 M apper

Descriptor Segment Naming

If descriptors are unnamed, MAP386 assigns qualified names with a question mark
(?) asthefirst character. The format of the qualified descriptor is as follows:

PXXXX. N
Where:
XXXX is the descriptor type
n is a sequence number assigned to the descriptor.

Descriptor types can be one of the following:

SEGMENT (code and data segments)
LDT

TASK

286CALL_GATE

386CALL_GATE

TASK_GATE

286INTR_GATE

386INTR_GATE

286TRAP_GATE

386TRAP_GATE

The sequence numbers start from one and increase in order of the segment's
occurrence in the object file. The LDT segments are an exception; their names are
gualified as 2LDT.n where n is the sequence number assigned to the LDT in the table
map.

Intel386 Family Utilities User's Guide Chapter 4 139

DOS and iRMX Examples Using MAP386

140

The following example shows a sample MAP386 invocation and the resulting print
file.

MAP386 TESTC2. 386 PRI NT (TEST. MAP) NOTYPECHECK&
PAGEW DTH (100) OSI NFO (OSFI LE) &
OBJECTCONTROLS (NOLI NES, NOSRCLI NES)

MAP386 uses TESTC2.386 as input modules. The output consists of all maps,
including a cross-reference map, and the maps are directed to the print file,
TEST.MAP. Because the input file is linkable, MAP386 does not create an output
object file. The default PAGELENGTH and PAG NG controls arein effect. Page width
is set to 100 with the PAGEW DTH control, resulting in printed pages 60 lines long and
100 columns wide, with headings, but no title, at the top of each page. The contents
of the file OSFI LE are included in the operating system information field of the
output object file named TESTC2.0UT. The object controls specify that no line or
source line information isincluded in the output file. No type checking isdone. The
name of the print fileis TEST.MAP.

Figure 4-11 shows the print file for DOS and iRMX.

Chapter 4 Using the Intel 386 M apper

386(TM MAPPER
systemid i RW |11
I NPUT FILE(S):
I NPUT OSI NFO FI LE:
OUTPUT OBJECT FI LE:
QUTPUT PRI NT FI LE:
OUTPUT XREF FI LE:
CONTROLS SPECI FI ED:
MODULES | NCLUDED:
FI LE NAMVE

TESTC2. 386

MAI N

386(TM MAPPER Vx.yVX

TESTC2. 386
OSFI LE
TESTC2. OUT
TEST. MAP
TEST. MAP
PR((COST. MAP) NOTC PW 100) CSI NFQ(| NFI LE) OC(NOLI . NOSL)

MODULE NAME(S)

HELP ?DEBUG_| NFO

DESCRI PTOR TABLE NAP

TABLE = GDOT BASE = --------- LIMT = 002FH
TABLE | NDEX SELECTOR DESCRI PTOR NAME

1 0008H CCDE

2 0013H PLMPROCL

3 0018H PLMPROC2

4 0020H LDT?

5 0028H TASK1
TABLE = |1 DT BASE = --------- LIMT = 00F7H
TABLE | NDEX DESCRI PTOR NAME

0 TRAPGATE
TABLE = LDT? SEQ NO =1 BASE = --------- LIMT = 0027H
TABLE | NDEX SELECTOR DESCRI PTOR NAME

1 000CH LDT?

2 0017H CCDE32

3 001FH DATA

4 0027H DATA

Figure4-11. Print File Example on DOS and iRM X

Intel386 Family Utilities User's Guide

Chapter 4 141

SEGVENT MAP

TABLE = GDT

SEGMENT NAME TABLE INDEX PBIT USE DPL ALIGN ACCESS BASE LIMT FIX

CODE 1 1 USE16 3 WORD ER 00003000H 004BH 0

TABLE = LDT?

SEGVMENT NAME TABLE INDEX PBIT USE DPL ALIGN ACCESS BASE LIMT FIX

CODE32 2 1 USE32 3 PARA ER 00001000H 000000DAH 00000

DATA 3 1 USE32 3 PARA RWD 00005000H FFFFFFFFH 00000

DATA 4 1 USE16 3 WORD RW FFFF4012H FFFDH 0

LDT?: 1 1 USE16 O NONE RW --c--enn- 0027H 0

GATE MAP

TABLE = GDT

GATE NAME TABLE INDEX PBIT DPL TYPE WC SELECTOR OFFSET

PLMPROCL 2 1 3 CALL286 4 GDT(1) 0000H

PLMPROC2 3 1 3 CALL286 4 GDT(1) 0000H

TABLE = | ODT

GATE NAME TABLE INDEX PBIT DPL TYPE WC SELECTOR OFFSET

TRAPGATE 0 1 3 INTR386 --- LDT(2) 0000H

SYMBOL MAP

MODULE = MAIN, LTD = GDT (4)

SYMBOL NAME BASE OFFSET TYPE ABSOLUTE ADDRESS

A SS: EBP FFFFFFFEH |NTEGER(2) memeeeeas

AB. . LDT(3) FFFFFFE6H | NTEGER(4) 00004FE6H

CFUNC . LDT(2) 0000005BH C FUNCTI ON | NTEGER(4) NEAR32 0000105BH

INL . SS: EBP 00000008H INTEGER(4) eemeeen

IN2 . SS: EBP 0000000CH INTEGER(4) e

MAI N LDT(2) 00000000H C FUNCTI ON | NTEGER(4) NEAR32 00001000H
Figure4-11. Print File Example on DOS and iRMX (continued)

142 Chapter 4 Using the Intel 386 M apper

00000010H
00000059H
00000068H

0000004BH
000000BBH
0000010EH

ABSOLUTE ADDRESS

00004FF6H

00000080H
000000C9H
000000D8H

00000050H
000000C1H

MODULE = MAIN, CODE SEGMENT = LDT(2)
LI NE OFFSET | N CCDE SEGVENT
5 00000000H 00000006H
10 000000019H 0000002FH 00000038H 00000044H
15 00000005BH 0000005EH 00000066H
MODULE - MAIN
SOURCE FI LENAME = MAIN. C
LI NE OFFSET | N CCDE SEGVENT
5 00000028H 00000033H 0000003CH
10 00000005EH 00000078H 00000087H 0000009DH
15 0000000C5H 000000ESH 000000EDH 00000106H
MODULE = HELP, LDT = GDT(4)
SYMBOL NAME BASE OFFSET TYPE
AL SS:EBP FFFFFFFEH | NTEGER(2)
ABC . . LDT(3) FFFFFFE6H | NTEGER(4)
CFUNCL. LDT(2) 000000CBH C FUNCTI ON | NTEGER(4) NEAR32 000010CBH
HEL PFUNC. LDT(2) 00000070H C FUNCTI ON | NTEGER(4) NEAR 32 00001070H
INL . SS:EBP 00000008H | NTEGER(4)
IN2 . SS:EBP 0000000CH | NTEGER(4)
MODULE = HELP, CODE SEGMENT = LDT(2)
LI NE OFFSET | N CCDE SEGVENT
5 00000070H 00000076H
10 000000089H 0000009FH 000000ASH 000000B4H
15 0000000CBH 000000CEH 000000D6H
MODULE = HELP
SOURCE FILENAME: HELP. C
LI NE OFFSET | N CCDE SEGVENT
5 00000029H 00000038H 00000041H
10 000000063H 0000007EH 0000008DH 000000A3H
15 0000000CBH 000000EBH 000000F3H 0000010CH

00000114H

Figure4-11. Print File Example on DOSand iRMX (continued)

Intel386 Family Utilities User's Guide

Chapter 4

143

MODULE = MOD2, LDT = GDT(4)

SYMBOL NAME BASE OFFSET TYPE ABSOLUTE ADDRESS
B. LDT(3) 00000022H | NTECER(4) 00005022H

C. LDI(3) 00000026H | NTEGER(2) 00005026H
PLMPROCL. . . GDT(2) 00000000H NULL 00003000H
PLMPROC2. . . GDT(3) 00000000H NULL 00003000H
TASK1 GDT(5) 00000000H NULL 00002000H
TRAPGATE. . . IDT(?) 00000000H NULL ?

PUBLI C VAP

MODULE = MAIN

PUBLI C NAMVE BASE OFFSET TYPE
CFUNC2. . . . LDT(2) 0000005BH C FUNCTION | NTEGER(4) NEAR32 255 0000105BH
MAIN. LDT(2) 00000000H C FUNCTION | NTEGER(4) NEAR32 255 00001070H

MODULE = HELP

PUBLI C NAME BASE OFFSET TYPE WC ABSOLUTE ADDRESS
CFUNCL. . . . LDT(2) 000000CBH C FUNCTION | NTEGER(4) NEAR32 255 000010CBH
HELPFUNC. . . LDT(2) 00000070H C FUNCTI ON | NTEGER(4) NEAR32 255 00001070H

MODULE = MOD2
PUBLI C NAMVE BASE OFFSET TYPE WC ABSOLUTE ADDRESS
PLMPROC . . . GDT(1) O0O0O0OH C FUNCTI ON FAR16 2 00003000H

MODULE = ?DEBUG_I NFO

PUBLI C NAMVE BASE OFFSET TYPE WC ABSOLUTE ADDRESS
B. LDT(3) 0000003CH |NTECER(4) 0 0000503CH

CcC. LDI(3) 00000040H I NTEGER(2) 0 00005040H
PLMPROCL. . . GDT(2) 00000000H NULL - 00003000H
PLMPROC2. . . GDT(3) 00000000H NULL - 00003000H
TASK1 GDT(5) 00000000H NULL - 00002000H
TRAPGATE. . . IDT(?) 00000000H NULL - ?

Figure4-11. Print File Example on DOS and iRMX (continued)

144 Chapter 4 Using the Intel 386 M apper

TASK NAP

TASK1 TSS = GDT(5) DPL =0 PBIT =1
BASE = 00002000H

LIMT = 00000067H

SSO: ESPO = --v--mmmmmmmmnos

SSL:ESPL = --vc-mmmmemenn

SS2:ESP2 = --ve-mememmeos

SSIESP = ccee-eememeas

CS:EIP = LDT(2): 00000000H

DS = LDT(3)

FLAGS = 00000200H

LDTSEL = ------

PDR = 00000000H

DEBUG TRAP NOT ENABLED
CROSS REFERENCE MAP FOR TESTC2. 386
SYMBOL NAMVE TYPE DEFI NI NG MODULE
B. |INTEGER(4) ?DEBUG | NFO
C. INTEGER(2) ?DEBUG | NFO
CFUNCL. C FUNCTI ON | NTEGER(4) NEAR32 HELP
CFUNC2. C FUNCTI ON | NTEGER(4) NEAR32 MAI N
HELPFUNC. C FUNCTI ON | NTEGER(4) NEAR32 HELP;
MAI N, C FUNCTI ON | NTEGER(4) NEAR32 MAI N,
PLMPROC . C FUNCTI ON FARLG MOD2;
PLMPROCL. NULL 2DEBUG_| NFO
PLMPROC2. NULL ?DEBUG | NFO
TASKL . NULL ?DEBUG | NFO,
TRAPGATE. NULL 2DEBUG | NFO,
PROCESS! NG COMPLETED. 0 WARNI NGS, 0 ERRCRS

REFERRI NG MODULE

HELP

HELP
MAI N
HELP

MAI N
HELP

Figure4-11. Print File Example on DOSand iRMX (continued)

Intel386 Family Utilities User's Guide

Chapter 4

145

146 Chapter 4 Using the Intel 386 M apper

BND386 Error Messages

BND386 issues a message when it encounters one of the following conditions:

WARNING: Although a questionable condition exists, the output object fileis
valid.

* ERROR: The output object file is probably invalid even though BND386
processing can continue.

