RadiSys - Introducing theiIRMX®
Operating Systems

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com
07-00634-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of

RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 0 1999 by RadiSys Corporation

All rights reserved.

Quick Contents

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.

Chapter 10.

Appendix A.

Glossary

Index

Basic Concepts

Nucleus and Kernel Features
BIOS and EIOS Features
Human Interface Features
Application Loader Features
UDI Features

Networking Features
System Development
Application Debugging
System Configuration

Related Publications

Introducing the iIRM X Operating Systems iii

Notational Conventions

Most of the references to system callsin the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). |f you
areworking in C, you must use the C header files, rmx_c.h, udi_c.h, and rmx_err.h.

If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and

error.lit header files.

This manual uses the following conventions:

|:| Note

Notes indicate important information.

A CAUTION
Cautions indicate situations which may damage hardware or data.

Contents

1 Basic Concepts

IRMX Operating System FEatUIES..........ccuriieereriese e e 2
REBI-1IME PrOCESSING ... eeiviiterieitieieeieie ettt s sbe e eneas 2
IMIUIEIEBSKING ..ttt 3
Preemptive, Priority-based Schedulingcccccoeoeieienenenineiens 4
INEEITUPE PrOCESSING...ccueeeeeeiteieeeteeeeee e seeie et sae e e e seeseesaeenens 5
Predictable ReSpONSE TIME......cccooiiirere et 6
MUILIPrOGraMIMINGcccveieirieieee et s se 7
Objects and System CallS.......cooeeeieeeeie e 9
Intertask Coordination and CommMUNiCation...........ccoeererenereiereneas 10
Memory Pools and Memory Sharing...........ccoceeovereienenenenenee 13
Virtual Memory Allocation With the Paging Subsystem 14
SYSEEM CallS...oeiieee e s 14
Operating SYyStEM LAYErScocierereresiese e e 15
Example Code and Demonstration Programs...........cceceeeeeeeeeieseeseeneneens 16
NELWOIK SUPPOIT ...ttt e see b see e 17
32-Bit Architecture, Addressing, and Protection............ccccvceveevereeennene 17
Bus ArchiteCture SUPPOITcooieeeie e 19
IRMX for PCs Special FEaIUrES..........ooiiieieeee et 20

2 Nucleus and Kernel Features
N U = Uy @ o= =S 21
OB, 22
(O o)1= vl BT = vt (o] 1= 24
MEMOIY POOIS.....ccuiiecice e eneas 25
JLIE: S ST ST 26
MEMONY SEGMENES.......eeieieeeeeeceese e e see e ee e e e sreenee e e saeenreenes 26
Buffer PooIS and HEPRS........cccevvieiiiiciceese et 27
EXChange ObJECES......c.cceiiciceseceeeee et sne 28
MaAITDOXES. ..o 28
S gL o] 0 = 28
REGIONS......eeiie ettt st ere e e e enaesaestesrenneas 30
Introducing the iIRM X Operating System Contents %

Extension Objects and Composite ObJECLS.........ccocererererereeieieeeeie s
Object Directories, Tokens and DeSCriptors.c.ouveeererieeerieeieeneeseenens
Nucleus Task SCheAUITNGcccooererie e

Priority

EXECULION SEALE......eeeiieeii ittt e s te s et e s s ean e s sbaee s

Kernel Objects

Kernel Task Managementcoeeoerereienene et seen

Kernel Time M

0 1= 01 TP TT

Kernel Interrupt Handlingccoooireiiieieiee e

When To Uset

NEKEINEL ...

30
31
32
33
33

35
35
36
36
36
37
38
38
39

SEERE88

vi

BIOS and EIOS Features
I/0O System Objects, Logical Names and System CallS........ccoovveveveeeeivcivennne
User Objects, Users and User Access CoNntrol.......ccocvvveeeereeereereerenneneens

Example:

Multiuser System and the User Object.........cccccevevvriennnns

Connections and File ACCESS MOUES.........ccueeveeiieriiee et
File CONNECLIONS.......eieieieetei ettt e

Logical Names for Files and Devices (EIOS ONlY)ccevveveeeeerieiiennnns
BIOS and EIOS System Call Differences......cccocevvvevceveseveeieeeseese s
System Call NAMES........coeeeieeieesese e enea

Synchrono

us and Asynchronous System Calls (BIOS Only)

FileS AN DIFECLOMIES.eiiveecetie ettt ettt s s st srreesbes s sreeeben s

Contents

BELEEEENINEEEERED

51

CD-ROM FlES.....ciiiiiireniceririe ettt 51
PhySICal FIlES ..o e 51
SEEAM FilES.....i e s 51
Devices and DeviCe CONLIOLccoieiueeereeieeeee e 52
DeVice INAEPENTENCE.c.coiiie ettt 52
FIIE DIIVEIS ..ttt 53
DEVICE DIIVELS ...ttt e 53
Loading and Configuring DIiVErS........cccooeieieneneneeeeneee e 53
DEVICE CONIOI ...ttt s enea 53
Fixed and Timeout Updating........ccoceoererereneneneeeeeereee e 54
DR Q1= o [RSSO 54
Internal File Fragmentation.............ccooeieienenenienicee e 55
Buffering with Overlapped 1/O (EIOS ONly)cccooeieieie e 55
Automatic Device Reattachment (EIOS Only).......ccccoceveieienennnenns 56
Terminal SUPPOrt COOE.......coiriiereeireeeeer s 56
SYSEEM CIOCK ...ttt 57
Choosing Between 1/O SYStEMS.......cc.coiie e 57
BIOS... ettt bbb bbb 58
EIOS .. e bbb bbb 58
MaKiNg the DECISION.......cceiirerieierieie e sn 58
EXAMPIES.....eie e e e 59
4 Human Interface Features

Run-time Loading of JOBS........ccoeiiiiiireie e 61
HI COMMEANGS......c.cviiiiirricireeices et 62
Human Interface System CallS.......cccvvvveiecieeecse e 63
Custom Command Lin€ Parsing........ccccuveeeeruereeresesieseseessesesseesseseesseses 63
MUILTUSEY SUPPOM «..veeveeeeeeeeeesee e see s e ettt sse e ere e e esee e e e enaeneeneas 64
HITNItaliZAHON ... 64
SYSEEM-WiE SELUPeeveeeeeeeiesie ettt 65
10 o o IS 65
Operator JOD Creation..........cccevvvirereeeeeeere e 65
Command Line INterpreter (CLI) .oovvveieierece e 66

5 Application Loader Features
DYNaMIiC LOBAING -.....eveeeeteieeieee e s s 69
Loading Flat Model APPliCatioNS.......ccccooveiererene e 70
Objects and System CallSooeeereeeeee e 70
Introducing the iIRM X Operating System Contents Vii

6 UDI FEALUTES ...t 73
7 Networking Features
Network Concepts and Terminologycoeeeeerreeierenese e 75
NEIWOIK SOFtWEE......c.eieeieeieeeeie et 76
TCP/IPFOr IRMX OSS.....cuoiveiiiietiisietese ettt 76
INA 960 and iIRMX-NETccoeeiriieriiieise e 76
NEEWOIK SECUMTYee ettt st e e seen 77
Networking Between Operating SyStemMS........ccooiriie e 78
8 System Development
S =T o O T = 80
ONliNE HEIP SYSLEMS.....cve i 80
Y (= T 1= o T 81
A HypOothetiCal SYStEM.......ccvii e 82
Interrupt and EVENt PrOCESSING.......c.cverererereeeeseeseeseseeseseessesseesseseeseens 83
Processing Commands From the Bedside Units...........ccccecvevveveennene. 84
YU R = 2 o S 84
Intertask CoOrdiNatioN...........cccvuervrireinereees e 84
ENhancing the SYSteMc.ccviieeeeere e e 85
Bootstrap Loading (iRMX 11 OSand iRMX for PCS).......ccccveevreevieveinnininnns 85
9 Application Debugging
System DebUG MONITONcceiiieriieeeeeeee e e e 87
SYSLEM DEDUGGEY -..-eeneeeeierie ettt ettt e et se et seesee b saesee e 87
SOft-SCOPE DEDUGGES ...ttt s 88
10 System Configuration
@10 o) 7o 0= 1 o o RSN 91
iRMX for PCsand DOSRMX Configuration..........cccceevvvvenvnesienseeseesenenens 92
Loadabl@ JOBS. ..o s 92
A Related Publications
IRMX MaNUal SELc.ccocveiieieiesisieces ettt 93

viii

Contents

INAEX e 111
Figures
Figure 1-1. Task Switching in a Multitasking Environmentccccoeevenenenenennenn 3
Figure 1-2. Multitasking and Preemptive, Priority-based Scheduling...........c.ccccceuenee. 4
Figure 1-3. Interrupt Handler Interrupting @ TasK.......coeoererenene s 5
Figure 1-4. MUltiprogramimingccoceoeoererereneeeseeeeseeseesee e seesee e sses e eneeeeseeseeses 7
Figure 1-5. ResOUrceSiN aJdob.......coioiiiiieeee e 8
FIQUre 1-6. ODJECE TYPES ..ccueeeeiereeiee ettt sttt st se e e e sne e 9
Figure 1-7. Object-based Solution for Message Passing.........ccoeoeeeerenerenene e 11
Figure 1-8. Tasks Using a Semaphore for Synchronization.............cccceeeveienccnecnenn. 12
Figure 1-9. Multitasking and Mutual EXCIUSION.........ccooiiirinerininieeeee e e 12
Figure 1-10. Dynamic Memory Allocation between Tasks........ccccoeereierereneveneneenn 13
Figure 1-11. The Layers of the iIRMX Operating SyStems.........ccccceoeereereereereneseeneneenne 16
Figure 1-12. NetWOorked SYSLEIMS.......ccooiieierereeeeie e s 17
Figure 1-13. Real Mode and PV AM ...t e 18
Figure 2-1. JObSTN @ J0D Tree.....oouiiieeeeee e e e 23
Figure 2-2. Tasks Using the Job's Object DIireCtoryccoceeeveeererieeieie e 24
Figure 2-3. TasksUsing Their Job's Memory POOl ... 25
Figure 2-4. TasksUsing aBuffer POOL ... 27
Figure 2-5. TasksUsing aMessage MailbOXcccooerereiinenene e 28
Figure 2-6. Tasks Using a Semaphore for Synchronization.............cccceeeiviencceecnenn. 29
Figure 2-7. Tasks Using Ports for Communication on aMultibus Il Platform 31
Figure 2-8. Execution State TransitionS for TaskS........ccvvverereneriiriece e 34
Figure 2-9. Round-robin SCheduling..........c.ooe e 35
Figure 2-10. The Task Execution MoOdel...........coceeiiiiiiiiieee e 37
Figure 3-1. Task Creating aFileand aUser Object.........cooeieriririiicie e a4
Figure 3-2. Tasks Sharing a Connection ObJECL..........cccoiiiirerereneeeee e 45
Figure 3-3. Tasks Accessing a File Through Connections...........ccccccvoeverenenecceeneenne. 46
Figure 3-4. Hierarchical File SITUCIUIe..........cooviiiiiieee e 49
Figure 3-5. Multiple Users with Different Access Rights........cccoooeverineienenc i 49
Figure 3-6. TasksUsing a Stream File.......ooooiiiiiiiiie e 52
Figure 3-7. 1/0 Requests from the Application Go Through BIOS and Device Drivers 53
Figure 5-1. Using the Application Loader To Load a Program Dynamically 69

Introducing the iIRM X Operating System Contents iX

Figure 5-2.
Figure 6-1.
Figure 7-1.
Figure 8-1.
Figure 8-2.

Using the Application Loader To Load a Program into a Task's Memory .
UDI Interface Between the Application and the Hardware........................
iRMX-NET Interoperability with other OpenNet Systems............ccccceeeee.
Typical Development Cycle for IRMX Applications..........cccccverererennne

The Hardware of the Dialysis Application System

Contents

71
73
78
82
83

Basic Concepts

[Introducing...

R Real -time operating systems that support applications which require
deterministic response time, high reliability, and synchronization, with

M Multitasking capabilities that handle multiple external interrupts and internal
events occurring asynchronously. They provide multiuser and
multiprogramming support, and the

X eXecutive scheduler provides preemptive, priority-based, and predictable
response time to interrupts and events.

Real-time applications can be:

Measurement and of seismic activity for analysis
monitoring of patientsin medical procedures
Process control of high-speed machinery or robots

of research and lab activities

Dataacquisitionand of automatic test data
distribution to vendors or clients over networks or satellite links

TheiRMX® Operating Systems run on single-board computers and microcomputers
built around the Intel386 , Intel486 , Pentium® and Pentium Pro microprocessors.
There are three versions of the iIRMX Operating System (OS).

iRMX for PCs Runs on PC platforms with or without DOS, but with no
interoperability between the OSs. It can use the PC's ROM
BIOS to interact with peripherals or it can directly interact
with these peripherals,

DOSRMX Runs on PC platforms concurrently with DOS; it provides
interoperability between the iIRMX OS andDOS. Provides
access to off-the-shelf DOS software and tools.

iRMX 111 OS Runs on Multibus | and 11 platforms. Provides maximum
configurability, including booting the OS with an embedded
application.

