
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

Introducing the iRMX®
 Operating Systems

07-00634-01
December 1999



ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright  1999 by RadiSys Corporation

All rights reserved.



Introducing the iRMX Operating Systems iii

Quick Contents

Chapter 1. Basic Concepts

Chapter 2. Nucleus and Kernel Features

Chapter 3. BIOS and EIOS Features

Chapter 4. Human Interface Features

Chapter 5. Application Loader Features

Chapter 6. UDI Features

Chapter 7. Networking Features

Chapter 8. System Development

Chapter 9. Application Debugging

Chapter 10. System Configuration

Appendix A. Related Publications

Glossary

Index



iv

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). If you
are working in C, you must use the C header files, rmx_c.h, udi_c.h, and rmx_err.h.
If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

✏ Note
Notes indicate important information.

▲▲! CAUTION
Cautions indicate situations which may damage hardware or data.



Introducing the iRMX Operating System Contents v

Contents

1 Basic Concepts
iRMX Operating System Features................................................................... 2

Real-time Processing................................................................................ 2
Multitasking ...................................................................................... 3
Preemptive, Priority-based Scheduling ............................................. 4
Interrupt Processing........................................................................... 5
Predictable Response Time ............................................................... 6
Multiprogramming ............................................................................ 7

Objects and System Calls ......................................................................... 9
Intertask Coordination and Communication...................................... 10
Memory Pools and Memory Sharing................................................. 13
Virtual Memory Allocation With the Paging Subsystem .................. 14
System Calls...................................................................................... 14
Operating System Layers .................................................................. 15

Example Code and Demonstration Programs ........................................... 16
Network Support ...................................................................................... 17
32-Bit Architecture, Addressing, and Protection ...................................... 17
Bus Architecture Support ......................................................................... 19

iRMX for PCs Special Features....................................................................... 20

2 Nucleus and Kernel Features
Nucleus Objects............................................................................................... 21

Jobs........................................................................................................... 22
Object Directories ............................................................................. 24
Memory Pools ................................................................................... 25

Tasks ........................................................................................................ 26
Memory Segments.................................................................................... 26
Buffer Pools and Heaps ............................................................................ 27
Exchange Objects ..................................................................................... 28

Mailboxes.......................................................................................... 28
Semaphores ....................................................................................... 28
Regions.............................................................................................. 30



vi Contents

Ports .................................................................................................. 30
Extension Objects and Composite Objects ............................................... 31
Object Directories, Tokens and Descriptors ............................................. 32

Nucleus Task Scheduling ................................................................................ 33
Priority ..................................................................................................... 33
Execution State......................................................................................... 34
Round-robin Scheduling........................................................................... 35

Nucleus Interrupt and Exception Handling...................................................... 35
Interrupt Handlers .................................................................................... 36

Interrupt Handler Alone .................................................................... 36
Interrupt Handler/Task Combination................................................. 36

Exceptional Conditions ............................................................................ 37
Environmental and Programmer Errors............................................. 38
Hardware Exceptions ........................................................................ 38

Nucleus Messaging Service............................................................................. 39
Services ............................................................................................. 39

Kernel Features ............................................................................................... 40
Kernel Objects.......................................................................................... 40
Kernel Task Management ........................................................................ 41
Kernel Time Management........................................................................ 41
Kernel Interrupt Handling ........................................................................ 41
When To Use the Kernel .......................................................................... 42

3 BIOS and EIOS Features
I/O System Objects, Logical Names and System Calls ................................... 43

User Objects, Users and User Access Control.......................................... 43
Example: Multiuser System and the User Object............................. 44

Connections and File Access Modes ........................................................ 45
File Connections................................................................................ 45
Device Connections........................................................................... 46

I/O Jobs .................................................................................................... 46
Logical Names for Files and Devices (EIOS Only) ................................. 47
BIOS and EIOS System Call Differences ................................................ 47

System Call Names ........................................................................... 47
Synchronous and Asynchronous System Calls (BIOS Only) ............ 48

Files and Directories........................................................................................ 48
Hierarchical File System .......................................................................... 48
File Access Rights.................................................................................... 49
File Types................................................................................................. 50

Named Files ...................................................................................... 50
Remote Files ..................................................................................... 50
DOS Files.......................................................................................... 51



Introducing the iRMX Operating System Contents vii

CD-ROM Files .................................................................................. 51
Physical Files .................................................................................... 51
Stream Files....................................................................................... 51

Devices and Device Control ............................................................................ 52
Device Independence................................................................................ 52

File Drivers ....................................................................................... 53
Device Drivers .................................................................................. 53
Loading and Configuring Drivers...................................................... 53

Device Control ......................................................................................... 53
Fixed and Timeout Updating............................................................. 54
Disk Integrity .................................................................................... 54
Internal File Fragmentation ............................................................... 55
Buffering with Overlapped I/O (EIOS Only) .................................... 55
Automatic Device Reattachment (EIOS Only).................................. 56
Terminal Support Code ..................................................................... 56

System Clock................................................................................................... 57
Choosing Between I/O Systems....................................................................... 57

BIOS......................................................................................................... 58
EIOS......................................................................................................... 58
Making the Decision................................................................................. 58

Examples........................................................................................... 59

4 Human Interface Features
Run-time Loading of Jobs................................................................................ 61
HI Commands.................................................................................................. 62
Human Interface System Calls ........................................................................ 63

Custom Command Line Parsing............................................................... 63
Multiuser Support ............................................................................................ 64

HI Initialization ........................................................................................ 64
System-wide Setup ................................................................................... 65
Logon ....................................................................................................... 65
Operator Job Creation............................................................................... 65
Command Line Interpreter (CLI) ............................................................. 66

5 Application Loader Features
Dynamic Loading ............................................................................................ 69
Loading Flat Model Applications .................................................................... 70
Objects and System Calls ................................................................................ 70



viii Contents

6 UDI Features .................................................................................... 73

7 Networking Features
Network Concepts and Terminology............................................................... 75
Network Software............................................................................................ 76

TCP/IP for iRMX OSs ............................................................................. 76
iNA 960 and iRMX-NET......................................................................... 76
Network Security...................................................................................... 77

Networking Between Operating Systems ........................................................ 78

8 System Development
Shared C Library ............................................................................................. 80
Online Help Systems ....................................................................................... 80
System Design................................................................................................. 81
A Hypothetical System.................................................................................... 82

Interrupt and Event Processing................................................................. 83
Processing Commands From the Bedside Units................................ 84

Multitasking ............................................................................................. 84
Intertask Coordination.............................................................................. 84
Enhancing the System .............................................................................. 85

Bootstrap Loading (iRMX III OS and iRMX for PCs).................................... 85

9 Application Debugging
System Debug Monitor.................................................................................... 87
System Debugger ............................................................................................ 87
Soft-Scope Debugger....................................................................................... 88

10 System Configuration
ICU Configuration........................................................................................... 91
iRMX for PCs and DOSRMX Configuration.................................................. 92
Loadable Jobs .................................................................................................. 92

A Related Publications
iRMX Manual Set ........................................................................................... 93



Introducing the iRMX Operating System Contents ix

Glossary ................................................................................................................. 95

Index ........................................................................................................................ 111

Figures
Figure 1-1. Task Switching in a Multitasking Environment ......................................... 3
Figure 1-2. Multitasking and Preemptive, Priority-based Scheduling........................... 4
Figure 1-3. Interrupt Handler Interrupting a Task......................................................... 5
Figure 1-4. Multiprogramming ..................................................................................... 7
Figure 1-5. Resources in a Job ...................................................................................... 8
Figure 1-6. Object Types .............................................................................................. 9
Figure 1-7. Object-based Solution for Message Passing ............................................... 11
Figure 1-8. Tasks Using a Semaphore for Synchronization .......................................... 12
Figure 1-9. Multitasking and Mutual Exclusion............................................................ 12
Figure 1-10. Dynamic Memory Allocation between Tasks........................................... 13
Figure 1-11. The Layers of the iRMX Operating Systems............................................ 16
Figure 1-12. Networked Systems.................................................................................. 17
Figure 1-13. Real Mode and PVAM ............................................................................. 18
Figure 2-1. Jobs in a Job Tree ....................................................................................... 23
Figure 2-2. Tasks Using the Job's Object Directory...................................................... 24
Figure 2-3. Tasks Using Their Job's Memory Pool....................................................... 25
Figure 2-4. Tasks Using a Buffer Pool.......................................................................... 27
Figure 2-5. Tasks Using a Message Mailbox ................................................................ 28
Figure 2-6. Tasks Using a Semaphore for Synchronization .......................................... 29
Figure 2-7. Tasks Using Ports for Communication on a Multibus II Platform ............. 31
Figure 2-8. Execution State Transitions for Tasks ........................................................ 34
Figure 2-9. Round-robin Scheduling............................................................................. 35
Figure 2-10. The Task Execution Model....................................................................... 37
Figure 3-1. Task Creating a File and a User Object ...................................................... 44
Figure 3-2. Tasks Sharing a Connection Object............................................................ 45
Figure 3-3. Tasks Accessing a File Through Connections ............................................ 46
Figure 3-4. Hierarchical File Structure ......................................................................... 49
Figure 3-5. Multiple Users with Different Access Rights ............................................. 49
Figure 3-6. Tasks Using a Stream File.......................................................................... 52
Figure 3-7. I/O Requests from the Application Go Through BIOS and Device Drivers 53
Figure 5-1. Using the Application Loader To Load a Program Dynamically ............... 69



x Contents

Figure 5-2. Using the Application Loader To Load a Program into a Task's Memory . 71
Figure 6-1. UDI Interface Between the Application and the Hardware ........................ 73
Figure 7-1. iRMX-NET Interoperability with other OpenNet Systems ........................ 78
Figure 8-1. Typical Development Cycle for iRMX Applications ................................. 82
Figure 8-2. The Hardware of the Dialysis Application System .................................... 83



Introducing the iRMX Operating Systems Chapter 1 1

Basic Concepts 1
i Introducing…

R Real-time operating systems that support applications which require
deterministic response time, high reliability, and synchronization, with

M Multitasking capabilities that handle multiple external interrupts and internal
events occurring asynchronously. They provide multiuser and
multiprogramming support, and the

X eXecutive scheduler provides preemptive, priority-based, and predictable
response time to interrupts and events.

Real-time applications can be:

Measurement and
monitoring

of seismic activity for analysis
of patients in medical procedures

Process control of high-speed machinery or robots
of research and lab activities

Data acquisition and
distribution

of automatic test data
to vendors or clients over networks or satellite links

The iRMX® Operating Systems run on single-board computers and microcomputers
built around the Intel386 , Intel486 , Pentium® and Pentium Pro microprocessors.
There are three versions of the iRMX Operating System (OS).

iRMX for PCs Runs on PC platforms with or without DOS, but with no
interoperability between the OSs. It can use the PC's ROM
BIOS to interact with peripherals or it can directly interact
with these peripherals,

DOSRMX Runs on PC platforms concurrently with DOS; it provides
interoperability between the iRMX OS andDOS. Provides
access to off-the-shelf DOS software and tools.

iRMX III OS Runs on Multibus I and II platforms. Provides maximum
configurability, including booting the OS with an embedded
application.



2 Chapter 1 Basic Concepts

iRMX Operating System Features
The iRMX OS offers a broad range of real-time, object-based functions and features:

• Real-time processing to monitor and control events
– Multitasking
– Preemptive priority-based scheduling
– Interrupt processing
– Predictable response time (determinism)
– Multiprogramming

• Objects to simplify application design and programming and to control resources
– Intertask coordination and communication
– Shared memory and dynamic memory allocation
– System calls that manipulate objects and control the computer
– Configurable layers of the OS, each with its own system calls

• Example code and demonstration programs that illustrate how to use iRMX
objects and system calls

• Network support for file access between iRMX and other OSs

• 32-bit architecture
– 4 Gbyte physical addressing and 4 Gbyte segments
– Protection features for improved reliability and multiuser support

• Industry-standard bus support

Real-time Processing
Real-time processing requires these capabilities:

• Multitasking, which means switching between threads of execution or tasks

• Preemptive, priority-based scheduling, to determine which task needs to run
immediately and which can wait

• Interrupt processing, to respond to external interrupts that occur during
processing

• Predictable response time (determinism) so tasks execute before their
deadlines expire

• Multiprogramming, so more than one application can run at a time



Introducing the iRMX Operating Systems Chapter 1 3

Multitasking

Multitasking means the computer stops doing one task and starts doing another,
as shown in this figure. An iRMX task is a thread of execution, similar to a
UNIX process.

1

Task A

Task B

2 3

1. The processor executes Task A.

2. An event happens and a task switch occurs. The processor then executes Task B.

3. When Task B finishes, Task A becomes the running task again.

Figure 1-1. Task Switching in a Multitasking Environment

The iRMX OS manages task switching; it saves the old task's state (context) on the
old task's stack and loads the new task's state before starting execution.

Multitasking and modular programming go hand-in-hand. You start by breaking
down a large, difficult application problem into successively smaller and simpler
problems, grouping similar problems where you can. Finally, you solve the small
problems in separate program modules. In the iRMX multitasking environment, each
module is a task.

Multitasking simplifies building an application. When you need a new function, you
just add a new task.

See also: Tasks, Chapter 2 in this manual;
tasks, System Concepts

When you combine multitasking with preemptive, priority-based scheduling, your
application can switch from relatively unimportant tasks, to important tasks, to
critical tasks and back again, as appropriate.



4 Chapter 1 Basic Concepts

Preemptive, Priority-based Scheduling

In a preemptive, priority-based system, some tasks are more critical than others.
Critical tasks run first and can preempt less critical tasks, as shown in this figure.

1

Task A

Task B

2

Event

3

1. Task A, a low-priority task, prints data accumulated from a robotic arm in report form.

2. Task B, a high-priority task, controls the robotic arm. If the arm needs to move while
Task A runs, Task B preempts the print task, then starts and moves the arm.

3. After Task B repositions the arm, Task A finishes printing.

Figure 1-2. Multitasking and Preemptive, Priority-based Scheduling

Multitasking enables your application to respond to internal events and external
interrupts, such as clock ticks from the system clock or receiver ready from a serial
device, based on how critical they are. You determine the priority of tasks in your
application; the iRMX OS provides the task scheduling algorithms.

See also: Scheduling tasks, Chapter 2 in this manual;
scheduling, System Concepts

When you add interrupt processing to multitasking and preemptive, priority-based
scheduling, your application can respond to interrupts as they occur. Your
application becomes event-driven; it does not waste time polling for interrupts.



Introducing the iRMX Operating Systems Chapter 1 5

Interrupt Processing

Interrupts are signals from devices such as a malfunctioning robot or interactive
terminal. You connect interrupt sources to the processor through Programmable
Interrupt Controllers (PICs).

With interrupt processing, your application can handle interrupts occurring at random
times (asynchronously) and can handle multiple interrupts without losing track of the
running task, or those tasks waiting to run. Interrupts can occur while the processor
is executing either an unrelated task or a related task, as shown in the next figure.

1

Task A

Task B

2

Event

IRQ signal

IRQ handler

3

PIC Processor

1. Task B, the running task, repositions the robotic arm.

2. The robotic arm malfunctions and sends an interrupt signal through the PIC.

3. As soon as it receives the signal, the microprocessor stops the running task and starts an
interrupt handler. The interrupt handler runs in the context of Task B. No new task is
loaded; Task B's state does not need to be saved. It remains loaded in RAM until the
scheduler runs it again. Task A, the print task, is still waiting to run.

Figure 1-3. Interrupt Handler Interrupting a Task

Typically, you have numerous sources of interrupts in your application. Some of
them, like the malfunctioning robotic arm, are critical; some of them are not. You
assign interrupt levels (which map directly to priorities) to the interrupt sources by
the order in which you connect your external sources to the PIC. The iRMX OS
handles more critical interrupts first, and keeps track of which interrupts occurred,
the order in which they occurred and which ones have not been handled.

Interrupt handlers can perform very limited operations, so you typically write an
interrupt handler to signal an interrupt task. The interrupt task's priority is
automatically assigned, based on the interrupt level of the external source.

Multitasking and interrupt processing simplify expanding an application. Because of
the one-to-one relationship between interrupts and tasks, you just add a new task
when you need to respond to a new interrupt. Interrupt processing is also more



6 Chapter 1 Basic Concepts

efficient, since your system spends all of its time running tasks, not polling for
interrupts.

The Kernel offers a different model for interrupt handling.

See also: Nucleus interrupt and exception handling, Chapter 2 in this manual;
Kernel features, Chapter 2 in this manual;
interrupts, System Concepts;
interrupt_task, Driver Programming Concepts

Predictable Response Time

The iRMX OS provides deterministic response: there is a predictable, worst-case
response time to a high-priority interrupt. The OS does this in two ways: interrupt
response time and task switch time.

Interrupt Response Time. This is the time between a physical interrupt happening
and the system beginning to execute the interrupt handler. A predictable worst-case
response time to interrupt processing ensures that incoming data is handled before it
becomes invalid.

Task Switch Time. A task switch is saving the data registers, stack and execution
pointers (the task state) of one task, and starting another task. Minimized task switch
time also provides a predictable response time to a high-priority task.

Since the typical response to an interrupt is invoking a handler and then performing a
task switch to an interrupt task, the deterministic response time includes both the
interrupt response and task switch times.

Real-time response does not mean instantaneous execution. A high-priority task that
is very long and performs many calculations will use as much processor time to
execute on a real-time system as on any other system. The length of time instructions
take to execute is a function of processor speed.



Introducing the iRMX Operating Systems Chapter 1 7

Multiprogramming

The iRMX OS supports multiprogramming: running several unrelated applications
on a single system, as shown in the next figure.

Application BApplication A

1. Application A contains all the tasks that relate to the robotic arm, including the print task. It
may also contain tasks that control other devices on the factory floor.

2. Application B contains all the tasks relating to another application that controls a chemical
mixing system in another part of the factory.

Figure 1-4. Multiprogramming

To take full advantage of multiprogramming, you provide each application with a
separate environment: separate memory, files, and other resources. The iRMX OS
provides this kind of isolation in a job. Typically, a job includes a group of related
tasks and the resources they need, as shown in the next figure.



8 Chapter 1 Basic Concepts

2 3

A

B
1

Job

Typically a job includes:

1. A group of related tasks.

2. The memory the tasks need.

2. An object directory where you can catalog task resources.

Figure 1-5. Resources in a Job

You decide what jobs to include in your system. The iRMX OS coordinates the use
of resources within and between jobs so independently-developed applications do not
cause problems for each other.

See also: Jobs, Chapter 2 in this manual;
jobs, System Concepts

Multiprogramming simplifies adding new applications; you can modify your system
by adding new jobs (or removing old ones) without affecting other jobs. In addition,
you get more from your hardware investment by running several applications on it.



Introducing the iRMX Operating Systems Chapter 1 9

Objects and System Calls
The iRMX OS provides basic objects and maintains the data structures that define
these objects. The basic objects are building blocks that application programs
manipulate. The characteristics of the objects are easy to learn and use; they are
well-defined and consistent.

This figure shows the iRMX-provided object types.

Job Task

Mailbox

Segment Memory
Pool

Buffer
Pool

Port

Semaphore Region

User Connection

Extension Composite

OM02650

The icons for the object types shown in this illustration appear in all illustrations in this
manual.

Figure 1-6. Object Types



10 Chapter 1 Basic Concepts

Each object type, such as a mailbox, has a specific set of attributes or characteristics.
Once you learn the attributes of a mailbox, you know how to use all mailboxes. Each
object also has its own set of related system calls.

See also: Object types, Kernel objects, Chapter 2 in this manual;
I/O system objects, Chapter 3 in this manual;
Individual object chapters, System Concepts

Object-based programming, which concentrates on the objects and the operations
performed on them, is compatible with modular programming. Typically a single
task performs only a few related functions on a few objects.