« FATAL ERROR: BND386 processing aborts. All open filesare closed. The
object file created, if any, is not complete.

Numbers that accompany the messages indicate the location of the exception, as
follows:

* No number: Exception is at the system interface level.
e 100-199: Exceptionisin theinvocation line or in an input object file.
* 300-399: Exceptionisin internal BND386 processing.

Messages appear in the print file and any file created with ERRORPRINT. Fatal
error messages also appear at the console.

This appendix provides up to four kinds of information for each message:
« MEANING: how to interpret the message.

» CAUSE: the probable reason for the message.

» EFFECT: the state of the output file(s) and the status of BND386.

» ACTION: suggestions for correcting the condition.

Messages are listed in numerical order.

Intel386 Family Utilities User's Guide Appendix A 147

System-Level Exceptions

SYSTEM | NTERFACE ERROR
error text
FILE: filenane

MEANING: Thisfatal error occursin acall to the host operating system. The
error text contains a message issued by the operating system. Thefi | enane is
present only if the error isan 1/0 error.

CAUSE: Such problems as an |/O error, invalid parameters, or insufficient
memory can cause this condition.

EFFECT: BND386 processing is aborted, and control is returned to the operating
system.

ACTION: Refer to host operating system documentation for interpretation.
Correct the error and reinvoke BND386.

Invocation or Input Object Exceptions

148

ERRCR 100: | NPUT FILE M SSI NG
MEANING: Thisfatal error occurs because no linkable input file is provided.
EFFECT: Execution aborts and control returns to the operating system.
ACTION: Specify at least one linkable input file, and then reinvoke.

ERROR 101: FILENAME TOO LONG
NEAR: token string

MEANING: Thisfatal error occurs because there are too many charactersin a
fi |l ename intheinvocation line near thet oken string.

EFFECT: Execution aborts and control returns to the operating system.
ACTION: Use avalid filename, and then reinvoke.

ERROR 102: M SSI NG LEFT PARENTHESI S
NEAR: token string

MEANING: Thisfatal error occurs because a left parenthesisis missing after the
token string.

EFFECT: Execution aborts and control returns to the operating system.
ACTION: Insert aleft parenthesis in the proper location, and then reinvoke.

Appendix A BND386 Error Messages

ERRCR 103: M SSI NG RI GHT PARENTHESI S
NEAR: token string

MEANING: Thisfatal error occurs because aright parenthesisis missing after
thet oken string.

EFFECT: Execution aborts and control returns to the operating system.
ACTION: Insert aright parenthesis in the proper location, and then reinvoke.

ERROR 105: FILE ALREADY SPECI FI ED | N COWAND TAI L
FILE: filenane

MEANING: Thisfatal error occurs because thef i | enane is already specified
intheinput filelist. One of the duplicate filenamesis explicit in or implied by
the controls.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Ensure that none of the explicit or default file names match, and then
reinvoke.

ERRCR 106: | NVALI D DELI M TER I N COWAND TAI L
NEAR: token string

MEANING: Thisfatal error occurs because the invocation line contains an
improperly placed delimiter or uses anillegal character asa delimiter. The
invalid delimiter is detected either before or after the token string.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Use valid delimiters, including properly placed left and right
parentheses and commas, and then reinvoke.

ERROR 107: LINE TOO LONG I N CONTROL FI LE
FILE: fil enanme

MEANING: Thisfatal error occurs because the control file named by fi | ename
contains aline longer than 128 characters.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Correct the control file, making sure that all lines, except for
comments, are less than 128 characters long, and then reinvoke.

Intel386 Family Utilities User's Guide Appendix A 149

ERROR 108: TOKEN TOO LONG
NEAR: token string

MEANING: Thisfatal error occurs because the specified t oken stri ng
contains too many characters, e.g., a module name exceeding 40 characters.

EFFECT: Execution aborts and control returns to the operating system.
ACTION: Use atoken string of valid length, and then reinvoke.

ERRCOR 109: UNKNOWN CONTRCL | N COVMAND TAI L
NEAR: t oken string

MEANING: Thisfatal error occurs because the control indicated int oken
st ring intheinvocation lineisinvalid.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Spell the control correctly or use the proper abbreviation, and then
reinvoke.

ERRCR 110: SYNTAX ERROR
NEAR: t oken string

MEANING: Thisfatal error occurs because the structure of the invocation line
near t oken stri ngisincorrect.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Make sure that the information in the invocation line is complete,
appears in the proper order, and is spelled correctly, and then reinvoke.

ERROR 112: NUMBER OF SYMBOLS EXCEEDS | NTERNAL LIMT

MEANING: Thisfatal error occurs because the maximum number of symbols
BND386 can process has been exceeded.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Invoke BND386 with fewer input modules, or use incremental
binding with the NOPUBL ICS control.

150 Appendix A BND386 Error Messages

ERROR 114: | NVALI D OBJECT FI LE
FILE: filenane
MODULE: nod_nane

MEANING: Thisfatal error indicates that the mod_namne contained in the file
referred to by the file name has an invalid format.

CAUSE: This condition occurs because a non-object file, such asa sourcefile, or
aloadable module has been specified as the input file. 1t can also occur because
of aninternal translator or utility error.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Verify that the input list specifies the correct files and retrandate the
source files with 80286/1ntel 386 trand ators to create linkable input modules for
BND386. If the problem persists, contact RadiSys.

ERRCR 115: DUPLI CATE MODULE NAME
NEAR: nod_nane

MEANING: Thisfatal error occurs because the specified module appears more
than once in the input list.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Make sure that mod_nane is selected only once in theinput list, and
then reinvoke. If you need both selected modules, pre-link one of them,
changing its name with the NAME control.

ERROR 116: NESTED CONTROL FI LES
FILE: fil enane

MEANING: Thisfatal error occurs because the control file identified by the
fi | ename contains a reference to another contral file.

EFFECT: Execution aborts and control returns to the operating system.
ACTION: Eliminate the nesting in the control file, and then reinvoke BND386.
ERROR 118: PACE FI LE OVERFLOW

MEANING: This error occurs because an attempt was made to build an image
greater than 8M bytes.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Rewrite your program so that it occupies less than 8M bytes, and then
reinvoke.

Intel386 Family Utilities User's Guide Appendix A 151

ERROR 121: M SMATCHED SEGVENT ATTRI BUTES
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: This error condition exists because segments with the same
seg_name but with incompatible segment attributes are detected. The segment
that triggered this error condition isin mod_nane andfi | ename.

EFFECT: Processing continues, but the output object moduleis not usable.

ACTION: Assign compatible attributes. Reinvoke BND386 with the adjusted
input file or files.

ERROR 122: SAME SEGMVENT PLACED AT TWO DI FFERENT ENTRI ES | N LDT
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: This error condition occurs because duplicate selectors for
seg_nane inthei nput _I i st are detected. The segment whose selector
caused this conditionisin nod_nane andfi | enane.

CAUSE: Thei nput list may contain multiple system files (e.g., export modules
from the system builder) that have ambiguities.

EFFECT: Processing continues, but the output object moduleis not usable.
ACTION: Use only the essential system files, and then reinvoke.

ERROR 123: SEGVENT OVERFLOW DUE TO SEGSI ZE VALUE
SEGVENT: seg_nane

MEANING: This error occurs because the SEGSIZE specification istoo large.
The limit for USE16 segmentsis 64K bytes; the limit for USE32 segmentsis 4G
bytes.

EFFECT: Processing continues, and the output module may be valid; however,
other errors may occur while processing fixups.

ACTION: Ensure that the size value used in the SEGSIZE specificationis
accurate. Reinvoke if necessary.

152 Appendix A BND386 Error Messages

ERROR 124: SEGVENT UNDERFLOW DUE TO SEGSI ZE VALUE
SEGMVENT: seg_nane

MEANING: This error indicates that the SEGSIZE specification caused the
segment size to go below zero.

EFFECT: Processing continues; however, later processing may be affected, e.g.,
when the sum of all segment sizesin input is calculated.

ACTION: Use adifferent segment size control, and reinvoke BND386 if
necessary.

ERROR 125: SAME SYMBOL DEFI NED TO BE I N DI FFERENT SEGVENTS
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

SYMBOL: synbol nane

MEANING: This error condition occurs because the specified symbol is defined
in asegment different from the segment used in the public definition. The
module and file containing the symbol name declaration are defined by
mod_name and filename. This usually occurs because of incompatibilitiesin the
segmentation models.

EFFECT: Processing continues, but the output object moduleisinvalid. The
first symbol address remains effective.

ACTION: Verify that the correct libraries for the model of segmentation are
used. Correct the source file public-external declarations, retrandate, and then
reinvoke.

WARNI NG 126: SYMBOL TYPES M SMATCH
FILE: fil enanme

MODULE: nod_nane

SYMBCOL: synbol nane

MEANING: Thiswarning condition occurs because there are two symbols of
different types with the same name.

EFFECT: Processing continues.

ACTION: Set the symbolsto the same type (special care must be taken when the
modules are produced by different trandators), recompile the modules, and then
reinvoke.

Intel386 Family Utilities User's Guide Appendix A 153

WARNI NG 127: DUPLI CATE PUBLI C SYMBCL
FILE: filenane

MODULE: nod_nane

SYMBOL: synbol nane

MEANING: Thiswarning condition exists because a symbol is defined as public
in more than one input module. The module containing the definition causing
thiswarning isidentified by nod_nane, whichisinfi | enane.

EFFECT: Processing continues, and the output isvalid. The first instance of the
public symbols remains effective for later processing.

ACTION: Remove the unneeded public definition and reinvoke.

WARNI NG 128: SPECI FI ED MODULE NOT FOUND I N | NPUT FI LE
FILE: filenane
MODULE: nod_nane

MEANING: Thiswarning occurs because a module is specified in the input list,
but cannot be found in the associated file, identified by fi | enane.

EFFECT: Processing continues as if the module had not been specified.

ACTION: If it is necessary to include the referenced module in the output
module, reinvoke BND386, using a file containing the module.

ERROR 129: CS REG STER | NI TI ALI ZED BY NON- EXECUTABLE SEGVENT
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: Thiserror condition occurs because a segment is not executable, but
isidentified in the main module named by nod_nane, astheinitial code
segment. The module named by nod_nane residesinfi | enane.

EFFECT: Processing continues, but the output object moduleis not usable.

ACTION: Ensure that CS register initialization requirements are correctly
specified in the input module or modules, and then reinvoke BND386.

154 Appendix A BND386 Error Messages

ERROR 130: SS REG STER I NI TI ALI ZED BY NON- WRI TABLE SEGVENT
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: This error condition occurs because seg_nane is not writable, but
isidentified in the specified main module (named by mod_nane) as an initial
stack segment. The module named by nod_nane residesinfi | ename. Thisis
almost always due to an invalid END directive in the assembly program.

EFFECT: Processing continues, but the output module is unusable.

ACTION: Ensure that SS register initialization requirements are correctly
specified in the input module or modules, and then reinvoke BND386.

WARNI NG 131: REFERENCE TO UNRESOLVED EXTERNAL SYMBCL
FILE: filenane

MODULE: nod_nane

REFERRI NG LOCATI ON: | ocati on

REFERENCED LOCATI ON: target

MEANING: Thiswarning occurs when BND386 creates |oadable output and
finds reference to an unresolved external symbol in aninput file. Thet ar get
specifies the unresolved external symbol name.

EFFECT: Processing continues, but the output module might not be usable if the
loader does not resolve the external.

ACTION: If the symbol cannot (or should not) be resolved at load time, reinvoke
BND386, using afile that resolves the external reference.