Introducing the iIRM X Operating Systems Chapter 1 1

IRMX Operating System Features
TheiRMX OS offers a broad range of real-time, object-based functions and features:

Real-time processing to monitor and control events
— Multitasking

— Preemptive priority-based scheduling

— Interrupt processing

— Predictable response time (determinism)

— Multiprogramming

Objects to simplify application design and programming and to control resources
Intertask coordination and communication

Shared memory and dynamic memory allocation

System calls that manipulate objects and control the computer

Configurable layers of the OS, each with its own system calls

Example code and demonstration programs that illustrate how to use iRM X
objects and system calls

Network support for file access between iRMX and other OSs

32-bit architecture
— 4 Gbyte physical addressing and 4 Gbyte segments
— Protection features for improved reliability and multiuser support

Industry-standard bus support

Real-time Processing

Real-time processing requires these capabilities:

Multitasking, which means switching between threads of execution or tasks

Preemptive, priority-based scheduling, to determine which task needsto run
immediately and which can wait

Interrupt processing, to respond to external interrupts that occur during
processing

Predictable response time (determinism) so tasks execute before their
deadlines expire

Multiprogramming, so more than one application can run at atime

Chapter 1 Basic Concepts

Multitasking

Multitasking means the computer stops doing one task and starts doing another,
asshown inthisfigure. AniRMX task isathread of execution, similar to a
UNIX process.

Task A |
Task B

1. The processor executes Task A.
2. Anevent happens and a task switch occurs. The processor then executes Task B.

3. When Task B finishes, Task A becomes the running task again.

Figure1-1. Task Switchingin a Multitasking Environment

TheiRMX OS manages task switching; it saves the old task's state (context) on the
old task's stack and loads the new task's state before starting execution.

Multitasking and modular programming go hand-in-hand. Y ou start by breaking
down alarge, difficult application problem into successively smaller and simpler
problems, grouping similar problems where you can. Finally, you solve the small
problems in separate program modules. In the iRM X multitasking environment, each
moduleis atask.

Multitasking simplifies building an application. When you need a new function, you
just add a new task.

See also: Tasks, Chapter 2 in this manual;
tasks, System Concepts

When you combine multitasking with preemptive, priority-based scheduling, your
application can switch from relatively unimportant tasks, to important tasks, to
critical tasks and back again, as appropriate.

Introducing the iIRM X Operating Systems Chapter 1 3

Preemptive, Priority-based Scheduling

In apreemptive, priority-based system, some tasks are more critical than others.
Critical tasksrun first and can preempt less critical tasks, as shown in thisfigure.

Event g g

Task A |
Task B

-

1 2 3

1. Task A, a low-priority task, prints data accumulated from a robotic arm in report form.

2. Task B, a high-priority task, controls the robotic arm. If the arm needs to move while
Task A runs, Task B preempts the print task, then starts and moves the arm.

3. After Task B repositions the arm, Task A finishes printing.

Figure 1-2. Multitasking and Preemptive, Priority-based Scheduling

Multitasking enables your application to respond to internal events and external
interrupts, such as clock ticks from the system clock or receiver ready from a serial
device, based on how critical they are. Y ou determine the priority of tasksin your
application; the IRMX OS provides the task scheduling algorithms.

See also: Scheduling tasks, Chapter 2 in this manual;

scheduling, System Concepts
When you add interrupt processing to multitasking and preemptive, priority-based
scheduling, your application can respond to interrupts as they occur. Y our
application becomes event-driven; it does not waste time polling for interrupts.

4 Chapter 1 Basic Concepts

Interrupt Processing

Interrupts are signals from devices such as a malfunctioning robot or interactive
terminal. Y ou connect interrupt sources to the processor through Programmable
Interrupt Controllers (PICs).

With interrupt processing, your application can handle interrupts occurring at random
times (asynchronously) and can handle multiple interrupts without losing track of the
running task, or those tasks waiting to run. Interrupts can occur while the processor
is executing either an unrelated task or arelated task, as shown in the next figure.

)
78\ j
Event @ < PIC Processor

Task A
Task B
IRQ signal s
IRQ handler 4
A
1 2 3

1. Task B, the running task, repositions the robotic arm.
2. The robotic arm malfunctions and sends an interrupt signal through the PIC.

3. As soon as it receives the signal, the microprocessor stops the running task and starts an
interrupt handler. The interrupt handler runs in the context of Task B. No new task is
loaded; Task B's state does not need to be saved. It remains loaded in RAM until the
scheduler runs it again. Task A, the print task, is still waiting to run.

Figure1-3. Interrupt Handler Interrupting a Task

Typically, you have numerous sources of interruptsin your application. Some of
them, like the malfunctioning robotic arm, are critical; some of them are not. You
assign interrupt levels (which map directly to priorities) to the interrupt sources by
the order in which you connect your external sourcesto the PIC. TheiRMX OS
handles more critical interrupts first, and keeps track of which interrupts occurred,
the order in which they occurred and which ones have not been handled.

Interrupt handlers can perform very limited operations, so you typicaly write an
interrupt handler to signal an interrupt task. Theinterrupt task's priority is
automatically assigned, based on the interrupt level of the external source.

Multitasking and interrupt processing simplify expanding an application. Because of
the one-to-one relationship between interrupts and tasks, you just add a new task
when you need to respond to a new interrupt. Interrupt processing is also more

Introducing the iIRM X Operating Systems Chapter 1 5

efficient, since your system spends all of its time running tasks, not polling for
interrupts.

The Kernel offers a different model for interrupt handling.

See also: Nucleus interrupt and exception handling, Chapter 2 in this manual;
Kernel features, Chapter 2 in this manual;
interrupts, System Concepts,
interrupt_task, Driver Programming Concepts

Predictable Response Time

TheiRMX OS provides deterministic response: there is a predictable, worst-case
response time to a high-priority interrupt. The OS does thisin two ways: interrupt
response time and task switch time.

Interrupt Response Time. Thisisthe time between a physical interrupt happening
and the system beginning to execute the interrupt handler. A predictable worst-case
response time to interrupt processing ensures that incoming data is handled before it
becomesinvalid.

Task Switch Time. A task switch is saving the data registers, stack and execution
pointers (the task state) of one task, and starting another task. Minimized task switch
time also provides a predictable response time to a high-priority task.

Since the typical response to an interrupt isinvoking a handler and then performing a
task switch to an interrupt task, the deterministic response time includes both the
interrupt response and task switch times.

Real -time response does not mean instantaneous execution. A high-priority task that
isvery long and performs many calculations will use as much processor time to
execute on areal-time system as on any other system. The length of time instructions
take to execute is a function of processor speed.

6 Chapter 1 Basic Concepts

Multiprogramming

TheiRMX OS supports multiprogramming: running several unrelated applications
on asingle system, as shown in the next figure.

Application A Application B
M

0

AIA

1. Application A contains all the tasks that relate to the robotic arm, including the print task. It
may also contain tasks that control other devices on the factory floor.

2. Application B contains all the tasks relating to another application that controls a chemical
mixing system in another part of the factory.

Figure 1-4. Multiprogramming

To take full advantage of multiprogramming, you provide each application with a
separate environment: separate memory, files, and other resources. TheiRMX OS
providesthiskind of isolationin ajob. Typically, ajob includes agroup of related
tasks and the resources they need, as shown in the next figure.

Introducing the iIRM X Operating Systems Chapter 1 7

Typically a job includes:
1. A group of related tasks.
2. The memory the tasks need.

2. An object directory where you can catalog task resources.

Figure 1-5. Resourcesin a Job

Y ou decide what jobs to include in your system. TheiRMX OS coordinates the use
of resources within and between jobs so independently-devel oped applications do not
cause problems for each other.

See also: Jobs, Chapter 2 in this manual;
jobs, System Concepts

Multiprogramming simplifies adding new applications; you can modify your system
by adding new jobs (or removing old ones) without affecting other jobs. In addition,
you get more from your hardware investment by running several applications onit.

Chapter 1 Basic Concepts

Objects and System Calls

TheiRMX OS provides basic objects and maintains the data structures that define
these objects. The basic objects are building blocks that application programs
manipulate. The characteristics of the objects are easy to learn and use; they are
well-defined and consistent.

This figure shows the iIRM X -provided object types.

Job 1TTTTTTTTR Task
Segment Memory Buffer N
Pool Pool

)
u
Mailbox .ﬁ, Port @
Semaphore % Region .

User

—9:)— Connection

OMO02650

The icons for the object types shown in this illustration appear in all illustrations in this
manual.

Figure 1-6. Object Types

Introducing the iIRM X Operating Systems Chapter 1

Each object type, such as a mailbox, has a specific set of attributes or characteristics.
Once you learn the attributes of a mailbox, you know how to use all mailboxes. Each
object also hasits own set of related system calls.

See also: Object types, Kernel objects, Chapter 2 in this manual;
I/0 system objects, Chapter 3 in this manual;
Individual object chapters, System Concepts

Object-based programming, which concentrates on the objects and the operations
performed on them, is compatible with modular programming. Typically asingle
task performs only a few related functions on a few objects.

Intertask Coordination and Communication

10

iRMX exchange objects are mailboxes, semaphores, regions, and ports. They enable
asynchronous tasks, which run in arandom order, to coordinate and communicate
with one another by:

« Passing messages
« Synchronizing with each other
« Mutually excluding each other from resources

Messages. Tasks may need to exchange data, messages, or object tokens (object
addresses and attributes).

For instance, one task may accumulate input from aterminal until it receivesa
carriage return. It uses an exchange object to send the entire line of input as data to
another task that decodes the input.

Chapter 1 Basic Concepts

This figure summarizes how you can solve a problem that requires routing severa
types of input into several types of output using a mailbox object. One mailbox and
one manager task can handle messages from multiple input and output tasks.

Input
tasks
Messages
A
—> 1 Output

tasks
B —» 5 Messages3 _> D
C
~—= —» E
Manager

task

1. System calls move data from input tasks A and B to a waiting mailbox.

2. Task C, the manager task, waits at the mailbox and determines which messages go to
which output tasks. If another message arrives during processing, the message waits in
the mailbox queue until the manager task can handle it.

3. The individual output tasks receive their data at their mailboxes and process it.

Figure 1-7. Object-based Solution for M essage Passing

Synchronization. One task may need to run before another task. It can use an
exchange object to signal the second task when it has completed. For example, the
task that creates the transaction summary in an automated teller application shouldn't
run until after the tasks that handle withdrawals and deposits have run. The
transaction summary task must be synchronized with the other tasks.

Introducing the iIRM X Operating Systems Chapter 1 11

12

TheiRMX OS provides severa objects for synchronization that can accommodate a
wide variety of situations. The next figure illustrates using a semaphore to send a
signal to another task.

AL,%<_ZB

Task A, the running task, preprocesses some data. Task B needs to use the data after Task A
finishes.

1. WhenTask A finishes, it sends a signal (not data) to the semaphore.

2. When Task B receives the signal, it processes the data.

Figure 1-8. TasksUsing a Semaphorefor Synchronization

Mutual Exclusion. Withthe iRMX OS, multiple tasks can concurrently access the
samefile. Thisisuseful in amultitasking system, such as a transaction processing
system where alarge number of operators concurrently manipulate a common
database.

If each terminal is driven by a distinct task, the only way to implement an efficient
transaction system is to have the tasks share access to the database file. Occasionally,
when tasks are running concurrently, the situation in this figure arises.

s | LS e e 4

1. Task A, the running task, reads some data from the database and does computations
based on the data.

2. Task B tries to preempt Task A and update the data while Task A works on it. Mutual
exclusion, provided by a region, prevents two tasks from accessing the same data
concurrently.

Figure 1-9. Multitasking and Mutual Exclusion

TheiRMX OS includes regions to provide mutual exclusion. Unless Task B is
prevented from modifying the data until after Task A has finished, Task A may
unknowingly use some old data and some new data to produce an invalid
computation. It should, however, read and compute the new data after Task B
updatesit. Your code can use aregion to protect the data from being accessed by
both tasks at the same time. Thisis called mutual exclusion.

Chapter 1 Basic Concepts

Memory Pools and Memory Sharing

Memory pools are the basis of iIRMX memory management. The initial memory pool
isall the memory available to the application (that is, free space memory). Itis
managed by the OS and allocated to the application on request.

Theinitial memory pooal is subdivided into smaller pools as application jobs and
segments are created. Each job in the application has its own subpool, with a
minimum and a maximum size. Once the minimum pool isallocated to ajob, it is
not available to other jobs. Astasksin the job create and delete objects, the job pool
may approach its maximum size, then return to its minimum. This provides dynamic
memory allocation of the memory pool as jobs require less memory.

Dynamic memory allocation enables jobs to take advantage of one job freeing
memory while another needs more. When you delete ajob, its memory returnsto the
initial memory pool.

Dynamic memory allocation is also useful within ajob. All thetasksinajob
compete for memory in the job's memory pool. Some tasks periodically need lots of
memory to improve efficiency, for example atask that allocates large buffersto
speed up input and output operations. These tasks can release memory for other tasks
when they complete, as shown in this figure.