Intertask Coordination and Communication

iRMX exchange objects are mailboxes, semaphores, regions, and ports. They enable
asynchronous tasks, which run in a random order, to coordinate and communicate
with one another by:

• Passing messages

• Synchronizing with each other

• Mutually excluding each other from resources

Messages. Tasks may need to exchange data, messages, or object tokens (object
addresses and attributes).

For instance, one task may accumulate input from a terminal until it receives a
carriage return. It uses an exchange object to send the entire line of input as data to
another task that decodes the input.



Introducing the iRMX Operating Systems Chapter 1 11

This figure summarizes how you can solve a problem that requires routing several
types of input into several types of output using a mailbox object. One mailbox and
one manager task can handle messages from multiple input and output tasks.

3

Input
tasks

Output
tasks

1

D

E

A

B

C

2

Messages

Messages

Manager
task

B

A

B

A A

B

1. System calls move data from input tasks A and B to a waiting mailbox.

2. Task C, the manager task, waits at the mailbox and determines which messages go to
which output tasks. If another message arrives during processing, the message waits in
the mailbox queue until the manager task can handle it.

3. The individual output tasks receive their data at their mailboxes and process it.

Figure 1-7. Object-based Solution for Message Passing

Synchronization. One task may need to run before another task. It can use an
exchange object to signal the second task when it has completed. For example, the
task that creates the transaction summary in an automated teller application shouldn't
run until after the tasks that handle withdrawals and deposits have run. The
transaction summary task must be synchronized with the other tasks.



12 Chapter 1 Basic Concepts

The iRMX OS provides several objects for synchronization that can accommodate a
wide variety of situations. The next figure illustrates using a semaphore to send a
signal to another task.

21A B

Task A, the running task, preprocesses some data. Task B needs to use the data after Task A
finishes.

1. WhenTask A finishes, it sends a signal (not data) to the semaphore.

2. When Task B receives the signal, it processes the data.

Figure 1-8. Tasks Using a Semaphore for Synchronization

Mutual Exclusion. With the iRMX OS, multiple tasks can concurrently access the
same file. This is useful in a multitasking system, such as a transaction processing
system where a large number of operators concurrently manipulate a common
database.

If each terminal is driven by a distinct task, the only way to implement an efficient
transaction system is to have the tasks share access to the database file. Occasionally,
when tasks are running concurrently, the situation in this figure arises.

2 AB 1

1. Task A, the running task, reads some data from the database and does computations
based on the data.

2. Task B tries to preempt Task A and update the data while Task A works on it. Mutual
exclusion, provided by a region, prevents two tasks from accessing the same data
concurrently.

Figure 1-9. Multitasking and Mutual Exclusion

The iRMX OS includes regions to provide mutual exclusion. Unless Task B is
prevented from modifying the data until after Task A has finished, Task A may
unknowingly use some old data and some new data to produce an invalid
computation. It should, however, read and compute the new data after Task B
updates it. Your code can use a region to protect the data from being accessed by
both tasks at the same time. This is called mutual exclusion.



Introducing the iRMX Operating Systems Chapter 1 13

Memory Pools and Memory Sharing

Memory pools are the basis of iRMX memory management. The initial memory pool
is all the memory available to the application (that is, free space memory). It is
managed by the OS and allocated to the application on request.

The initial memory pool is subdivided into smaller pools as application jobs and
segments are created. Each job in the application has its own subpool, with a
minimum and a maximum size. Once the minimum pool is allocated to a job, it is
not available to other jobs. As tasks in the job create and delete objects, the job pool
may approach its maximum size, then return to its minimum. This provides dynamic
memory allocation of the memory pool as jobs require less memory.

Dynamic memory allocation enables jobs to take advantage of one job freeing
memory while another needs more. When you delete a job, its memory returns to the
initial memory pool.

Dynamic memory allocation is also useful within a job. All the tasks in a job
compete for memory in the job's memory pool. Some tasks periodically need lots of
memory to improve efficiency, for example a task that allocates large buffers to
speed up input and output operations. These tasks can release memory for other tasks
when they complete, as shown in this figure.

1

B

A

C
D

2
3

C

A

B

1. Tasks A and B use memory in the job's memory pool for objects they create.

2. Task C completes, and then deletes its objects and releases its memory to the job's
memory pool.

3. Task D requests memory.

Figure 1-10. Dynamic Memory Allocation between Tasks



14 Chapter 1 Basic Concepts

Virtual Memory Allocation With the Paging Subsystem

If you use a non-Intel compiler that produces flat model applications instead of
segmented applications, you include the Paging Subsystem in the OS. This job
manages the processor in paging mode, which treats memory differently from the
segmented model used historically by iRMX applications. With paging enabled, flat
model applications allocate virtual memory, which is indirectly accessed through
page tables instead of in separate segments.

Flat model applications use a different set of system calls to allocate memory than
segmented applications. However, the job still manages a pool of memory, which the
individual tasks can use as described above. With the Paging Subsystem, you can
still run existing segmented applications (or write new ones) along with flat model
applications. Flat and segmented applications must reside in different jobs.

See also: Paging, Flat model, Programming Techniques
paging.job, flat.job, System Configuration and Administration

System Calls

Each iRMX object has an associated set of system calls: programmatic interfaces
you use to manipulate objects or control the computer's actions. System calls for one
object type cannot manipulate objects of another type. This protects the objects from
inappropriate modification.

Most system calls have parameters, such as values and names, that you can set to
tailor the call's performance. Some of the functions you can do with system calls are:

create_mailbox Creates a new mailbox

set_priority Sets a task's priority

send_message Sends a token or data to a mailbox

a_read Reads a data file or the contents of a directory

Most system calls validate the parameters you enter; a condition code returned by the
call indicates whether you used invalid parameters. There are also condition codes
for trying to read or write segments that you do not have access to and for trying to
write past the end of a segment.

You can add new objects and the system calls that manipulate them to the iRMX OS
if your application requires them. Objects and system calls you create can be shared
by jobs.

See also: System call summary tables in Chapter 1 of System Call Reference;



Introducing the iRMX Operating Systems Chapter 1 15

Operating System Layers

The iRMX OS is a collection of layers, or subsystems. All layers have their own
system calls. Some layers have their own objects; some use the objects from
other layers.

Each layer builds on the capabilities of the previous ones. These layers are all
included in iRMX for PCs and DOSRMX. The Bootstrap Loader is included with
the iRMX III OS and iRMX for PCs.

On ICU-configurable systems, you choose which layers you need to create a tailored
OS. These are the layers and their functions:

iRMK Kernel A part of the Nucleus that provides high-performance task
and time management and message passing. The Kernel
does not provide the protection that the Nucleus does. The
Kernel has its own objects.

Nucleus The heart of the OS, built on the Kernel, and is the only
required layer. It provides most of the objects that the other
layers use. It schedules jobs and tasks, controls access to
system resources, communicates between tasks and enables
the system to respond to interrupts.

Basic I/O System
(BIOS)

Includes file and device drivers and data tables that define
I/O devices. This layer performs I/O functions; creates and
deletes files, and controls file access. The BIOS controls the
Connection and User objects.

Extended I/O System
(EIOS)

A higher-level I/O system that provides all the BIOS features
plus I/O buffering and overlapping, logical names for files
and devices, and automatic reattachment of devices. The
EIOS controls the I/O job object.

Application Loader
(AL)

Loads programs from secondary storage into memory.

Human Interface
(HI)

Provides multiuser support with logon/logoff and user job
creation. It is the parent job for applications in DOSRMX
and iRMX for PCs. It provides commands for controlling
application systems from terminals. You can create
additional commands for your application.

Universal
Development
Interface (UDI)

A high-level interface between the OS and the application.
It enables compilers, language translators, and other software
development tools to run.



16 Chapter 1 Basic Concepts

Shared C Library Provides functions and macros that enable ANSI-standard C
programs to perform common operations concurrently. The
Shared C Library provides support for some non-Intel C
compilers.

Paging Subsystem Supports flat model (non-segmented) applications by
providing virtual memory in a flat address space; it manages
the processor in paging mode.

Bootstrap Loader Loads the initial OS and the application's initial jobs from
secondary storage into RAM on the hosts in the system, then
starts the system.

This figure illustrates the layers and the relationships between them. The UDI also
accesses the Application Loader.

Application
Loader

Human Interface UDI and
C Library

EIOS

BIOS

VM86 Dispatcher
(iRMX for Windows and PCs)

iRMX Nucleus

iRMX-NET and
TCP/IP

iRMX is a registered trademark of Intel Corporation.

iRMK Kernel

OM02727

Figure 1-11. The Layers of the iRMX Operating Systems

Example Code and Demonstration Programs
The /rmx386/demo subdirectory in the iRMX directory structure contains many
programming examples in C, PL/M and assembler. You should use and modify the
example code when you develop your applications.

There are examples of:

• Basic multitasking, creating and cataloging objects

• Message passing

• Interrupt handling

• Managing terminal I/O

• Programmatic network access



Introducing the iRMX Operating Systems Chapter 1 17

• Third-party compiler support

See also: Programming Techniques for an explanation of some example
programs;
Real-Time and Systems Programming for PCs, for additional
programming examples

Network Support
The iRMX OS software supports networking of independent computers connected
together to exchange information. iRMX-NET enables iRMX-based computers to
communicate with OpenNET servers and clients running other OSs, as shown in this
figure.

Figure 1-12. Networked Systems

The basic networking software is iRMX-NET, a part of Intel's family of OpenNET
Local Area Network (LAN) products and TCP/IP, which enables interoperability
with most other OSs.

See also: Networking, Chapter 7 in this manual;
Network User's Guide and Reference;
TCP/IP and NFS for the iRMX Operating System

32-Bit Architecture, Addressing, and Protection
The iRMX OS supports 4 gigabytes (Gbyte) physical addressing, 32-bit addresses
and data types, and the addressing modes shown in this figure.



18 Chapter 1 Basic Concepts

4 Gbyte
PVAM

1 Mbyte
Real Mode

OM02651

Figure 1-13. Real Mode and PVAM

Real mode Enables addressing 1 Mbyte of physical memory. Real
mode is the initial operating or bootload mode for supported
Intel microprocessors. During iRMX initialization, the
microprocessor is switched into protected virtual address
mode (PVAM).

Protected virtual
address mode
(PVAM)

Enables the iRMX OS to take advantage of 32-bit
architecture, the full 4 Gbytes of memory, and advanced
protection features. It also enables real mode programs to
run concurrently in Virtual 86 (VM86) mode. DOSRMX
runs in protected mode, but switches to VM86 mode to run
DOS and DOS applications.

Paging mode A flat model application uses near pointers only, in a virtual
segment that can span the entire 4 Gbyte address range.



Introducing the iRMX Operating Systems Chapter 1 19

The protection features of the microprocessor includes:

• Memory segment length protection that prevents segment accesses from crossing
segment boundaries. Writing too much data will not corrupt the system.

• Access-rights protection that enables tasks to define access to a segment and
prevents access to those segments in other than the defined mode.

• When the Paging Subsystem is enabled, the processor manages memory through
page tables. In this mode, the OS provides protection by isolating memory
between jobs with an unallocated page table entry. An attempt to access beyond
the allocated memory results in a processor-generated page fault.

• Stack-overflow detection that prevents out-of-control tasks from overflowing the
stack and overwriting important information.

• Invalid-selector detection that prevents tasks from referring to segments of
undefined memory.

See also: Programmer's Reference Manual for your microprocessor for
information on the internal hardware features of the microprocessor

Bus Architecture Support
The iRMX OS supports these industry-standard bus architectures: PC, Multibus I,
and Multibus II.

PC architecture benefits and features for iRMX for PCs and DOSRMX systems
include:

• A 32-bit wide (EISA or PCI) or 16-bit wide (ISA) data word across the bus

• A widely-installed base

• A low-cost platform for iRMX development and target systems

Multibus I architecture benefits and features include:

• A 16-bit wide data word across the bus

• A widely-installed base

• Intelligent board-to-board communications using hardware signals and similar
signal handling techniques

Multibus II architecture benefits and features include:

• A 32-bit wide data word across the bus.

• Enhanced board-to-board communication through additional internal buses and a
well-defined data transfer protocol. The internal buses enable virtual interrupt



20 Chapter 1 Basic Concepts

processing so any board can communicate with any other, regardless of hardware
limitations.

• Efficient bus use through a data packet (small portion of data) transfer scheme.
Transferring data by packets prevents a slower device on the bus from
monopolizing all the bus time: the bus is not limited in speed to the slowest
device using it.

• Support of multi-processor systems for higher performance.

iRMX for PCs Special Features
iRMX for PCs can reside with DOS on a DOS partition, or it can reside on an iRMX
partition.

iRMX for PCs provides these features:

• Can use ROM BIOS functions to control the system mass storage devices
(diskettes, hard disks, and CD ROMs)

• Can use native iRMX drivers to control the system mass storage devices
(diskettes, hard disks, and CD ROMs)

• Contains a native DOS file driver and can read/write any local DOS
(FAT12/FAT16) drive (diskette, primary DOS partition, Extended DOS
partition) without the presence of DOS

• Is a cost-effective solution for many applications.

See also: Installation and Startup

■■   ■■   ■■



Introducing the iRMX Operating Systems Chapter 2 21

Nucleus and Kernel Features 2
Nucleus functions include:

• Managing objects that control access to system resources and communicate
between tasks

• Scheduling tasks based on priority

• Handling interrupts based on interrupt level

Kernel functions include:

• Controlling Kernel objects

• Managing tasks

• Managing time

Nucleus Objects
The Nucleus provides these objects.

• Jobs are the environments where tasks do their work. A job contains:
— Tasks
— Whatever objects the tasks create
— An object directory for cataloging objects
— A memory pool that provides memory for the tasks to do their work

• Tasks do the work of the system and respond to interrupts and events.

• Memory segments are addressable, contiguous blocks of memory that tasks can
use for any purpose.

• Buffer pools and Heaps are holding areas for dynamically allocatable memory.

• Exchange objects that tasks use to pass information are:
— Mailboxes that enable tasks to pass messages and data
— Semaphores that enable tasks to synchronize
— Regions that provide mutual exclusion
— Ports that synchronize operations and pass messages

• Extension objects let you build new types of objects.

• Composite objects include the extension and whatever existing objects you need.



22 Chapter 2 Nucleus and Kernel Features

Objects are data structures that occupy memory. Each object type has unique
attributes, described in the next sections. Each object has a token that uniquely
identifies it. The maximum number of objects allowed in the system at any one time
is 8192 (2000H).

See also: Object directories, tokens and descriptors later in this section;
I/O system objects, Chapter 3 in this manual;
Individual object chapters and OS extensions, System Concepts

Jobs
A job is an iRMX object that contains tasks and all the resources they need. iRMX
jobs that you can create have these characteristics:

• Jobs make up your application.

• Jobs are passive; they cannot make system calls.

• Jobs include one or more tasks.

• Jobs provide resource isolation for their tasks, particularly for dynamically
allocated memory. Two tasks of one job compete for the memory associated
with their job. Tasks in different jobs typically do not.

• Jobs provide error boundaries. Errors within one job do not corrupt other jobs or
the OS because they have separate memory pools.

• When you delete jobs, the objects associated with them also are deleted.

You can create several kinds of jobs:

• Dependent or child jobs are children of their parent job.

• Loadable jobs are children of the HI.

• First level jobs (configurable in the ICU) are children of the root job.

• I/O jobs are children of the EIOS.

The jobs in a system form a job tree. Each job except the root job obtains its
resources from its parent as shown in the next figure.



Introducing the iRMX Operating Systems Chapter 2 23

➀

➁

➂

OM02701

\root

BIOS EIOS HI

application

1. Initially, the root job owns all of free space memory, which is allocated as other jobs are
created.

2. Some of the OS layers are first level jobs, or children of the root job. Applications can also
be first level jobs.

3. Applications loaded at system initialization are children of the HI. In DOSRMX and iRMX
for PCs, this is how you typically load applications.

Tasks in jobs can create other jobs, enlarging the tree.

Figure 2-1. Jobs in a Job Tree

There are system calls to create and delete jobs, obtain information about a job's
children, and control a job's memory pool.

See also: Jobs, System Concepts;
Jobs in Nucleus system call summary, Chapter 1 of System Call
Reference



24 Chapter 2 Nucleus and Kernel Features

Object Directories

Each job has an associated object directory. As a task creates an object, the Nucleus
creates a token for it. A task can catalog an object, with its token and a
corresponding name, in its own job or any other job it knows about. Typically, you
catalog objects in the root directory if you want them accessible from several other
tasks. Other tasks that know the name can use the object directory to look up and
access the object, as shown in this figure.

1. Task A catalogs an object in its own job's object directory.

2. Task B looks up the object, such as a mailbox, in the object directory in order to use it.
Now, Task A can send a message to the mailbox and Task B can receive it.

Figure 2-2. Tasks Using the Job's Object Directory

Objects that are cataloged can also be shared across job boundaries.

See also: Object directories, tokens and descriptors in this chapter



Introducing the iRMX Operating Systems Chapter 2 25

Memory Pools

Each job has an associated memory pool. This is an amount of memory, with a
specified minimum and maximum, that is allocated to the job and its children. The
minimum memory is always contiguous. Usually, all memory needed for tasks to
create objects in the job comes from the job's memory pool, as shown in this figure.

B

A

Tasks A and B obtain memory from the job's memory pool.

Figure 2-3. Tasks Using Their Job's Memory Pool

If there is not enough contiguous memory currently available (up to the maximum
size of the job's memory pool), the OS tries to borrow from the job's parent, and on
up the job tree if necessary. In general, you should allocate enough memory so that
jobs do not need to borrow memory or create additional segments, since both of these
require additional time.

In the iRMX III OS, you can also statically allocate memory to jobs. But once the
memory is allocated, it cannot be freed for other jobs. The total memory requirement
of the system is always the sum of the memory requirements of each job. Static
memory allocation uses more memory than dynamic allocation, but may be safer.

See also: Memory pools, System Concepts;
Segments and memory pools in Nucleus system call summary, Chapter
1 of System Call Reference



26 Chapter 2 Nucleus and Kernel Features

Tasks
Tasks are the threads of execution or active, code-executing objects in a system.

Tasks typically respond to external interrupts or internal events. An external interrupt
can be a keystroke or a system clock tick; an internal event can be the arrival of a
message at a mailbox. Tasks have both a priority and an execution state (whether the
task is running or not).

There are system calls to create tasks and delete tasks, view and manipulate a task's
priority, control task readiness, and obtain task tokens.

See also: Nucleus interrupts, events and exceptions, in this chapter;
tasks, System Concepts;
tasks in Nucleus system call summary, Chapter 1 of System Call
Reference

Memory Segments
Segments provide memory for tasks to use for many purposes, including
communicating and storing data. A task requests a segment of whatever size it needs.
The segment is usually allocated from the memory pool of the task's job, as shown in
Figure 2-3. If there is not enough memory available (up to the maximum size of the
job's memory pool), the Nucleus tries to borrow from the job's parent, and on up the
job tree if necessary.

There are system calls to request a memory segment of a certain size, delete a
segment, and find out the size in bytes of a segment.

See also: Segments, System Concepts;
segments and memory pools in Nucleus system call summary, Chapter
1 of System Call Reference



Introducing the iRMX Operating Systems Chapter 2 27

Buffer Pools and Heaps
Buffer pools provide memory for tasks. A buffer pool is a set of existing memory
segments that you can dynamically allocate.

Heaps provide memory for tasks. A heap is a single memory segment portion of
which you can dynamically allocate as pointers to the beginning of each allocation.

Tasks request buffers, use them, and then release them back to the buffer pool, which
manages them, as shown in this figure. Using a buffer pool cuts down on system
overhead because allocating existing buffers is faster than creating and deleting
memory segments.