ERROR 132: REFERENCED LOCATI ON BEYOND LIM T
FILE: filenane

MODULE: nod_nane

REFERRI NG LOCATI ON: | ocati on

REFERENCE LOCATI ON: t ar get

MEANING: This error occurs because the target information is not contained in
the referenced segment, probably because one of the segment limit values istoo
small. Thereferringlocationisinmod_nanme and fi | enane.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Correct the size of the segment being referred to, e.g., by using the
SEGSIZE control when you reinvoke BND386.

Intel386 Family Utilities User's Guide Appendix A 155

WARNI NG 133: SEGMENT LI M T DECREASED DUE TO SEGSI ZE VALUE
SEGMVENT: seg_nane

MEANING: Thiswarning occurs because the size of the segment named by
seg_nameis decreased because of a SEGSIZE specification.

EFFECT: Processing continues, and the output module isvalid. The user-
specified value overrides the existing segment size.

ACTION: Ensure the segment size specification is accurate, reinvoking BND386
if necessary to respecify the size.

ERROR 135: ENTRY PO NT SPECIFIED I N GATE | S NON- EXECUTABLE
FILE: filenane

MODULE: nod_nane

REFERRI NG LOCATI ON: | ocati on

REFERENCE LOCATI ON: t ar get

MEANING: This error condition occurs because the entry point identified by
t ar get isin anonexecutable segment. Gates are used to mediate access to code

segments only.
EFFECT: Processing continues, but the output module is not usable.

ACTION: Reinvoke BL D386 to revise the gate and/or segment in the input
system file or files to make the access possible; e.g., make the segment
containing the entry point executable. Reinvoke BND386 using the corrected
input module or modules.

ERROR 136: ENTRY PO NT SPECI FIED I N GATE | S LESS PRI VI LEGED

THAN GATE

FILE: filenane

MODULE: nod_nane

REFERRI NG LOCATI ON: | ocati on
REFERENCED LOCATI ON: target

MEANING: This error occurs because a gate is not pointing to an executable
entry point with a higher privilege level (numerically smaller) than the gate
itself.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Reinvoke BND386 with the correct system interface file.

156 Appendix A BND386 Error Messages

ERROR 137: BAD SELF RELATI VE REFERENCE
FILE: filenane

MODULE: nod_nane

REFERRI NG LOCATI ON: | ocati on

REFERENCE LOCATI ON: t ar get

MEANING: This error occurs because target and location are not in the same
segment. Thelocationisinmod_nane infi | ename.

CAUSE: This condition may be caused by atranglator error or an erroneous
ASM386 code.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Retrand ate the module, and then reinvoke BND386 with the new
input file.

ERROR 138: REFERRI NG LOCATI ON BEYOND LIM T
FILE: filenane

MODULE: nod_nane

REFERRI NG LOCATI ON: | ocati on

REFERENCE LOCATI ON: t ar get

MEANING: This error occurs because the location referring to target is outside
the limits of the segment. The location isin mod_name in filename.

CAUSE: This condition may exist because the SEGSIZE control specified a
segment size that istoo small, or it may be due to atrandator error.

EFFECT: Processing continues, but the output module is not valid.

ACTION: Retrandate the module if necessary, and then reinvoke BND386 using
avalid SEGSIZE control specification.

ERROR 139: CONSTANT VALUE OVERFLOW
FILE: filenane

MODULE: nod_nane

REFERRI NG LOCATI ON: | ocati on
REFERENCE LOCATI ON: t ar get

MEANING: This error occurs because the sum of two constant values,
represented by a public symbol at t ar get , and an incremental value in the
instruction at location, cause a byte or word overflow, depending on the input
specification.

EFFECT: Processing continues, and the output module is valid.

ACTION: Reassign valuesif required, and then reinvoke.

Intel386 Family Utilities User's Guide Appendix A 157

ERROR 140: TEXT LENGTH | S GREATER THAN SEGMVENT LENGTH
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: Thisfatal error occurs because the limit of the segment named by
seg_nameisnot large enough. The text may be an actual text item or may be
represented by afixup. The segment is contained in mod_nameifli.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Increase the limit of the segment, e.g., by reinvoking BND386 with an
appropriate SEGSIZE control parameter.

ERROR 141: CS REG STER NOT | NI TI ALI ZED
FILE: filenane
MODULE: nod_nane

MEANING: This error occurs because BND386 cannot find an initiaization
value for the CS register in the module named by mod_namein filename. This
usually happens with input that includes ASM 386 main modules, but it may also
happen if the input does not include a main module.

EFFECT: Processing continues, but the output module is not valid.

ACTION: Include a main module or provide ASM 386 CS initiaization
information, and then reinvoke.

WARNI NG 142: SS REGQ STER NOT | NI Tl ALI ZED
FILE: filenane
MODULE: nod_nane

MEANING: This error occurs because the module named by mod_name does
not contain SS register initialization information. This usually happenswith
input that includes ASM 386 main modules; it may also happen if the input does
not include amain module.

EFFECT: Processing continues, but the output module is not valid.

ACTION: Include a main module or provide ASM 386 SSinitialization
information, and then reinvoke.

158 Appendix A BND386 Error Messages

WARNI NG 143: DS REGQ STER NOT | NI TI ALI ZED
FILE: filenane
MODULE: nod_nane

MEANING: Thiswarning occurs because the module identified by mod_name
does not contain DS initialization information. Thiswarning usually happens
with input that includes ASM 386 main modules, but it may also happen if the
input does not include a main module.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Include amain module or provide ASM386 DS initialization
information. and then reinvoke.

ERROR 144: SEGVENT OVERFLOW DUE TO SEGVENT COMVBI NATI ON
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: This error occurs because the combination of segments identified
by seg_name resultsin a physical segment larger than 64K bytes for USE16
segments, or larger than 4G bytes for USE32 segments. The segment causing
the overflow condition isin mod_name.

EFFECT: Processing continues, but the output module is not usable. Such
overflow may cause errors during fixup processing.

ACTION: Remove modules and/or segments that are not needed. Modify the
size of the input segments or rearrange their contents. Use RENAMESEG to
prevent unnecessary segment combination. Reinvoke.

ERROR 145: TEXT FOUND | N STACK SEGVENT
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: This error occurs because the stack segment named by seg_nane
innmod_nane contains text.

EFFECT: Processing continues, but the effect on the output module is not
known.

ACTION: Ensure that the result is acceptable, reinvoking BND386 if necessary.

Intel386 Family Utilities User's Guide Appendix A 159

ERROR 146: TYPE DESCRI PTI ON TOO LONG
FILE: filenane
MODULE: nod_nane

MEANING: Thisfatal error indicates that the type definition is too long and
requires space that exceeds an internal limit of BND386.

EFFECT: Processing is aborted, and control returns to the operating system.

ACTION: Simplify the type of the symbol and retrandate. Usethe NOTY PE
control.

WARNI NG 147: SEGVENT SPECI FI ED I N SEGSI ZE CONTROL NOT FOUND
NEAR: token string

MEANING: Thiswarning indicates that the seg_name specified in a SEGSIZE
control specification isnot in any of the input modules.

EFFECT: Processing continues, and the output module is valid.

ACTION: Use adifferent input list or a different SEGSIZE control and reinvoke
BND386.

WARNI NG 149: SEGMENT | N SEGSI ZE CONTROL |'S NON WRI TABLE
SEGMVENT: seg_nane

MEANING: This error occurs because seg_nane isfoundin a SEGSIZE
control specification, but the segment is not writable.

EFFECT: Processing continues, and the output module is valid.

ACTION: Reinvoke BND386 after changing the attribute of the segment, if
required, using the correct SEGSIZE specification.

ERROR 150: | NPUT HAS TWO MODULES W TH SAME NAME
FILE: filenane
MODULE: nod_nane

MEANING: This error occurs because the input-list contains two modules with
the same name.

EFFECT: Processing continues, but the output module is not usable.

ACTION: Eliminate the duplication of names and reinvoke.

160 Appendix A BND386 Error Messages

WARNI NG 151: UNRESOLVED EXTERNAL SYMBCLS

MEANING: Thiswarning occurs because the input contains references to public
symbols that are not defined in the input.

EFFECT: Processing continues, and the output module is valid.

ACTION: If this message is not accompanied by "WARNING 131:
REFERENCE TO UNRESOLVED EXTERNAL SYMBOL", the symbol is
never used and the only thing you need to do is remove its definitions.
Otherwise, when creating a loadable module, ensure that BND386 isinvoked
with input modules that contain public definitions for al external declarationsin
the input, unless this symbol is supposed to be resolved at load time.

WARNI NG 152: PUBLI C GATE CANNOT BE EXCLUDED FROM OUTPUT
SYMBOL: synbol nane

MEANING: Thiswarning occurs because an attempt has been made to purge a
public symbol associated with a gate.

EFFECT: Processing continues, and the output module isvalid. The public
symbol is not purged.

ACTION: Respecify the PUBLICS control to ensure that the public gates are not
excluded from the output.

ERROR 153: REGQ STER | NI TI ALI ZED BY AN EMPTY SEGVENT

FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane
MEANING: This error occurs because the segment identified by seg_nameis
empty.
EFFECT: Processing continues, but the output module is not valid. Message
141, 142, or 143 also appears.

ACTION: Provide adequate initialization information in the input segments, and
then reinvoke.

Intel386 Family Utilities User's Guide Appendix A 161

ERROR 154: REFERENCED GATE | S AT HI GHER PRI VI LEGE
FILE: filenane

MODULE: nod_nane

GATE: gate nane

REFERRI NG LOCATI ON: | ocati on

REFERENCED LOCATI ON: target

MEANING: Thiserror occursif areference to a gate at a higher privilege level
(that is, numerically lower) isfound in aloadable case.

EFFECT: Output may not be valid.
ACTION: Reinvoke BND386 with the correct system interface file.

ERROR 156: MULTI PLE REG STER | NI TI ALI ZATI ONS | N | NPUT
FILE: filenane
MODULE: nod_nane

MEANING: This error occurs because the input list contains more than one main
module.

EFFECT: Processing continues, and the output module isvalid. BND386
extractsinitialization information from the first main module in the input.

ACTION: Useinput containing only one main module, and then reinvoke
BND386.

ERROR 157: REFERENCE TO SYMBOL ON STACK FOUND
FILE: filenane

MODULE: nod_nane

REFERRI NG LOCATI ON: | ocati on

REFERENCED LOCATI ON: target

MEANING: This error occurs because a public symbol is defined to be in stack
and this public symbol is referred to in a fixup.

EFFECT: Processing continues, but BND386's actions are undefined and the
output module is not valid.

ACTION: Correct the input module, and then reinvoke BND386.

162 Appendix A BND386 Error Messages

ERROR 159: REFERENCE TO AN EMPTY SEGMVENT
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: This error occurs because an empty segment, identified by
seg_nane, isreferred to in the input.

EFFECT: Processing continues, but the output may not be valid.

ACTION: Ensure that the reference is correct, reinvoking BND386 with
different input modules if necessary.

|:| Note

If amodule contains an empty data segment and the selector of the
segment is used as a parameter in a PUSH instruction (e.g., PUSH
DS), the output contents may still be usable. Thisislegal if no
other references to the specified segment exist. This case occurs by
default if amain module iswritten in a high-level language (e.g.,
PL/M) and the module contains no data. Only in these specific
cases may this error message be ignored.

WARNI NG 161: SPECI FI ED SYMBOL | N PUBLI CS CONTROL NOT FOUND
SYMBCOL: synbol nanme

MEANING: Thiswarning occurs because BND386 cannot find synbol nane,
named in a PUBLICS contral, in the input modules.

EFFECT: Processing continues and the output module isvalid. BND386 ignores
the control referring to this symbol.

ACTION: Ensure that the desired effect has been achieved, reinvoking BND386
with a different PUBLICS control specification if required.