1. Tasks A and B use memory in the job's memory pool for objects they create.

2. Task C completes, and then deletes its objects and releases its memory to the job's
memory pool.

3. Task D requests memory.

Figure 1-10. Dynamic Memory Allocation between Tasks

Introducing the iIRM X Operating Systems Chapter 1 13

Virtual Memory Allocation With the Paging Subsystem

If you use anon-Intel compiler that produces flat model applications instead of
segmented applications, you include the Paging Subsystem in the OS. Thisjob
manages the processor in paging mode, which treats memory differently from the
segmented model used historically by iRMX applications. With paging enabled, flat
model applications allocate virtual memory, which isindirectly accessed through
page tables instead of in separate segments.

Flat model applications use a different set of system callsto allocate memory than
segmented applications. However, the job still manages a pool of memory, which the
individual tasks can use as described above. With the Paging Subsystem, you can

still run existing segmented applications (or write new ones) along with flat model
applications. Flat and segmented applications must reside in different jobs.

See also: Paging, Flat model, Programming Techniques
paging.job, flat.job, System Configuration and Administration

System Calls

14

EachiRMX object has an associated set of system calls. programmatic interfaces
you use to manipulate objects or control the computer's actions. System calls for one
object type cannot manipulate objects of another type. This protects the objects from
inappropriate modification.

Most system calls have parameters, such as values and names, that you can set to
tailor the call's performance. Some of the functions you can do with system calls are:

create_mailbox Creates a new mailbox

set_priority Sets atask's priority

send_message Sends a token or data to a mailbox

a read Reads a data file or the contents of a directory

Most system calls validate the parameters you enter; a condition code returned by the
call indicates whether you used invalid parameters. There are also condition codes
for trying to read or write segments that you do not have access to and for trying to
write past the end of a segment.

Y ou can add new objects and the system calls that manipulate them to the iIRMX OS
if your application requires them. Objects and system calls you create can be shared
by jobs.

See also: System call summary tablesin Chapter 1 of System Call Reference;

Chapter 1 Basic Concepts

Operating System Layers

TheiRMX OSisacallection of layers, or subsystems. All layers have their own
system calls. Some layers have their own objects; some use the objects from
other layers.

Each layer builds on the capabilities of the previous ones. These layersare al
included iniRMX for PCs and DOSRMX. The Bootstrap Loader isincluded with
theiRMX |1l OSand iRMX for PCs.

On ICU-configurable systems, you choose which layers you need to create a tailored
OS. These are the layers and their functions:

iRMK Kernel A part of the Nucleus that provides high-performance task
and time management and message passing. The Kernel
does not provide the protection that the Nucleus does. The
Kernel hasits own objects.

Nucleus The heart of the OS, built on the Kernel, and is the only
required layer. It provides most of the objects that the other
layersuse. It schedules jobs and tasks, controls accessto
system resources, communicates between tasks and enables
the system to respond to interrupts.

Basic I/0O System Includesfile and device drivers and data tables that define

(BIOS) 1/0O devices. Thislayer performs /O functions; creates and
deletesfiles, and controlsfile access. The BIOS controls the
Connection and User objects.

Extended I/O System A higher-level 1/0 system that provides all the BIOS features

(EI0S) plus I/O buffering and overlapping, logical names for files
and devices, and automatic reattachment of devices. The
EIOS controls the 1/0O job object.

Application Loader L oads programs from secondary storage into memory.

(AL)

Human Interface Provides multiuser support with logon/logoff and user job

(HI) creation. It isthe parent job for applicationsin DOSRMX
and iRMX for PCs. It provides commands for controlling
application systems from terminals. Y ou can create
additional commands for your application.

Universal A high-level interface between the OS and the application.

Development It enables compilers, language trandators, and other software

Interface (UDI) development tools to run.

Introducing the iIRM X Operating Systems Chapter 1 15

Shared C Library Provides functions and macros that enable ANSI-standard C

programs to perform common operations concurrently. The
Shared C Library provides support for some non-Intel C
compilers.

Paging Subsystem Supports flat model (non-segmented) applications by

providing virtual memory in aflat address space; it manages
the processor in paging mode.

Bootstrap L oader Loadstheinitial OS and the application'sinitial jobs from

secondary storage into RAM on the hostsin the system, then
starts the system.

Thisfigureillustrates the layers and the rel ationships between them. The UDI also
accesses the Application Loader.

Application Human Interface UDI. and
C Library
Loader
EIOS
iRMX-NET and BIOS
TCP/IP VM86 Dispatcher
(IRMX for Windows and PCs)
- iRMX Nucleus
iRMK Kernel

iRMX is a registered trademark of Intel Corporation. OMO2727

Figure 1-11. The Layersof theiRMX Operating Systems

Example Code and Demonstration Programs

The /rmx386/demo subdirectory in the iRM X directory structure contains many
programming examplesin C, PL/M and assembler. Y ou should use and modify the
example code when you develop your applications.

16

There are examples of:

Basic multitasking, creating and catal oging objects
Message passing

Interrupt handling

Managing terminal 1/0

Programmatic network access

Chapter 1 Basic Concepts

e Third-party compiler support

See also: Programming Techniques for an explanation of some example
programs,
Real-Time and Systems Programming for PCs, for additional
programming examples

Network Support

TheiRMX OS software supports networking of independent computers connected
together to exchange information. iIRMX-NET enables iRM X-based computers to
communicate with OpenNET servers and clients running other OSs, as shown in this
figure.

'

I,—-_-?

Figure 1-12. Networked Systems

The basic networking software isiRMX-NET, a part of Intel's family of OpenNET
Local Area Network (LAN) products and TCP/IP, which enables interoperability
with most other OSs.

See also: Networking, Chapter 7 in this manual;
Network User's Guide and Reference;
TCP/IP and NFSfor the iRMX Operating System

32-Bit Architecture, Addressing, and Protection

TheiRMX OS supports 4 gigabytes (Gbyte) physical addressing, 32-bit addresses
and data types, and the addressing modes shown in thisfigure.

Introducing the iIRM X Operating Systems Chapter 1 17

4 Ghyte
PVAM

1 Mbyte
Real Mode

OMO02651

Figure 1-13. Real Mode and PVAM

Real mode Enables addressing 1 Mbyte of physical memory. Real
mode isthe initial operating or bootload mode for supported
Intel microprocessors. During iRMX initialization, the
microprocessor is switched into protected virtual address

mode (PVAM).
Protected virtual Enablesthe iIRM X OS to take advantage of 32-bit
address mode architecture, the full 4 Gbytes of memory, and advanced
(PVAM) protection features. It also enables real mode programsto

run concurrently in Virtual 86 (VM86) mode. DOSRMX
runs in protected mode, but switches to VM86 mode to run
DOS and DOS applications.

Paging mode A flat model application uses near pointers only, in avirtua
segment that can span the entire 4 Gbyte address range.

18 Chapter 1 Basic Concepts

The protection features of the microprocessor includes:

« Memory segment length protection that prevents segment accesses from crossing
segment boundaries. Writing too much data will not corrupt the system.

« Accessrights protection that enables tasks to define access to a segment and
prevents access to those segments in other than the defined mode.

« When the Paging Subsystem is enabled, the processor manages memory through
page tables. In this mode, the OS provides protection by isolating memory
between jobs with an unallocated page table entry. An attempt to access beyond
the allocated memory results in a processor-generated page fault.

« Stack-overflow detection that prevents out-of-control tasks from overflowing the
stack and overwriting important information.

« Invalid-selector detection that prevents tasks from referring to segments of
undefined memory.

See also: Programmer's Reference Manual for your microprocessor for
information on the internal hardware features of the microprocessor

Bus Architecture Support

TheiRMX OS supports these industry-standard bus architectures: PC, Multibusl,
and Multibus 1.

PC architecture benefits and features for iIRMX for PCs and DOSRMX systems
include:

« A 32-bit wide (EISA or PCI) or 16-bit wide (I1SA) data word across the bus
+ A widely-installed base

« A low-cost platform for iIRMX development and target systems

Multibus | architecture benefits and features include:

« A 16-bit wide data word across the bus

+ A widely-installed base

« Intelligent board-to-board communications using hardware signals and similar
signal handling techniques

Multibus Il architecture benefits and features include:
« A 32-bit wide data word across the bus.

« Enhanced board-to-board communication through additional internal buses and a
well-defined data transfer protocol. The internal buses enable virtual interrupt

Introducing the iIRM X Operating Systems Chapter 1 19

processing so any board can communicate with any other, regardless of hardware
limitations.

- Efficient bus use through a data packet (small portion of data) transfer scheme.
Transferring data by packets prevents a slower device on the bus from
monopolizing all the bustime: the busis not limited in speed to the slowest
deviceusingit.

« Support of multi-processor systems for higher performance.

IRMX for PCs Special Features

iRMX for PCs can reside with DOS on a DOS partition, or it can reside on an iRMX
partition.

iRMX for PCs provides these features:

« Canuse ROM BIOS functions to control the system mass storage devices
(diskettes, hard disks, and CD ROMs)

+ CanusenativeiRMX driversto control the system mass storage devices
(diskettes, hard disks, and CD ROMs)

« Contains anative DOSfile driver and can read/write any local DOS
(FAT12/FAT16) drive (diskette, primary DOS partition, Extended DOS
partition) without the presence of DOS

+ Isacost-effective solution for many applications.
See also: Installation and Sartup

20 Chapter 1 Basic Concepts

Nucleus and Kernel Features

Nucleus functions include:

« Managing objects that control access to system resources and communicate
between tasks

« Scheduling tasks based on priority

« Handling interrupts based on interrupt level
Kernel functionsinclude:

« Controlling Kernel objects

« Managing tasks

« Managing time

Nucleus Objects

The Nucleus provides these objects.

« Jobs are the environments where tasks do their work. A job contains:
— Tasks
— Whatever objects the tasks create
— Anobject directory for cataloging objects
— A memory pool that provides memory for the tasks to do their work

« Tasksdo the work of the system and respond to interrupts and events.

« Memory segments are addressable, contiguous blocks of memory that tasks can
use for any purpose.

» Buffer poolsand Heaps are holding areas for dynamically allocatable memory.

« Exchange objects that tasks use to pass information are;
— Mailboxes that enable tasks to pass messages and data
— Semaphores that enable tasks to synchronize
— Regionsthat provide mutual exclusion
— Portsthat synchronize operations and pass messages

« Extension objects let you build new types of objects.
« Composite objects include the extension and whatever existing objects you need.

Introducing the iIRM X Operating Systems Chapter 2 21

Jobs

22

Objects are data structures that occupy memory. Each object type has unique
attributes, described in the next sections. Each object has a token that uniquely
identifiesit. The maximum number of objects allowed in the system at any one time
is 8192 (2000H).

See also: Object directories, tokens and descriptors later in this section;
I/0 system objects, Chapter 3 in this manual;
Individual object chapters and OS extensions, System Concepts

A jobisaniRMX abject that contains tasks and all the resources they need. iIRMX
jobs that you can create have these characteristics:

« Jobs make up your application.
« Jobsare passive; they cannot make system calls.
« Jobsinclude one or more tasks.

« Jobs provide resource isolation for their tasks, particularly for dynamically
allocated memory. Two tasks of one job compete for the memory associated
with their job. Tasksin different jobs typically do not.

« Jobsprovide error boundaries. Errorswithin one job do not corrupt other jobs or
the OS because they have separate memory pools.

« When you delete jobs, the objects associated with them also are del eted.
Y ou can create several kinds of jobs:

« Dependent or child jobs are children of their parent job.

« Loadable jobs are children of the HI.

« Firstlevel jobs (configurable in the ICU) are children of the root job.

+ |/Ojobsare children of the EIOS.

Thejobsin asystem form ajob tree. Each job except the root job obtainsits
resources from its parent as shown in the next figure.

Chapter 2 Nucleus and Kernel Features

__\root _:
. BIOS | . ElOS | CHE
:Lapplication'
OM02701

1. Initially, the root job owns all of free space memory, which is allocated as other jobs are
created.

2. Some of the OS layers are first level jobs, or children of the root job. Applications can also
be first level jobs.

3. Applications loaded at system initialization are children of the HI. In DOSRMX and iRMX
for PCs, this is how you typically load applications.

Tasks in jobs can create other jobs, enlarging the tree.

Figure 2-1. JobsinaJob Tree

There are system calls to create and delete jobs, obtain information about ajob's
children, and control ajob's memory poal.

See also: Jobs, System Concepts;
Jobs in Nucleus system call summary, Chapter 1 of System Call
Reference

Introducing the iIRM X Operating Systems Chapter 2 23

Object Directories

Each job has an associated object directory. Asatask creates an object, the Nucleus
creates atoken for it. A task can catalog an object, with its token and a
corresponding name, in its own job or any other job it knows about. Typically, you
catalog objects in the root directory if you want them accessible from severa other
tasks. Other tasks that know the name can use the object directory to look up and
access the object, as shown in thisfigure.

1. Task A catalogs an object in its own job's object directory.

2. Task B looks up the object, such as a mailbox, in the object directory in order to use it.
Now, Task A can send a message to the mailbox and Task B can receive it.

Figure 2-2. TasksUsing the Job's Object Directory

Objects that are cataloged can also be shared across job boundaries.