A

B
1

C C

2

1. Tasks A and B are using buffers in the buffer pool.

2. Task C is releasing its buffer. The buffer can be reallocated to another task.

Figure 2-4. Tasks Using a Buffer Pool

There are system calls to create a buffer pool, fill it with buffers, view the attributes
of a buffer pool, and delete it.

Tasks request allocations from a Heap, use them, and then release them back to the
Heap, which manages them. Using a Heap cuts down on system overhead since there
are no segment creations or deletions involved when requesting and/or release Heap
allocations.

See also: Buffer pools, System Concepts;
Heaps, System Concepts;
buffer pools in Nucleus system call summary, Chapter 1 of System Call,
Heaps in Nucleus system call summary, Chapter 1 of System Call
Reference



28 Chapter 2 Nucleus and Kernel Features

Exchange Objects
The four Nucleus exchange objects are mailboxes, semaphores, regions, and ports.

Mailboxes

Mailboxes provide intertask communication between tasks in the same job or in
different jobs. They can send information and, since a task may have to wait for
information before executing, they can synchronize task execution. There are two
types of mailboxes:

Message mailboxes Send and receive object tokens.

Data mailboxes Send and receive data.

This figure shows how tasks use a message mailbox to send a token for a segment.

OM02705

A

➀

➁
B

➂

➃

1. Task A creates a segment and puts data into the segment.

2. Task A sends the segment token to a mailbox.

3. Task B waits to receive the segment token at the mailbox. You can specify whether or not
Task B should wait if the token isn't in the mailbox.

4. Task B obtains the token and receives the data in the segment.

Figure 2-5. Tasks Using a Message Mailbox

Mailboxes have task queues, where tasks wait for messages, and message queues,
where messages wait to be given to tasks. The task queue may be FIFO- or priority-
based; the message queue is FIFO-based.

You use the same system calls to create and delete message and data mailboxes.
However, you use different calls to send and receive messages or data.

See also: Mailboxes, System Concepts;
Mailboxes in Nucleus system call summary, Chapter 1 of System Call
Reference

Semaphores

Tasks use semaphores for synchronization.



Introducing the iRMX Operating Systems Chapter 2 29

A semaphore is a counter that takes positive integer values. Tasks send units to and
receive units from the semaphore. When a task sends n units to a semaphore, the
value of the counter is increased by n; when a task receives n units from a semaphore,
the value of the counter is decreased by n.

This illustration shows a typical example of a binary (one-unit) semaphore used for
synchronization.

2

1
A

B

1. Task A needs to do some work before Task B starts running. Task A creates a semaphore
with one unit. To enable synchronization, Tasks A and B should request and obtain the
unit before running.

Task A obtains the unit. Because the semaphore has no units, Task B cannot run.

2. When Task A completes, it returns the unit to the semaphore. Task B can now obtain the
unit and begin running.

Figure 2-6. Tasks Using a Semaphore for Synchronization

Semaphores enable synchronization; they don't enforce it. If tasks do not request and
obtain units from the semaphore before running, synchronization is not achieved.
Each task must send a unit back to the semaphore when it is no longer needed.
Otherwise, tasks can be permanently prevented from running.

Semaphores can also provide mutual exclusion from data or a resource like this:

1. Task A requests one unit from a binary semaphore, and uses the resource when it
receives the unit.

2. Task B requests one unit from the semaphore before using the resource. Task B
must wait at the semaphore until Task A returns the unit.

Semaphores enable mutual exclusion; they do not enforce it.

Semaphores have a queue where tasks wait for units. The queue may be FIFO- or
priority-based. There are system calls to create and delete semaphores, and to send
and receive units.

See also: Semaphores, System Concepts;
Semaphores in Nucleus system call summary, Chapter 1 of System Call
Reference



30 Chapter 2 Nucleus and Kernel Features

Regions

A region is a binary semaphore with special suspension, deletion, and priority-
adjustment features. Regions provide mutual exclusion from resources or data; only
one task may control a region at a time; only the task in control of the region can
access the resource or data. Once a task gains control of a region, the task cannot be
suspended or deleted until it gives up control of the region. When the running task no
longer needs access, it exits the region, which enables a waiting task to access the
resource or data.

Regions can have a priority queue, which you should use. Then, if a higher-priority
task tries to enter a busy region, the priority of the task in the region is raised
temporarily so that it equals the waiting task's priority. This helps prevent priority-
inversion, as shown in this example:

1. Task A is the running task. It is a low-priority task with control of a region,
accessing some data. The region has a priority queue. The only other task that
uses the data is Task C, a high-priority task that is not ready to run.

2. Task B, a medium-priority task, becomes ready to run and preempts A.

3. Task C becomes ready to run and preempts B. It runs until it tries to gain control
of the region. Task A's priority is raised to equal Task C's priority until Task A
releases the region; then its priority returns to its initial level.

4. When Task A releases the region, Task C receives control of the region and uses
the data. When Task C completes, Task B runs.

Without a high-priority queue, Task B would have preempted A while A had control
of the region; C would have preempted B, but would have been unable to use the data
because A had control of the region.

Regions require careful programming to avoid deadlock, where two tasks need access
to two resources protected by regions at the same time and one task has control of
one region while the other task has control of the other region.

Regions have a task queue where tasks wait for control. The queue can be FIFO- or
priority-based. There are system calls to create, control, and delete regions.

See also: Regions, System Concepts;
Regions in Nucleus system call summary, Chapter 1 of System Call
Reference

Ports

Ports have two uses:

• Message-passing on all platforms
• Signal passing to synchronize Multibus II operations



Introducing the iRMX Operating Systems Chapter 2 31

On all platforms, you can use message ports for short-circuit message passing. Ports
enable efficient communication between tasks on the same host, in the same or
different jobs: a message is copied from the source buffer in the sending task to the
destination buffer in the receiving task. You use buffer pools to provide fast storage
allocation for messages received at ports.

On Multibus II systems, you can use ports between host boards in the system,
including hosts that are not running an iRMX OS. Each port is an access point into
the bus, through which you can send or receive messages or send signals.

This figure shows communication between tasks on different hosts in a Multibus II
platform. Tasks on different hosts must each have access to a port. Each port must
have a socket identifier: a combination of the port and host IDs.

A A B B

➀ ➁

OM02707

1. Task A is the sending task. It sends the message to a port on its host. The message
travels on the bus.

2. Task B is the receiving task. It receives the message at a port on its host.

Figure 2-7. Tasks Using Ports for Communication on a Multibus II Platform

Ports provide more functionality and require more programming effort than
mailboxes. There are system calls to create, attach, manipulate, detach, and delete
ports. There are several system calls to send, receive, and cancel messages.

See also: Ports, System Concepts;
Communication service calls in Nucleus system call summary, Chapter
1 of System Call Reference

Extension Objects and Composite Objects
If your system requires an object type that is not supplied by the iRMX OS, you can
add a new object type by extending the iRMX OS. A new object type is an extension
object. Each new extension object type requires its own OS extension.



32 Chapter 2 Nucleus and Kernel Features

Each new extension object type must be manipulated by its own system calls; these
calls should not be used for other object types. There can be numerous objects of the
given type and they must have the same form and function within the type.

An OS extension that you write for an extension object type is called a type manager.
Each extension object type requires its own type manager that must provide system
calls to:

• Create objects of the new type

• Manipulate the objects as required

• Delete the objects

You can write OS extensions to add utilities to the OS or to provide some additional
functionality. For example, in designing a system to control heat-saving blinds in a
greenhouse, you might need a data structure that includes information from a photo-
sensitive cell measuring the sunlight falling on the greenhouse, and from a thermostat
reading the temperature. The application could use this data to control when to open
or close the blinds. This data structure is an extension object. The system calls that
read or write its contents are part of the type manager.

There are system calls to create and delete an OS extension.

See also: Type managers, extension objects, operating system extensions, System
Concepts;
extension objects in Nucleus system call summary, Chapter 1 of System
Call Reference

Individual objects that you create from the extension object type are composite
objects. Composite objects are collections of existing objects (ports, buffer pools,
etc.); the OS treats the result as a single object.

There are system calls to create, manipulate, and delete composite objects.

See also: Composite objects, call gates System Concepts;
Composite objects in Nucleus system call summary, Chapter 1 of
System Call Reference;
vo (view object) command in System Debugger Reference for
information on composite objects

Object Directories, Tokens and Descriptors
The Nucleus manages objects using:

• The object directory of each job

• The token for each object, a 16-bit selector or handle for the object

• A descriptor that defines the physical address and attributes of the object



Introducing the iRMX Operating Systems Chapter 2 33

The OS assigns each object a descriptor when it is created. Descriptors contain an
object's attributes, such as its size and access type.

All descriptors reside in descriptor tables used by the processor. There are three
types of descriptor tables:

Global Descriptor
Table (GDT)

Contains up to 8K of descriptors. Each descriptor contains
the physical address used by the system to access an area
of memory. Every task in the system uses descriptors in
the GDT. There is only one GDT for the entire OS.

Local Descriptor
Tables (LDTs)

Are reserved for system use.

Interrupt Descriptor
Table (IDT)

Contains the addresses of up to 256 handlers to execute
when events occur. Addresses are entered automatically
into the IDT when the system is created and you can enter
them dynamically using a system call.

Call gates are special descriptors in the Global Descriptor Table. They enable entry
into the iRMX OS and OS extensions, and are established when the system is
configured. They redirect flow within a task. Each system call, including those you
write, uses a call gate to transfer control to the iRMX system call routine requested.

See also: Tokens, descriptor tables, System Concepts;
Descriptors in Nucleus system call summary, Chapter 1 of System Call
Reference;
Reference manual for your microprocessor for more details

Nucleus Task Scheduling
The Nucleus switches between tasks and makes sure the processor is always
executing the appropriate task. The Nucleus maintains an execution state and a
priority for each task.

Priority
The priority is an integer value from 0 through 255, with 0 being the highest priority.

Range Usage

0 - 16 Used by the OS for hardware exceptions. Cannot be masked.

56 - 127 Used by the OS for servicing external interrupts. Creating a task that
handles internal events here masks external interrupts numerically higher.

128 - 130 Use for tasks that communicate with interrupt tasks.



34 Chapter 2 Nucleus and Kernel Features

131-255 Use for tasks that handle internal events, such as message passing. You
can usually start using round-robin scheduling at about 200.

See also: Round-robin scheduling and Nucleus Interrupt and Exception Handling
in this chapter

Interrupt tasks mask numerically higher levels. When you assign interrupt levels,
give a numerically lower level to interrupts that can't wait, such as serial input, and a
higher level to interrupts that can wait, such as cached input.

Execution State
The execution state for each task is, at any given time, either running, ready, asleep,
suspended, or asleep-suspended.

Tasks run when they have the highest (numerically lowest) priority of all ready tasks
in the system and are ready to run. Tasks can change execution state, as shown in the
next figure.

Ready

Running

Asleep Asleep/
suspended

Suspended

2

1

3

1. Tasks are created in the ready state.

2. The running task, the ready task with the highest priority, does one of these:

• Runs until preempted by a higher priority task that is ready.

• Runs until it removes itself from the ready state.

3. A task in any state except ready cannot run, even if it has the highest priority.

Figure 2-8. Execution State Transitions for Tasks

A task can put itself to sleep or suspend itself directly by using system calls for that
purpose. A task might indirectly be put to sleep by the Nucleus if it makes a
“blocking” call; for example, by waiting at a mailbox until a message arrives. The
Nucleus puts the task in the ready state when the message arrives.



Introducing the iRMX Operating Systems Chapter 2 35

Round-robin Scheduling
The iRMX OS also provides round-robin scheduling, where equal-priority tasks take
turns running. Each task gets a time slice, an equal portion of the processor's time. If
a task has not finished running when its time slice expires, it goes to the end of a
circular queue where it waits until all tasks ahead of it have used up their time slices,
as shown in this figure. You adjust the length of the time slice and set the priority
level where round-robin scheduling occurs.

1

Task A

Task B

Task C

2 3

Tasks A, B, and C are of equal priority below the round-robin priority threshold.

1. Task A, the running task, stops running when its time slice expires. Task A’s state is saved
and it moves to the end of the queue.

2. Task B, the ready task, then becomes the running task.

3. Task A runs again when all tasks in the queue finish running expires.

Figure 2-9. Round-robin Scheduling

Of course, a higher priority task will still preempt any running task in the round-robin
queue, regardless of the amount of time left in its time slice.

Round-robin scheduling cannot guarantee a predictable worst-case response to events
because the number of events in the queue varies.

See also: Task priorities, System Concepts

Nucleus Interrupt and Exception Handling
Interrupts and exceptional conditions have special handlers. The Kernel provides
additional interrupt handling capability.

See also: Kernel Features in this chapter



36 Chapter 2 Nucleus and Kernel Features

Interrupt Handlers
System hardware invokes an interrupt handler to respond to an asynchronous
interrupt from an external source, based on its entry number in the IDT. The handler
takes control immediately and saves the register contents of the running task so it can
be restarted later. There are two ways you can service the interrupt:

• Using a handler alone

• Using a handler/task combination

Interrupt Handler Alone

The interrupt handler alone can process only interrupts requiring very little
processing and time. Handlers without tasks can do these activities:

• Accumulate data from the device in a buffer. The data must have an associated
task to be accessed and used.

• Disable levels. A handler should only disable levels for a very short time and
under special circumstances. For example, a device driver procedure may need
this call to prevent interrupts when resources needed by the driver are being
deleted. Numerically higher levels are disabled anyway.

• Find out what level is currently being serviced. This is useful if one handler
services several interrupt levels.

• Send an EOI signal to the hardware.

By itself, an interrupt handler can only do very simple processing, such as sending an
output instruction to a hardware port to cause a light to blink, indicating the device is
functioning. Handlers can use only a few system calls.

During the time the interrupt handler is executing, all other interrupts are disabled.
Since even very high level interrupts are disabled, it is essential that the handler
execute quickly and exit.

When the handler finishes servicing the interrupt, it sends an EOI to the PIC, restores
the register contents of the interrupted task, and surrenders the processor. The
processor returns to the interrupted task.

Interrupt Handler/Task Combination

An interrupt handler/task combination is much more flexible. The handler may do a
small amount of processing, but it typically signals its corresponding interrupt task to
do most or all of the rest of the interrupt processing. You need to use an interrupt
handler/task combination if the processing requires a lot of time or requires system
calls that interrupt handlers cannot use.



Introducing the iRMX Operating Systems Chapter 2 37

When there is a specified interrupt task, the handler can put the information it
accumulates into a segment, if one has been set up by the interrupt task. The
interrupt task can access the data in the segment and do whatever is required.

Interrupt tasks have access to the same resources and can use the same system calls
as ordinary tasks. The only difference is that interrupt tasks have an interrupt level
assigned by the OS, based on the level of the handler. Ordinary tasks have a priority
which you assign.

In addition to the usual task activities, an interrupt task can also:

• Cancel an assignment of an interrupt handler to an interrupt level
• Wait for an interrupt to occur
• Enable and disable interrupts

This shows how an interrupt task enters an event loop while it waits to service an interrupt.

1

2 3

Interrupt

1. The interrupt task initializes when the system starts and starts waiting for a signal when an
interrupt occurs.

2. When signaled, the interrupt task executes the required operations.

3. The interrupt task releases control by waiting for a signal to process the next interrupt.

Figure 2-10. The Task Execution Model

See also: Init_IO procedure and interrupt task, Appendix A in Driver
Programming Concepts for interrupts in random access devices;
inthand and inttask examples under the /rmx386/demo subdirectory for
a demonstration of an interrupt handler and task

Exceptional Conditions
These are sources of exceptions:

• Environmental errors, such as trying to write to a printer that is offline

• Programmer errors, such as making a mistake in a system call



38 Chapter 2 Nucleus and Kernel Features

• Hardware exceptions, such as trying to execute a read/write data segment

Environmental and Programmer Errors

The Nucleus does validity testing and condition checking within system calls. It
generates a condition code whenever it detects an exceptional condition (an error or
something unusual), as well as when a call completes successfully. For successful
completion, system calls return 0000H, or the mnemonic E_OK. For a failure, the
code indicates what prevented successful completion. For example, 0002H or
E_MEM returns if there is not enough memory to complete the call.

There are two ways to handle exceptional conditions:

• Using an exception handler

• Processing exceptions in the task that issues the system call (inline processing)

Using an exception handler simplifies error processing. When an error occurs,
control transfers to the task's exception handler. The exception handler can be:

• The exception handler you write and specify for the task

• The exception handler you write and specify for the job

• An default exception handler provided with the OS

Each exception handler has a mode, which indicates when it is called:

• Never, meaning tasks handle all exceptions inline

• On programmer errors, but all other exceptions are handled inline

• On environmental errors, but all other exceptions are handled inline

• Always

Exception handlers typically use one of these methods:

• Correct the cause of the problem and try again.

• Log the error and continue.

• Delete or suspend the job that caused the error. (The default Intel handler
deletes the job; there are also other supplied handlers.)

The alternative to exception handlers is inline processing. This enables you to
provide special processing for unusual circumstances within a task.

Hardware Exceptions

An error that occurs as a result of a hardware exception also causes an exceptional
condition. Hardware exceptions result from conditions like dividing by 0, or when a



Introducing the iRMX Operating Systems Chapter 2 39

protected mode program tries to access or execute out of a memory segment bounds
or tries to execute a read/write data segment.

If you do not designate an exception handler for hardware exceptions, they can cause
your application to be caught in an infinite loop or be terminated. You can create
exception handlers that process hardware exceptions.

✏ Note
Prior to release 2.2 of the OS, hardware exceptions were not
returned to exception handlers. However, exception handlers now
can receive any hardware exceptions, along with other exceptions.
You must rewrite older exception handlers so that they can deal
with the possibility of receiving a hardware exception.

See also: Exception Handling, hardware exceptions, System Concepts;
Exception handlers in Nucleus system call summary,
Chapter 1 of System Call Reference;
Condition Code list, System Call Reference

Nucleus Messaging Service
The iRMX Nucleus Messaging Service is a general purpose message-exchange
interface.used to communicate between different processes over many media and
between applications and hardware. It enables the abstraction of the low-level
hardware interface to support a large variety of I/O device types and also allows for
layering of I/O applications based on a common interface model.

The interface model is based on a unit called a service. Client tasks communicate
with the service using messages which are passed to and from the service via ports.
Messages consist of two parts, a control part and an optional data part, whose format
is defined by the service being used. In general, the control part contains information
which describes the data part and what to do with it.

Services

A service is the base user of the Nucleus Messaging Service model. A service
provides a system-wide interface to a system resource, such as a SCSI interface
service, or a network transport service. A client task gains access to the service by
creating a port object associated with that service. The client then communicates with
the service by sending and receiving messages to and from the port.



40 Chapter 2 Nucleus and Kernel Features

Kernel Features
The Kernel provides a set of objects and system calls; some are similar to those in the
Nucleus and some are entirely different. Kernel system calls provide functionality
beyond that of the Nucleus. In most cases, these calls provide higher performance
compared to the equivalent Nucleus calls.

The Kernel provides interface libraries for PL/M, C, and FORTRAN that enable you
to use the same data types for any of these languages. The assembly language
interface is a register interface that requires additional programming effort.

The Kernel system calls enable you to use these Kernel features:

• Kernel objects

• Kernel task management

• Kernel time management

The Kernel also has more system calls available for interrupt handlers than the
Nucleus.

Kernel Objects
The Kernel provides these objects:

• Software alarms (virtual timers) that invoke alarm handlers you write. Alarm
handlers operate in similar fashion to iRMX interrupt handlers.

• Semaphores for synchronization and mutual exclusion. There are three kinds of
Kernel semaphores: FIFO queue, priority-based queue, and=Region semaphores.
The region semaphore provides priority adjustment like the Nucleus Region.