ERROR 165: NO REAQ STER | NI TI ALI ZATI ON I N | NPUT
MEANING: This error occurs because the input contains no main module.

EFFECT: Processing continues, but the loadable output module cannot be
executed.

ACTION: Reinvoke BND386 using input that contains one main module.

Intel386 Family Utilities User's Guide Appendix A 163

164

ERROR 166: | NCREMENTAL BUI LD I NPUT FI LES ARE NOT ALLOWED
FILE: filenane

MEANING: Thisfatal error occurs because the filein input is an incrementally
built file produced by BLD286/386 and cannot be processed by BND386.

EFFECT: Execution aborts and control returns to the operating system.

ACTION: Remove the incrementally built file from the input list. Y ou may need
to use an export filein the input list. Reinvoke.

ERROR 167: OFFSET OF SYMBOL BEYOND SEGVENT LIM T
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

SYMBOL: synbol nane

MEANING: Thiserror condition occurs because the offset of the specified
symbol is located beyond the segment limit.

EFFECT: Processing continues, but the output may not be usable.

ACTION: Reposition the symbol offset and check the SEGSIZE control.
Reinvoke.

ERROR 168: SEGQVENTS W TH COMMON ATTRI BUTE HAVE DI FFERENT
LENGTHS

FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: This error occurs because the input module contains FORTRAN
common segments that do not have the same length. The module name identifies
the second module containing a common segment.

EFFECT: Processing continues and the output module is usable. The lengths of
the segments remain unchanged.

ACTION: Make the segments the same length or define them as blank common
segments, and then reinvoke.

WARNI NG 170: SEGMENT SPECI FI ED | N RENAMESEG CONTROL NOT FOUND
SEGMVENT: seg_nane

MEANING: Thiswarning occurs because the segment to be renamed with the
RENAMESEG control is not found in the input.

EFFECT: Processing continues and the output module is usable.

ACTION: Specify the correct seg_name in the RENAMESEG control, and then
reinvoke.

Appendix A BND386 Error Messages

ERRCOR 171: | NVALID PRI VI LEGE LEVEL
NEAR: token string

MEANING: Thisfatal error occurs because the privilege level is not within the
range O to 3.

EFFECT: Execution aborts and control returns to the operating system.
ACTION: Use aprivilege level in the range 0 to 3, and then reinvoke.

ERROR 172: SYMBOL TYPE | NFORVATION | S TOO COWPLEX
FILE: filenane
MODULE: nod_nane

MEANING: This error occurs because the length of the type definitionsin the
input exceeds internal limits.

EFFECT: No type checking on these type definitions is performed. The output
moduleis usable.

ACTION: Recompilethe moduleinfi | ename using the NOTY PE control and
reinvoke BND386, or reinvoke BND386 using the NOTY PE control.

WARNI NG 174: CONFLICT I N SYMBOL SI ZE REQUI REMENTS
FILE: filenane

MODULE: nod_nane

SYMBOL: synbol nane

MEANING: Thiswarning occurs because external symbols of the same name
have different lengths.

EFFECT: BND386 allocates the longer length to the symbol.

ACTION: Make sure multiple declarations of the same symbol have the same
length.

ERRCOR 177: | NVALI D USAGE OF THE RCONFI GURE CONTROL
NEAR: token string

MEANING: This error occurs because of invalid usage of the RCONFI GURE
control.

EFFECT: Processing aborts and control returns to the operating system.
ACTION: Respecify the RCONFI GURE control.

Intel386 Family Utilities User's Guide Appendix A 165

166

ERROR 180: FI XUP OVERFLOW
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: This error occurs because an overflow due to segment combination
occurred during fixup.

EFFECT: Processing continues; the fixup is not applied, and the output module
isusable.

ACTION: This might happen in ASM 386 programs, when, for example, a
WORD is used to hold an address of an object whose address is above 64K
bytes. It can aso happen when 16-bit addressing is used for such objects. The
first exampleis corrected by using DWORDS. The second exampleis corrected
by using 32-bit addressing.

WARNI NG 181: SEGMENTS W TH DI FFERENT USE32 ATTRI BUTES WERE
COVBI NED

FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nhane

MEANING: Thiswarning occurs because an attempt was made to combine data
or stack segments with different USE attributes.

EFFECT: Processing continues; the combined segment has USE16 attributes.

ACTION: If segment must be larger than 64K bytes, use a different name for the
segment to avoid segment combination.

WARNI NG 182: SEGMENT ACCESS RI GHTS WERE RELAXED
FILE: filenane

MODULE: nod_nane

SEGMVENT: seg_nane

MEANING: Thiswarning occurs because the access rights of the specified
segments were changed due to segment combinations. For example, when a
segment that was read-only is combined with a segment that is writable, the new
segment is writable; thus the protection against accidental writing islost.

EFFECT: Processing continues and the output module is valid.

ACTION: If you need the original access rights, change the input so that the
segments will not be combined.

Appendix A BND386 Error Messages

ERROR 183: | NPUT MODULE HAS DUPLI CATE SEGVENT NAMES

MEANING: This error occurs because the specified module has more than one
segment with the same combine name.

EFFECT: Processing aborts and control returns to the operating system.

ACTION: Thisisusually an error in the trandator, the input module, or the
controls used with the trandlator. Check the trandation process.

Internal Processing Exceptions

If you encounter an error message that has the following format, contact RadiSys for
assistance:

* * * EFRROR 3xx: | NTERNAL PROCESSI NG ERROR, nessage
Where:
3XX isthe error number
message isastring containing the text of the message
All these messages are caused by fatal errors.

Following isthelist of internal processing exceptions, along with their assigned
numbers:

ERROR 300: | NTERNAL ERROR I N PASS1

ERROR 301: | NTERNAL ERROR I N PASS2

ERROR 302: | NTERNAL ERROR | N OUTPUT

ERROR 303: | NTERNAL ERROR | N OBJECT MODULE | NTERFACE
ERROR 304: | NTERNAL ERROR | N SYMBOL PROCESSI NG
ERROR 305: UNKNOWN ERROR

Intel386 Family Utilities User's Guide Appendix A 167

156 Appendix A BND386 Error Messages

LIB386 Error Messages

L1B386 issues two types of error messages:
« Error and warning messages related to L1B386 processing
+ Messages related to the operating system interface

All messages are sent to the current console.

Processing Errors

These errors are detected when LIB386 encounters an invocation error or an illegal
input file. LIB386 processing errors also occur because of improper command
syntax or semantics. A problem that is treated as a warning is any condition that
could lead to an error, such as an empty target library. Each processing error message
contains the following:

* Theword*** ERROR or *** WARNING
e A unique error number
* A brief explanation of the problem

An error message may also contain one or more of the following items that describe
the problem:

- filename
- mod_name

- public_symbol_name

Intel386 Family Utilities User's Guide Appendix B 157

L1B386 has two types of processing error messages:
e 1xx: syntax or semantic errors and object-file errors, and warnings
» 3xx internal processing errors

Errors designated 1xx may or may not be fatal, depending on the particular problem.
Errors designated 3xx are always fatal; these are internal to LIB386. Y ou should
report errors designated 3xx to an RadiSys representative. The following messageis
displayed for fatal errors:

PROCESSI NG ABORTED

This appendix provides up to three kinds of information for each message:
MEANING: how to interpret the message
EFFECT: the status of LI1B386

ACTION: suggestions for correcting the condition. Error messages are listed in
numerical order.

LIB386 Processing Error Messages

158

ERROR 100: | NVALI D DELI M TER | N | NVOCATI ON LI NE
NEAR: t oken

MEANING: This error occurs because the delimiter used in theinvocation line is
not valid. Spaces and carriage returns are the only valid delimiters for the
invocation line.

EFFECT: Execution aborts and control is returned to the operating system.
ACTION: Retype the command and then reinvoke.

ERROR 101: UNKNOWN CONTRCL | N | NVOCATI ON LI NE
NEAR: token

MEANING: This error occurs because an invalid control is specified in the
L1B386 invocation line. The only valid controls for the LIB386 invocation line
are BACKUP, NOBACKUP, BATCH, and NOBATCH.

EFFECT: Execution aborts and control is returned to the operating system.
ACTION: Retype the command and then reinvoke.

Appendix B L1B386 Error M essages

ERROR 102: PATHNAME TOO LONG
NEAR: fil enane

MEANING: This error occurs because the specified f i | enane istoolong. A
filename cannot have more than 45 characters.

EFFECT: The command is not executed.
ACTION: Retype the command line with a shorter filename and then reinvoke.
ERROR 103: NUMBER OF SYMBOLS EXCEEDS | NTERNAL PROCESSING LIM T

MEANING: This error occurs because virtual memory is not sufficient for the
number of symbols used.

EFFECT: Execution aborts.

ACTION: Reduce the number of public symbolsin the target library or allocate
more memory, and then reinvoke.

ERROR 104: PREMATURE END OF COVMAND STREAM

MEANING: This error occurs because the command input file ended before the
L1B386 session ended.

EFFECT: Execution aborts.

ACTION: In batch mode, make sure a correct QUIT command is present. In
interactive mode, exit with a QUIT command, not a Ctrl-Break. Reinvoke.

ERROR 105: | NVALI D OBJECT FI LE
FILE: filenane

MEANING: This error occurs because the specified input file does not conform
to the Intel 386 object module format specifications.

EFFECT: The portion of the command pertaining to the offending file is not
executed.

ACTION: Verify that the file was created properly. If the file was improperly
created, recreate the file with the appropriate trandlator or Intel 386 utility.
Reinvoke.

Intel386 Family Utilities User's Guide Appendix B 159

160

ERROR 106: MODULE NOT FOUND
FILE: filenane
MODULE: mnod_nane

MEANING: Thiserror occursif the module specified in the command line is not
in the indicated file.

EFFECT: The portion of the command that pertains to the unfound module is not
executed.

ACTION: Usethe LIST command to verify that the module existsin the
specified file, and then reinvoke.

ERROR 107: DUPLI CATE MODULE
FILE: filenane
MODULE: mnod_nhane

MEANING: This error occurs because the module specified to be added or
replaced already existsin the target library.

EFFECT: The portion of the command pertaining to the offending module is not
executed.

ACTION: Delete the existing module before adding the specified module to the
library.

ERROR 108: DUPLI CATE PUBLIC

FILE: filenane

MODULE: mnod_nhane

PUBLI C SYMBOL: public_synbol nane

MEANING: This error occurs because the module specified to be added or
replaced has a public symbol that already existsin the target library.

EFFECT: The portion of the command pertaining to the offending public symbol
is not executed.

ACTION: Delete the existing module before adding the module containing the
public symbol to the library.

ERROR 109: UNABLE TO CREATE BACKUP FI LE
FILE: filenane

MEANING: This error occurs because L1B386 is unable to create the backup
file. Thiscan be caused if the file already exists and is write-protected.

EFFECT: No backup fileis created, but the session proceeds.

ACTION: If abackup fileis desired, exit LIB386 and either delete or write-
enable the backup file, then reinvoke LI1B386.

Appendix B L1B386 Error M essages

ERROR 110: UNABLE TO ACCESS NON- TARGET LI BRARY FI LE
FILE: filenane

MEANING: Thiserror occurs when LIB386 is processing the LIST command,
and L1B386 cannot open the specified file. This error occurs because the file
does not exist or is already open.

EFFECT: The command is not executed.
ACTION: Check that the file is closed and exists and then reinvoke.

ERROR 111: NON TARGET FILE IS NOT A LI BRARY
FILE: filenane

MEANING: This error occurs because an attempt was made to list afile that is
not alibrary file.

EFFECT: The command is not executed.
ACTION: Filesthat are not libraries cannot be listed.