See also: Object directories, tokens and descriptors in this chapter

24 Chapter 2 Nucleus and Kernel Features

Memory Pools

Each job has an associated memory pool. Thisisan amount of memory, with a
specified minimum and maximum, that is allocated to the job and its children. The
minimum memory is always contiguous. Usually, all memory needed for tasksto
create objectsin the job comes from the job's memory pooal, as shown in thisfigure.

Tasks A and B obtain memory from the job's memory pool.

Figure 2-3. TasksUsing Their Job's Memory Pool

If there is not enough contiguous memory currently available (up to the maximum
size of the job's memory pooal), the OS tries to borrow from the job's parent, and on
up thejob tree if necessary. In general, you should allocate enough memory so that
jobs do not need to borrow memory or create additional segments, since both of these
require additional time.

IntheiRMX I11 OS, you can also statically allocate memory to jobs. But once the
memory is allocated, it cannot be freed for other jobs. The total memory requirement
of the system is always the sum of the memory requirements of each job. Static
memory allocation uses more memory than dynamic allocation, but may be safer.

See also: Memory pools, System Concepts;
Segments and memory pools in Nucleus system call summary, Chapter
1 of System Call Reference

Introducing the iIRM X Operating Systems Chapter 2 25

Tasks

Tasks are the threads of execution or active, code-executing objects in a system.

Taskstypically respond to external interrupts or internal events. An external interrupt
can be akeystroke or a system clock tick; an internal event can be the arrival of a
message at a mailbox. Tasks have both a priority and an execution state (whether the
task is running or not).

There are system callsto create tasks and delete tasks, view and manipulate atask's
priority, control task readiness, and obtain task tokens.

See also: Nucleus interrupts, events and exceptions, in this chapter;
tasks, System Concepts,
tasks in Nucleus system call summary, Chapter 1 of System Call
Reference

Memory Segments

26

Segments provide memory for tasks to use for many purposes, including
communicating and storing data. A task requests a segment of whatever size it needs.
The segment is usually allocated from the memory pool of the task's job, as shown in
Figure 2-3. If thereis not enough memory available (up to the maximum size of the
job's memory poal), the Nucleus tries to borrow from the job's parent, and on up the
job treeif necessary.

There are system calls to request a memory segment of a certain size, delete a
segment, and find out the size in bytes of a segment.

See also: Segments, System Concepts,
segments and memory poolsin Nucleus system call summary, Chapter
1 of System Call Reference

Chapter 2 Nucleus and Kernel Features

Buffer Pools and Heaps

Buffer pools provide memory for tasks. A buffer pool isa set of existing memory
segments that you can dynamically allocate.

Heaps provide memory for tasks. A heap isa single memory segment portion of
which you can dynamically alocate as pointers to the beginning of each allocation.

Tasks request buffers, use them, and then release them back to the buffer pool, which
manages them, as shown in thisfigure. Using a buffer pool cuts down on system
overhead because allocating existing buffersis faster than creating and deleting

memory segments.

I [N\ :
I A , !
1 gl \
! 1
! 1
! 1
! 1
! 1
.]
1
| - B |
! |

I
| N |
| ¢ 4—k —C - !

I
/N [
| 2 ' / :
1

1. Tasks A and B are using buffers in the buffer pool.

2. Task Cis releasing its buffer. The buffer can be reallocated to another task.

Figure 2-4. TasksUsing a Buffer Pool

There are system callsto create a buffer pool, fill it with buffers, view the attributes
of abuffer pool, and delete it.

Tasks request allocations from a Heap, use them, and then release them back to the
Heap, which manages them. Using a Heap cuts down on system overhead since there
are no segment creations or deletions involved when requesting and/or release Heap
allocations.

See also: Buffer pools, System Concepts;
Heaps, System Concepts,
buffer poolsin Nucleus system call summary, Chapter 1 of System Call,
Heaps in Nucleus system call summary, Chapter 1 of System Call
Reference

Introducing the iIRM X Operating Systems Chapter 2 27

Exchange Objects

The four Nucleus exchange objects are mailboxes, semaphores, regions, and ports.

Mailboxes

Mailboxes provide intertask communication between tasks in the same job or in
different jobs. They can send information and, since atask may have to wait for
information before executing, they can synchronize task execution. There are two
types of mailboxes:

Message mailboxes Send and receive object tokens.
Data mailboxes Send and receive data.

This figure shows how tasks use a message mailbox to send a token for a segment.

OM02705

1. Task A creates a segment and puts data into the segment.
2. Task A sends the segment token to a mailbox.

3. Task B waits to receive the segment token at the mailbox. You can specify whether or not
Task B should wait if the token isn't in the mailbox.

4. Task B obtains the token and receives the data in the segment.

Figure 2-5. TasksUsing a M essage Mailbox

Mailboxes have task queues, where tasks wait for messages, and message queues,
where messages wait to be given to tasks. The task queue may be FIFO- or priority-
based; the message queue is FIFO-based.

Y ou use the same system calls to create and del ete message and data mailboxes.
However, you use different calls to send and receive messages or data.

See also: Mailboxes, System Concepts;
Mailboxes in Nucleus system call summary, Chapter 1 of System Call
Reference

Semaphores
Tasks use semaphores for synchronization.

28 Chapter 2 Nucleus and Kernel Features

A semaphoreis a counter that takes positive integer values. Tasks send units to and
receive units from the semaphore. When atask sends n units to a semaphore, the
value of the counter isincreased by n; when atask receives n units from a semaphore,
the value of the counter is decreased by n.

Thisillustration shows a typical example of a binary (one-unit) semaphore used for
synchronization.

1. Task A needs to do some work before Task B starts running. Task A creates a semaphore
with one unit. To enable synchronization, Tasks A and B should request and obtain the
unit before running.

Task A obtains the unit. Because the semaphore has no units, Task B cannot run.

2. When Task A completes, it returns the unit to the semaphore. Task B can now obtain the
unit and begin running.

Figure 2-6. TasksUsing a Semaphorefor Synchronization

Semaphores enable synchronization; they don't enforceit. If tasks do not request and
obtain units from the semaphore before running, synchronization is not achieved.
Each task must send a unit back to the semaphore when it is no longer needed.
Otherwise, tasks can be permanently prevented from running.

Semaphores can also provide mutual exclusion from data or aresource like this:

1. Task A requests one unit from a binary semaphore, and uses the resource when it
receives the unit.

2. Task B requests one unit from the semaphore before using the resource. Task B
must wait at the semaphore until Task A returns the unit.

Semaphores enable mutual exclusion; they do not enforce it.

Semaphores have a queue where tasks wait for units. The queue may be FIFO- or
priority-based. There are system calls to create and delete semaphores, and to send
and receive units.

See also: Semaphores, System Concepts;
Semaphoresin Nucleus system call summary, Chapter 1 of System Call
Reference

Introducing the iIRM X Operating Systems Chapter 2 29

Regions

Ports

30

A region is abinary semaphore with special suspension, deletion, and priority-
adjustment features. Regions provide mutual exclusion from resources or data; only
one task may control aregion at atime; only the task in control of the region can
access the resource or data. Once atask gains control of aregion, the task cannot be
suspended or deleted until it gives up control of the region. When the running task no
longer needs access, it exits the region, which enables a waiting task to access the
resource or data.

Regions can have a priority queue, which you should use. Then, if a higher-priority
task tries to enter a busy region, the priority of thetask intheregionis raised
temporarily so that it equals the waiting task's priority. This helps prevent priority-
inversion, as shown in this example:

1. Task Aistherunning task. Itisalow-priority task with control of aregion,
accessing some data. The region has a priority queue. The only other task that
usesthe dataiis Task C, a high-priority task that is not ready to run.

Task B, amedium-priority task, becomes ready to run and preempts A.

Task C becomes ready to run and preempts B. It runs until it tries to gain control
of theregion. Task A'spriority israised to equal Task C's priority until Task A
releases the region; then its priority returnsto itsinitial level.

4. When Task A releases the region, Task C receives control of the region and uses
the data. When Task C completes, Task B runs.

Without a high-priority queue, Task B would have preempted A while A had control
of the region; C would have preempted B, but would have been unable to use the data
because A had control of the region.

Regions require careful programming to avoid deadlock, where two tasks need access
to two resources protected by regions at the same time and one task has control of
one region while the other task has control of the other region.

Regions have atask queue where tasks wait for control. The queue can be FIFO- or
priority-based. There are system callsto create, control, and delete regions.

See also: Regions, System Concepts;
Regions in Nucleus system call summary, Chapter 1 of System Call
Reference

Ports have two uses:

+ Message-passing on all platforms
« Signal passing to synchronize Multibus |1 operations

Chapter 2 Nucleus and Kernel Features

On al platforms, you can use message ports for short-circuit message passing. Ports
enable efficient communication between tasks on the same host, in the same or
different jobs: amessage is copied from the source buffer in the sending task to the
destination buffer in the receiving task. Y ou use buffer poolsto provide fast storage
allocation for messages received at ports.

On Multibus |1 systems, you can use ports between host boards in the system,
including hosts that are not running an iIRMX OS. Each port is an access point into
the bus, through which you can send or receive messages or send signals.

This figure shows communication between tasks on different hostsin a Multibus 1
platform. Taskson different hosts must each have accessto a port. Each port must
have a socket identifier: a combination of the port and host IDs.

0 0

10 [E

A

¢ s

OM02707

1. Task Ais the sending task. It sends the message to a port on its host. The message
travels on the bus.

2. Task B is the receiving task. It receives the message at a port on its host.

Figure 2-7. TasksUsing Portsfor Communication on a Multibus |1 Platform

Ports provide more functionality and require more programming effort than
mailboxes. There are system calls to create, attach, manipulate, detach, and delete
ports. There are several system callsto send, receive, and cancel messages.

See also: Ports, System Concepts;
Communication service callsin Nucleus system call summary, Chapter
1 of System Call Reference

Extension Objects and Composite Objects

If your system requires an object type that is not supplied by theiRMX OS, you can
add a new object type by extending theiRMX OS. A new object type is an extension
object. Each new extension object type requires its own OS extension.

Introducing the iIRM X Operating Systems Chapter 2 31

Each new extension object type must be manipulated by its own system calls; these
calls should not be used for other object types. There can be numerous objects of the
given type and they must have the same form and function within the type.

An OS extension that you write for an extension object typeis called a type manager.
Each extension object type requiresits own type manager that must provide system
calsto:

« Create objects of the new type
« Manipulate the objects as required
« Deletethe objects

Y ou can write OS extensions to add utilities to the OS or to provide some additional
functionality. For example, in designing a system to control heat-saving blindsin a
greenhouse, you might need a data structure that includes information from a photo-
sengitive cell measuring the sunlight falling on the greenhouse, and from a thermostat
reading the temperature. The application could use this data to control when to open
or close the blinds. This data structure is an extension object. The system calls that
read or write its contents are part of the type manager.

There are system calls to create and delete an OS extension.

See also: Type managers, extension objects, operating system extensions, System
Concepts,
extension objects in Nucleus system call summary, Chapter 1 of System
Call Reference

Individual objectsthat you create from the extension object type are composite
objects. Composite objects are collections of existing objects (ports, buffer pools,
etc.); the OS treats the result as a single object.

There are system calls to create, manipulate, and del ete composite objects.

See also: Composite objects, call gates System Concepts;
Composite objects in Nucleus system call summary, Chapter 1 of
System Call Reference;
vo (view object) command in System Debugger Reference for
information on composite objects

Object Directories, Tokens and Descriptors

32

The Nucleus manages objects using:
« The object directory of each job
« Thetoken for each object, a 16-bit selector or handle for the object

« A descriptor that defines the physical address and attributes of the object

Chapter 2 Nucleus and Kernel Features

The OS assigns each object a descriptor when it is created. Descriptors contain an
object's attributes, such asits size and access type.

All descriptors reside in descriptor tables used by the processor. There are three
types of descriptor tables:

Global Descriptor Contains up to 8K of descriptors. Each descriptor contains

Table (GDT) the physical address used by the system to access an area
of memory. Every task in the system uses descriptorsin
the GDT. Thereisonly one GDT for the entire OS.

Local Descriptor Arereserved for system use.

Tables (LDTYs)

Interrupt Descriptor ~ Contains the addresses of up to 256 handlers to execute
Table (IDT) when events occur. Addresses are entered automatically

into the IDT when the system is created and you can enter
them dynamically using a system call.

Call gates are special descriptorsin the Global Descriptor Table. They enable entry
into the iRM X OS and OS extensions, and are established when the system is
configured. They redirect flow within atask. Each system call, including those you
write, uses acall gate to transfer control to the iIRMX system call routine requested.

See also: Tokens, descriptor tables, System Concepts;
Descriptorsin Nucleus system call summary, Chapter 1 of System Call
Reference;
Reference manual for your microprocessor for more details

Nucleus Task Scheduling

The Nucleus switches between tasks and makes sure the processor is always
executing the appropriate task. The Nucleus maintains an execution state and a
priority for each task.

Priority
The priority is an integer value from 0 through 255, with 0 being the highest priority.
Range Usage
0-16 Used by the OS for hardware exceptions. Cannot be masked.