• Mailboxes for communication between tasks. Mailboxes have task and message
queues. The task queues can be FIFO- or priority-based; the message queue is
always FIFO, like the Nucleus.

• Memory pools and areas. A Kernel memory pool always spans a contiguous
range of memory. You can create a Kernel memory pool in a specific range.
Tasks share a memory pool for dynamic memory allocation by checking out,
using, and returning memory areas in the memory pool. The memory manager
keeps track of which areas in the pool are currently in use and which are
available. It does not protect an area from unauthorized access and deletion.

Kernel memory pools and areas you allocate are created from iRMX segments;
make sure your jobs have enough memory to handle Kernel requirements.

You must allocate memory for Kernel objects and may allocate memory beyond the
Kernel's needs. This is different from iRMX objects, where memory is allocated



Introducing the iRMX Operating Systems Chapter 2 41

from the job's pool automatically. You can use this additional memory to store
application-specific state information associated with the object. When you create an
object, the Kernel returns a token that identifies that object.

See also: Kernel objects, System Concepts;
Kernel system call summary, Chapter 1 of System Call Reference

Kernel Task Management
The Kernel enables you to:

• Control task switching using scheduling locks

• Add task handlers to supply additional OS functions

A running task can use a scheduling lock to protect itself from being preempted in
some cases. In those cases, a task switch will not occur until the task releases the
lock, even if a higher priority task is ready to run.

Task handlers you write execute when you are creating a task, deleting a task, or
switching to another task. Possible functions that task handlers may include are
saving and restoring the state of coprocessor registers on a task switch, masking
interrupts based on task priority, or implementing statistical and diagnostic monitors.

For example, you can use the task switch handler to determine which tasks in your
system execute most frequently.

See also: Kernel task management, System Concepts

Kernel Time Management
The Kernel enables tasks to:

• Create single-shot alarms and repetitive alarms for a specified time interval and
specify which alarm handler to invoke.

• Specify a clock tick granularity of less than the 10 millisecond granularity
provided by the Nucleus.

See also: Kernel time management, System Concepts

Kernel Interrupt Handling
Unlike the Nucleus, the Kernel provides many system calls that you can use in
interrupt handlers. For example, you can create Kernel semaphores or mailboxes in
an ordinary task, then use Kernel calls to send units or messages from the interrupt



42 Chapter 2 Nucleus and Kernel Features

handler to the ordinary tasks, which execute based on their priority, not on an
interrupt level. Ordinary tasks do not mask interrupts; interrupt tasks do.

When To Use the Kernel
Use the Kernel in these situations:

• Only for very well-tested code

• For isolated parts of the application, such as signaling ordinary tasks from an
interrupt handler

• When performance is critical, such as high-performance, unvalidated sending
and receiving of data mailbox messages and semaphore units

It is a good idea to write, test and debug your application using Nucleus system calls.
When the application is correct, substitute Kernel system calls where appropriate.

The Kernel does not provide the protection and validation features available in the
Nucleus:

• Kernel system calls do not validate parameters. Use Nucleus system calls
instead, if you need parameter validation.

• The Kernel assumes that all memory reference pointers it receives are valid.

• Kernel objects are not protected against unexpected deletion.

• The Kernel uses the flat, 4 Gbyte addressing capabilities of the microprocessor.
It does not use segmentation.

Since the Kernel does not provide a protected and validated environment, it is more
difficult to debug.

See also: Kernel data types, Kernel system calls and handlers, System Call
Reference;
Kernel, assembly language interfaces to the Kernel, System Concepts

■■   ■■   ■■



Introducing the iRMX Operating Systems Chapter 3 43

BIOS and EIOS Features 3
Several iRMX OS layers provide I/O operations: the Basic I/O System (BIOS), the
Extended I/O System (EIOS), the Universal Development Interface (UDI), and the
Shared C Library. Each provides a different level of support and unique features.
The EIOS, UDI and Shared C Library use the BIOS in most cases.

See also: UDI, Chapter 6 in this manual;
Shared C library, Chapter 8

I/O System Objects, Logical Names and System
Calls

These are the I/O objects that provide access control and I/O capability:

• User objects are lists of user IDs.

• Connection objects are the bonds between a file or device and a task.

• I/O Jobs are similar to Nucleus jobs, but provide the environment for EIOS
system calls.

There are BIOS, EIOS, and UDI system calls to create, delete, and manipulate I/O
objects.

User Objects, Users and User Access Control
People access files through tasks; user tasks are tasks requesting access to files. The
user object can prevent an unauthorized task from accessing a file. User objects
provide user access control by verifying users, as shown in the next figure.



Chapter 3 BIOS and EIOS Features44

➀ ➁

A

OM02714

1. Task A creates a file. Task A is the owner of that file. Task A's user ID is listed first in the
file's access list.

2. Task A also creates a user object. Task A's user ID is listed first in the user object. Task
A lists user IDs for other tasks that can access the file in the user object.

Only tasks listed in the user object can access the file.

Figure 3-1. Task Creating a File and a User Object

You specify users when you use the BIOS to create a file. The EIOS, UDI and
Shared C Library use the default user object, which applies to all tasks in the job. For
DOSRMX and iRMX for PCs, the DOS file system does not support users other than
World.

See also: File access rights, later in this chapter

There are BIOS calls to list IDs in user objects and create and delete user objects.
There are EIOS calls to list ID's associated with a user and to verify users. A user
may have more than one user ID.

See also: User system calls, BIOS, and EIOS system call summary tables in
Chapter 1, System Call Reference

Example: Multiuser System and the User Object

Suppose that several departments share a computer. An individual in one department may:

• Allow only herself to delete her files. She specifies this when she creates the files.

• Allow people within her department to write and read the files. She specifies
this when she creates the user object for her department members.

• Allow people in other departments to only read the files. She specifies this when
she creates the user object for other departments.

In systems where each user has a password, user access control can also be set up on
an individual basis.



Introducing the iRMX Operating Systems Chapter 3 45

Connections and File Access Modes
There are connections for files and connections for devices.

File Connections

A file connection object is the bond between a file and a task. Connections provide
file access mode control based on the operation performed on the file, as shown in
this figure. The connection object can prevent a task from modifying or deleting a
file inappropriately.

A

B

OM02716

C

1. Task A creates a connection to a file and opens it. Task A specifies that this connection is
for reading only and this file can be shared by other readers only.

2. Task B wants to read the file so it can share the connection A created.

3. Task C wants to write the file. It cannot use this connection for writing. Since the share
mode is share with readers, Task C cannot obtain a connection to the file until Task A
deletes its connection.

Figure 3-2. Tasks Sharing a Connection Object

Whenever you create a file, the I/O system returns a connection.

Connections contain the file access modes to the file. You specify file access modes
once, when you create the connection, rather than each time you open the file.

The file access modes specified in connections are:

Mode Meaning
Private use Share with no one
Open for reads Share with readers
Open for writes Share with writers
Open for reads/writes Share with readers/writers

If the first connection to a file enables sharing, several file connections can
simultaneously exist for the same file; several tasks can concurrently access different



Chapter 3 BIOS and EIOS Features46

locations in the file. Each connection maintains a pointer to the location within the
file where the task is reading or writing, as shown in this figure.

A

B

OM02718

Figure 3-3. Tasks Accessing a File Through Connections

File connections cannot be shared across jobs.

There are BIOS, EIOS, and UDI system calls to create, open, close and delete file
connections.

See also: Files and Connections in BIOS, EIOS and UDI system call summaries,
Chapter 1 of System Call Reference

Device Connections

A device connection is the bond between the task and the device. You must attach a
device before you can use it for I/O operations.

Device connections can be shared across jobs.

See also: Device connections, System Concepts

I/O Jobs
An I/O job provides resources for tasks that perform I/O using EIOS system calls. If
a task is not in an I/O job, it cannot successfully use all of the EIOS system calls. I/O
jobs are very similar to ordinary jobs.

If you use C Library calls, they must be made from I/O jobs.

There are EIOS calls to create, delete, and start I/O jobs.

See also: I/O jobs in BIOS, EIOS and UDI system call summaries, Chapter 1 of
System Call Reference



Introducing the iRMX Operating Systems Chapter 3 47

Logical Names for Files and Devices (EIOS Only)
The EIOS enables you to use logical names to refer to files and devices. A logical
name is a string of characters that identifies a file, directory, device, or remote
computer system. You can substitute a logical name for a long pathname, and use it
in several tasks or jobs.

The iRMX OS uses the logical name :config: for the file /rmx386/config, for
example.

If the pathname changes, you redefine the logical name; you don't need to change it
everywhere. The EIOS associates each logical name with a particular file connection
or device connection.

You can make a logical name available to one job, to a group of jobs, or to all jobs in
the system by cataloging the name in the local job's object directory, the global job's
object directory, or the root job's object directory, respectively.

See also: Logical names in EIOS system call summary, Chapter 1 of System Call
Reference;
object directories, Command Reference

BIOS and EIOS System Call Differences
There are several differences between system calls in the BIOS and the EIOS.
System call prefixes or names may be slightly different, reflecting functional and
compatibility differences. The BIOS has two types of system calls: synchronous and
asynchronous. The EIOS has only synchronous calls. The BIOS calls generally have
more parameters than the EIOS calls, giving greater control and flexibility to the
BIOS and more simplicity to the EIOS.

System Call Names

Many BIOS and EIOS system call names are identical except for the prefixes:

rq (16-bit address, 1 Mbyte memory pool) rqe (32-bit address, 4 Gbyte pool)
rq_a (asynchronous) rq_s (synchronous)

For example, the rq_create_io_job system call operates on all iRMX OSs and is
available for compatibility between iRMX I, II, and III. The rqe_create_io_job
system call supports the extended features of the Intel386 and later microprocessors,
such as memory pools greater than 1 Mbyte. Unless compatibility with iRMX I
systems is an issue, use the system calls with the rqe prefix instead of the ones with
the rq prefix.

The BIOS asynchronous rq_a_create_file and rq_a_close system calls perform
analogous functions to the EIOS synchronous rq_s_create_file and rq_s_close calls.



Chapter 3 BIOS and EIOS Features48

Synchronous and Asynchronous System Calls (BIOS Only)

These are the two types of BIOS calls:

Synchronous calls Begin running as soon as your application invokes them,
continue running until they finish their tasks or detect an error,
then return control to your application. The call names begin
with rq_.

Asynchronous calls Run concurrently with your application, which can continue
running while the BIOS deals with devices such as disk drives
and tape drives. The call names begin with rq_a.

This example shows the difference between synchronous and asynchronous
operations:

1. Task A and Task B need to read a file. Task A makes an asynchronous call and
Task B makes a synchronous call.

2. The parameters for both calls are checked for validity.

3. Task A continues executing application code, doing computations perhaps, until
notified that the data has transferred. Task B waits for the data transfer to
complete before continuing.

If you make an asynchronous call, you use a mailbox to notify the task when the call
has completed. Asynchronous calls do require more programming effort.

Files and Directories
The iRMX I/O Systems provide support for:

• Hierarchical file systems

• File access rights to protect files

• Distinct file types

• System calls to create, delete, read, write, and manipulate files

Hierarchical File System
The iRMX OS uses a hierarchical filenaming system (similar to UNIX and DOS).
Your directory and file names can reflect relationships between files and you can
assign a unique pathname to each file.

With an unlimited hierarchical file system, you can add directories when you need
them, as shown in this figure.



Introducing the iRMX Operating Systems Chapter 3 49

➁

➀

OM02658

1. You can create a new directory whenever you need to, such as for a new department
member.

2. The owner of the new directory can use it to provide unique pathnames to any number of
subdirectories and files.

Figure 3-4. Hierarchical File Structure

iRMX filenames can be 14 characters long, and can include more than one . (dot).
iRMX is case-insensitive.

The iRMX OS treats directories like files; entries in a directory are just filenames.

File Access Rights
The iRMX access rights for files are read, append, update, and delete; for directories
they are list, add, change, and delete. Access rights are maintained on a per-file basis
in a file access list. The iRMX OS supports multiple users with different file access
rights as shown in this figure.

A

B

C

➀

➁

OM02652

R/A/U/D

R/A/U

R

A

B

WORLD

1. User A is the owner of the file. This user can read, append to, update, or delete the data
file C.

2. User B can read, append to, and update the same file.

3. The World user (not shown) can only read the file.

Figure 3-5. Multiple Users with Different Access Rights



Chapter 3 BIOS and EIOS Features50

The DOS file system does not support users other than World, and file access rights
are limited to two options: read-only and read/write/change. For DOSRMX systems,
iRMX users and tasks can change their DOS file access to correspond to the DOS
read-only and read/write/change attributes. DOS directories cannot be made read-
only.

File access rights and owner IDs can undergo translation between remote files on a
network that uses the Network File System (NFS). The specific translations used
depend on the operating systems and users involved.

See also: File access, Command Reference
Accessing NFS Files, TCP/IP and NFS for the iRMX Operating System

File Types
These are the types of files: named, remote, DOS, physical, and stream. The same
system calls work with any file type, providing file independence. For example, you
use the same system call to open a named file as you do to open a stream file. This
enables you to create tasks and applications that you can readily switch from one file
type to another.

Named Files

Named files are for local random-access, secondary-storage devices, such as disk
drives and diskette drives. Named files have a hierarchical structure that reflects the
relationships between the files and the application; you can store many named files
on one device. Named files provide access control because they have associated user
and connection objects. The native iRMX file format is maintained by the Named
File Driver.

With file independence, you can use named files during development and debugging,
even though tasks will ultimately use other file types. For example, your application
might need two tasks that communicate by using a stream file. You might implement
the writing task before you implement the reading task. For the purpose of
debugging the writing task, you could use a named file on a disk in order to examine
the information being written. Later, after you implement the reading task, you can
route the information to the stream file rather than the disk.

Remote Files

A remote file is a file located on another computer connected by a network. The I/O
systems access remote files through networking software, including files on systems
running an OS other than the iRMX OS. You can access remote files using the NFS
file driver (on networks running TCP/IP and NFS) or using the iRMX-NET Remote
File Driver.



Introducing the iRMX Operating Systems Chapter 3 51

See also: Accessing remote files, Network User's Guide and Reference;
TCP/IP and NFS, Network User’s Guide and Reference;
Accessing NFS files, System Concepts

DOS Files

A DOS file is a file located on a DOS-formatted mass storage device; the device may
be on a network. You access DOS files using the DOS file driver in iRMX III or
iRMX for PCs systems or by using the EDOS file driver in DOSRMX systems.

See also: EDOS file driver, Programming Concepts for DOS and Windows

CD-ROM Files

A CD-ROM file is a file located on a CD-ROM formatted (ISO9660) mass storage
device. You access CD-ROM files using the CDROM file driver in iRMX systems.

See also: CDROM file driver

Physical Files

Each physical file occupies an entire device. Applications can deal with a physical
file as if it were a string of bytes. Physical files provide these features:

• An application can have direct control over a device. For example, an
application can use a physical file to interpret volumes created by other systems.

• Because the application deals with a physical file as a string of bytes, it can
conserve memory and still communicate with devices that do not need named
files. These devices include line printers, terminals, plotters, and robots.

Physical files do not support hierarchical file systems and file access control.

Stream Files

Stream files provide another means of intertask communication, as shown in
this figure:



Chapter 3 BIOS and EIOS Features52

A

B

Task A can read from a stream file while Task B writes to it.

Figure 3-6. Tasks Using a Stream File

Stream files provide no access control. They are implemented in memory; they don't
have an attached peripheral device.

See also: File types, System Concepts;
Files in BIOS, EIOS and UDI system call summaries, Chapter 1 of
System Call Reference;
device connections, System Concepts

Devices and Device Control
The iRMX I/O Systems provide support for:

• Device independence through distinct file and device drivers

• Device control

• Automatic device reattachment (EIOS only)

• Terminal Support Code (TSC) to control terminal modes and operation

Device Independence
You can use the I/O system calls with a number of devices. This is called device
independence. Device independence provides flexibility. For example, your
application may log events as they occur. You can create an application that logs
events on any device, enabling an operator to route logging from a hard disk to a line
printer if she needs a printed listing.

The I/O systems manage devices using file drivers and device drivers; the separation
between the BIOS and the device provides device independence.



Introducing the iRMX Operating Systems Chapter 3 53

The EIOS, UDI and Shared C Library all use the BIOS. Ultimately, all I/O requests
your application makes pass through the BIOS to the drivers, then to the hardware, as
shown in this figure.

File driver
Application 
software 

task

Device
controllerBIOS

Device
driver Device

OM02717

Figure 3-7. I/O Requests from the Application Go Through BIOS and Device Drivers

File Drivers

A file driver is a software interface between a device driver and the BIOS. These are
the file drivers: named, remote, NFS, DOS, EDOS, physical, and stream. When you
first attach a device, you tell the BIOS which file driver to use for that device. Then,
the BIOS automatically uses that file driver for the device.

See also: File drivers and device independence, System Concepts;
attaching devices, Command Reference

Device Drivers

A device driver is a software interface between a device controller (the hardware and
firmware) and the file driver. A device driver hides the idiosyncrasies of the device
from the BIOS. The iRMX OS provides device drivers for many devices.

Loading and Configuring Drivers

You can load file and device drivers dynamically at run-time or at initialization. If
you have an ICU-configurable system, you can select drivers during configuration.
These drivers become part of the BIOS.

See also: Supplied device drivers and physical device names in Appendix E,
Command Reference;
Loadable device drivers, in System Configuration and Administration
and Driver Programming Concepts;
File and device driver screens, ICU User's Guide and Quick Reference

You can also write custom file and device drivers.

See also: Writing your own drivers, Driver Programming Concepts

Device Control
The iRMX OS lets you control:



Chapter 3 BIOS and EIOS Features54

• Updating files

• Disk integrity

• File fragmentation

• Buffering with overlapped I/O

Fixed and Timeout Updating

Fixed updating and timeout updating are two ways to update devices. They are
triggered by the passing of set amounts of time.

You use updating to write all data in a buffer to a designated device, such as a disk, at
set time intervals rather than just when the buffer is full. Updating can prevent loss
of data in the event of power failure or other problems.

Fixed updating occurs when an amount of time, which is specified for an entire
system, passes. At that time, all devices to which updating applies are updated.
Fixed updating is independent of I/O activity.

Timeout updating is defined separately for each device, rather than applying to the
system as a whole. The timeout period starts at the end of each I/O operation.

In I/O-intensive systems, you can delay updating by setting the fixed update period to
longer than the average time between I/O functions.

Fixed updating is a BIOS configuration value. Stream files and physical files do not
support updating.

See also: BIOS screens, ICU User's Guide and Quick Reference;
IORS, Driver Programming Concepts

Disk Integrity

In any computer system, there are many occurrences beyond your control that can
cause damage to files or disk volumes. For example, power outages can occur just as
a file is being written, or disk sectors can suddenly become unreliable. The I/O
systems enable you to maintain disk integrity and determine whether files or volumes
have been corrupted. The main features are:

• For hard disks, using system calls to get and set bad track and sector information

• Attach flags and fnode checksum field, which you can check to determine the
integrity of named volumes and files

• Disk Mirroring, a hard disk configuration that maintains identical copies
(mirrors) of data on two hard disks for increased reliability

See also: Disk integrity, System Concepts



Introducing the iRMX Operating Systems Chapter 3 55

Internal File Fragmentation

When information is stored on a mass storage device, space is allocated in blocks called
granules. The block size is called granularity. Three kinds of granularity are important:

Device granularity Is hardware dependent, varies among individual mass storage
devices, and is the minimum amount of data that the device
can read or write during one I/O operation. For disks, a device
granule is called a sector; the device granularity is the sector
size. Each buffer that the I/O systems use when reading and
writing data is equal to the device granularity.