ERROR 112: UNABLE TO CREATE LI ST FI LE
FILE: filenane

MEANING: This error occurs because the LIST TO filename command is
specified, and LIB386 is unable to create the filename. Probable causes are that
filenameis either already open or is an existing, write-protected file.

EFFECT: The command is not executed.

ACTION: Check that the file is closed and write-enabled or make sure that the
file does not exist, and then reinvoke.

ERROR 113: PATHNAME EXPECTED

MEANING: This error occurs because the LIST command isissued at the initial
command level with no filename specified.

EFFECT: The command is not executed.

ACTION: Specify afilename with the LIST command at the initial command
level or initialize alibrary with the GET command, and then obtain alisting of

thelibrary.
WARNI NG 114: TARGET LI BRARY FILE IS EMPTY

MEANING: Thiswarning occurs because an UPDATE command is issued and
the target library is empty.

EFFECT: No update is performed.
ACTION: Usethe ADD command to add modules to the target library.

Intel386 Family Utilities User's Guide Appendix B 161

162

ERROR 115: ATTEMPT TO UPDATE WRI TE PROTECTED FI LE
FILE: filenane

MEANING: This error occurs because an attempt was made to update a file that
iswrite protected.

EFFECT: The UPDATE command is not executed.

ACTION: Do not specify UPDATE, QUI T EXI T, or QUI T | NI TI ALI ZE for the
file, or remove the write protection.

WARNI NG 116: TARCET LI BRARY NOW EMPTY

MEANING: Thiswarning occurs because the COMPRESS command was
specified after all modules were deleted from the target library.

EFFECT: If no other modules are added, the next update produces an empty and
invalid library file.

ACTION: Usethe ADD command to add modules to the target library.

ERROR 117: INPUT FILE IS A 286 OBJECT FI LE
FILE: filenane

MEANING: An ADD or REPLACE was attempted using a 286 object file.
EFFECT: Thefileis not updated.

ACTION: Recompile the file with a 386 trandator or relink it with BND386, and
then try again.

ERROR 118: UNKNOWN COMVAND, TRY AGAIN

MEANING: This error occurs because LIB386 does not understand the
command.

EFFECT: The command is not executed.

ACTION: Check the command syntax and then reinvoke. Use the HELP
command if necessary.

ERROR 119: MODULE OR SYMBOL NAME TOO LONG

MEANING: This error occurs because the nod_nane specified with the LIST
command or the public symbol name specified with the FIND command is too
long. The maximum number of charactersis 40.

EFFECT: The command is not executed.

ACTION: Specify amodule or symbol name that has 40 characters or less and
then reinvoke.

Appendix B L1B386 Error M essages

ERROR 120: | MPROPER COMVAND SYNTAX
MEANING: This error occurs because L1B386 detects a command syntax error.
EFFECT: The command is not executed.
ACTION: Check the syntax, and then reinvoke.

ERROR 121: I NPUT FILE IS NEI THER LI NKABLE NOR LI BRARY

MEANING: This error occurs because the file specified with the ADD or
REPLACE command contains no library module or linkable module. Only
Intel386 libraries or linkable modules can be added to the target library.

EFFECT: The portion of the command pertaining to the offending file is not
executed.

ACTION: Specify an input file that contains either linkable modules or alibrary,
and then reinvoke.

ERROR 122: COMVAND NOT ALLOWED AT CURRENT LEVEL

MEANING: This error occurs because the command specified is not valid at the
current command level (e.g., theinitial level GET command is specified at the
action command level).

EFFECT: The command is not executed.

ACTION: Usethe GET or the QUIT command to return control to the proper
command level, and then reinvoke.

ERROR 123: UNKNOWN CPTION FOR QUI'T

MEANING: Thiserror occurs because L1B386 does not understand the response
to the query of the QUIT command.

EFFECT: The command is not executed.
ACTION: Check the command syntax, and then reinvoke.

Intel386 Family Utilities User's Guide Appendix B 163

164

ERROR 124: TARGET FILE IS NOT A LI BRARY

MEANING: This error occurs because the file specified in the GET command is
a 386 abject file, but it isnot alibrary. LIB386 can output only libraries.

EFFECT: The command is not executed.

ACTION: Specify avalid, existing library file or specify a name for the new
library file, and then reinvoke.

WARNI NG 125: TARCET FI LE |I'S WRI TE- PROTECTED

MEANING: Thiswarning occurs because the target library file specified with
the GET command is write-protected.

EFFECT: The session proceeds and you can inspect the library, but an attempt to
update the target library file will cause an error.

ACTION: To make updates, write-enable the target library file.

ERROR 126: TARGET FILE IS A 286 LI BRARY
FILE: filenane

MEANING: An attempt was made to use GET to call a 80286 library.
EFFECT: The command is not executed.

ACTION: Specify avalid, existing Intel 386 library file or specify a name for a
new library file, and then reinvoke.

ERROR 127: ATTEMPT TO LI ST TO TARGET FI LE

MEANING: This error occurs because the LIST TO filename command is issued
and filename is the name of the target library file.

EFFECT: The command is not executed.

ACTION: Choose another filename for the LIST TO command, and then
reinvoke.

ERROR 128: VERSI ON MAY BE UP TO 4 CHARACTERS | N LENGTH

MEANING: This error occurs because too many characters have been specified
for the version number.

EFFECT: The version of the library is not updated.

ACTION: Respecify with aversion of up to four characters (e.g., V1.0), and then
reinvoke.

Appendix B L1B386 Error M essages

ERROR 129: | NTERACTI VE SET IS UNAVAI LABLE | N BATCH MODE

MEANING: An interactive SET (i.e., SET without any additional parameters)
was specified in batch mode.

EFFECT: The command is not executed.

ACTION: In batch mode, specify all items you wish to set with their new values,
using the SET command.

System Interface Messages

These errors may be |/O errors, illegal file name problems, or other problems related
to the host operating system. These error messages have the following format:

*** SYSTEM | NTERFACE ERROR
UDlI error code and text
FILE: filenane

Refer to the operating system reference manual for the cause of the problem.

Intel386 Family Utilities User's Guide Appendix B 165

178 Appendix B L1B386 Error M essages

MAP386 Error Messages

MAP386 issues a message when it encounters one of the following types of errorsin
the invocation line or a control file;

e Systeminterface level errors
e Semantic and object-file errors
e Internal processing errors

This appendix provides up to three types of information for each semantic and object-
fileerror:

* MEANING: how to interpret the message

» EFFECT: the status of MAP386

» ACTION: suggestions for correcting the condition
Messages are listed in numerical order.

System Interface Level Errors

If an error in acall to the host operating system is detected, MAP386 issues a fatal
error message to the console file, to the file created by ERRORPRINT (if open), and
to the print file (if open). The error has the following format:

SYSTEM | NTERFACE ERROR
error text
FILE: filenane

The error text is operating-system dependent. The file nameis present only if the
error isan 1/O error.

Intel386 Family Utilities User's Guide Appendix C 179

Semantic and Object-File Errors

Messages appear in the print file and any ERRORPRINT file, if specified. Fatal
error messages also appear at the console.

ERROR 100: [NPUT FILE M SSI NG

MEANING: Thisfatal error occurs because no input file is provided in the
invocation line or control file command-tail.

EFFECT: Processing aborts, and control is returned to the operating system.
ACTION: Reinvoke, specifying the filename of an input file.

ERROR 101: FI LENAME TOO LONG

NEAR: token string
MEANING: Thisfatal error occurs because the indicated filename is too long.
EFFECT: Processing aborts, and control is returned to the operating system.
ACTION: Reinvoke, using ashortened f i | enane.

ERROR 102: M SSI NG LEFT PARENTHESI S

NEAR: token string

MEANING: Thisfatal error occurs because a left parenthesis was expected, but
was not found.

EFFECT: Processing aborts, and control is returned to the operating system.
ACTION: Reinvoke MAP386, using the expected left parenthesis.

ERROR 103: M SSI NG RI GHT PARENTHESI S

NEAR: token string

MEANING: Thisfatal error occurs because aright parenthesis was expected, but
was not found.

EFFECT: Processing aborts, and control is returned to the operating system.
ACTION: Reinvoke, using the expected right parenthesis.

180 Appendix C MAP386 Error M essages

ERROR 105: FILE ALREADY SPECI FI ED | N COWAND TAI L

FILE: filenane
MEANING: Thisfatal error occurs because theindicated f i | enanme was already
specified.
EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reinvoke, being sure that the indicated filename is specified only
once.

ERROR 106: | NVALI D DELIM TER I N COMVAND TAI L

NEAR: token string

MEANING: Thisfatal error occurs because the indicated invalid delimiter was
used in the invocation line or control file.

EFFECT: Processing aborts, and control is returned to the operating system.
ACTION: Reinvoke, using only valid delimiters.
ERROR 107: LINE TOO LONG I N CONTROL FI LE

FILE: filenane

MEANING: Thisfatal error occurs because the control file named by fi | ename
contains aline that istoo long. The maximum length is 128 characters.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Prepare the control file again, shortening the indicated line. Then
reinvoke MAP 386 with CONTROLFILE, using the corrected filename of the
control file.

ERROR 108: TOKEN TOO LONG

NEAR: token string
MEANING: Thisfatal error occurs because the indicated token istoo long.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Shorten the indicated token to the proper length, then reinvoke
MAP386.

Intel386 Family Utilities User's Guide Appendix C 181

ERROR 109: UNKNOWN CONTROL | N COMVAND TAI L

NEAR: token string
MEANING: Thisfatal error occurs because the indicated control isinvalid.
EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reexamine the input, being sure that only valid controls (as described
in Chapter 4) are used, then reinvoke MAP386.

ERROR 110: SYNTAX ERROR

NEAR: token string

MEANING: Thisfatal error occurs because a mistake or typographical error in
syntax was made.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reexamine your input, being sure that only correct syntax is used,
then reinvoke M AP386.

ERROR 112: NUMBER OF SYMBOLS EXCEEDS | NTERNAL LIMT

MEANING: Thisfatal error occurs because the available memory space is not
sufficient for the number of symbols used.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reduce the number of symbols used if you still want a cross-reference
map, then reinvoke M AP386.

ERROR 114: | NVALI D OBJECT FI LE
FILE: filenane

MODULE: nod_nane

MEANING: Thisfatal error occurs because the object file module in the input
object fileisinvalid or is specified incorrectly.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reconsider your input, trying to determine in what way the object file
isinvalid. Revise, then reinvoke MAP386.

182 Appendix C MAP386 Error M essages

ERROR 116: NESTED CONTRCL FILES

FILE: filenane
MEANING: Thisfatal error occurs because the control file specifies control file.
EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Reconstruct your input, making sure your control file does not refer to
a second control file. Reinvoke MAP386.

ERROR 121: PACGE W DTH OUT OF RANGE

NEAR: token string

MEANING: Thisfatal error occurs because width istoo large or small. The
value must be between 72 and 132.

EFFECT: Processing aborts, and control is returned to the operating system.
ACTION: Specify acorrect width value, then reinvoke M AP386.
ERROR 122: PAGE LENGTH OUT OF RANGE

NEAR: token string

MEANING: Thisfatal error occurs because page length istoo large or small.
The value must be between 10 and 65535.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Use acorrect | engt h value, then reinvoke MAP386.
ERRCR 123: OSINFO FILE | S GREATER THAN 4K BYTES
FILE: osinfo filename
MEANING: This error occurs because the osinfo file is larger than 4K bytes.

EFFECT: Only the first 4K bytes of the osinfo file are written into the osinfo
section.

ACTION: Make sure that you do not need any information that comes after the
first 4K bytes.

Intel386 Family Utilities User's Guide Appendix C 183

184

ERROR 124: NO MODULES I N | NPUT FI LE FOUND

FILE: filenane

MEANING: Thisfatal error occurs because the executable input file does not
contain amodule.