56 - 127 Used by the OS for servicing external interrupts. Creating a task that
handles internal events here masks external interrupts numerically higher.

128 - 130 Use for tasks that communicate with interrupt tasks.

Introducing the iIRM X Operating Systems Chapter 2 33

131-255 Use for tasks that handle internal events, such as message passing. You
can usually start using round-robin scheduling at about 200.

See also: Round-robin scheduling and Nucleus Interrupt and Exception Handling
in this chapter

Interrupt tasks mask numerically higher levels. When you assign interrupt levels,
give anumerically lower level to interrupts that can't wait, such as seria input, and a
higher level to interrupts that can wait, such as cached input.

Execution State

The execution state for each task is, at any given time, either running, ready, asleep,
suspended, or asleep-suspended.

Tasks run when they have the highest (numerically lowest) priority of all ready tasks
in the system and are ready to run. Tasks can change execution state, as shown in the
next figure.

1
Ready

1)
2

Running
/ 3 \

Asleep |¢—| Asleep/ Suspended
—>» suspended [—

1. Tasks are created in the ready state.

2. The running task, the ready task with the highest priority, does one of these:
. Runs until preempted by a higher priority task that is ready.
. Runs until it removes itself from the ready state.

3. Atask in any state except ready cannot run, even if it has the highest priority.

Figure 2-8. Execution State Transitionsfor Tasks

A task can put itself to sleep or suspend itself directly by using system calls for that
purpose. A task might indirectly be put to sleep by the Nucleusif it makes a
“blocking” call; for example, by waiting at a mailbox until a message arrives. The
Nucleus puts the task in the ready state when the message arrives.

34 Chapter 2 Nucleus and Kernel Features

Round-robin Scheduling

TheiRMX OS also provides round-robin scheduling, where equal -priority tasks take
turns running. Each task gets atime dice, an equal portion of the processor'stime. If
atask has not finished running when its time slice expires, it goes to the end of a
circular queue where it waits until all tasks ahead of it have used up their time dlices,
as shown in thisfigure. You adjust the length of the time dlice and set the priority
level where round-robin scheduling occurs.

Task A |
Task B
Task C

Tasks A, B, and C are of equal priority below the round-robin priority threshold.

1. Task A, the running task, stops running when its time slice expires. Task A’s state is saved
and it moves to the end of the queue.

2. Task B, the ready task, then becomes the running task.

3. Task A runs again when all tasks in the queue finish running expires.

Figure 2-9. Round-robin Scheduling

Of course, a higher priority task will still preempt any running task in the round-robin
queue, regardless of the amount of time left initstime dlice.

Round-robin scheduling cannot guarantee a predictable worst-case response to events
because the number of eventsin the queue varies.

See also: Task priorities, System Concepts

Nucleus Interrupt and Exception Handling

Interrupts and exceptional conditions have special handlers. The Kernel provides
additional interrupt handling capability.

See also: Kernel Featuresin this chapter

Introducing the iIRM X Operating Systems Chapter 2 35

Interrupt Handlers

System hardware invokes an interrupt handler to respond to an asynchronous
interrupt from an external source, based on its entry number inthe IDT. The handler
takes control immediately and saves the register contents of the running task so it can
be restarted later. There are two ways you can service the interrupt:

« Using ahandler alone

« Using ahandler/task combination

Interrupt Handler Alone

Theinterrupt handler alone can process only interrupts requiring very little
processing and time. Handlers without tasks can do these activities:

« Accumulate data from the device in abuffer. The data must have an associated
task to be accessed and used.

« Disablelevels. A handler should only disable levelsfor avery short time and
under special circumstances. For example, a device driver procedure may need
this call to prevent interrupts when resources needed by the driver are being
deleted. Numerically higher levels are disabled anyway.

« Find out what level is currently being serviced. Thisisuseful if one handler
services several interrupt levels.

« Send an EQI signal to the hardware.

By itself, an interrupt handler can only do very simple processing, such as sending an
output instruction to a hardware port to cause alight to blink, indicating the device is
functioning. Handlers can use only afew system calls.

During the time the interrupt handler is executing, all other interrupts are disabled.
Since even very high level interrupts are disabled, it is essential that the handler
execute quickly and exit.

When the handler finishes servicing the interrupt, it sends an EOI to the PIC, restores
the register contents of the interrupted task, and surrenders the processor. The
processor returns to the interrupted task.

Interrupt Handler/Task Combination

36

An interrupt handler/task combination is much more flexible. The handler may do a
small amount of processing, but it typically signalsits corresponding interrupt task to
do most or all of the rest of the interrupt processing. Y ou need to use an interrupt
handler/task combination if the processing requires alot of time or requires system
calls that interrupt handlers cannot use.

Chapter 2 Nucleus and Kernel Features

When there is a specified interrupt task, the handler can put the information it
accumulates into a segment, if one has been set up by the interrupt task. The
interrupt task can access the datain the segment and do whatever is required.

Interrupt tasks have access to the same resources and can use the same system calls
asordinary tasks. The only difference is that interrupt tasks have an interrupt level
assigned by the OS, based on the level of the handler. Ordinary tasks have a priority
which you assign.

In addition to the usual task activities, an interrupt task can also:

« Cancel an assignment of an interrupt handler to an interrupt level
- Wait for an interrupt to occur
- Enable and disable interrupts

This shows how an interrupt task enters an event loop while it waits to service an interrupt.

Interrupt

A

1. The interrupt task initializes when the system starts and starts waiting for a signal when an
interrupt occurs.

2. When signaled, the interrupt task executes the required operations.

3. The interrupt task releases control by waiting for a signal to process the next interrupt.

Figure 2-10. The Task Execution Model

See also: Init_IO procedure and interrupt task, Appendix A in Driver
Programming Concepts for interrupts in random access devices,
inthand and inttask examples under the /rmx386/demo subdirectory for
ademonstration of an interrupt handler and task

Exceptional Conditions
These are sources of exceptions:
« Environmental errors, such astrying to write to a printer that is offline

« Programmer errors, such as making a mistake in a system call

Introducing the iIRM X Operating Systems Chapter 2 37

« Hardware exceptions, such astrying to execute a read/write data segment

Environmental and Programmer Errors

The Nucleus does validity testing and condition checking within system calls. It
generates a condition code whenever it detects an exceptional condition (an error or
something unusual), as well aswhen a call completes successfully. For successful
completion, system calls return 0000H, or the mnemonic E_OK. For afailure, the
code indicates what prevented successful completion. For example, 0002H or
E_MEM returnsif thereis not enough memory to complete the call.

There are two ways to handle exceptional conditions:
« Using an exception handler
« Processing exceptions in the task that issues the system call (inline processing)

Using an exception handler simplifies error processing. When an error occurs,
control transfersto the task's exception handler. The exception handler can be:

« The exception handler you write and specify for the task

« The exception handler you write and specify for the job

« Andefault exception handler provided with the OS

Each exception handler has a mode, which indicateswhen it is called:
« Never, meaning tasks handle all exceptionsinline

« Onprogrammer errors, but all other exceptions are handled inline
« Onenvironmental errors, but al other exceptions are handled inline
« Always

Exception handlers typically use one of these methods:

« Correct the cause of the problem and try again.

« Log the error and continue.

« Delete or suspend the job that caused the error. (The default Intel handler
deletes the job; there are also other supplied handlers.)

The alternative to exception handlersisinline processing. This enables you to
provide special processing for unusual circumstances within atask.
Hardware Exceptions

An error that occurs as a result of a hardware exception also causes an exceptional
condition. Hardware exceptions result from conditions like dividing by O, or when a

38 Chapter 2 Nucleus and Kernel Features

protected mode program tries to access or execute out of a memory segment bounds
or tries to execute a read/write data segment.

If you do not designate an exception handler for hardware exceptions, they can cause
your application to be caught in an infinite loop or be terminated. Y ou can create
exception handlers that process hardware exceptions.

|:| Note

Prior to release 2.2 of the OS, hardware exceptions were not
returned to exception handlers. However, exception handlers now
can receive any hardware exceptions, along with other exceptions.
Y ou must rewrite older exception handlers so that they can deal
with the possibility of receiving a hardware exception.

See also: Exception Handling, hardware exceptions, System Concepts;
Exception handlersin Nucleus system call summary,
Chapter 1 of System Call Reference;
Condition Code list, System Call Reference

Nucleus Messaging Service

TheiRMX Nucleus Messaging Service is ageneral purpose message-exchange
interface.used to communicate between different processes over many media and
between applications and hardware. It enables the abstraction of the low-level
hardware interface to support alarge variety of 1/0 device types and also allows for
layering of 1/0 applications based on a common interface model.

The interface model is based on a unit called a service. Client tasks communicate
with the service using messages which are passed to and from the service via ports.
Messages consist of two parts, a control part and an optional data part, whose format
is defined by the service being used. In general, the control part contains information
which describes the data part and what to do with it.

Services

A serviceisthe base user of the Nucleus Messaging Service model. A service
provides a system-wide interface to a system resource, such as a SCS| interface
service, or anetwork transport service. A client task gains access to the service by
creating a port object associated with that service. The client then communicates with
the service by sending and receiving messages to and from the port.

Introducing the iIRM X Operating Systems Chapter 2 39

Kernel Features

The Kernel provides a set of objects and system calls; some are similar to those in the
Nucleus and some are entirely different. Kernel system calls provide functionality
beyond that of the Nucleus. In most cases, these calls provide higher performance
compared to the equivalent Nucleus calls.

The Kernel provides interface libraries for PL/M, C, and FORTRAN that enable you
to use the same data types for any of these languages. The assembly language
interface is aregister interface that requires additional programming effort.

The Kernel system calls enable you to use these Kernel features:
« Kernel objects

« Kernel task management

« Kernel time management

The Kernel also has more system calls available for interrupt handlers than the
Nucleus.

Kernel Objects

40

The Kernel provides these objects:

« Software alarms (virtual timers) that invoke alarm handlers you write. Alarm
handlers operate in similar fashion to iRM X interrupt handlers.

« Semaphores for synchronization and mutual exclusion. There are three kinds of
Kernel semaphores: FIFO queue, priority-based queue, and Region semaphores.
The region semaphore provides priority adjustment like the Nucleus Region.

« Mailboxes for communication between tasks. Mailboxes have task and message
gueues. The task queues can be FIFO- or priority-based; the message queueis
always FIFO, like the Nucleus.

+ Memory poolsand areas. A Kernel memory pool always spans a contiguous
range of memory. You can create a Kernel memory pool in a specific range.
Tasks share a memory pool for dynamic memory alocation by checking out,
using, and returning memory areas in the memory pool. The memory manager
keeps track of which areas in the pool are currently in use and which are
available. It does not protect an area from unauthorized access and deletion.

Kernel memory pools and areas you allocate are created from iRM X segments;
make sure your jobs have enough memory to handle Kernel requirements.

Y ou must allocate memory for Kernel objects and may allocate memory beyond the
Kernel's needs. Thisisdifferent from iRMX objects, where memory is allocated

Chapter 2 Nucleus and Kernel Features

from the job's pool automatically. Y ou can use this additional memory to store
application-specific state information associated with the object. When you create an
object, the Kernel returns atoken that identifies that object.

See also: Kernel objects, System Concepts,
Kernel system call summary, Chapter 1 of System Call Reference

Kernel Task Management
The Kernel enables you to:
« Control task switching using scheduling locks
« Add task handlersto supply additional OS functions

A running task can use a scheduling lock to protect itself from being preempted in
some cases. |n those cases, atask switch will not occur until the task releases the
lock, even if ahigher priority task isready to run.

Task handlers you write execute when you are creating a task, deleting atask, or
switching to another task. Possible functions that task handlers may include are
saving and restoring the state of coprocessor registers on atask switch, masking
interrupts based on task priority, or implementing statistical and diagnostic monitors.

For example, you can use the task switch handler to determine which tasksin your
system execute most frequently.

See also: Kernel task management, System Concepts

Kernel Time Management
The Kernel enables tasks to:

« Create single-shot alarms and repetitive alarms for a specified time interval and
specify which alarm handler to invoke.

« Specify aclock tick granularity of less than the 10 millisecond granularity
provided by the Nucleus.

See also: Kernel time management, System Concepts

Kernel Interrupt Handling

Unlike the Nucleus, the Kernel provides many system calls that you can usein
interrupt handlers. For example, you can create Kernel semaphores or mailboxesin
an ordinary task, then use Kernel callsto send units or messages from the interrupt

Introducing the iIRM X Operating Systems Chapter 2 41

handler to the ordinary tasks, which execute based on their priority, not on an
interrupt level. Ordinary tasks do not mask interrupts; interrupt tasks do.

When To Use the Kernel

Use the Kernel in these situations:

Only for very well-tested code

For isolated parts of the application, such as signaling ordinary tasks from an
interrupt handler

When performance is critical, such as high-performance, unvalidated sending
and receiving of data mailbox messages and semaphore units

It isagood ideato write, test and debug your application using Nucleus system calls.
When the application is correct, substitute Kernel system calls where appropriate.

The Kernel does not provide the protection and validation features available in the
Nucleus:

Kernel system calls do not validate parameters. Use Nucleus system calls
instead, if you need parameter validation.