Volume granularity Is a multiple of the device granularity and is the minimum
amount of space that can be allocated to a file at one time.
You specify the volume granularity when you format the
volume. The I/O systems use volume granularity when
deciding where on the volume to allocate this space.

File granularity Is a multiple of volume granularity. You assign the file
granularity on a per-file basis when you create a file; the
granularity applies if the file needs to be extended.

By selecting the proper granularity values, you can minimize fragmentation of your
files and balance I/O speed with efficient use of space on the mass storage device.

See also: Granularity, System Concepts

Buffering with Overlapped I/O (EIOS Only)

The EIOS provides the additional feature of buffering and overlapping of I/O
operations. The EIOS uses the BIOS, however. Blocking and overlapping are more
valuable in sequential I/O than in random-access I/O.

Whenever you open a connection, you specify the number of buffers the EIOS uses.
This affects how the EIOS reads and writes information through the connection:

Zero buffers This turns off EIOS buffering. The file is accessed each
time you invoke a system call that reads or writes the file.
For example, if you ask the EIOS to read 30 bytes, the EIOS
accesses the file and reads exactly 30 bytes.

One buffer
(Blocking)

The EIOS reads and writes information by blocking
(transferring one buffer at a time), even though you may
have specified transferring less. Blocking can improve the
performance of an application because the EIOS might be
able to satisfy several additional requests without reading the
file again.



Chapter 3 BIOS and EIOS Features56

Two or more buffers
(Overlapping I/O)

If you request two or more buffers, the EIOS can overlap I/O
operations by using read-ahead and write-behind algorithms.

Read-ahead and write-behind enable tasks to continue
running while the EIOS is transferring information to or
from devices. This is because the EIOS can accurately
determine, during sequential reading or writing, the location
of the next data required by the application.

You can configure the maximum number of buffers that the
EIOS can use for files on a particular device.

Automatic Device Reattachment (EIOS Only)

The EIOS constantly monitors the status of devices. When an operator removes
storage media from a drive that is capable of detecting a volume being removed, the
EIOS detaches the device and deletes all connections to files on the device. When
the operator replaces the media, the EIOS automatically reattaches the device as soon
as it is accessed, making it available to the tasks in your system. The same principle
applies to remote device connections.

Some devices, such as some 3.5 and 5.25-inch diskette drives, cannot detect a volume
being removed from the drive. For these devices, the EIOS cannot perform
automatic reattachment.

Terminal Support Code

The Terminal Support Code (TSC) is a programmable interface between a terminal
driver, the BIOS, and a user application. This support code provides a variety of
special terminal modes and operations. The major capabilities of the TSC include:

Editing and
controlling terminal
input

There are a variety of characters that control and edit
terminal input. You can replace default control characters
with different characters. You can also switch a terminal to
transparent mode, so that editing and control characters have
no effect on the input line.

Type-ahead buffer If you type faster than the OS can read, interpret, and
respond, the TSC stores the data you type in a type-ahead
buffer. The OS uses the data from this buffer when it is
ready for it.

Controlling terminal
output

You can set the TSC so that output sent to the terminal
displays continuously, scrolls a few lines at a time, stops, or
is completely discarded.



Introducing the iRMX Operating Systems Chapter 3 57

Escape sequences
(translation)

The TSC accepts escape sequences (characters preceded by
an ESC character) to define the characteristics of a terminal.
This feature enables you to characterize terminals so that the
I/O system can use standard control codes and sequences of
codes for all terminals. This is called translation. You can
use escape sequences to set terminal variables, such as the
number of lines displayed when in scrolling mode. You can
change terminal behavior by entering in escape sequences or
by running a program that sends the escape sequences.

See also: Terminal support code, System Configuration and Administration and
Driver Programming Concepts

System Clock
Most boards supported by the iRMX OS have an on-board, battery backed-up time-
of-day clock. The I/O systems use this clock in performing reads and writes. The
global time-of-day clock is the timekeeper for the entire system. It is accessed only
during system initialization, by a running application, or when requested by the
operator.

The iRMX OS also maintains a local time-of-day clock in memory. The local clock
is a copy of the global clock but has faster access time, for date and time needs.

The clocks keep track of two items:

• The current date (day, month, and year)

• The current time (hours, minutes, and seconds)

Nucleus, Kernel, and UDI system calls enable your applications to get and set the
date and time for the local and global clocks.

See also: Time calls in Nucleus, Kernel, and UDI system call summaries,
Chapter 1 of System Call Reference

✏ Note
The BIOS layer previously provided the system calls to get and set
the clock time. These system calls are now part of the Nucleus.

Choosing Between I/O Systems
This section describes the performance differences between the BIOS and the EIOS.
It will help you decide whether to use system calls from the BIOS, the EIOS, or from
both systems.



Chapter 3 BIOS and EIOS Features58

Each of the I/O systems satisfies different requirements. The BIOS offers more
flexibility and control, while the EIOS offers ease of use. If both systems would be
useful in one application, you can use both.

In the iRMX III OS, you can use the ICU to include the BIOS, the EIOS, or both
systems. In iRMX for PCs and DOSRMX, both are included.

BIOS
The BIOS provides very powerful capabilities and makes few assumptions about the
your requirements. The BIOS provides I/O features that are useful in a wide range of
applications. These features illustrate the flexibility of the BIOS:

Custom buffering
algorithm

You can design and implement your own buffering
technique and control the synchronization between I/O and
processing.

Asynchronous
system calls

You can explicitly control system call synchronization.

Control of details The BIOS system calls have many parameters, which enable
your tasks to enhance the performance of your application
system. This is useful in time-critical or memory-critical
applications and for random-access I/O.

EIOS
The EIOS is easier to use than the BIOS, and has these features:

Automatic buffering
of I/O operations

You need not become involved with buffering, aside from
specifying how many buffers the EIOS uses. If your
application system does not require buffering, you can tell
the EIOS to use no buffers.

Synchronous system
calls

You do not need to explicitly synchronize system calls. You
can still use overlapped I/O operations using buffers.

Fewer parameters EIOS system calls require fewer parameters than BIOS calls.
This simplifies and reduces development time.

Making the Decision
Determine whether your application system requires the flexibility and fine tuning
capability of the BIOS, the ease of use of the EIOS, or a combination. Before you
make the final decision, consider these factors.



Introducing the iRMX Operating Systems Chapter 3 59

Control You may not need the control provided by the BIOS; the time required
to develop the application system may be more critical than fine tuning
its performance.

Memory The EIOS software requires the BIOS, so using both the BIOS and the
EIOS requires no more memory than using the EIOS alone.

Implementing some EIOS features yourself (such as buffering) may
use as much memory as including the whole EIOS.

Performance Because the BIOS gives your application system control of many
details, you can probably design your application system to run faster
with the BIOS than with the EIOS. If you decide to use the EIOS
anyway, you can improve performance by optimizing the buffer sizes
and the number of buffers.

I/O type Choose the BIOS for applications that require very little I/O or use
random-access I/O. Choose the EIOS when development costs are
critical, especially in applications that use sequential I/O.

Prototypes Use the EIOS to create a prototype application system, and then later
replace it with your custom I/O system.

C Library
functions

Require both the BIOS and the EIOS.

Use both layers when your application system uses I/O for several purposes, some of
which are best accomplished by the BIOS, and others by the EIOS.

Examples

These examples illustrate the advantages of each of the I/O systems. The examples
assume that you will produce many copies of the application system.

Application Systems Using Little I/O. If your application system requires very
little I/O, such as only occasionally logging information to a diskette, use the BIOS.
The ease of use provided by the EIOS can save you very little time during
development because the I/O-related part of your system requires so little time to
develop. Using the BIOS will also save memory.

Application Systems Using Only Sequential I/O. If your application system
requires a substantial amount of sequential I/O, a large amount of your development
resources will be expended in support of I/O. Use the EIOS to save time, and
because the EIOS provides overlapping I/O. It incorporates read-ahead and write-
behind algorithms that operate sequentially, and overlaps I/O operations and
processing.



Chapter 3 BIOS and EIOS Features60

High Performance Applications Using Random I/O. If your system performs a
large amount of random-access I/O, the BIOS is the appropriate choice. Performance
tuning is also provided by the BIOS. Although such a system might require more
development time to implement, it should run faster than the EIOS.

■■   ■■   ■■



Introducing the iRMX Operating Systems Chapter 4 61

Human Interface Features 4
The HI provides several features for both you and the users of your application:

• Enables loading file and device drivers, system jobs and your application at
initialization time or run-time

• Provides HI commands that perform simple programming functions

• Provides system calls that help you write commands for your application

• Provides multiuser environment support
— For the development environment
— For the application

• Provides the Command Line Interpreter (CLI) with its own set of commands

Run-time Loading of Jobs
The HI enables you to load system jobs, networking jobs, file and device drivers, and
your application when the system boots or dynamically when the system is running.
Loaded jobs become a part of the iRMX OS until the system is shut down or the job
is unloaded. Loaded jobs have access to all features of the iRMX OS.

For iRMX for PCs and DOSRMX, this is the only way to load your application and
the supplied loadable OS jobs. For iRMX III users, the HI enables you to change the
configuration without using the ICU, then rebuilding (linking) the existing system.

A loadinfo file is executed during HI initialization. You edit this file to load the jobs
and drivers needed for your application. Jobs and drivers loaded this way are child
jobs of the HI, as shown in this illustration.

See also: Descriptions of loadable jobs, System Configuration and Administration



62 Chapter 4 Human Interface Features

I

HI

1

2

1. The HI initialization Task I executes the loadinfo file to load a job into memory from
secondary storage.

2. The loaded job is a child job of the HI.

Figure 4-1. Loading a Job at HI Initialization

HI Commands
The HI commands are small system programs that manage users, files, and devices
and provide general utilities during development. You can enter commands
interactively from your keyboard or write them into a file. Some example commands
supplied with the OS are:

copy Copies or creates files

copydir Duplicates a directory and its files and subdirectories

deletedir Removes a directory, including all its subdirectories and files

format Formats a disk

password Adds or deletes users, or changes a logon password

permit Changes a file's User IDs and access

rdisk Partitions a hard disk

shutdown Provides an orderly shutdown procedure for the OS

sysload Loads a job or driver into memory from secondary storage

You can include HI commands as part of an application system if you need them.

See also: Quick Reference to Commands for summaries of commands and
equivalent commands in the DOS and iRMX OSs;
Command Reference for complete command descriptions



Introducing the iRMX Operating Systems Chapter 4 63

Human Interface System Calls
The HI provides system calls that enable you to create commands that are appropriate
to your application and meaningful to your operator.

By designing commands appropriate to your operators, you can create a user-friendly
system and reduce operator errors.

You have great flexibility in creating new commands. The main requirement is that
the first word in a command must be the name of an executable file on a secondary
storage device such as a disk. When an operator enters a command, the OS loads the
named file from secondary storage and runs it. This gives you these advantages:

• You add or modify commands simply by writing new ones.

• The number of custom commands for a system is not limited by the amount of
dynamic memory.

• You do not have to rebuild the system to change commands.

• Commands used infrequently do not take up RAM space when they are not being
run.

See also: Customizing commands, System Concepts

The categories of system calls for creating commands are:

• Command-parsing system calls

• I/O and message-processing system calls

• Command-processing system calls for invoking interactive HI commands
programmatically

• Program control system calls to override the default <Ctrl-C> handling task
provided by the HI

You can also add commands you need to the development environment if you wish.

See also: Human Interface system call summary, Chapter 1 of System Call
Reference

Custom Command Line Parsing
The HI system calls for parsing a command line retrieve and interpret parameters of
a command.

For example, in an application that monitors toxins in the blood of hospital patients,
an operator might run a task that displays the toxin level of an individual patient or of
all patients being monitored.



64 Chapter 4 Human Interface Features

You might design a user-friendly approach, with commands oriented to the
application and operator, rather than computer-oriented commands. For example, a
command might be:

toxin of John Doe

The program toxin issues a system call to receive the parameters John Doe.
Because filenames are frequently parameters for commands, there are specialized
system calls to interpret filename parameters.

Multiuser Support
You may need multiuser support in your development environment or for your
application and operators. In either case, you can use the HI.

The HI enables:

• Adding users to the User Definition File (UDF), which defines user attributes
such as user job memory pool size and user job priority

• Identifying each user's initial program or CLI (command line interpreter) (the
program that runs when the user logs on)

With multiuser support in your development environment, programmers can execute
commands, run development programs (such as editors and compilers), and run
applications in a common environment. With multiuser support in applications,
multiple operators can communicate with your application simultaneously.

You can implement multiuser support another way using simultaneous multiple-
terminal support with I/O system calls. You might do this if you need to implement
functions not available with the HI multiuser feature, or if (in an ICU-configurable
system) you want to exclude the HI layer from the application.

HI Initialization
When the HI begins running, it does these things:

1. Executes a system-wide setup.

2. Initiates user logon.

3. Creates a user job for each operator or programmer logged on. This job provides
the environment where programmers develop applications or operators use
applications.

4. Starts an initial program or CLI that is the programmer's interface to the OS or
the operator's interface to the application.



Introducing the iRMX Operating Systems Chapter 4 65

See also: Logging on, Installation and Startup;
HI initialization, System Configuration and Administration;
Multiuser support, System Concepts

System-wide Setup
When a multiuser system boots, the HI initializes each terminal in the system as
either a static logon terminal (a specific operator is always associated with that
physical terminal) or a dynamic logon terminal (any valid operator can log on and use
the terminal). You specify the number and types of terminals.

Multiuser support includes device drivers that communicate with multiple-terminal
hardware.

See also: Terminals, System Configuration and Administration

Logon
The HI validates terminal users at logon. Terminal operators can:

• Share a terminal with no logon; all operators share a single user ID

• Have exclusive use of one terminal

• Share a terminal; each operator has a user ID and uses a password to log on to the
OS

If the terminal is on an iRMX-NET communications network, the operator or
programmer can use the network to access remote files.

See also: Accessing remote files, Network User's Guide and Reference

Operator Job Creation
At logon, the HI associates each operator or programmer with a User ID and creates
for each operator a separate job. These jobs are child jobs of the HI, as shown in the
next figure.



66 Chapter 4 Human Interface Features

2

HI

1

3

4

1. After the HI initiates user logon, the operator enters a user name and password.

2. The HI validates the user by checking the User Definition File (UDF).

3. If the user is valid, the HI creates a user job that is a child job of the HI. The user's initial
program or CLI runs in the user job.

4. The user can access and run the application system.

Figure 4-2. Validating Users With the HI

When an operator or a programmer creates files or attaches devices, she is the owner
of those files or devices. Access to the files by other operators or programmers
depends on the user object created by the owner.

Command Line Interpreter (CLI)
The HI supplies a standard initial program called the Command Line Interpreter
(CLI). The CLI is the part of the OS you interact with from the command line after
you install the iRMX OS. The CLI has its own set of commands.

See also: Getting acquainted with the operating system in Installation and
Startup, for a brief tutorial on logging on and using commands

You can use the CLI in the development environment and you can include it for your
operators in the application if you wish.

With the CLI, the operator or programmer invokes a command from a terminal
command line by entering the command name and specifying parameters if required.
The CLI reads the information from the terminal and executes the command as
shown in this figure.



Introducing the iRMX Operating Systems Chapter 4 67

21
HI HI

1. An operator enters a command at the terminal. The CLI accepts the terminal input and
parses the command. If the command is a CLI command or a command you have written,
the CLI executes it after parsing it.

2. If the command is an HI command, the CLI passes the command to the HI. The HI loads
the command into memory and executes it.

Figure 4-3. User Interacts with the CLI

The CLI provides a number of features:

Support for different
kinds of terminals

The attributes of any operator's terminal are stored in the
termcap file. You can edit this file to change the
characteristics or to add support for new terminals and you
can dynamically switch terminal types.

See also: termcap file, System Configuration and
Administration

Editing and
controlling terminal
input

You can input commands at any time, and then press the
<CR> or <Enter> key (as defined in the termcap file) to send
the input to the CLI.

The CLI also contains special function keys, which move the
cursor, replace the current command line with a previous
command line, execute a command line, delete characters,
abort the current command, or continue a command onto the
next line.

Type-ahead You can continuously enter command lines. The CLI sends
the first line to the OS for processing and saves additional
data in a type-ahead buffer. After the OS finishes with a
line, the CLI fetches and processes the next line.

Recalling commands You can retrieve the last 40 command lines entered, then edit
a line and execute the edited command.

Background mode You can run commands in background mode, display a list
of background jobs, and cancel background jobs.



68 Chapter 4 Human Interface Features

I/O redirection With I/O redirection, tasks that normally use keyboard input
and screen output can receive data from and send data to
files or other I/O devices. This permits tasks to run without
operator intervention, which is especially useful when
running in background mode.

Aliases You can assign and cancel abbreviations for commands.

You can use the ICU to include your own extensions in the CLI. This enables you to
add your own features and still retain the capabilities of the CLI.

See also: Human Interface screens, ICU User's Guide and Quick Reference

Alternatively, you can supply or create your own initial program that you load at HI
initialization or load dynamically at run-time. There can be a separate initial program
for each operator.

See also: User Attributes File, System Configuration and Administration

■■   ■■   ■■



Introducing the iRMX Operating Systems Chapter 5 69

Application Loader Features 5
The AL enables tasks to load programs from secondary storage into memory at run-
time. The loaded program can run in the calling task's job or it can run as an I/O job,
as shown in this figure.

OM02709

A

I

➀

➁

➂

➃

Application
Loader

1. Task A is part of an I/O job.

2. Task A calls the AL to load a program into memory from secondary storage.

3. The AL creates an I/O job for the program to be loaded.

4. The AL creates the initial Task I and loads the program into memory.

Figure 5-1. Using the Application Loader To Load a Program Dynamically

Because the loaded job is the child of a job you have created, you can receive
notification when the loaded job is deleted if you wish.

Dynamic Loading
The AL performs dynamic loading: it modifies appropriate addresses in the program
at the time it loads the program. Dynamic loading offers flexibility in designing and
maintaining application systems:



70 Chapter 5 Application Loader Features

• The AL loads the programs anywhere in available memory. If you add more
memory to the system, the AL will use it.

• You can change programs without rebuilding (linking) the existing system.

• If you have memory restrictions, you can store seldom-used programs on
secondary storage until you need to run them.

• You can use overlay modules to execute programs that are actually larger than
the memory available.

The AL can load object code from any device if the device supports iRMX named
files and you have the appropriate device driver. The AL requires programs to be
object code and meet certain other requirements.

See also: RCONFIGURE control, STL format, SEGSIZE control,
DYNAMICMEM, System Concepts;
object code, object file, and object module, Glossary in this manual

Loading Flat Model Applications
The Application Loader can recognize and load an application that you write using a
flat-model (non-Intel) compiler. Flat model applications require that you use the
paging subsystem provided with the OS.

See also: C Compilers, Flat Model, Programming Techniques;
flat.job, paging.job, System Configuration and Administration
Paging System Calls, System Call Reference

Objects and System Calls
Most AL system calls require the EIOS because they use connection objects and I/O
jobs.

The AL provides synchronous and asynchronous system calls. To overlap processing
with loading operations, use asynchronous system calls. If the calling task can wait
until the new program is loaded, use synchronous system calls, which are easier.

You can also use the AL to load a program into the calling task's job, as shown in this
illustration, but this requires additional programming effort.



Introducing the iRMX Operating Systems Chapter 5 71

OM02710

A
➀ Application

Loader

➁

1. Task A calls the AL to load a program into memory from secondary storage.

2. The AL loads the program into a memory segment in Task A's job.

Figure 5-2. Using the Application Loader To Load a Program into a Task's Memory

See also: Application Loader system call summary, Chapter 1 of System Call
Reference;
Application Loader, System Concepts

You can use the ICU to include or remove the AL, or you can select the features of
the AL to meet your exact needs.