EFFECT: Processing aborts, and control is returned to the operating system.
ACTION: Correct the input file and reinvoke M AP386.

WARNI NG 126: SYMBOL TYPE M SMATCH

FILE: fil enane

MODULE: nod_nane

SYMBCOL: synbol nanme

MEANING: Thiswarning occurs because two symbols of the same name have
different types.

EFFECT: None, advisory information only.
ACTION: None.
ERROR 128: | NPUT CONTAI NS DUPLI CATE MODULES
FILE: filenane

MODULE: nod_nane

MEANING: This error occurs because two modules of the same name occur in
MAP386's input.

EFFECT: None, advisory information only.
ACTION: None.

WARNI NG 129: EXPORTED OR UNRESOLVED EXTERNAL SYMBOLS

MEANING: Thiswarning occurs because external symbolsfound in MAP386's
input have no corresponding public symbol definition or referred-to export
modules from BLD386.

EFFECT: None, advisory information only.
ACTION: None.

Appendix C MAP386 Error M essages

WARNI NG 130: ASSI GNI NG UNKNOWN DESCRI PTOR NAMES

MEANING: Thiswarning is issued because of unnamed descriptorsin the input
file. Itisawaysissued for boot-loadable files, since there is no name
information and all names are assigned by MAP386. For loadable files, it is
issued if thereis no name information in DESNAM.

EFFECT: None, advisory information only.
ACTION: None.
ERROR 131: OVERLAPPI NG DESCRI PTCRS I N TABLE

MEANING: This error occurs because there is more than one descriptor
assigned to adot in atable.

EFFECT: The descriptor information in the map is incorrect.

ACTION: The build language contains an error. Correct the error and then
reinvoke MAP386.

WARNI NG 132: NO DEBUG | NFORMATI ON I N | NPUT FI LE
FILE: filenane

MEANING: Thiswarning is issued because there is no debug information and
consequently no information for the cross-reference map.

EFFECT: There will be no information on symbols, publics or externals.

ACTION: If thisinformation is required, run BND386 or BL D386 with the
DEBUG contral.

WARNI NG 133: MODULE NOT FOUND I N I NPUT FI LE
FILE: filenane
MODULE: nod_nane

MEANING: Thiswarning is issued because the nod_nane specified in the
invocation lineis not found in the input file.

EFFECT: None-advisory information only.
ACTION: None.

Intel386 Family Utilities User's Guide Appendix C 185

ERROR 134: MORE THAN ONE FI LE FOUND W TH EXECUTABLE | NPUT

FILE: filenane

MEANING: Thisfatal error occurs because more than one executable file was
specified in the invocation line.

EFFECT: Processing aborts, and control is returned to the operating system.

ACTION: Specify only one executable file in the invocation line, and then
reinvoke MAP386.

ERROR 135: EXECUTABLE FILE FOUND IN I NPUT FILE LI ST

FILE: filenane

MEANING: Thisfatal error occurs because an executable file was found after
one or more nonexecutable files.

EFFECT: Processing aborts, and control is returned to the operating system.
ACTION: Correct the input file list, and then reinvoke MAP386.
ERROR 136: ERRONEOUS SYMBOL | NFORMATI ON | N OBJECT MODULE
FILE: filenane
MODULE: nod_nane

MEANING: This error occurs because thereis an error in symbol debug
information, nesting mismatch or missing block end.

EFFECT: Processing continues, but there may be errorsin the debug
information.

ACTION: None.
WARNI NG 137: SYMBOL | NFORVATI ON M SSI NG | N SOVE MODULES

FILE: filenane

MEANING: Thiswarning isissued because there is no public or external symbol
information in alinkable file.

EFFECT: None-advisory information only.
ACTION: None.

186 Appendix C MAP386 Error M essages

WARNI NG 138: PUBLI C | NFORVATI ON M SSI NG | N SOVE MODULES

FILE: filenane

MEANING: Thiswarning isissued because external symbols were encountered
in the input to MAP386 with no corresponding public symbol definition. Also,
no indication for unresolved external symbolswas found. Public symbol
information is probably missing in the input file.

EFFECT: None, advisory information only.

ACTION: If theinformation is required, find out whether BND386 was invoked
with NODEBUG, or whether the information was purged.

Internal Processing Errors

Internal processing errors are unusual occurrences. Y ou can not correct these errors.
If such errors occur, you should report the problem to an Radi Sys representative.

When internal processing errors occur, the format of the error message is as follows:
ERRCOR 3xx: | NTERNAL PROCESSI NG ERROR, nessage

The following error messages are 3xx errors. The assigned numbers accompany the
€rror message.

ERROR 300: | N OBJECT MODULE | NTERFACE
ERROR 301: I N SYMBOL PROCESSI NG
ERROR 302: UNKNOWN ERROR

Intel386 Family Utilities User's Guide Appendix C 187

188 Appendix C MAP386 Error M essages

Glossary

absolute address

absol ute object code

accessrights

action level

active module

ASM386
attribute

base address
based symbol

binder

blank common

BLD386
BND386

the physical location at which code or dataresidesin
memory; in protected virtual address mode, the Intel 386
processor supports 32-bit absolute addresses.

code or data to which absol ute addresses have been assigned.

the attributes that describe how a segment can be accessed by
other segments; access rights for stack and data segments
include read-only and read-write; access rights for code
segments include execute-only, executable and readable, and
conforming.

the structural level at which the mgjority of LIB386
commands are available. This command level includes, for
example, commands for adding, deleting, and replacing
modules in the target library.

when using the LIB386 utility, amodule is designated as
activeif it isboth logically and physically available.

see Intel 386 Macro Assembler.

an item defined by a descriptor: base address, limit, and
access byte parameters; segment use that violates an attribute
causes an exception or interrupt.

the 32-hit address at which a segment starts.

a symbol whose logical addressis determined by avalue
residing at the address of another symbal.

see Intel 386 binder.

the combine-type applied to segments containing unnamed
FORTRAN common blocks.

see Intel 386 System Builder.
see Intel 386 binder.

Intel386 Family Utilities User's Guide Glossary 189

bootloadable module

builder
cal gate

combine-name

combine-type

common

conforming segment

control

control file

control transfer descriptors

current privilege level

debug information

default value

descriptor

descriptor privilege level

190 Glossary

amodule that contains absolute object code in asimple
format, to expedite the loading of coldstart modules.
BLD386 is the only Intel 386 utility that can be used to create
bootloadable modules.

see Intel 386 System Builder.
the gate used to transfer control to more privileged code.

the symbolic name of a segment. During binding, segments
with the same combine-name and compatible combine-types
are combined to form a single segment.

the attribute specifying how a segment is to be combined.
No-combine, normal, stack, common, blank common, and
debug are the acceptable combine-types.

the combine type associated with segments that contain
named FORTRAN common blocks.

the segment that can be shared by programs that execute at
different privilege levels without using gates.

any of several binder, librarian, or mapper options, each of
which performs a specific function when used in the
invocation line.

the input file containing the file names of input files and/or
controls.

call gates, task gates, interrupt gates, and trap gates.

the privilege level of atask at a specific instant, indicated by
the CS register's lower two bits and by its descriptor privilege
level.

symbolic information used by debuggers. Thisinformation,
which is housed in an object module, includes symbol names,
line numbers, and public symbol information.

the value assigned automatically if no valueis specified.

the eight-byte item that defines memory use in an Intel 386
protected-virtual -address-mode system. Descriptorsinclude
segment descriptors and system control descriptors.

the privilege level defined in the descriptor for a segment or
inagate. Also called DPL.

DPL
dynamically loadable
module

entry point

error condition

error message

executable and readable
segment

executable file
executable module
executable segment
execute-only segment

expand-down segment

expand-up segment

export file

exportation

extension

external reference

Intel386 Family Utilities User's Guide

see descriptor privilege level.

an executabl e object module created by BND386. The
module can be loaded onto an Intel 386-based system running
under control of an iIRMX operating system.

the code segment offset that represents the starting point for
execution.

a condition that causes BND386, L1B386, or MAP386 to
issue awarning or error message, or that causes BND386 or
MAP386 to issue afatal error message.

aBND386, LI1B386, or MAP386 message that flags a
condition that may cause the output object module to be
invalid.

a code segment that can be read and executed.

afile containing aloadable or bootloadable module.
aloadable module.

a code segment.

a code segment that can be executed but not read.

a nonexecutable segment whose limit can be extended toward
lower-order addresses at run time.

a nonexecutable segment whose limit can be extended toward
higher-order addresses at run time.

afile created with the Intel 386 System Builder containing
system interface. See exportation.

information placed in afile system to be used when creating
loadable modules; this process makes system interface
available to application programs.

aterm used in DOS operating systems. The extensionisa
period and three letter acronym added to afile name to

identify the type of file. Anextension isadded by the user,
or, in certain cases, by a utility if no extension is specified.

areference to a symbol, procedure, or location that must be
defined as public in another module.

Glossary 191

external symbol

fatal error message

file name
file-spec

file-type
gate

GDT
generalized address

global descriptor table

IDT

illegal access

incremental linking

index

initial level

initialization information

192 Glossary

an address imported by alinkable module. The address
imported is that of a public symbol with the same symbolic
name that occursin a different module.

aBND386 or MAP386 message that indicates an error
condition prohibiting the completion of processing. The
result isthat processing aborts.

ageneric term for pathname. The name of afile.
see file name.
See extension.

adescriptor used to mediate access to code at a higher
privilege level (call gate), to code in a different task (task
gate), or to interrupt service routines (interrupt or trap gates).

see global descriptor table.

an address that has an internal name and an offset in the item
specified by the internal name.

atable that houses descriptors available to all tasks; thistable
can contain as many as 8190 descriptors of the following
types segment descriptors, TSS descriptors, LDT descriptors,
call gates, and task gates. Also called GDT.

seeinterrupt descriptor table.

an attempted code or data access that causes an exception
condition because it violates hardware protection
mechanisms; protection isimplemented by enforcing
segment access rights, page access rights, and privilege and
descriptor usage rules.

the process in which several linkable modules are merged
into a single linkable module. The module that results from
linking may be used as input to another stage of incremental
linking or to final binding.

the portion of a selector that pointsto alocation in a
descriptor table.

the structural level at which aLI1B386 session with a new
target library can begin.

register values that must be established before task execution
can begin.

Intel 386 binder the Intel 386 program development utility used to link
modules and/or create loadable, single-task output modules.
Also called BND386.

Intel386 librarian the interactive Intel 386 program devel opment utility used to
organize linkable modules into libraries and to allow existing
libraries to be modified by adding, deleting, or replacing
modules. Also called LIB386.

Intel 386 macro assembler the assembler used to produce linkable object modules
executable on Intel 386 and Intel 387 processors in protected
mode. Also called ASM386.

Intel 386 mapper the Intel 386 program development utility used to generate
intermodul e cross-reference maps between public and
external symbols. Also called MAP386.

Intel 386 microprocessor the Intel 386, an advanced, 32-bit high-performance
microprocessor optimized for multiple-user and multitask
systems; the processor has built-in virtual memory support
and memory protection for isolating memory space from task
to task. The 80287 or the Intel387 Numeric Processor
Extension provides high-speed floating-point capabilities.

Intel386 System Builder the system configuration utility for Intel 386 protected-mode
systems.

Intel 386 Utilities the Intel 386 binder, librarian, and mapper.

interactive the execution mode in which input in accepted from the
keyboard.

internal-name a fixed-length name, having as scope a single module.