The Kernel assumes that all memory reference pointersit receives are valid.
Kernel objects are not protected against unexpected deletion.

The Kernel usesthe flat, 4 Gbyte addressing capabilities of the microprocessor.
It does not use segmentation.

Since the Kernel does not provide a protected and validated environment, it is more
difficult to debug.

See also: Kernel datatypes, Kernel system calls and handlers, System Call

42

Reference;
Kernel, assembly language interfaces to the Kernel, System Concepts

Chapter 2 Nucleus and Kernel Features

BIOS and EIOS Features

Several iRMX OS layers provide I/O operations: the Basic I/0 System (BIOS), the
Extended 1/0O System (EIOS), the Universal Development Interface (UDI), and the
Shared C Library. Each provides a different level of support and unique features.
The EIOS, UDI and Shared C Library use the BIOS in most cases.

See also: UDI, Chapter 6 in this manual;
Shared C library, Chapter 8

I/O System Objects, Logical Names and System
Calls

These are the I/O objects that provide access control and 1/O capability:

e User objectsarelists of user IDs.

« Connection objects are the bonds between afile or device and a task.

« 1/O Jabs are similar to Nucleus jobs, but provide the environment for EIOS
system calls.

There are BIOS, EIOS, and UDI system calls to create, delete, and manipulate 1/0
objects.

User Objects, Users and User Access Control

People access files through tasks; user tasks are tasks requesting accessto files. The
user object can prevent an unauthorized task from accessing afile. User abjects
provide user access control by verifying users, as shown in the next figure.

Introducing the iIRM X Operating Systems Chapter 3 43

B o

OMO02714

1. Task A creates afile. Task A is the owner of that file. Task A's user ID is listed first in the
file's access list.

2. Task A also creates a user object. Task A's user ID is listed first in the user object. Task
A lists user IDs for other tasks that can access the file in the user object.

Only tasks listed in the user object can access the file.

Figure 3-1. Task Creating a Fileand a User Object

Y ou specify users when you use the BIOS to create afile. The EIOS, UDI and
Shared C Library use the default user object, which appliesto all tasksin thejob. For
DOSRMX and iRMX for PCs, the DOS file system does not support users other than
World.

See also: File accessrights, later in this chapter

There are BIOS callsto list IDs in user objects and create and delete user objects.
There are EIOS callsto list ID's associated with a user and to verify users. A user
may have more than one user 1D.

See also: User system calls, BIOS, and EIOS system call summary tablesin
Chapter 1, System Call Reference
Example: Multiuser System and the User Object
Suppose that severa departments share acomputer. An individua in one department may:
« Allow only hersdlf to delete her files. She specifiesthiswhen she createsthefiles.

« Allow people within her department to write and read the files. She specifies
this when she creates the user object for her department members.

« Allow peoplein other departmentsto only read the files. She specifies thiswhen
she creates the user object for other departments.

In systems where each user has a password, user access control can also be set up on
anindividual basis.

44 Chapter 3 BlOSand EIOS Features

Connections and File Access Modes

There are connections for files and connections for devices.

File Connections

A file connection object is the bond between afile and atask. Connections provide
file access mode control based on the operation performed on the file, as shown in
thisfigure. The connection object can prevent atask from modifying or deleting a
file inappropriately.

OM02716

1. Task A creates a connection to a file and opens it. Task A specifies that this connection is
for reading only and this file can be shared by other readers only.

2. Task B wants to read the file so it can share the connection A created.

3. Task C wants to write the file. It cannot use this connection for writing. Since the share
mode is share with readers, Task C cannot obtain a connection to the file until Task A
deletes its connection.

Figure 3-2. Tasks Sharing a Connection Object

Whenever you create afile, the I/O system returns a connection.

Connections contain the file access modes to the file. 'Y ou specify file access modes
once, when you create the connection, rather than each time you open thefile.

The file access modes specified in connections are:

Mode Meaning

Private use Share with no one

Open for reads Share with readers
Open for writes Share with writers

Open for reads/writes Share with readers/writers

If the first connection to a file enables sharing, several file connections can
simultaneoudly exist for the same file; several tasks can concurrently access different

Introducing the iIRM X Operating Systems Chapter 3 45

locationsin the file. Each connection maintains a pointer to the location within the
file where the task is reading or writing, as shown in this figure.

A

B | _—J—

OM02718

Figure 3-3. Tasks Accessing a File Through Connections

File connections cannot be shared acrossjobs.

There are BIOS, EIOS, and UDI system calls to create, open, close and delete file
connections.

See also: Files and Connections in BIOS, EIOS and UDI system call summaries,
Chapter 1 of System Call Reference
Device Connections

A device connection is the bond between the task and the device. Y ou must attach a
device before you can useiit for 1/O operations.

Device connections can be shared across jobs.

See also: Device connections, System Concepts

/0 Jobs

An1/O job provides resources for tasks that perform 1/O using EIOS system calls. If
atask isnot inan I/O job, it cannot successfully use all of the EIOS system calls. /O
jobs are very similar to ordinary jobs.

If you use C Library calls, they must be made from 1/O jobs.
There are EIOS callsto create, delete, and start 1/0 jobs.

See also: I/0jobsin BIOS, EIOS and UDI system call summaries, Chapter 1 of
System Call Reference

46 Chapter 3 BlOSand EIOS Features

Logical Names for Files and Devices (EIOS Only)

The EIOS enables you to use logical names to refer to files and devices. A logical
nameis astring of charactersthat identifies afile, directory, device, or remote
computer system. Y ou can substitute alogical name for along pathname, and use it
in several tasks or jobs.

TheiRMX OS uses the logical name :config: for the file /rmx386/config, for
example.

If the pathname changes, you redefine the logical name; you don't need to change it
everywhere. The EIOS associates each logical name with a particular file connection
or device connection.

Y ou can make alogical name available to one job, to agroup of jobs, or to al jobsin
the system by cataloging the name in the local job's object directory, the global job's
object directory, or the root job's object directory, respectively.

See also: Logical namesin EIOS system call summary, Chapter 1 of System Call
Reference;
object directories, Command Reference

BIOS and EIOS System Call Differences

There are severa differences between system callsin the BIOS and the EIOS.
System call prefixes or names may be dightly different, reflecting functional and
compatibility differences. The BIOS has two types of system calls. synchronous and
asynchronous. The EIOS has only synchronous calls. The BIOS calls generally have
more parameters than the EIOS calls, giving greater control and flexibility to the
BIOS and more ssimplicity to the EIOS.

System Call Names

Many BIOS and EIOS system call names are identical except for the prefixes:

rq (16-bit address, 1 Mbyte memory pool) rge (32-bit address, 4 Gbyte pool)
rg_a (asynchronous) rg_s (synchronous)

For example, therq_create io_job system call operateson all iIRMX OSsand is
available for compatibility between iRMX I, I, and I1l. Therqe create io_job
system call supports the extended features of the Intel 386 and later microprocessors,
such as memory pools greater than 1 Mbyte. Unless compatibility withiRMX |
systemsis an issue, use the system calls with the r ge prefix instead of the ones with
therq prefix.

The BIOS asynchronousrq_a create fileand rq_a_close system calls perform
analogous functions to the EIOS synchronousrq_s create fileandrq_s closecals.

Introducing the iIRM X Operating Systems Chapter 3 47

Synchronous and Asynchronous System Calls (BIOS Only)
These are the two types of BIOS calls:

Synchronouscalls Begin running as soon as your application invokes them,
continue running until they finish their tasks or detect an error,
then return control to your application. The call names begin
withrqg_.

Asynchronous calls Run concurrently with your application, which can continue
running while the BIOS deal s with devices such as disk drives
and tape drives. The call names begin withrq_a.

This example shows the difference between synchronous and asynchronous
operations:

1. Task A and Task B need to read afile. Task A makes an asynchronous call and
Task B makes a synchronous call.

2. The parametersfor both calls are checked for validity.

3. Task A continues executing application code, doing computations perhaps, until
notified that the data has transferred. Task B waits for the data transfer to
compl ete before continuing.

If you make an asynchronous call, you use a mailbox to notify the task when the call
has completed. Asynchronous calls do require more programming effort.

Files and Directories
TheiRMX /O Systems provide support for:
« Hierarchical file systems
« Fileaccessrightsto protect files
« Distinct file types
« System callsto create, delete, read, write, and manipulate files

Hierarchical File System

TheiRMX OS uses a hierarchical filenaming system (similar to UNIX and DOS).
Y our directory and file names can reflect relationships between files and you can
assign a unique pathname to each file.

With an unlimited hierarchical file system, you can add directories when you need
them, as shown in thisfigure.

48 Chapter 3 BlOSand EIOS Features

I o I o =

OM02658

1. You can create a new directory whenever you need to, such as for a new department
member.

2. The owner of the new directory can use it to provide unique pathnames to any number of
subdirectories and files.

Figure 3-4. Hierarchical File Structure

iRMX filenames can be 14 characterslong, and can include more than one . (dot).
iRMX is case-insensitive.

TheiRMX OS treats directories like files; entriesin adirectory are just filenames.

File Access Rights

TheiRMX accessrights for files are read, append, update, and delete; for directories
they arelist, add, change, and delete. Accessrights are maintained on a per-file basis
inafileaccesslist. TheiRMX OS supports multiple users with different file access
rights as shown in this figure.

A R/AUID

O

B R/A/U

<
D WORLD R

OM02652

1. User A is the owner of the file. This user can read, append to, update, or delete the data
file C.

2. User B can read, append to, and update the same file.
3. The World user (not shown) can only read the file.

Figure 3-5. Multiple Userswith Different Access Rights

Introducing the iIRM X Operating Systems Chapter 3 49

The DOS file system does not support users other than World, and file access rights
are limited to two options. read-only and read/write/change. For DOSRMX systems,
iRMX users and tasks can change their DOS file access to correspond to the DOS
read-only and read/write/change attributes. DOS directories cannot be made read-
only.

File access rights and owner |Ds can undergo trandlation between remote fileson a
network that uses the Network File System (NFS). The specific trandations used
depend on the operating systems and users involved.

See also: File access, Command Reference
Accessing NFS Files, TCP/IP and NFSfor the iRMX Operating System

File Types

These are the types of files: named, remote, DOS, physical, and stream. The same
system calls work with any file type, providing file independence. For example, you
use the same system call to open anamed file as you do to open astream file. This
enables you to create tasks and applications that you can readily switch from one file
type to ancther.

Named Files

Named files are for local random-access, secondary-storage devices, such as disk
drives and diskette drives. Named files have ahierarchical structure that reflects the
relationships between the files and the application; you can store many named files
on one device. Named files provide access control because they have associated user
and connection objects. The native IRMX file format is maintained by the Named
File Driver.

With file independence, you can use named files during development and debugging,
even though tasks will ultimately use other file types. For example, your application
might need two tasks that communicate by using a stream file. Y ou might implement
the writing task before you implement the reading task. For the purpose of
debugging the writing task, you could use a named file on adisk in order to examine
the information being written. Later, after you implement the reading task, you can
route the information to the stream file rather than the disk.

Remote Files

A remote fileis afile located on another computer connected by a network. The l/O
systems access remote files through networking software, including files on systems
running an OS other than the iIRMX OS. Y ou can access remote files using the NFS
file driver (on networks running TCP/IP and NFS) or using the iIRMX-NET Remote
File Driver.

50 Chapter 3 BlOSand EIOS Features

See also: Accessing remote files, Network User's Guide and Reference;
TCP/IP and NFS, Network User’s Guide and Reference;
Accessing NFS files, System Concepts

DOS Files

A DOSfileisafile located on a DOS-formatted mass storage device; the device may
be on a network. Y ou access DOS files using the DOS file driver iniRMX 111 or
iRMX for PCs systems or by using the EDOS file driver in DOSRMX systems.

See also: EDOS file driver, Programming Concepts for DOS and Windows
CD-ROM Files

A CD-ROM fileisafilelocated on a CD-ROM formatted (1SO9660) mass storage
device. You access CD-ROM files using the CDROM file driver iniRMX systems.

See dso: CDROM file driver

Physical Files

Each physical file occupies an entire device. Applications can deal with a physical
fileasif it were a string of bytes. Physical files provide these features:

« Anapplication can have direct control over adevice. For example, an
application can use a physical fileto interpret volumes created by other systems.

« Because the application deals with a physical file as a string of bytes, it can
conserve memory and still communicate with devices that do not need named
files. These devicesinclude line printers, terminals, plotters, and robots.

Physical files do not support hierarchical file systems and file access control.
Stream Files

Stream files provide another means of intertask communication, as shown in
thisfigure:

Introducing the iIRM X Operating Systems Chapter 3 51

A

[

A

Task A can read from a stream file while Task B writes to it.

Figure 3-6. TasksUsing a Stream File

Stream files provide no access control. They are implemented in memory; they don't
have an attached periphera device.