See also: Application Loader screens, ICU User's Guide and Quick Reference

■■   ■■   ■■



72 Chapter 5 Application Loader Features



Introducing the iRMX Operating Systems Chapter 6 73

UDI Features 6
The UDI is a high-level interface to the iRMX OS: a set of system calls enabling
language software (such as compilers, interpreters, assemblers, or run-time systems)
to use the OS.

If an application makes only UDI system calls with no explicit calls to an iRMX OS,
you can transport the application between other OSs that also support the UDI. If
you want portability, don't mix UDI calls with BIOS and EIOS calls. This figure
illustrates the relationship between the application code, the layers of software and
the processing hardware.

Application code in application language(s)

UDI libraries

Operating system

W2570

Floating-point
Instructions

Intel387 
support
library

Operating system interface libraries

Run-time libraries for
non-mathematical features

Microprocessor

The downward arrows represent system call flow and data flow from the application down to the
hardware, where the calls are ultimately executed. In this case, the application does not make
direct calls to the OS, but interacts through the UDI software. The figure does not show the
upward flow of data from the hardware to the application code.

Figure 6-1. UDI Interface Between the Application and the Hardware



74 Chapter 6 UDI Features

When you use the UDI, you can switch OSs by changing the UDI library. The UDI
libraries always present the same interface to the application, but the interface with
the OS is designed specifically and exclusively for that OS. There are UDI libraries
for the iRMX, iNDX, UNIX, and XENIX OSs.

The UDI system calls behave somewhat differently when used in different OSs. This
is because each OS has many unique characteristics, and some of them are reflected
in the results of the UDI calls.

You can run any language on the iRMX OS as long as the language processor uses
the UDI standard system calls and the Object Module Format (OMF) is compatible.
The UDI software interface provides two major advantages:

• A language processor can use well-defined, appropriate, standard calls to
communicate with the iRMX OS. You can easily adapt existing languages to
run on the OS.

• Any language processor or software tool using UDI system calls, including
user-written programs, is portable.

See also: UDI system call summary, Chapter 1 of System Call Reference;
UDI, System Concepts

For the UDI, the only ICU-configurable option is whether to include the UDI in your
system.

See also: SUB screen, ICU User's Guide and Quick Reference

■■   ■■   ■■



Introducing the iRMX Operating Systems Chapter 7 75

Networking Features 7
A network is a group of independent computers connected together to exchange
information. This chapter describes the software and hardware that Intel provides for
this purpose, and provides some basic networking concepts and structure.

See also: Network User's Guide and Reference, Programming Concepts for DOS
and Windows, and TCP/IP and NFS for the iRMX Operating System

Network Concepts and Terminology
An individual computer system is a node in the network. The node you are logged
into is the local node; any other one is a remote node. The nodes are connected into a
Local Area Network (LAN), usually by a physical connection such as Ethernet.
Systems on a network can share resources such as files, printers, diskette drives, tape
drives, and modems. Nodes on an iRMX network can exchange information with
computers using other OSs, such as UNIX or DOS. This is called interoperability.

iNA 960 provides programmatic access to transport services and iRMX-NET
provides transparent file access. An ICU-configurable system running iRMX-NET
can be configured as a server (a computer that provides resources), a client (a
computer that requests resources), or both. Typically, iRMX systems run both the
iRMX-NET client and server jobs.

TCP/IP for iRMX OSs includes Telnet and FTP for remote login and file access.
NFS provides transparent file access. Any iRMX system can be both a client and a
server for TCP/IP services and for NFS.

Each network can be divided into smaller units. These are called Administrative
Units (AUs) in iRMX-NET. An AU is a group of systems that has the same set of
users.

You can set up multiple subnets in both iNA 960 and TCP/IP. A subnet is used for
dividing a network into reasonable sizes or logical groups; systems in the subnet do
not necessarily have the same users. To communicate between subnets you
implement routing on a node connected to two or more subnets.

A special feature of iNA 960 allows boards in a Multibus II system to treat the
backplane as a virtual Ethernet connection without any Ethernet hardware. This



76 Chapter 7 Networking Features

Multibus II subnet lets more than one board in the system run TCP/IP software. With
a router in the system, boards that do not have a network interface card (NIC) can
access the LAN over the Multibus II subnet.

Network Software
You can use iNA960 by itself to provide programmatic access to the network. Along
with iNA 960 you can run iRMX-NET to provide transparent file access. You can
run TCP/IP along with iNA 960. To use NFS for transparent file access, you must
run TCP/IP.

TCP/IP for iRMX OSs
TCP/IP network software enables users to access other computers on the network.
You can configure TCP/IP as both a first-level job by using the ICU, or as a job
loaded through the sysload command. TCP/IP supports these features:

• Telnet client and server software provides virtual terminal access to and from
non-iRMX computers.

• File Transfer Protocol (FTP) client and server software enables file transfers to
and from other computers, as well as basic directory management.

• Network File System (NFS) client and server software enables transparent
access of remote files and directories using TCP/IP protocols.

TCP/IP software provides industry standard networking protocols. This enables
interoperability with most other OSs. Administrators of multiple OS networks, as
well as many users, are likely to be familiar with TCP/IP networks.

See also: TCP/IP and NFS for the iRMX Operating System for more details

iNA 960 and iRMX-NET
iNA 960 provides general-purpose network communication services, including the
Data Link, Network, and Transport layers defined in the Open Systems
Interconnection (OSI) model. By itself, iNA 960 provides a programmatic interface
to the International Standards Organization (ISO) OSI protocol.

iRMX-NET is part of Intel's family of OpenNET Local Area Network (LAN)
products. The iRMX-NET software requires the Nucleus and BIOS layers and an
underlying iNA 960 job. iRMX-NET is compatible with Microsoft MS-NET for
DOS platforms. iRMX-NET provides transparent file access and user-interface
commands.



Introducing the iRMX Operating Systems Chapter 7 77

iNA 960 includes: ISO transport software that provides general-purpose
services, including the Data Link, Network, and Transport
Layers as defined in the ISO OSI model. iNA 960 is
available as customized jobs suitable for particular NICs.

You can use iNA 960 with or without iRMX-NET. When
used by itself, iNA 960 provides only a programmatic
interface to network services through layer 4 in the OSI
Reference Model.

iRMX-NET includes:

Server job Allows remote systems to access public files on the local
system.

Client job, including
File Consumer and
Remote File Driver
(RFD)

Lets you access public files on any system that runs the
server job, as if the files were local

iNA 960 and iRMX-NET operate within the Open Systems Interconnection (OSI)
Reference Model, a seven-layer reference model defining network architecture.

The iNA 960 software operates in either of two hardware environments:
COMMengine (offboard NIC) or COMMputer (onboard NIC).

iNA 960 supports Multibus I, Multibus II, and PC bus architectures and is provided
as a set of ICU-configurable and loadable jobs, each specific to the particular bus and
LAN hardware.

See also: iNA 960, iRMX-NET, COMMengine and COMMputer, Network
User's Guide and Reference;
Network jobs, System Configuration and Administration

Network Security
Any iRMX-NET network must have at least one AU; an AU can be as small as a
single system. AUs provide easy maintenance and security.

iRMX-NET uses two files for network definition and security:

User Definition
File (UDF)

Defines users. The same user can be in multiple AUs, but
must have a unique ID in each one. A client uses the UDF to
validate a user when the user logs on.

Client Definition
File (CDF)

Defines clients with names and passwords. A server uses the
CDF to validate a client when the client establishes a
connection with it.



78 Chapter 7 Networking Features

The system administrator sets up and maintains the AUs, UDF, and CDF.

See also: Network Administration, AUs, UDF, CDF, in Network User's Guide
and Reference;
UDF, CDF, in System Configuration and Administration

For TCP/IP users, the Telnet and FTP applications each provide some level of
security when accessing file-based data. NFS users are provided with Unix and Short
style user authentication, but not with DES encryption as described by Request For
Comment (RFC) 1057.

Networking Between Operating Systems
Using the appropriate networking software, you can exchange information with
computers using other OSs, such as UNIX and DOS. If you use iRMX-NET, these
different systems interoperate using the Network File Access (NFA) protocols. Each
OS must run with a corresponding OpenNET product that uses NFA protocols.

This figure illustrates the interoperations of an iRMX OS using the iRMX-NET
Software with other OpenNET systems, and the relationship between a server and a
client. The direction of the arrows indicates the flow of resource requests.

iRMX

UNIX

iRMX

UNIX

DOS

IRMX
Server

IRMX
Client

Servers Clients

Figure 7-1. iRMX-NET Interoperability with other OpenNet Systems

The left side of the figure shows an iRMX system configured as a client with iRMX
and UNIX systems operating as servers. The right side of the figure shows an iRMX
system that is configured as a server for iRMX, UNIX, and DOS clients.

TCP/IP for the iRMX OSs provides interoperability with OSs running TCP/IP and
Telnet, FTP, or NFS servers.

See also: Interoperability, Network User's Guide and Reference

■■   ■■   ■■



Introducing the iRMX Operating Systems Chapter 8 79

System Development 8
The iRMX OS helps you develop real-time application systems quickly and enables
you to concentrate on the software that relates specifically to the application. The OS
includes:

• industry-standard languages:
– PL/M
– C
– Assembler

You can also use non-Intel tools, such as Microsoft, Borland and Watcom C.

See also: C compilers, Programming Techniques

• Shared C library

• These software tools for editing and building ICU-configured systems:
– Aedit text editor
– BLD386
– BND386 for linking your code
– OH386
– Mapper
– Librarian

• These debuggers:
– Soft-Scope for Windows and Soft-Scope III for the iRMX command line
– iRMX static System Debugger (SDB)
– System Debug Monitor (SDM)

See also: Application debugging, in this manual;
Programming Techniques and Aedit Text Editor,
System Debugger Reference
Soft-Scope Debugger User’s Guide

• Online help

You can develop your code on the same computer that will run your application (on-
target development) or develop on one for installation later on a another platform.

See also: Installation options, Installation and Startup;
Development environment, ICU User's Guide and Quick Reference



80 Chapter 8 System Development

Shared C Library
The C library supports hundreds of C functions and macros for applications that run
in the multi-tasking iRMX OS environment. This includes many standard C
functions that enable applications to perform common I/O operations without making
direct iRMX system calls (OS-independent). There is also support for iRMX OS-
dependent operations such as multitasking, time-of-day, signal management, and
environment management; this enables you to create portable code using standard
ANSI and POSIX programming practices. You can mix C library calls with direct
iRMX system calls.

The Shared C library, sharable by multiple tasks and jobs, is available as an iRMX
OS extension job in two ways:

• Run-time loadable job.

• Resident first level job in ICU-configurable systems. The C Libraries require
both the BIOS and EIOS.

Any number of tasks and jobs (up to the maximum that the OS allows) may share the
C library concurrently, each with its own independent C environment. The C library
automatically manages common system resources such as I/O interfaces and memory
when your code makes C library calls that use these resources.

See also: C Library Reference for information on supported functions

Online Help Systems
These online help systems are included:

• Windows Help for iRMX system calls and condition codes (Windows systems
only)

• Manuals viewable in Adobe Acrobat (.PDF) format (Windows systems with CD-
ROM drive only)

• Help for iRMX commands (at any iRMX command line prompt)

• The Interactive Configuration Utility (at the ICU prompt)

See also: Using online help, Installation and Startup;
help command, Command Reference;
ICU help screens, ICU User's Guide and Quick Reference



Introducing the iRMX Operating Systems Chapter 8 81

System Design
There are some general guidelines for designing and developing real-time systems.
The first step is to define the application. This step should include:

• Listing all the various inputs and outputs in the application. Decide which
objects to use for intertask coordination and communication.

• Listing all the tasks that need to be done to produce the input and output. Define
interrupts and decide which ones require determinism. Assign interrupt levels
and priorities to take advantage of multitasking and preemptive, priority-based
scheduling.

• Develop the detail for each task in a block diagram.

• Decide if the application requires multiple jobs, and if so, how they will use
shared memory and dynamic memory allocation.

• Design your user interface.

• Determine if you require custom devices. Decide whether to use loadable or
resident file and device drivers. Decide whether to use custom or Intel-supplied
drivers.

This flowchart shows steps typically taken by iRMX designers.



82 Chapter 8 System Development

YesNo

YesNo Is special
hardware
  needed ?

Build or purchase
custom hardware

Link with
operating system
interface libraries

Use
available driver

Write code

Compile/assemble
code 

Write and test
driver

Define the application

Is an iRMX driver
available?

➀

➁

➂

OM02725

Decide which parts of
the iRMX Operating
System are needed

iRMX is a registered trademark of Intel Corporation.

1. Define jobs. Define tasks, interrupt levels, and priorities. Decide which objects to use.
Define interrupts, handlers, and levels.

2. Decide whether to use loadable or resident file and device drivers. Decide how to
implement a multiuser environment and/or an operator interface.

3. Decide if you need custom hardware that solves some unique problem or gathers data in a
unique way.

Figure 8-1. Typical Development Cycle for iRMX Applications

At the completion of these steps, the prototype system is ready to be tested,
debugged, and fine-tuned.

A Hypothetical System
This hypothetical application system monitors and controls dialysis. The system
consists of three main hardware components, as shown in this figure.



Introducing the iRMX Operating Systems Chapter 8 83

OM02726

➀ ➁ ➂

1. A bedside unit is located by each bed. Each unit contains a processor board with the

iRMX OS, which performs these functions:

- Measures the toxins in the blood as it enters the unit

- Adjusts the rate of dialysis

- Removes toxins from the blood

- Generates the bedside display for bedside personnel

- Accepts commands from the bedside personnel

- Sends information to the MCU

2. The master control unit (MCU) is a PC with a screen and a keyboard. This system also

runs a version of the iRMX OS. The MCU enables one person to monitor and control the

entire system. It performs these functions:

- Accepts commands from the MCU keyboard

- Accepts messages from the bedside units (toxicity levels, bedside commands,

emergency signals)

- Creates the display for the MCU screen

3. iRMX-NET connects the bedside units to the MCU.

Figure 8-2. The Hardware of the Dialysis Application System

The next sections describe how various iRMX features are used in the hypothetical
system.

Interrupt and Event Processing
Interrupts and internal events occur at the bedside units: bedside personnel enter
commands asynchronously and the system computes toxicity levels at regular
intervals.

Toxicity levels, measured as the blood enters the bedside unit, are not subject to
abrupt change. The machine slowly removes toxins while the patient's body, more
slowly, puts toxins back in. The result is a steadily declining toxicity level. The
bedside units must monitor toxicity levels regularly, but not too frequently. For
instance, the bedside units could compute the toxicity levels once every 10 seconds,
using a clock for timing. The measurement task would measure and compute the
toxicity, put the information in a mailbox for the MCU, and suspend itself for 10
seconds.



84 Chapter 8 System Development

Command interrupts from the bedside unit occur when a medical operator types a
command and presses <Enter>. Interrupts from command entries occur at random
times. The interrupt handler signals the interrupt task. The interrupt task performs
any required processing and waits for the next interrupt.

Processing Commands From the Bedside Units

Each time a medical operator types a command and presses <Enter>, the bedside unit
receives an interrupt signal from the terminal. The bedside unit stops executing the
current instruction and begins to execute an interrupt handler.

1. The interrupt handler accumulates the characters in a buffer and puts them in a
segment. The interrupt handler signals the interrupt task for bedside commands.

2. The interrupt task gets the contents of the segment where the handler put the
command. It parses the command and does the required processing.

3. It puts the command information, along with the number of the bedside unit, into
a message.

4. It sends the message to the predetermined mailbox for the MCU.

5. The interrupt task begins waiting for the next interrupt. The system returns to its
normal priority-based, preemptive scheduling.

Multitasking
Tasks in the application run using preemptive, priority-based scheduling. This allows
the more important tasks, such as those controlling the rate of dialysis, to preempt
lower-priority tasks, such as updating displays. New capabilities could be added to
the system by simply adding new tasks.

Intertask Coordination
A number of mailboxes used to send information from one task to another are the
only form of intertask communication.



Introducing the iRMX Operating Systems Chapter 8 85

Enhancing the System
Multi-
programming

The application can perform statistical analysis in a different job.
The statistical application and dialysis application don't need to share
any objects. Using two different jobs minimizes the chance that one
application can affect the other.

If the two applications need to share a little information, the shared
data can be passed from one job to the other without losing the
benefits of isolation.

Mass storage
files

The application can include recording information about patients in
files on tape, diskettes and hard disks.

Device
independence

If the application is extended to allow the MCU operator to send
recorded data to several devices (such as a printer, magnetic tape, or
disk), the device-independent I/O system enables recording the data
without adding code specific to each possible device.

Bootstrap Loading (iRMX III OS and iRMX for PCs)
The iRMX III OS and iRMX for PCs provide a Bootstrap Loader that enables your
application system to reside on disk and be loaded into RAM (random access
memory) when the system starts.

The Bootstrap Loader resides partly in ROM (read-only memory) and partly on disk
on your application hardware. When your system is reset, the Bootstrap Loader
receives control, and loads the rest of the software, including the iRMX OS and the
application software, into RAM. The Bootstrap Loader provides these advantages:

• By placing the Bootstrap Loader in ROM, you can shift the rest of your
application system to RAM. This decreases the amount of ROM required. Since
ROM requires that information be burned or masked into memory, the Bootstrap
Loader reduces your masking or burning expenses and manufacturing costs.

• The Bootstrap Loader simplifies providing updated software to your customers.
You can ship diskettes containing the updated software, reducing the cost of
updating your software.

■■   ■■   ■■



86 Chapter 8 System Development



Introducing the iRMX Operating Systems Chapter 9 87

Application Debugging 9
The iRMX OS provides several levels of debugging support. Sometimes you will use
the features listed in this section as part of your system, and sometimes you will use
them only during development.

System Debug Monitor
The System Debug Monitor (SDM) is an assembly-level debugger that enables you to
load and run code, examine registers and memory, and disassemble code.

This monitor is soft-loaded into RAM. The monitor can run on target on a stand-
alone development system, or in a development environment with a separate iRMX
host and target.

The SDM monitor provides commands that perform these functions:

• Load and execute the code module

• Examine and modify memory and CPU registers

• Display the contents of descriptor tables (protected mode only)

• Move, compare, and search blocks of memory

• Read and write to an I/O port

• Disassemble code and execute one instruction at a time

• Disassemble code and sequentially execute instructions until encountering a call
instruction

See also: SDM, System Debugger Reference

System Debugger
The iRMX System Debugger (SDB) extends the capabilities of SDM. It provides
static debugging for when the system hangs or crashes, when you wish to freeze the
system and examine it, or when synchronization requirements preclude debugging
selected tasks. By stopping the system, the SDB provides a global view of the
system. The SDB requires only the Nucleus to run.



88 Chapter 9 Application Debugging

The SDB enables you to:

• Identify and interpret iRMX system calls

• Examine a task's stack to determine system call history

• Display information about iRMX objects

• Display information about the job hierarchy

• Display the register contents

• Single step

See also: System Debugger Reference for details on debugging

Soft-Scope Debugger
The Soft-Scope debugger is a tasking debugger, which enables multiple tasks to be
debugged simultaneously while the rest of the system continues to run. It is an
interactive, source-level, symbolic debugging tool that enables debugging code
modules at the source level, such as C or PL/M, rather than at the assembly level.
There are two versions of this debugger:

• Soft-Scope III: Installed with the OS, this version operates from the iRMX
command line. You invoke it with the ss command.

• Soft-Scope for Windows NT: Installed from CD on a Windows NT Host system,
this version downloads and debugs iRMX applications remotely over either a
TCP/IP or serial connection. You invoke it using its icon (which points to
sswin32.exe).