Segments, externals, types, gates, and descriptors al have
internal names.

interrupt descriptor table the descriptor table that houses up to 256 interrupt, trap,
and/or task gates. It isused to mediate access to routines that
handle interrupt and exception conditions. Also called IDT.

interrupt gate the descriptor that pointsto an interrupt service routine, the
use of which disables interrupts.

intersegment reference areferenceto alocation in a different segment from the
segment that contains the reference.

intrasegment reference areference to alocation in the same segment as the segment
that contains the reference.

Intel386 Family Utilities User's Guide Glossary 193

LDT

LDT selector
LIB386
librarian

library

library command levels

library file

library name

library section

limit

linkable file

linkable modules

linking

loadable file

|oadable module

|oader

load-time-expandable
segment

194 Glossary

see local descriptor table.

aselector installed in a TSS that pointsto aparticular LDT.
see Intel 386 librarian.

see Intel 386 librarian.

an object library consisting of one or more sets of linkable
modules. Object libraries are produced by L1B386 and reside
inlibrary files.

the hierarchical structure of the LIB386 command set. The
three levels are operating system level, initial command level,
and action command level.

afile that contains a collection of linkable object modules
indexed by module names at least.

the name of alibrary that residesin alibrary file.

aportion of an object library containing a set of linkable
modules and corresponding directories.

the segment attribute that defines the offset of the last byte in
the segment.

afile containing a sequence of linkable modules. Through
incremental linking, BND386 can combine linkable modules
produced by trandatorsinto a single linkable module.

an object module created by Intel 386 trandators or by
BND386 during incremental linking; alinkable module
requires further processing before it can be executed.

aprocess of BND386, in which segments from one or more
linkable input modules are combined and references between
them are resolved.

afile containing a single loadable module. Loadable filesare
produced by BND386 or by the BLD386 System Builder.
They are consumed by |oaders, debuggers, and mappers.

see dynamically loadable module. A module for loading onto
arunning system.

a system utility that loads the user's program into the system's
memory and initiates its execution.

a segment whose limit can be extended up or down at |oad
time.

local descriptor table

local symbols

logical segment

MAP386

mapper
module name

no-combine

non-executable file

non-executable module

non-interactive

non-sharable segment

normal

object library

object module format
offset

osinfo

page heading

pathname

Intel386 Family Utilities User's Guide

atable that houses up to 8191 descriptors that can be private
toatask; an LDT can contain only segment descriptors, task
gates, and call gates.

all symbolsthat are found in the SY MBOL S subsection of
the DEBTXT section in an input object module.

portions of object code that contain logically similar
information created by trandators.

see Intel 386 mapper.
see Intel 386 mapper.
the programmer-assigned name for alinkable module.

the combine-type associated with code and data segments
that BND386 does not combine; these include ASM 386
segments that are not PUBLIC, and PL/M-286 segments
compiled under the LARGE model of segmentation.

an object file in anon-loadable format. Filesinthe
"linkable" or "library" format.

an object module in a non-loadable format. Modulesin files
inthe "linkable" or "library" format.

the execution mode in which input is redirected from a
command (batch) file.

a segment whose access attribute is read-write.

the combine type associated with code or data segments that
contain ASM 386 PUBLIC information or PL/M-286
information not compiled under the LARGE model of
segmentation.

aset of library sections.

the structure of an object module.

abyte addressin a segment.

the operating system information field in the object file.

information placed at the top of each page, including product
name, optional title string, system date and time, page
number, and several blank lines.

see file name.

Glossary 195

physical segment

PL/M-286

PL/M-386

privilege hierarchy

privilege level

privilege rules

protected mode
protected mode architecture

protected virtual address
mode

protection

public

196 Glossary

a contiguous piece of memory that cannot exceed 64 K bytes
in length for USE16 attribute or 4 gigabytes for USE32
attribute.

the compiler used to generate 80286 modules from source
programs written in the high-level block-structured PL/M-
286 language. These programs can run on the 80286 as well
as on the Intel 386.

the compiler used to generate Intel 386 modules from source
programs written in the high-level block-structured PL/M-
386 language. These programs can run on the 80286 as well
as on the Intel 386.

an aspect of the Intel 386 protected-mode memory protection
scheme that provides up to four different levels of accessto
segments.

an attribute that ranges from 0 to 3 and controls the use of
privileged instructions as well as access to descriptors and
their segments; access in a protected-mode system uses three
kinds of privilege levels current privilege level, descriptor
privilege level, and requested privilege level.

rules that govern how and when a task can access a segment
These rules employ the following parameters: the type of
segment to be accessed, the instruction used, the type of
descriptor used, the current privilege level, the requested
privilege level, and the descriptor privilege level.

see protected virtual address mode.

the Intel 386 processor configuration that supports virtual
memory addressing and protection.

the Intel 386 processor mode of operation that provides virtual
memory addressing and memory protection; system data
structures recognized by the processor are implemented in
this mode.

Intel 386 protected-mode mechanisms ensuring that code and
data segments are insulated from improper usage and that the
critical CPU execution state control instructions are properly
implemented.

(1) asymbol or procedure available for intersegment or
intrasegment references; (2) akind of ASM 386 segment.

public definition
public symbol

readable segment
read-only segment
read-write segment
real address

reference resolution

relocatable information

reguested privilege level

RPL
run time

section

segment
segment attributes
segment base

segment descriptor

segment limit
segment map

selector

apublic symbol's trandator definition.

an address exported by alinkable module. The addressis
imported by modules through use of an external symbol with
matching symbolic name.

a code segment that can be read.
a data segment that can be read only.
adata or stack segment that can be written to.

an address that specifies an absolute location in memory: in
Intel 386 protected mode, the real address has 32 bits.

the process by which public definitions are paired with
external references.

code or datawhose location is defined at load- or run-time.

the privilege level defined by a selector's two least-significant
bits; it is used with the descriptor privilege level to establish
the privilege levels atask can access.

see requested privilege level.
the time of program execution.

aportion of an object module containing all information of a
particular kind about that module; debug information,
descriptors for segments and gates, program text (i.e., code
and data), symbolic names for descriptors, program text,
debug text, fix-ups, etc.

see logical segment and physical segment.
See attributes.
the 32-bit address at which a segment begins.

adescriptor referring to code, stack, and data segmentsin a
program.

the offset of the last byte in a segment.

the BND386 print file section that provides information for
all segmentsin the output module.

an index into a descriptor table; GDT and LDT selectors are
16-bit pointers that index the GDT and LDT.

Intel386 Family Utilities User's Guide Glossary 197

seguence number

session

sharable segment

dot

special system data segment

descriptors

standard output device

symbol

stack

system builder
system building
system data structures

system descriptors

system file

table indicator

target library

198 Glossary

adecimal number indicating the sequence of local descriptor
tablesin the GDT.

creating a new library, and adding, replacing, or deleting
modules to/from a single target library file with the LIB386
Utility. Multiple sessions can occur sequentially in asingle
L1B386 invocation.

a segment whose access attribute is read-only, execute-only,
or execute-read.

alocation in a descriptor table.

TSSand LDT descriptors.

ageneric term for console, used in DOS operating systems,
and :co: iniRMX operating systems. The system display or
print medium.

(1) avariable in amodule; (2) an internal representation in
BND386 of an object module entity.

a combine type associated with stack segments.
see Intel 386 System Builder.

the configuration of a system, especially the selective
definition of system data structures and tasks and the
allocation of privilege among segments and descriptors.

descriptor tables, segment and system descriptors, and task
state segments.

special system data segment descriptors and control transfer
descriptors.

the file that contains the information an operating system
must have for system calls to be possible; in the Intel 386
Utilities, system files are linkable files created by Intel 386
System Builder; they are called export files.

abit in a16-bit selector that defines whether the selector
pointsto the GDT or an LDT.

the library file specified by LI1B386 in the invocation line or
specified in the latest GET library command.

task

task gate

task state segment

text

translator

trap gate

TSS
TSS descriptor
USE16

USE32

virtual address
warning message

writable segment

a single sequence of execution. A task has an associated
processor state and a well-defined address space that has
specific access parameters. The processor state is defined by
the contents of the TSS; the address space and access
parameters are defined by descriptors.

agate used to transfer control to another task; atask gate
referstoa TSS.

the special system segment that stores atask'sinitialization
and restart values; the TSS saves atask's entire execution
dtate, e.g., registers, address space, and a link to the previous
task.

program code and data.
an assembler or compiler.

a descriptor that points to an interrupt service routine. A trap
gate does not disable interrupts.

see task state segment.
a descriptor that defines and pointsto a TSS.

a segment with 32-bit attribute off. The segment islimited to
64K bytes. For code segments, the default data width and
address width is 16 hits.

a segment with 32-bit attribute on. The segment islimited to
4G bytes. For code segments, the default data width and
address width is 32 hits.

an address that contains a selector and an offset value.

aBND386, LI1B386, or MAP386 message indicating that a
user error may have occurred. The output object file isvalid.

a stack or data segment that can be written to.

Intel386 Family Utilities User's Guide Glossary 199

200 Glossary

Index

A

absolute address, 133, 134, 136

ACCESS, 46

accessrights, 8, 10, 12

Accessrights, 9

action command level, 62

ADD command, 67
LIB386, 67

align attribute, 11

alignment types, 46

ASM286, 9

ASM386, 8,9, 11, 46

B

BACKUP, 59

BACKUP command
LIB386, 70

BACKUP control
LIB386, 59

backup files, 70

BATCH control
LIB386, 59

BLD386, 5, 6, 95, 99

BND386
console messages, 20
control files, 17
controls, 21
debug information, 11
error messages, 20
examples, 48
input, 6
invocation line, 6
major functions, 5
Operational summary, 2
output, 6
print file, 5, 19, 21, 25

Intel386 Family Utilities User’s Guide

sign-off message, 20, 25
sign-on message, 20
BND386 controls
CONTROLFILE, 23
DEBUG, 24
debug information, 19, 21, 24, 36, 51
ERRORPRINT, 20, 25, 33
EXCEPT, 35
INT286, 27
LOAD, 28, 37
NAME, 28, 30
NOLOAD, 28
NOOBJECT, 31, 33
NOPRINT, 33
NOPUBLICS, 35
NOPUBLICS EXCEPT construction, 35
NOTYPE, 42
OBJECT, 31,34
PRINT, 33
PUBLICS, 35
PUBLICS EXCEPT, 35
RCONFIGURE, 28, 37
RENAMESEG, 39
SEGSIZE, 40
TYPE, 42
BND386 error messages, 147
bootl oadable modules, 95
BSS variables, 67
byte-aligned, 11

C

Code segments, 10, 12
COMBINE NAME, 46
combinetype, 11
COMBINE TYPE, 46
command syntax
LIB386, 64

Index 201

common blocks, 11, 46 E
common segments, 13
COMPRESS command €rror messages
LIB386, 71 MAP386, 102, 103, 109
Error messages, 128

console messages
ERRORPRINT control

BND386, 20 BND386, 25
L1B386, 60 MAP386, 109
MAP386, 103 examples
control files BND386, 48
BND386, 17 LIB386, 91
MAP386, 100 Background session, 94
CONTROLFILE control Multiple session, 93
BND386, 23 MAP386
MAP386, 100, 107 DOS, 140
controls EXCEPT, 112,121
MAP386, 102, 104 export files, 6
cross-reference, 95, 98, 102 external declaration, 14

Crossreference. 128 external symbols, 16, 19, 24, 42, 126, 127

Cross-Reference, 95, 97

=
D fatal error, 20
FIND command
data segments, 11, 40 LIB386, 74
Data segments, 10, 12 Fix-up processing, 7
DEBUG control
BND386, 24 G
debug information, 95
Debug information, 98 gaps, 11,13
defaults gate map, 102, 121, 132
LIB386, 59 Gate map, 95, 98, 128
MAP386, 101 Gate Map, 97, 118
DELETE command GET command
LIB386, 72 LIB386, 76