See also: File types, System Concepts;
Filesin BIOS, EIOS and UDI system call summaries, Chapter 1 of
System Call Reference;
device connections, System Concepts

Devices and Device Control

TheiRMX /O Systems provide support for:

« Device independence through distinct file and device drivers

« Device control

« Automatic device reattachment (EIOS only)

« Terminal Support Code (TSC) to control terminal modes and operation

Device Independence

52

Y ou can use the 1/0O system calls with a number of devices. Thisis called device
independence. Device independence provides flexibility. For example, your
application may log events as they occur. Y ou can create an application that logs
events on any device, enabling an operator to route logging from ahard disk to aline
printer if she needs a printed listing.

The I/0 systems manage devices using file drivers and device drivers; the separation
between the BIOS and the device provides device independence.

Chapter 3 BlOSand EIOS Features

The EIOS, UDI and Shared C Library all use the BIOS. Ultimately, all 1/0 requests

your application makes pass through the BIOS to the drivers, then to the hardware, as
shown in thisfigure.

Application Device Device

so::gzre <>| BlOS | p|Fiediver g 51 iver &> controller [€->| Device

OM02717

Figure 3-7. 1/0 Requestsfrom the Application Go Through BIOS and Device Drivers

File Drivers

A filedriver is asoftware interface between a device driver and the BIOS. These are
thefiledrivers. named, remote, NFS, DOS, EDOS, physical, and stream. When you
first attach a device, you tell the BIOS which file driver to use for that device. Then,
the BIOS automatically uses that file driver for the device.

See also: File drivers and device independence, System Concepts;
attaching devices, Command Reference

Device Drivers

A device driver is a software interface between a device controller (the hardware and
firmware) and thefile driver. A device driver hides the idiosyncrasies of the device
fromthe BIOS. TheiRMX OS provides device drivers for many devices.

Loading and Configuring Drivers

Y ou can load file and device drivers dynamically at run-time or at initialization. If
you have an |CU-configurable system, you can select drivers during configuration.
These drivers become part of the BIOS.

See also: Supplied device drivers and physical device namesin Appendix E,
Command Reference;

Loadable device drivers, in System Configuration and Administration
and Driver Programming Concepts;
File and device driver screens, ICU User's Guide and Quick Reference

Y ou can also write custom file and device drivers.

See also: Writing your own drivers, Driver Programming Concepts

Device Control
TheiRMX OS lets you control:

Introducing the iIRM X Operating Systems Chapter 3 53

« Updating files

« Diskintegrity

« Filefragmentation

- Buffering with overlapped 1/0

Fixed and Timeout Updating

Fixed updating and timeout updating are two ways to update devices. They are
triggered by the passing of set amounts of time.

Y ou use updating to write all datain a buffer to a designated device, such as a disk, at
set time intervals rather than just when the buffer isfull. Updating can prevent loss
of datain the event of power failure or other problems.

Fixed updating occurs when an amount of time, which is specified for an entire
system, passes. At that time, all devicesto which updating applies are updated.
Fixed updating is independent of 1/0 activity.

Timeout updating is defined separately for each device, rather than applying to the
system asawhole. The timeout period starts at the end of each 1/O operation.

In 1/O-intensive systems, you can delay updating by setting the fixed update period to
longer than the average time between 1/0 functions.

Fixed updating is a BIOS configuration value. Stream files and physical files do not
support updating.

See also: BIOS screens, |CU User's Guide and Quick Reference;
IORS, Driver Programming Concepts

Disk Integrity

In any computer system, there are many occurrences beyond your control that can
cause damageto files or disk volumes. For example, power outages can occur just as
afileisbeing written, or disk sectors can suddenly become unreliable. Thel/O
systems enable you to maintain disk integrity and determine whether files or volumes
have been corrupted. The main features are:

« For hard disks, using system callsto get and set bad track and sector information

« Attach flags and fnode checksum field, which you can check to determine the
integrity of named volumes and files

« Disk Mirroring, a hard disk configuration that maintains identical copies
(mirrors) of data on two hard disks for increased reliability

See also: Disk integrity, System Concepts

54 Chapter 3 BlOSand EIOS Features

Internal File Fragmentation

When information is stored on amass storage device, spaceis alocated in blocks called
granules. Theblock sizeiscalled granularity. Threekinds of granularity are important:

Device granularity |s hardware dependent, varies among individual mass storage
devices, and is the minimum amount of data that the device
can read or write during one I/O operation. For disks, adevice
granuleis called a sector; the device granularity is the sector
size. Each buffer that the I/0 systems use when reading and
writing datais equal to the device granularity.

Volume granularity Isamultiple of the device granularity and is the minimum
amount of space that can be allocated to afile at one time.
Y ou specify the volume granularity when you format the
volume. The I/O systems use volume granularity when
deciding where on the volume to allocate this space.

File granularity Isamultiple of volume granularity. You assign thefile
granularity on a per-file basis when you create afile; the
granularity appliesif the file needs to be extended.

By selecting the proper granularity values, you can minimize fragmentation of your
files and balance /0O speed with efficient use of space on the mass storage device.

See also: Granularity, System Concepts

Buffering with Overlapped I/O (EIOS Only)

The EIOS provides the additional feature of buffering and overlapping of 1/0
operations. The EIOS uses the BIOS, however. Blocking and overlapping are more
valuable in sequential 1/0O than in random-access |/0.

Whenever you open a connection, you specify the number of buffers the EIOS uses.
This affects how the EIOS reads and writes information through the connection:

Zero buffers Thisturns off EIOS buffering. Thefileis accessed each
time you invoke a system call that reads or writes thefile.
For example, if you ask the EIOS to read 30 bytes, the EIOS
accesses the file and reads exactly 30 bytes.

One buffer The EIOS reads and writes information by blocking

(Blocking) (transferring one buffer at atime), even though you may
have specified transferring less. Blocking can improve the
performance of an application because the EIOS might be
able to satisfy several additional requests without reading the
file again.

Introducing the iIRM X Operating Systems Chapter 3 55

Two or more buffers If you request two or more buffers, the EIOS can overlap I/O
(Overlapping 1/0O) operations by using read-ahead and write-behind algorithms.

Read-ahead and write-behind enable tasks to continue
running while the EIOS is transferring information to or
from devices. Thisis because the EIOS can accurately
determine, during sequential reading or writing, the location
of the next data required by the application.

Y ou can configure the maximum number of buffers that the
EIOS can use for files on a particular device.

Automatic Device Reattachment (EIOS Only)

The EIOS constantly monitors the status of devices. When an operator removes
storage media from a drive that is capable of detecting a volume being removed, the
EIOS detaches the device and deletes all connections to files on the device. When
the operator replaces the media, the EIOS automatically reattaches the device as soon
asit isaccessed, making it available to the tasks in your system. The same principle
applies to remote device connections.

Some devices, such as some 3.5 and 5.25-inch diskette drives, cannot detect a volume
being removed from the drive. For these devices, the EIOS cannot perform
automeatic reattachment.

Terminal Support Code

56

The Terminal Support Code (TSC) is a programmabl e interface between a terminal
driver, the BIOS, and a user application. This support code provides a variety of
special terminal modes and operations. The major capabilities of the TSC include:

Editing and There are avariety of characters that control and edit
controlling terminal terminal input. Y ou can replace default control characters
input with different characters. Y ou can also switch aterminal to

transparent mode, so that editing and control characters have
no effect on the input line.

Type-ahead buffer If you type faster than the OS can read, interpret, and
respond, the TSC stores the data you type in atype-ahead
buffer. The OS uses the data from this buffer when it is

ready for it.
Controlling terminal Y ou can set the TSC so that output sent to the terminal
output displays continuously, scrolls afew lines at atime, stops, or
is completely discarded.

Chapter 3 BlOSand EIOS Features

Escape sequences The TSC accepts escape sequences (characters preceded by

(tranglation) an ESC character) to define the characteristics of aterminal.
This feature enables you to characterize terminals so that the
1/0 system can use standard control codes and sequences of
codesfor all terminals. Thisiscalled trandation. You can
use escape sequences to set terminal variables, such asthe
number of lines displayed when in scrolling mode. Y ou can
change terminal behavior by entering in escape sequences or
by running a program that sends the escape sequences.

See also: Terminal support code, System Configuration and Administration and
Driver Programming Concepts

System Clock

Most boards supported by the iRM X OS have an on-board, battery backed-up time-
of-day clock. The /O systems use this clock in performing reads and writes. The
global time-of-day clock is the timekeeper for the entire system. It is accessed only
during system initialization, by a running application, or when requested by the
operator.

TheiRMX OS also maintains alocal time-of-day clock in memory. The local clock
isacopy of the global clock but has faster access time, for date and time needs.

The clocks keep track of two items:
« The current date (day, month, and year)
« The current time (hours, minutes, and seconds)

Nucleus, Kernel, and UDI system calls enable your applications to get and set the
date and time for the local and global clocks.

See also: Time callsin Nucleus, Kernel, and UDI system call summaries,
Chapter 1 of System Call Reference

|:| Note

The BIOS layer previously provided the system calls to get and set
the clock time. These system calls are now part of the Nucleus.

Choosing Between I/O Systems

This section describes the performance differences between the BIOS and the EIOS.
It will help you decide whether to use system calls from the BIOS, the EIOS, or from
both systems.

Introducing the iIRM X Operating Systems Chapter 3 57

Each of the I/O systems satisfies different requirements. The BIOS offers more
flexibility and control, while the EIOS offers ease of use. If both systemswould be
useful in one application, you can use both.

IntheiRMX I11 OS, you can use the ICU to include the BIOS, the EIOS, or both
systems. IniRMX for PCs and DOSRM X, both are included.

BIOS

The BIOS provides very powerful capabilities and makes few assumptions about the
your requirements. The BIOS provides I/O features that are useful in a wide range of
applications. These featuresillustrate the flexibility of the BIOS:

Custom buffering
algorithm

Asynchronous

system calls
Control of details

EIOS

Y ou can design and implement your own buffering
technique and control the synchronization between 1/0 and
processing.

Y ou can explicitly control system call synchronization.

The BIOS system calls have many parameters, which enable
your tasks to enhance the performance of your application
system. Thisisuseful intime-critical or memory-critical
applications and for random-access I/0.

The EIOS is easier to use than the BIOS, and has these features:

Automatic buffering
of 1/O operations

Synchronous system
cals

Fewer parameters

Making the Decision

Y ou need not become involved with buffering, aside from
specifying how many buffers the EIOS uses. If your
application system does not require buffering, you can tell
the EIOS to use no buffers.

Y ou do not need to explicitly synchronize system calls. You
can still use overlapped 1/O operations using buffers.

EIOS system calls require fewer parameters than BIOS calls.
This simplifies and reduces development time.

Determine whether your application system requires the flexibility and fine tuning
capability of the BIOS, the ease of use of the EIOS, or a combination. Before you
make the final decision, consider these factors.

58 Chapter 3

BIOS and EIOS Features

Control Y ou may not need the control provided by the BIOS; the time required
to develop the application system may be more critical than fine tuning
its performance.

Memory The EIOS software requires the BIOS, so using both the BIOS and the
ElOS requires no more memory than using the EIOS alone.

Implementing some EIOS features yourself (such as buffering) may
use as much memory as including the whole EIOS.

Performance Because the BIOS gives your application system control of many
details, you can probably design your application system to run faster
with the BIOS than with the EIOS. If you decide to use the EIOS
anyway, you can improve performance by optimizing the buffer sizes
and the number of buffers.

1/0 type Choose the BIOS for applications that require very little 1/0O or use
random-access I/0. Choose the EIOS when development costs are
critical, especially in applications that use sequentia 1/0.

Prototypes Use the EIOS to create a prototype application system, and then later
replace it with your custom /O system.

CLibrary Require both the BIOS and the EIOS.
functions

Use both layers when your application system uses |/O for several purposes, some of
which are best accomplished by the BIOS, and others by the EIOS.

Examples

These examplesillustrate the advantages of each of the I/O systems. The examples
assume that you will produce many copies of the application system.

Application Systems Using Little 1/O. If your application system requires very
little 1/0O, such as only occasionally logging information to a diskette, use the BIOS.
The ease of use provided by the EIOS can save you very little time during
development because the 1/O-related part of your system requires so little time to
develop. Using the BIOS will also save memory.

Application Systems Using Only Sequential 1/0. If your application system
requires a substantial amount of sequential 1/0, alarge amount of your devel opment
resources will be expended in support of 1/0. Use the EIOS to save time, and
because the EIOS provides overlapping 1/0. It incorporates read-ahead and write-
behind algorithms that operate sequentially, and overlaps 1/0O operations and
processing.

Introducing the iIRM X Operating Systems Chapter 3 59

High Performance Applications Using Random I/O. If your system performs a
large amount of random-access I/0, the BIOS is the appropriate choice. Performance
tuning is also provided by the BIOS. Although such a system might require more
development time to implement, it should run faster than the EIOS.

60 Chapter 3 BlOSand EIOS Features

Human Interface Features

The HI provides severa features for both you and the users of your application:

- Enablesloading file and device drivers, system jobs and your application at
initialization time or run-time

« Provides HI commands that perform simple programming functions
« Provides system calls that help you write commands for your application

» Provides multiuser environment support
— For the development environment
— For the application

+ Providesthe Command Line Interpreter (CL1) with its own set of commands

Run-time Loading of Jobs

The HI enables you to load system jobs, networking jobs, file and device drivers, and
your application when the system boots or dynamically when the system is running.
Loaded jobs become a part of the iIRMX OS until the system is shut down or the job
isunloaded. Loaded jobs have accessto all features of theiRMX OS.