You do not have to deal with the details of the CPU’s machine code, or with the inner
workings of the iRMX OS. Features of the Soft-Scope debugger include:

• All the features of SDB and SDM

• Full-screen windowed display, mouse- or keyboard-activated menu and dialog
boxes (Windows version)

• Source code interface and online listings

• Access to program variables by source-code name, including arrays, structures,
and bit fields

• High-level breakpoints, execution breakpoints in ROM, and access to
data breakpoints

• Disassembly of instructions

• Second terminal option for remote debugging



Introducing the iRMX Operating Systems Chapter 9 89

• Unlimited size of source files and number of symbols

• Ability to create C-like macros and C-like expression syntax within commands

• Run-time exception handling

• Ability to suspend and resume tasks

• Full support for the protection features of the microprocessor, including
automatic trapping of protection exceptions

See also: Soft-Scope Debugger User’s Guide: the first manual bound into this
volume describes Soft-scope for Windows; the second manual describes
Soft-Scope III for the iRMX command line

■■   ■■   ■■



90 Chapter 9 Application Debugging



Introducing the iRMX Operating Systems Chapter 10 91

System Configuration 10
Configuration really means two things:

• Setting up your development system to include the programmers and terminals in
your work environment

• Modifying the iRMX OS as your application requires, before installing it on your
application systems

See also: Configuring users and terminals in System Configuration and
Administration for information about configuring the development
environment

You can use the Interactive Configuration Utility (ICU) and/or loadable jobs and
drivers to modify your OS configuration.

ICU Configuration
You can configure any iRMX OS with the ICU. In an DOSRMX or iRMX for PCs
installation you must specify a generation environment if you want to include the
ICU. The iRMX III OS always includes an ICU and the underlying generation tools.
The ICU creates a custom system for your application. It enables you to choose and
modify the parts of the OS you need.

The OS installation contains preconfigured bootable images of the iRMX OS that
you can use. The ICU definition files used to create these images are also included.
Using the definition files provides these advantages:

• You don't have to make hardware or software changes to install the OS on Intel's
System 310, 320, and 520 microcomputers.

• The start-up systems use the most current, complete, and accurate version of the
OS.

• You can start using the OS immediately, and perhaps even run your application
software, without redefining or reconfiguring the OS.



92 Chapter 10 System Configuration

The advantages of using the ICU include:

• You can configure application systems, even complex systems, relatively easily.
The ICU displays a series of menus, each describing a number of features. You
can accept the default or change the value for each feature.

• The choices you make during configuration are saved in a definition file. You
can use this file later as a base when you need to change your configuration.

See also: ICU User's Guide and Quick Reference for details on using the ICU
screens and for a list of definition files

iRMX for PCs and DOSRMX Configuration
At installation, the system asks questions about the system bus type, networking, etc.
Then it sets up an initial configuration.

You can further configure iRMX for PCs and DOSRMX by modifying an
initialization file, rmx.ini. With this file, you can modify parts of the OS, although
you cannot exclude layers.

During initialization, each layer reads a block of entries from this file. The values
you enter here override the default values shipped with the software.

See also: rmx.ini in System Configuration and Administration

You can also use loadable jobs and drivers to modify your configuration.

Loadable Jobs
Loadable jobs enable you to add drivers, networking, the C library, and your
application to the OS either during initialization or dynamically while the system is
running. Loading jobs dynamically reduces the size of the boot image and can help
conserve memory if you remove jobs when you no longer need them. You can also
load custom device and file drivers you have written.

Typically you load jobs and drivers with the HI sysload command in the loadinfo file
when the system initializes. Loaded jobs become a part of the OS and remain a part
of the system until you explicitly delete them or reboot the system. The loadinfo file
is one of the files in the :config: directory.

See also: Loadable jobs, sysload command, Command Reference;
Loadable jobs and drivers, System Configuration and Administration;
Writing drivers, Driver Programming Concepts

■■   ■■   ■■



Introducing the iRMX Operating System Appendix A 93

Related Publications A
iRMX Manual Set

Startup Manuals

• Installation and Startup=

• Introducing the iRMX Operating Systems

Programming Concepts Manuals

• iRMX System Concepts

• iRMX Driver Programming Concepts

• iRMX Network User's Guide and Reference

• TCP/IP and NFS for the iRMX Operating System

• Programming Concepts for DOS

• iRMX Programming Techniques and Aedit Text Editor

• Peripheral Controller Interface (PCI) Server

• Real-Time and Systems Programming for PCs, by Christopher Vickery

Reference Manuals

• iRMX Command Reference and iRMX Quick Reference to Commands

• iRMX System Call Reference

• iRMX C Library Reference

• iRMX System Debugger Reference

• iRMX Master Index



94 Appendix A Related Publications

Configuration Manuals

• iRMX System Configuration and Administration

• MSA for the iRMX Operating System

• ICU User's Guide and Quick Reference

Tools Manuals

• ASM386 Macro Assembler Operating Instructions and
ASM386 Assembly Language Reference Manual

• iC-386 Compiler User's Guide

• Intel386 Family Utilities User's Guide

• PL/M-386 Programmer's Guide

• Soft-Scope Debugger User’s Guide

■■   ■■   ■■



Introducing the iRMX Operating Systems Glossary 95

Glossary

absolute address The physical address that is permanently assigned to a storage
location in memory.

access control Controlling a user's access to perform selected operations, such as
reading or changing, on an object, file, or directory.

access rights The bit settings that determine a user's permission to perform
operations on an object, file, or directory.

AL Application Loader loads programs into memory and executes them
from an application program.

alias A symbolic name for an object, file, directory, command, etc.

ANSI American National Standards Institute.

application system The set of components needed to solve an application problem: your
program, other software, and hardware.

asynchronous Non-synchronous timing. A method in which signals between
networked systems are not timed; sending data a character at a time
without prior arrangement. An event or device that is not
synchronous with CPU timing or another device's timing. See
synchronous.

asynchronous
system call

Can run concurrently with the calling task. See synchronous system
call.

attributes The set of characteristics and properties that define a given object
type.

AU Administrative Unit. An iRMX-NET concept that defines a logical
grouping of systems in a network. The systems that share a common
set of users.

background process A command or program that runs without interaction with the
operator, and allows the operator to enter other commands while it is
running.

BIND Linking object modules using the BND386 utility.



96 Glossary

binding Letting each task know the locations of the variables and procedures
that it uses.

BIOS The Basic I/O System layer of the iRMX OS. This is different from
the ROM BIOS stored in ROM on a DOS system.

blocking Two meanings: reading or writing a file in sector-size blocks; a
system call waiting at an exchange until a necessary resource or
object is available.

boot To use a bootstrap loader. This term is generally used to describe
starting a computer system.

boot client The system that requests a remote boot from the remote boot server.
Typically, this system does not have mass storage provided by a hard
disk or diskette drive. A diskless system or workstation.

bootloadable A program with absolute addresses instead of relocatable addresses.

bootstrap Starting a computer, which usually clears memory, sets up I/O
devices, and loads the OS.

bootstrap loader A program that resides in ROM. When the system is reset, the
bootstrap loader receives control, and loads the OS and application
software into RAM.

buffer A temporary holding area for memory segments; used for reading
and writing data.

buffer pool A collection of preallocated buffers that provides quick access to
reusable memory.

buffered device An intelligent communications device that has its own CPU. It
manages its own character buffers separately from those managed by
the Terminal Support Code or Random Access Support Code. See
non-buffered device.

cache A high-speed buffer memory used between the CPU and main
memory. Instructions and programs can operate at higher speed if
they are in the cache.

call gates Redirect flow within a task from one code segment to another. Used
to enter the iRMX OS and OS extensions.

CDF Client Definition File. Contains the names and passwords of client
systems in a network's Administrative Unit.

channel A data path.

checksum field A field in the fnode file used to verify disk integrity.



Introducing the iRMX Operating Systems Glossary 97

child job A job created by another job, called the parent job. Child jobs obtain
their resources, such as memory, from their parent job.

:ci: Standard logical name for the terminal keyboard, or console input.
Each user's :ci: refers to the terminal associated with that user.

CLI Command Line Interpreter, the default initial program; includes
commands with optional parameters.

client, network A network system that requests and uses resources located at another
(remote) network system. Intel's transport protocol is based on the
client-server model, in which client jobs request data from server
jobs, and server jobs respond to the requests. Sometimes called
consumer.

:co: Standard logical name for the terminal screen, or console output.
Each user's :co: refers to the terminal associated with that user.

command line parsing Retrieving and interpreting the parameters of a command.

COMMengine A networking hardware environment that uses separate boards for
the host CPU and LAN controller. The iNA Transport Software runs
on the LAN controller and the iRMX-NET runs on the host CPU
with iRMX OS.

COMMputer A single-board computer with on-board integrated networking
hardware. The COMMputer hosts iRMX-NET, iNA 960, and the
iRMX OS.

composite object An object of a new type designated by an extension object.

concurrent condition
code

A condition code that is returned as a result of asynchronous
processing.

condition code A message returned when an error occurs during execution of a
program or system. Same as exception or error code.

configuration Using the ICU to change attributes about the iRMX III OS. Also
loading and modifying :config:, rmx.ini, and loadinfo files in iRMX
for PCs and DOSRMX.

connection An object, returned by the I/O system whenever a file is created, that
represents the bond between a device or file and a program.

console A specific terminal attached to a system that is used to invoke the
Bootstrap Loader.

CPU The central processing unit of a computer: the module in charge of
receiving, decoding, and executing instructions.



98 Glossary

CPU trap See hardware exception.

current directory The iRMX directory that acts as the default when you specify a
filename without a preceding pathname. The current directory
always has the logical name :$:.

datagram A connectionless message-delivery mechanism that does not
guarantee delivery or the order of delivery.

data file A file containing programs and data. See directory file.

deadlock The impasse resulting when two or more tasks each hold exclusive
access to resources needed by the other task(s).

dedicated server A network system used exclusively to provide resources to client
systems.

default prefix A prefix ID used by default whenever a null prefix is presented to the
I/O system.

descriptor An entry in a descriptor table that contains the physical address,
length, and other information about an object, which is viewed by the
Nucleus as the token for the object. It is assigned by the iRMX OS
when an object is created.

descriptor table A hardware-defined table that contains descriptors, which point to
memory. There are three kinds: a global descriptor table (GDT),
one or more local descriptor tables (LDT), and an interrupt
descriptor table (IDT).

device Hardware connected to the computer system that is used for reading
and writing data, such as terminals, printers, plotters, display tubes,
and robots.

device driver Software that controls device operation, and provides a system-
defined, device-independent interface to the device. Device drivers
are implemented at the BIOS level.

directory file The type of file that contains the disk addresses of associated data
files and other directory files. See data file.

download Sending data from a server system to a workstation or end system.

DUIB Device Unit Information Block, a collection of information about a
device unit (a device and a controller) that includes its name,
granularity, and addresses of device driver routines.

dynamic logon
terminal

A terminal configured to service many different operators on a
request-by-request basis. Users log on to the system with a name
and password. See static logon terminal.



Introducing the iRMX Operating Systems Glossary 99

dynamic memory
allocation

Memory that is allocated to jobs only when tasks request it. This
enables jobs to share memory and change the amount of memory
they use as their needs change, using less memory overall. See static
memory allocation.

dynamic user A Human Interface user created by entering a name and password on
a dynamic logon system. The user must be defined in the UDF prior
to being created at logon.

EIOS The Extended I/O System.

end point The system at either end of a network communication connection. A
network system or node. Also called an end system.

end system See end point.

environment The general operating characteristics that are imposed on a computer
system.

error code Same as a condition code.

escape sequence Characters preceded by an ESC character.

event A system state change.

exception code Same as a condition code.

exception handler A procedure that corrects certain exceptional conditions, or deletes
or suspends the job that caused the error.

exchange object A class of objects used to aid communication, synchronization, and
mutual exclusion between tasks. See mailboxes, ports, regions, and
semaphores.

extension object Designates a new type of object. See composite object.

FIFO First In, First Out order of operation, meaning that the least recent
item added is the first one removed.

file consumer The iRMX-NET software module that enables a local user to
transparently access remote files.

file driver Software that the BIOS uses to control file operation. There is a
driver for each of the types of files: named, physical, stream,
remote, DOS, and EDOS. There are also loadable file drivers, such
as NFS.

file pointer An indicator that marks a connection's current position in a file. The
next sequential read or write starts at the pointer. When a file is
opened, the pointer is at the beginning of the file.



100 Glossary

file server The iRMX-NET software module that receives requests from remote
users.

file system A complete hierarchy of logically related files, including a root
directory.

file tree A hierarchical file structure that reflects the relationships between
files.

file types There are these types of files in the iRMX OS: named, physical,
stream, remote, and DOS.

firmware Software that is permanently fixed onto a memory chip (ROM).

first level jobs Children of the root job: some of the OS layers are first level jobs,
and applications can also be first level jobs.

fixed updating Updating done at the same time interval for all devices, with the
interval being independent of I/O activity. See timeout updating.

fnode file The file descriptor node file, a file in the BIOS that stores
information about named files, such as the file name, location,
creation and last modification dates.

Gbyte Gigabyte

GDT Global Descriptor Table, the system-wide table containing
descriptors that are shared among all jobs in the system.

generation output file A file containing the results of the ICU generate command, which
generates an iRMX system. The file has an .out extension.

global A programming reference that means the same thing throughout the
entire program.

global job An interactive job or user session.

global object directory An object directory, found in each global job, that stores objects
(including logical names) for that job. These objects remain valid
for the life of the user job or until they are detached, and other users
do not have access to them.

granule A block of allocated space on a mass storage device.

granularity The size of a block of allocated space on a mass storage device.

handshaking Signals that are used to synchronize communications equipment
during the set-up period.

hardware The physical equipment of a computer system.

hardware exception An error that occurs as the result of a hardware protection feature.



Introducing the iRMX Operating Systems Glossary 101

hardware interrupt The point at which external processes enter the computer. In the
iRMX OS, the device that handles hardware interrupts is the 8259A
Programmable Interrupt Controller (PIC).

HI Human Interface, which performs logon and logoff functions, creates
jobs, assigns memory, and starts initial programs.

home directory The directory you automatically enter when you log on to the iRMX
OS. The system manager assigns your home directory when initially
setting up your account. It has the logical name :home:.

host The CPU board in a computer.

ICU Interactive Configuration Utility. A screen-oriented utility to help
build the OS configuration you want.

IDT Interrupt Descriptor Table, the system-wide table that contains
descriptors for the system's interrupt handlers.

initial task The first task to execute after creation of a job. Its sole purpose is to
initialize the environment for the new job.

interoperability The ability of iRMX-NET to share files with other systems besides
the iRMX OS.

interrupt handler A procedure that is invoked by hardware to respond to an external
asynchronous event (an interrupt). The handler decides how
important the interrupt is and either returns to the original task or
invokes an interrupt task.

interrupt task A task that runs when a specific interrupt occurs.

I/O job A job that is a child of the EIOS rather than the Nucleus. I/O jobs
can use EIOS system calls.

IORS I/O Request/Result Segment, a device driver data structure created to
record and control the action taken for each I/O request.

I/O system The layer of an OS that provides input and output functions. The
iRMX OS has two: the BIOS and the EIOS.

iRMX Intel's Real-time Multitasking Executive, the OS.

iRMX-NET Intel networking software that provides transparent file access
between systems.

ISO The International Organization for Standardization.

job One or more tasks and the resources they need (objects, an object
directory, and a memory pool).



102 Glossary

Kbyte Kilobyte.

LAN Local Area Network. An in-house data communications system that
connects a number of independent devices.

LDT Local Descriptor Table, a table that stores descriptors and is
managed by the iRMX OS.

LIFO Last In, First Out order of operation, meaning that the last item
added is the first one removed.

local In networking, the specific environment that is directly controlled by
a given computer, such as disk drives and printers attached to a
system. Local also refers to a user's own system and files, as
opposed to those available across a network.

local environment The execution environment for a set of tasks. Same as job.

local object directory When you invoke a command, the OS creates a job and a local object
directory for that command. The objects cataloged in this directory
can only be used in the context of this job, and they remain valid
only until the job exits or is deleted.

local node The node a user is logged into is the local node. All other nodes are
remote nodes.

logical name An identifier (a string of characters, usually bounded on both ends by
colons) for a file, directory, device, or remote computer system that
the EIOS associates with a particular file connection or device
connection. May be either local to a job or global across all jobs.

LRS Loader Result Segment. Records the action taken by Application
Loader system calls.

mailbox An object that a task uses to exchange objects, tokens, or information
with other tasks. There are two kinds: data mailboxes and message
mailboxes.

Mbyte Megabyte.

media The physical parts that store or transport data, such as a CD-ROM, or
the interconnection between devices attached to a LAN (broadband
coax, twisted pair, and fiber optics, etc.).

memory pool A configurable amount of memory allocated to a job and its children.

MIP The software module that provides an interface between the local
CPU board and iNA 960 Transport Software operating on a separate
network interface controller (NIC).



Introducing the iRMX Operating Systems Glossary 103

Multibus Two bus standards (Multibus I and Multibus II) designed and
supported by Intel for multiprocessor systems.

multiplex To use one structure for more than one function.

multiprogramming A technique used to independently run several unrelated applications
on a single application system.

multitasking A type of system that supports the execution of multiple tasks, each
of which needs control of the processor to run.

multiuser A type of system that enables multiple users to log in and perform
work as if each were the only user on the system.

mutual exclusion A means of allowing only one task to have access to a shared
resource at any given time.

Name Server The iRMX-NET software module that provides the network
directory service for local and remote users.

network A group of independent computer systems that are interconnected for
communication.

network object A resource that can be accessed over a network by clients, such as
file servers, print servers, or virtual terminal servers.

NFS Network File Support. NFS enables hosts to share their local
resources with remote hosts (clients) in a manner that hides the
heterogeneous nature of a network. For example, a server running the
iRMX OS may share a specific directory with a client machine
running the Unix OS. The client can access the directory using
commands and calls that appear to be directed at local resources.

NIC Network Interface Controller.

node A computer system functioning as the end point in a network. Each
node is identified by a network address.

non-buffered device A communications device that must be managed by the host
processor board. The Terminal Support Code on the host processor
board must manage the character buffers of the non-buffered device.
See buffered device.

nonresident user A user defined either in the system configuration files or with the
password command. See resident user.

Nucleus The basic layer and computational heart of the iRMX OS.

object code Output of a BIND (linker) command or of a compiler such as C,
PL/M or ASM.



104 Glossary

object directory A place in memory where a task can catalog an object under an
ASCII name, which can then be used for access instead of the
object's token.

object file A file that contains the binary object code that results from the
compilation of a program or procedure.

object module The output of a single compilation, a single assembly, or a single
invocation of a BIND command.

objects Data structures and the operations performed on them. Objects are
system building blocks, and include:

Segments Mailboxes
Semaphores Regions
Jobs, I/O jobs Extension objects
Tasks Composite objects
Buffer pools Ports
Connections Users

object-based A concept that focuses on data structures and the actions performed
on them.

OMF Object Module Format, the format of linkable modules.

operating system The software that manages the hardware and logical resources of a
system, including device handling, scheduling, and file management.

OS extension Operating system extension, a way to add custom functions to a
system to meet the needs of the design.

OSC Operating System Command: in the context of a terminal driver, a
sequence of characters used by an application task or the operator to
communicate with the Terminal Support Code.

OSI Reference
Model

Open Systems Interconnection Reference Model, a model that
defines network architecture with seven layers:

1) Physical 5) Session
2) Data Link 6) Presentation
3) Network 7) Application
4) Transport

overlays Logically independent subsections of a program, which can be
loaded one at a time in the same block of memory by the AL.

owner The user ID associated with a file.

packet A group of data bits and control elements that are transmitted across
a network as a composite whole.