Descriptor names, 97 global descriptor table (GDT), 15

descriptor privilege level (DPL), 97, 131

descriptor segment naming, 139 H

descriptor table, 15 header

Descriptor table creation, 7 BND386, 45

DOS and iRM X invocation syntax MAP386, 103
BND386, 16 Header, 128
L1B386, 58 HELP command
MAP386, 100 LIB386, 78

202 Index

hierarchical levels
Action, 62
Initial, 62
Operating system, 62

iC-386 modules, 48
IDT, 97, 130, 134
incrementd linking, 5
incrementally built files, 6
initial command level, 62
input
BND386, 5, 6
LIB386, 56
MAP386, 95
Input file, 6
INT286 control, 27
interface, 27
interrupt character, 64
invocation line, 56, 98

L

LDT, 15,97, 130, 133, 134, 136, 139
LIB386
Command syntax, 64
Console messages, 60
defaults, 59
Examples
Background session, 94
Multiple session, 93
Single session, 91
Hierarchical levels, 62
input, 56
Invocation controls, 59
Major functions, 55
Operational summary, 3
output, 56
Prompt, 60
Queries, 61
Summary of commands, 64
Transfer of levels, 62
LI1B386 commands
ADD, 67
BACKUP, 70
COMPRESS, 71

Intel386 Family Utilities User’s Guide

DELETE, 72

FIND, 74

GET, 76

HELP, 78

LIST, 79

QUIT, 82

REPLACE, 85

SET, 87

UPDATE, 90
LIB386 error messages, 157
L1B386 invocation controls

BACKUP, 59

BATCH, 59

NOBACKUP, 59

NOBATCH, 59
library files, 5, 6, 55, 95, 96

processing, 56, 57
LIMIT, 45
line numbers, 98, 112, 113, 122, 133, 134
linkable file, 67
linkablefiles, 95, 98

linkable modules, 5, 6, 16, 36, 41, 95, 96, 97,

100

linkable object modules, 55, 67
LIST command

LIB386, 79
LOAD, 6
LOAD control, 21

BND386, 28
loadable modules, 14, 41, 45
local descriptor table, 15
local symbols, 97, 122, 133
log address, 136
logical address, 133, 134

M

major functions
BND386, 5
LIB386, 55
MAP386, 95
MAP386
console messages, 103
control files, 100
controls, 102, 104
defaults, 101
DOS and iRM X invocation syntax, 100

Index

99,

203

error messages, 102, 103, 109 NOERRORPRINT control

Examples, 140 BND386, 25
major functions, 95 MAP386, 109
Operational summary, 3 NOLOAD control, 21
output, 95, 97, 98 BND386, 28
print files, 128 NOOBJECT control
MAP386 control BND386, 32
NOSYMBOLSORT, 123 MAP386, 110
SYMBOLSORT, 123 NOPAGING control
MAP386 controls MAP386, 117
CONTROLFILE, 107 NOPRINT control
ERRORPRINT, 109 BND386, 33
NOERRORPRINT, 109 MAP386, 118
NOOBJECT, 110 NOPUBLICS control
NOPAGING, 117 BND386, 35
NOPRINT, 118 normal segments, 11, 13
NOTYPE, 125 NOSYMBOLSORT control
NOTYPECHECK, 126 MAP386, 123
NOXREF, 127 NOTY PE control
OBJECT, 110 BND386, 42
OBJECTCONTROL, 111 MAP386, 125
OSINFO, 114 NOTYPECHECK control
PAGELENGTH, 115 MAP386, 126
PAGEWIDTH, 116 NOXREF control
PAGING, 117 MAP386, 127
PRINT, 118
PRINTCONTROLS, 120 e)
TITLE, 124
TYPE, 125 OBJECT control
TYPECHECK, 126 BND386, 32
XREF, 127 MAP386, 110
MAP386 error messages, 179 OBJECTCONTROL controls
modular program development, 1, 35 DEBUG, 111
module list, 6, 98, 99, 102 EXTERNAL, 111
Modulelist, 95, 128 LINE, 111
MAP386, 111
N NODEBUG, 111
NOEXTERNAL, 111
NAME control NOLINE, 111
BND386, 30 NOPUBLICS, 111
NOBACKUP control NOSRCLINES, 111
LIB386, 59 NOSYMBOLS, 111
NOBATCH control PUBLICS, 111
LIB386, 59 SRCLINES, 111
NOCOMBINE, 46 SYMBOLS, 111
NODEBUG control offset-based symbol, 133
BND386, 24 OMF386, 5

204 Index

operating system level, 62
operational summary
BND386, 2
LIB386, 3
MAP386, 3
osinfo, 96
OSINFO control
MAP386, 114
output
BND386, 6
LIB386, 56
MAP386, 95, 97, 98
Overview
Utilities, 1

P

padding, 13
PAGELENGTH control

MAP386, 115
PAGEWIDTH control

MAP386, 116
PAGING control

MAP386, 117
PL/M-286, 11, 46
PL/M-386, 6, 11, 46
pointer-based symbol, 133
present bit, 131
PRINT control

BND386, 33

MAP386, 118
print file, 98, 102, 103
print files

MAP386, 128
PRINTCONTROLS, 120
privilegelevel, 11,21
program development, 1
prompt, LIB386, 60
public declaration, 14
public map, 102, 121, 136
Public map, 95, 98, 128
Public Map, 97,118
public symbol, 6, 14, 15, 16, 35, 36, 112, 121,

136, 138

public-external symbols, 5
PUBLICS control

BND386, 35

Intel386 Family Utilities User’s Guide

Q

queries
LIB386, 61
QUIT command
ABORT, 82
EXIT, 82
INITIALIZE, 82
LIB386, 82

R

RCONFIGURE control
BND386, 37
RCONFIGURE control

BND386, 6, 21

relocatable descriptor table, 15

RENAMESEG control
BND386, 39

REPLACE command
LIB386, 85

S

scoping information, 123
segment, 8

segment combination, 9, 11, 15, 39, 41

blank common, 11

common, 11

normal, 11
segment length, 40, 45
segment limit, 45, 49

segment map, 5, 26, 33, 41, 45

Segment map, 95, 98, 128
Segment Map, 97, 118
SEGSIZE control
BND386, 40
selector values, 130
SET command
LIB386, 87
NAME, 87
PAGELENGTH, 87
version, 87
sign-off message
LIB386, 60, 61
sign-off messages
BND386, 20

Index

205

MAP386, 103

sign-on message
BND386, 20
LIB386, 59

sign-on messages
MAP386, 103

dot number, 131

source line numbers, 112

stack segment, 11

stack segments, 40

Stack segments, 10

subsystems, 35

summary of commands
LIB386, 64

symbol map, 102, 121, 122, 123, 133

Symbol map, 95, 98, 128

Symbol Map, 97, 118

symbol name, 136

symbol type, 97, 136

SYMBOLSORT control
MAP386, 123

T

tableindex, 97
table map, 102, 121, 130
Table map, 95, 98, 128
TableMap, 97,118
target library, 56, 57
target operating system, 95, 114
task map, 102, 121, 136
Task map, 95, 98, 128
Task Map, 97, 118
task state segment (TSS), 15
TITLE control

MAP386, 124
transfer of levels

LIB386, 62

206 Index

TSS, 7
TSS, 15
type checking, 5, 19, 42, 126
TY PE control
BND386, 42
MAP386, 125
type mismatch, 137
TYPECHECK control
MAP386, 126

U

unresolved externals, 6, 14, 16
unresolved symbols, 33, 42
UPDATE command

LIB386, 90
USE attribute, 9, 10
USEI1S6, 8, 10, 12, 13, 27
USE32, 10, 13, 27
Utilities

Overview, 1

w

warnings, 20
word count, 97, 132, 136
word-aligned, 11
write-protected, 76, 90
X
XREF control

MAP386, 127

Z

zero-length segments, 41

	Intel386 Family Utilities User’s Guide
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Introduction
	Overview
	Program Development
	Operational Summary: BND386
	Operational Summary: LIB386
	Operational Summary: MAP386

	Chapter 2: Using the Intel386™ Binder
	Major Functions of BND386
	Input and Output
	BND386 Processing
	Segment and Segment Combination
	Segment Attributes
	Segment Names
	USE Attribute
	Segment Length
	Access Rights
	Combine Type
	Align Attribute
	Privilege Level
	Criteria for Segment Combination
	Attributes of the Resulting Segment
	Length of the Resulting Segment

	Reference Resolution
	Fix-up Processing
	Descriptor Table Creation
	Task State Segment Creation
	Invoking BND386
	DOS and iRMX OS Invocation Syntax

	Control Files
	Using a Control File on DOS and iRMX(OS

	BND386 Defaults
	Output File Names
	Controls

	Console Messages
	BND386 Controls
	CONTROLFILE
	DEBUG/NODEBUG
	ERRORPRINT/NOERRORPRINT
	INT286
	LOAD/NOLOAD
	NAME
	OBJECT/NOOBJECT
	PRINT/NOPRINT
	PUBLICS/NOPUBLICS
	RCONFIGURE
	RENAMESEG
	SEGSIZE
	TYPE/NOTYPE

	P
	Print File
	Header
	Segment Map
	Input Modules List
	Unresolved Symbols List
	Warning and Error Messages

	Using BND386: Examples

	Chapter 3: Using the Intel386 Librarian
	Major Functions of LIB386
	Input and Output
	The Target Library
	Library Sessions
	Invoking LIB386
	DOS and iRMX(Invocation Syntax
	Invocation Controls
	LIB386 Defaults

	Console Messages
	Queries
	Display Messages
	Error Messages

	LIB386 Commands
	Hierarchical Levels
	Transfer of Levels
	Effect of Entering the Interrupt Character
	Summary of Commands
	Command Syntax
	ADD
	BACKUP
	COMPRESS
	DELETE
	FIND
	GET
	HELP
	LIST
	QUIT
	REPLACE
	SET
	UPDATE

	Using LIB386: Examples
	Single Session
	Multiple Session
	DOS Batch Session

	Chapter 4: Using the Intel386 Mapper
	Major Functions of MAP386
	Input and Output
	MAP386 Module Processing
	Executable Modules
	Linkable Modules in Linkable Files
	Linkable Modules in Library Files

	Invoking MAP386
	DOS and iRMX Invocation Syntax

	Control Files
	Using a Control File on DOS and iRMX(

	MAP386 Defaults
	Output Identifiers
	Controls

	Console Messages
	MAP386 Controls
	CONTROLFILE
	ERRORPRINT/NOERRORPRINT
	OBJECT/NOOBJECT
	OBJECTCONTROL
	OSINFO
	PAGELENGTH
	PAGEWIDTH
	PAGING/NOPAGING
	PRINT/NOPRINT
	PRINTCONTROLS
	SYMBOLSORT/NOSYMBOLSORT
	TITLE
	TYPE/NOTYPE
	TYPECHECK/NOTYPECHECK
	XREF/NOXREF

	MAP386 Print Files
	Header
	Module List
	Table Map
	Segment Map
	Gate Map
	Symbol Map
	Public Map
	Task Map
	Cross-Reference Map
	Warning and Error Messages

	Descriptor Segment Naming
	DOS and iRMX(Examples Using MAP386

	Appendix A: BND386 Error Messages
	System-Level Exceptions
	Invocation or Input Object Exceptions
	Internal Processing Exceptions

	Appendix B: LIB386 Error Messages
	Processing Errors
	LIB386 Processing Error Messages
	System Interface Messages

	Appendix C: MAP386 Error Messages
	System Interface Level Errors
	Semantic and Object-File Errors
	Internal Processing Errors

	Glossary
	Index