Introducing the iRMX Operating Systems Glossary 105

parameter A variable that can be assigned a constant value for a specific
function.

parent directory The file directory immediately above the current directory.

parsing a command Retrieving and interpreting the parameters of a command.

partition An area on a block device such as a disk or tape.

pathname The designation used by the OS to find or specify a file or directory.

peer Equivalent computer systems, software modules, or protocol layers.

peer-to-peer resource
sharing

In networking, an organization where all the nodes can provide
resources for each other while also running local applications, so
each one is both a server and a client.

portability Used to describe language processors and software tools that can run
on several OSs, often because they use UDI system calls.

port An object that can send messages to or receive messages from other
processors on the same bus. Ports enable message addressing to a
given task, and are usually used for synchronization.

private Files, accessed locally, that are not available to remote users across a
network.

priority A number used for scheduling a task relative to other tasks.
Priorities range from 0 through 255, with 0 being the highest priority
and 255 the lowest.

program state The registers and data used by a program. If the program state is
saved during task switching, the OS can restart the program later.

PROM Programmable Read-Only Memory. A memory device in which
information can be changed after manufacture, but is then
permanent.

protected mode See PVAM.

protocol Rules for network communications between equivalent (peer) layers
in regard to the format and content of the messages exchanged.

public Files that are available for access by remote users on a network.

PVAM Protected virtual address mode: microprocessor memory
management feature that translates virtual addresses to physical
memory addresses. It supports 4 Gbytes of physical memory. It also
protects the OS from unauthorized modification by application
programs, and isolates each user from other users. See real address
mode.



106 Glossary

read-ahead A method of overlapping I/O operations so that tasks can continue
running while the EIOS is transferring information to or from
devices. See write-behind.

real address mode The method of execution on an Intel386 or later microprocessor that
supports 1 Mbyte of physical memory in RAM or ROM. The iRMX
OS does not run in real address mode except for a short time when
the system boots up. DOSRMX switches to Virtual 86 mode, a form
of real mode, to run DOS and its applications. See PVAM.

rebooting Resetting the processor without cutting power. Only the contents of
static memory remain valid after rebooting.

recovery resident user See resident user.

region An object that controls access to critical areas, such as a collection of
shared data. A region has special deletion and suspension features.
Use regions in cases where a section of data must be read and written
completely by one task before another can access it.

remote In networking, an environment that is not local, or directly controlled
by a given computer. For example, disk drives and printers that are
attached to another network system are remote disk drives and
printers. See local.

remote node In a network, a node other than the local node.

resident user A user defined in the Human Interface configuration files, which
gains control only if an initialization error occurs in the configuration
files. Same as recovery resident user. See nonresident user.

resources The data and devices on a server that may be accessed by a client.

response time The time it takes between the occurrence of an event or interrupt and
the system's response to it.

RFD Remote File Driver is part of the BIOS subsystem and closely
parallels the Named File Driver of the local OS.

root directory The topmost directory in a hierarchical file system.

root module An object module that controls the loading of overlays.

root object directory An object directory for the root job, containing logical names for
devices. These objects remain valid until they are detached or the
system is reinitialized, and every user has access.

round-robin
scheduling

A priority-based time-slicing system of scheduling tasks for
processing. Multiple tasks of equal priority are each allotted the
same amount of execution time, and alternate running until finished.



Introducing the iRMX Operating Systems Glossary 107

run-time linking Letting each program know the locations of the variables and
procedures that it uses while the system is actually running.

SBC Single Board Computer.

SBX Single Board Expansion Module.

SDM System Debug Monitor, a software debugging tool.

sector A device granule (block of allocated space) for disk media.

segment A contiguous unit of memory addressed by a descriptor. Tasks use
segments for purposes such as stacks, data storage, and buffers.

semaphore An object that is a counter, and provides a very fast method of task
synchronization, or can be used for mutual exclusion.

server, network A network system that responds to and provides the resources that
are requested and accessed by a client system.

session In networking, a point-to-point (virtual-circuit) connection between
peer systems.

spokesman In networking, the system that contains the names and addresses of
other systems.

stack An ordered collection of items in memory, into which new items
may be inserted or removed. When a program makes a call, data is
passed or stored on the program’s stack. Stacks are LIFO (last in,
first out) meaning that the most recent item added is the first one
removed.

start-up systems Bootable images of the iRMX OS that are ready to run.

static logon
terminal

A terminal configured to service one specific user. The logon is
invisible to the user. See dynamic logon terminal.

static memory
allocation

A memory-allocation method in which memory is allocated to jobs
when the system is started, and cannot be freed for other jobs. Thus,
the total memory requirement of the system is always the sum of the
memory requirements of all jobs. See dynamic memory allocation.

static user A user that comes up automatically when a static logon system is
booted.

stream file A temporary stream of bytes in memory, which is read on a FIFO
basis and destroyed after reading.



108 Glossary

string An iRMX string is a character string consisting of 1+n consecutive
bytes. The first byte contains the character count. The following n
bytes contain the ASCII codes for the characters.
This is different from a C string, which is null terminated: there is
no count byte and the string ends at the first byte containing zero.

subnetwork Synonym for Administrative Unit (AU) used by UNIX and other
OSs.

subtree All the data files and nested directories contained in a directory.

Super user Usually the system administrator; has a user ID of 0 and access to all
files and devices on the system.

SXM System Extension Module.

synchronization A programming technique that enables dependent tasks to take turns
in their use of shared data or system resources.

synchronous At precisely the same time. An event or device that is in time with
the CPU or another device. In networking, a method by which
signals between systems are timed, with a pre-arranged number of
bits per second being sent across the communications line. See
asynchronous.

synchronous system
call

A call that must complete before control of the computer is returned
to the calling task. See asynchronous system call.

system All the hardware and software components of a given computer.

system call A programmatic interface used to manipulate objects or control the
computer's actions.

system manager The Super user, with an ID of 0, who defines users and systems
within an Administrative Unit.

task System activities that execute instructions and manipulate data. Can
be viewed as a simple program that appears to be running on a
computer by itself.

task priority A value from 0 through 255, with 0 being the highest priority. Used
in task scheduling along with the task state.

task switching Temporarily stopping one task and running another. The registers
and data (called the program state) of the first task are saved, and it
can be resumed later at the same point at which it was interrupted.

TCP Transmission Control Protocol. A transport layer protocol for the
Internet. It is a connection-oriented, stream protocol defined by RFC
793.



Introducing the iRMX Operating Systems Glossary 109

TCP/IP Transmission Control Protocol/Internet Protocol. A set of computer
networking protocols and applications that enables two or more hosts
to communicate. TCP/IP includes a suite of protocols besides TCP
and IP; it has been widely adopted as a networking standard.

Telnet A TCP/IP protocol used for remote login between hosts.

Terminal Support
Code (TSC)

A set of commands that control terminal modes and operation.

timeout updating Updating done at intervals set individually for each device, with the
interval beginning at the end of each I/O operation. See fixed
updating.

time-slicing A non-priority-based system of scheduling tasks for processing.
Multiple tasks are each allotted the same amount of execution time,
and alternate running until finished.

token A value representing the logical address and the characteristics of an
object. See descriptor.

top-down
programming

A programming concept that focuses on control flow, in contrast to
object-based programming, which focuses on data structures and the
processes performed on them. See object-based programming.

transparency Remote file access that enables the user application to manipulate
remote files as if they were local.

trap See hardware exception.

TSC Terminal Support Code, a set of commands that control terminal
modes and operation.

UA User Administration. The iRMX-NET software module that
maintains the files used by a system manager when making additions
and deletions of users and systems in an iRMX-NET environment.

UDF User Definition File. An iRMX OS file that contains information
about valid users of a system. Used by the server system in
maintaining the server-based protection scheme.

UDI Universal Development Interface acts as an interface between the OS
and the application program.

user Used by iRMX to determine access rights to files and systems. A
user job is created when an operator logs onto a system to obtain
access to the system.

user job A child job of the HI.



110 Glossary

verified client A client system verified by a server as a node entitled to access the
server.

verified user A dynamically logged-on user. Verification only has meaning when
the user is attempting to access remote files using a network.

Virtual 86 mode A form of real mode used by DOSRMX to run DOS and its
applications.

virtual circuit A reliable, connection-oriented message delivery service. A
connection through the Transport Layer of the OSI Reference Model
that delivers error-free, point-to-point messages in the same
sequence as the messages are sent.

virtual root directory The root directory of a remote server system, as seen from the client
system.

VM86 Dispatcher Allows DOS to run as a task under DOSRMX.

volume The medium used to store information on a device, such as a
diskette, tape reel, or hard disk.

wildcard character A character that can substitute for any single character (typically ?)
or any sequence of characters (typically *), providing the ability to
specify several files in a single reference.

write-behind A method of overlapping I/O operations that enables tasks to
continue running while the EIOS is transferring information to or
from devices. See read-ahead.

■■   ■■   ■■



Introducing the iRMX Operating System Index 111

Index

A
access

controlling user, example, 44
access mode

control in connections, 45
access rights

for DOS/iRMX files, 50
for NFS files, 50

addressing modes, 17
Administrative Unit, see AU
Aedit, see Programming Techniques and Aedit

Text Editor manual
AL (Application Loader), 69

asynchronous/synchronous system calls, 70
description, 69
dynamic loading from devices, 70

alarms, Kernel, 40
allocating

memory, 13
application development, 79

debugging, 87
design, 81
examples, 83

Application Loader, see AL
asynchronous system calls

definition, in BIOS, 48
in AL, 70

AU (Administrative Unit)
definition of, 77

automatic reattachment of devices, 56

B
Basic I/O System, see BIOS
BIOS (Basic I/O System)

advantages, 58
compared with EIOS, 58
system call types, 48

blocking, buffers, 56
bootstrap loading, 85
buffer pools, 27

with ports, 31
buffering

algorithm, custom, 58
I/O, 56

buffers
and granularity, 55
choosing number of, 56
I/O, 56
type-ahead, 57

bus architectures, 19

C
C library

and I/O systems, 59
overview, 80

C Library
calls from I/O jobs, 47

call gates, 33
CDF (Client Definition File), 77
CD-ROM files

definition, 51
CLI (Command Line Interpreter)

features, 66
special function keys, 67

client, 78
and server, networking, 78
name, iRMX-NET, 77

clock
global, 57
local, 57

code portability, 74
command lines

parsing, example, 63
communicating

between tasks, 10, 52



112 Index

composite objects, 32
condition codes, 38
configuration

definition, 91
iRMX for PCs, 92
iRMX for Windows, 92
iRMX III, 91

connections, 56
and access mode, 45
device, 46
file, 45

controlling
devices, 54

cursor
moving, 67

customer support, inside back cover

D
data

validity of, 12
data packets, 20
deadlock, 30
debugging tools, 87

System Debug Monitor, 87
System Debugger, 87

default user object
definition, 44

descriptor, 33
designing application system, guidelines, 81
determinism, 6
device connections, 46
device drivers

definition, 54
loadable, 92

device granularity, 55
devices

automatic reattachment, 56
control, 54
independence, definition, 53
logical names, 47

disk integrity, 55
DOS

networking, 78
DOS files

definition, 51
drivers, see device drivers, file drivers

dynamic loading
in AL, 70
loadable jobs, 92

dynamic logon terminal, definition, 65

E
EIOS (Extended I/O System)

advantages, 59
compared with BIOS, 58

escape sequences, 57
event-driven applications, 5
examples

application systems, 83
interrupt handlers, 37, 83
multitasking, 84
mutual exclusion, 29, 30
parsing commands, 63
regions, 30
semaphores, 29
synchronizing tasks, 11
user access control, 44

exception handlers, 38
exchanging information

between tasks, 10
execution state, 34
Extended I/O System, see EIOS
extension objects, 32

F
file connections, 45
file drivers

definition, 53
loadable, 92

file fragmentation
controlling, 55

file granularity, 55
file integrity, 55
file pointers, 46
files

access control of, user, 43
access rights to, 50
and multiple users, 49
concurrent access to, 46
hierarchical, 49
independence of, 51



Introducing the iRMX Operating System Index 113

logical names of, 47
types of

CD-ROM, 51
DOS, 51
named, 51
physical, 52
remote, 51
stream, 52

updating, 54
fixed updating, definition, 54
flat model, 14

G
global clock, 57
granularity

types of, 55
guidelines for designing applications, 81

H
hardware environments

networking, 77
HI (Human Interface)

description, 61
operation, 64

HI command, 62
hierarchical files, 49
Human Interface, see HI

I
I/O

buffering, 56
overlapping, 56
random-access, 56
redirecting, 68
sequential, 56

I/O jobs
and AL, 70
definition in EIOS, 47

ICU (Interactive Configuration Utility), 91
advantages, 92
online help, 80

iNA 960, 77
Transport Software, 77

initial program, 66

installing iRMX, see Installation and Startup
manual

interactive command, custom, 63
Interactive Configuration Utility, see ICU
interoperability, 78
interrupt handlers, 5, 36

examples, 37, 83
interrupt response time, 6
interrupt task

when used, 37
intertask communication, 52
iRMX

compatibility, 48
configuration, 91
features and functions, 2
layers, 15

iRMX for PCs
configuration, 92
features, 20

iRMX for Windows
configuration, 92

J
jobs, 22

loadable, 92
loading, 61
operator or user, 65
tree, 22

K
Kernel

features, 40
task management, 41
time management, 41
when to use, 42

L
languages, 79
layers of operating system, 15
libraries

UDI, 74
limitations

maximum objects in system, 22
loadable jobs, 92



114 Index

loading
jobs, 61

local clock, 57
logical names

cataloging, 47
definition, 47

logon
process, 65

M
mailboxes

Kernel, 40
Nucleus, 28

manuals
iRMX, 93
on CD, 80

memory
allocating and sharing, 13
and physical files, 52
and stream files, 52
conserving, 70
protection, 19

memory pools, 25
Kernel requirements, 41

memory segments, 26
microcomputers, 1
microprocessors, 1

addressing modes, 18
protection features, 19

modular programming, 3
Multibus I

features, 19
supported by iRMX-NET, 77

Multibus II
features, 19
supported by iRMX-NET, 77

multiple terminals
support, 64

multiprogramming, 7
multitasking, 3

examples, 84
multiuser support, 64, 65
mutual exclusion, 12

examples, 29, 30

N
named files, 51
network, 17

between operating systems, 78
definition of, 75
hardware, 77

Network File Access (NFA) protocols, 78
Nucleus

functions, 21

O
object directories, 24, 33, 47
Object Module Format (OMF), 73
objects

definitions, 21
maximum in system, 22
types, 9
user-created, 32

OMF (Object Module Format), 73
online help, 80
online help command, 80
on-target development, 79
OpenNET, 78
operating systems

switching between, 74
overlapping

I/O, 56
processing in AL, 70

P
packets, data, 20
page fault, 19
page tables, 19
paging subsystem, 14
password

defined in CDF, 77
PC Bus, 77
PC features, 19
physical files

definition, 52
pointers

to locations in files, 46
portability

of code, 74



Introducing the iRMX Operating System Index 115

ports, 30
preemptive schedules, 4
priority-based schedules, 4
program development, see application

development
protected mode, see PVAM
PVAM (protected virtual address mode), 18

R
RAM, 85
random-access I/O

and buffers, 56
read-ahead, 56
real mode, 18
real-time response, 2
recalling command, 67
recalling commands, 67
redirecting

I/O, 68
regions

Kernel, 40
Nucleus, 30

remote files
definition, 51

response time, predictable, 6
ROM, 85
round-robin schedules, 35

S
sectors and granularity, 55
segments, 26
semaphores

Kernel, 40
Nucleus, 29

sequential I/O
and buffers, 56

server
and client, networking, 78

service information, inside back cover
sharing

memory, 13
Soft-Scope debugger, 88
standard initial program, 66
start-up systems, 91
static logon terminal, definition, 65

stream files
definition, 52

switching
operating systems, 74

synchronizing
tasks, 11

synchronous system calls
definition, in BIOS, 48
in AL, 70

system calls
asynchronous/synchronous in AL, 70
asynchronous/synchronous in BIOS, 48
definition, 14
differences between BIOS and EIOS, 47
online help, 80
prefixes, 48

system clock, 57
system configuration, 91
System Debug Monitor (SDM), 87
System Debugger (SDB), 87

T
task states, 6
task switch time, 6
tasks, 26

communication, 10
concurrent access to file, 46
coordination, 10
message passing, 10
priority of, 34
scheduling, 33
synchronizing, 11

termcap file, 67
Terminal Support Code, see TSC
terminals

controlling output, 57
dynamic and static, definition, 65
setting variables, 57
support for multiple, 65
support for various types, 67

timeout updating
definition, 54

tokens, 33
tools, 79
top-down programming, 3
translation



116 Index

definition, 57
transparent mode, 57
transporting code between OSs, 74
TSC (Terminal Support Code)

definition and functions, 57
type manager, 32
type-ahead

buffer, 57
in CLI, 67

typing input, 67

U
UDF (User Definition File), 77
UDI (Universal Development Interface) libraries,

74
Universal Development Interface, see UDI
UNIX

networking, 78
updating files

fixed and timeout, 54
User Definition File, see UDF
user ID, 77
user job, 65

V
virtual memory, 14
volumes

and physical files, 52
integrity, 55

W
write-behind, 56


	Introducing the iRMX® Operating Systems
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Basic Concepts
	iRMX Operating System Features
	Real-time Processing
	Objects and System Calls
	Example Code and Demonstration Programs
	Network Support
	32-Bit Architecture, Addressing, and Protection
	Bus Architecture Support

	iRMX for PCs Special Features

	Chapter 2: Nucleus and Kernel Features
	Nucleus Objects
	Jobs
	Tasks
	Memory Segments
	Buffer Pools and Heaps
	Exchange Objects
	Extension Objects and Composite Objects
	Object Directories, Tokens and Descriptors

	Nucleus Task Scheduling
	Priority
	Execution State
	Round-robin Scheduling

	Nucleus Interrupt and Exception Handling
	Interrupt Handlers
	Exceptional Conditions

	Nucleus Messaging Service
	Kernel Features
	Kernel Objects
	Kernel Task Management
	Kernel Time Management
	Kernel Interrupt Handling
	When To Use the Kernel


	Chapter 3: BIOS and EIOS Features
	I/O System Objects, Logical Names and System Calls
	User Objects, Users and User Access Control
	Connections and File Access Modes
	I/O Jobs
	Logical Names for Files and Devices (EIOS Only)
	BIOS and EIOS System Call Differences

	Files and Directories
	Hierarchical File System
	File Access Rights
	File Types

	Devices and Device Control
	Device Independence
	Device Control

	System Clock
	Choosing Between I/O Systems
	BIOS
	EIOS
	Making the Decision


	Chapter 4: Human Interface Features
	Run-time Loading of Jobs
	HI Commands
	Human Interface System Calls
	Custom Command Line Parsing

	Multiuser Support
	HI Initialization
	System-wide Setup
	Logon
	Operator Job Creation
	Command Line Interpreter (CLI)


	Chapter 5: Application Loader Features
	Dynamic Loading
	Loading Flat Model Applications
	Objects and System Calls

	Chapter 6: UDI Features
	Chapter 7: Networking Features
	Network Concepts and Terminology
	Network Software
	TCP/IP for iRMX OSs
	iNA 960 and iRMX-NET
	Network Security

	Networking Between Operating Systems

	Chapter 8: System Development
	Shared C Library
	Online Help Systems
	System Design
	A Hypothetical System
	Interrupt and Event Processing
	Multitasking
	Intertask Coordination
	Enhancing the System

	Bootstrap Loading (iRMX III OS and iRMX for PCs)

	Chapter 9: Application Debugging
	System Debug Monitor
	System Debugger
	Soft-Scope Debugger

	Chapter 10: System Configuration
	ICU Configuration
	iRMX for PCs and DOSRMX Configuration
	Loadable Jobs

	Appendix A: Related Publications
	iRMX Manual Set

	Glossary
	Index