For iRMX for PCs and DOSRMX, thisisthe only way to load your application and
the supplied loadable OS jobs. For iRMX |11 users, the HI enables you to change the
configuration without using the ICU, then rebuilding (linking) the existing system.

A loadinfo file is executed during HI initialization. Y ou edit thisfile to load the jobs
and drivers needed for your application. Jobs and drivers loaded this way are child
jobs of the HI, as shown in thisillustration.

See also: Descriptions of loadable jobs, System Configuration and Administration

Introducing the iIRM X Operating Systems Chapter 4 61

v

HI

2

1. The Hl initialization Task | executes the loadinfo file to load a job into memory from
secondary storage.

2. The loaded job is a child job of the HI.

Figure4-1. LoadingaJob at HI Initialization

HI Commands

62

The HI commands are small system programs that manage users, files, and devices
and provide general utilities during development. Y ou can enter commands
interactively from your keyboard or write them into afile. Some example commands
supplied with the OS are;

copy Copies or createsfiles

copydir Duplicates adirectory and its files and subdirectories
deletedir Removes adirectory, including all its subdirectories and files
format Formats a disk

password Adds or deletes users, or changes alogon password

per mit Changes afile's User IDs and access

rdisk Partitions a hard disk

shutdown Provides an orderly shutdown procedure for the OS

sysload Loads ajob or driver into memory from secondary storage

Y ou can include HI commands as part of an application system if you need them.

See also: Quick Reference to Commands for summaries of commands and
equivalent commands in the DOS and iRMX OSs;
Command Reference for complete command descriptions

Chapter 4 Human Interface Features

Human Interface System Calls

The HI provides system calls that enable you to create commands that are appropriate
to your application and meaningful to your operator.

By designing commands appropriate to your operators, you can create a user-friendly
system and reduce operator errors.

Y ou have great flexibility in creating new commands. The main requirement is that
the first word in a command must be the name of an executable file on a secondary
storage device such asadisk. When an operator enters a command, the OS loads the
named file from secondary storage and runsit. This gives you these advantages:

« You add or modify commands simply by writing new ones.

« The number of custom commands for a system is not limited by the amount of
dynamic memory.

« You do not have to rebuild the system to change commands.

« Commands used infrequently do not take up RAM space when they are not being
run.

See also: Customizing commands, System Concepts
The categories of system calls for creating commands are:
« Command-parsing system calls

+ 1/O and message-processing system calls

« Command-processing system calls for invoking interactive HI commands
programmatically

« Program control system calls to override the default <Ctrl-C> handling task
provided by the HI

Y ou can also add commands you need to the development environment if you wish.

See also: Human Interface system call summary, Chapter 1 of System Call
Reference

Custom Command Line Parsing

The HI system calls for parsing a command line retrieve and interpret parameters of
a command.

For example, in an application that monitors toxins in the blood of hospital patients,
an operator might run atask that displays the toxin level of an individual patient or of
all patients being monitored.

Introducing the iIRM X Operating Systems Chapter 4 63

Y ou might design a user-friendly approach, with commands oriented to the
application and operator, rather than computer-oriented commands. For example, a
command might be:

toxi n of John Doe

The program t oxi n issues a system call to receive the parameters John Doe.
Because filenames are frequently parameters for commands, there are specialized
system callsto interpret filename parameters.

Multiuser Support

Y ou may need multiuser support in your development environment or for your
application and operators. In either case, you can use the HI.

The HI enables:

« Adding usersto the User Definition File (UDF), which defines user attributes
such as user job memory pool size and user job priority

+ Identifying each user'sinitial program or CLI (command line interpreter) (the
program that runs when the user logs on)

With multiuser support in your development environment, programmers can execute
commands, run development programs (such as editors and compilers), and run
applications in acommon environment. With multiuser support in applications,
multiple operators can communicate with your application simultaneously.

Y ou can implement multiuser support another way using simultaneous multiple-
terminal support with 1/0 system calls. Y ou might do thisif you need to implement
functions not available with the HI multiuser feature, or if (in an ICU-configurable
system) you want to exclude the HI layer from the application.

HI Initialization
When the HI begins running, it does these things:
1. Executesasystem-wide setup.
2. Initiates user logon.

3. Createsauser job for each operator or programmer logged on. Thisjob provides
the environment where programmers devel op applications or operators use
applications.

4. Startsaninitial program or CLI that is the programmer's interface to the OS or
the operator's interface to the application.

64 Chapter 4 Human Interface Features

See also: Logging on, Installation and Sartup;
HI initialization, System Configuration and Administration;
Multiuser support, System Concepts

System-wide Setup

When amultiuser system boots, the HI initializes each terminal in the system as
either a static logon terminal (a specific operator is always associated with that
physical terminal) or a dynamic logon terminal (any valid operator can log on and use
the terminal). Y ou specify the number and types of terminals.

Multiuser support includes device drivers that communicate with multiple-terminal
hardware.

See also: Terminals, System Configuration and Administration

Logon
The HI validates terminal users at logon. Terminal operators can:
« Shareatermina with no logon; all operators share asingle user ID
« Have exclusive use of one terminal

« Share aterminal; each operator has a user 1D and uses a password to log on to the
oS

If the terminal ison an iIRMX-NET communications network, the operator or
programmer can use the network to access remote files.

See also: Accessing remote files, Network User's Guide and Reference

Operator Job Creation

At logon, the HI associates each operator or programmer with a User 1D and creates
for each operator a separate job. These jobs are child jobs of the HI, as shown in the
next figure.

Introducing the iIRM X Operating Systems Chapter 4 65

1. After the HI initiates user logon, the operator enters a user name and password.
2. The HI validates the user by checking the User Definition File (UDF).

3. Ifthe user is valid, the HI creates a user job that is a child job of the HI. The user's initial
program or CLI runs in the user job.

4. The user can access and run the application system.
Figure4-2. Validating Users With the HI
When an operator or a programmer creates files or attaches devices, she is the owner

of those files or devices. Accessto the files by other operators or programmers
depends on the user object created by the owner.

Command Line Interpreter (CLI)

66

The HI supplies a standard initial program called the Command Line Interpreter
(CL1). The CLI isthe part of the OS you interact with from the command line after
you install theiRMX OS. The CLI hasits own set of commands.

See also: Getting acquainted with the operating system in Installation and
Sartup, for a brief tutorial on logging on and using commands

Y ou can use the CLI in the development environment and you can include it for your
operatorsin the application if you wish.

With the CLI, the operator or programmer invokes a command from a terminal
command line by entering the command name and specifying parameters if required.
The CLI reads the information from the terminal and executes the command as
shown in thisfigure.

Chapter 4 Human Interface Features

HI > HI

1. An operator enters a command at the terminal. The CLI accepts the terminal input and
parses the command. If the command is a CLI command or a command you have written,
the CLI executes it after parsing it.

2. If the command is an HI command, the CLI passes the command to the HI. The HI loads
the command into memory and executes it.

Figure4-3. User Interactswith the CLI

The CLI provides a number of features:

Support for different The attributes of any operator'sterminal are stored in the

kinds of terminals termcap file. You can edit thisfile to change the
characteristics or to add support for new terminals and you
can dynamically switch terminal types.

See also: termcap file, System Configuration and
Administration
Editing and Y ou can input commands at any time, and then press the
controlling terminal <CR> or <Enter> key (as defined in the termcap file) to send
input the input to the CLI.

The CLI also contains specia function keys, which move the
cursor, replace the current command line with a previous
command line, execute acommand line, delete characters,
abort the current command, or continue a command onto the
next line.

Type-ahead Y ou can continuously enter command lines. The CLI sends
thefirst line to the OS for processing and saves additional
datain atype-ahead buffer. After the OS finisheswith a
ling, the CLI fetches and processes the next line.

Recalling commands Y ou can retrieve the last 40 command lines entered, then edit
aline and execute the edited command.

Background mode Y ou can run commands in background mode, display alist
of background jobs, and cancel background jobs.

Introducing the iIRM X Operating Systems Chapter 4 67

1/O redirection With /O redirection, tasks that normally use keyboard input
and screen output can receive data from and send data to
files or other 1/O devices. This permits tasks to run without
operator intervention, which is especially useful when
running in background mode.

Aliases Y ou can assign and cancel abbreviations for commands.

Y ou can use the ICU to include your own extensionsin the CLI. Thisenablesyou to
add your own features and still retain the capabilities of the CLI.

See dso: Human Interface screens, ICU User's Guide and Quick Reference

Alternatively, you can supply or create your own initial program that you load at HI
initialization or load dynamically at run-time. There can be a separate initial program
for each operator.

See also: User Attributes File, System Configuration and Administration

68 Chapter 4 Human Interface Features

Application Loader Features

The AL enablestasks to load programs from secondary storage into memory at run-
time. Theloaded program can run in the calling task'sjob or it can run asan 1/0O job,
as shown in thisfigure.

3 D\ Application
A 7 Loader

b OM02709
Task A is part of an I/O job.
Task A calls the AL to load a program into memory from secondary storage.

The AL creates an |/O job for the program to be loaded.

AP w D PR

The AL creates the initial Task | and loads the program into memory.

Figure5-1. Using the Application Loader To Load a Program Dynamically

Because the loaded job is the child of ajob you have created, you can receive
notification when the loaded job is deleted if you wish.

Dynamic Loading

The AL performs dynamic loading: it modifies appropriate addresses in the program
at the time it loads the program. Dynamic loading offers flexibility in designing and
maintaining application systems:

Introducing the iIRM X Operating Systems Chapter 5 69

« TheAL loads the programs anywhere in available memory. If you add more
memory to the system, the AL will useit.

« You can change programs without rebuilding (linking) the existing system.

« If you have memory restrictions, you can store seldom-used programs on
secondary storage until you need to run them.

« You can use overlay modules to execute programs that are actually larger than
the memory available.

The AL can load object code from any device if the device supportsiRMX named
files and you have the appropriate device driver. The AL requires programsto be
object code and meet certain other requirements.

See also: RCONFIGURE control, STL format, SEGSIZE control,
DYNAMICMEM, System Concepts;
object code, abject file, and object module, Glossary in this manual

Loading Flat Model Applications

The Application Loader can recognize and load an application that you write using a
flat-model (non-Intel) compiler. Flat model applications require that you use the
paging subsystem provided with the OS.

See also: C Compilers, Flat Model, Programming Techniques,
flat.job, paging.job, System Configuration and Administration
Paging System Calls, System Call Reference

Objects and System Calls

Most AL system calls require the EIOS because they use connection objects and I/0
jobs.

The AL provides synchronous and asynchronous system calls. To overlap processing
with loading operations, use asynchronous system calls. If the calling task can wait
until the new program isloaded, use synchronous system calls, which are easier.

You can also use the AL to load a program into the calling task's job, as shown in this
illustration, but this requires additional programming effort.

70 Chapter 5 Application Loader Features

A i D ~N | Application
: 7 Loader

0OM02710
1. Task A calls the AL to load a program into memory from secondary storage.

2. The AL loads the program into a memory segment in Task A's job.

Figure5-2. Using the Application Loader To Load a Program into a Task's Memory

See also: Application Loader system call summary, Chapter 1 of System Call
Reference;
Application Loader, System Concepts

Y ou can use the ICU to include or remove the AL, or you can select the features of
the AL to meet your exact needs.

See also: Application Loader screens, ICU User's Guide and Quick Reference

Introducing the iIRM X Operating Systems Chapter 5 71

72 Chapter 5 Application Loader Features

UDI Features

The UDI isahigh-level interface to theiRMX OS: aset of system calls enabling
language software (such as compilers, interpreters, assemblers, or run-time systems)
to use the OS.

If an application makes only UDI system calls with no explicit callsto aniRMX OS,
you can transport the application between other OSs that also support the UDI. If
you want portability, don't mix UDI callswith BIOS and EIOS calls. Thisfigure
illustrates the relationship between the application code, the layers of software and
the processing hardware.

Application code in application language(s)
Y v
Run-time libraries for
non-mathematical features |
v
UDI Ii‘braries ‘ Intel3870]
support
\ \Z library
Operating system interface libraries
\ \
Operating system
Microprocessor Floating-point
Instructions

W2570

The downward arrows represent system call flow and data flow from the application down to the
hardware, where the calls are ultimately executed. In this case, the application does not make
direct calls to the OS, but interacts through the UDI software. The figure does not show the
upward flow of data from the hardware to the application code.

Figure 6-1. UDI Interface Between the Application and the Hardware

Introducing the iIRM X Operating Systems Chapter 6 73

When you use the UDI, you can switch OSs by changing the UDI library. The UDI
libraries always present the same interface to the application, but the interface with
the OS is designed specifically and exclusively for that OS. There are UDI libraries
for theiRMX, iINDX, UNIX, and XENIX OSs.

The UDI system calls behave somewhat differently when used in different OSs. This
is because each OS has many unique characteristics, and some of them are reflected
in the results of the UDI calls.

Y ou can run any language on the iIRM X OS as long as the language processor uses
the UDI standard system calls and the Object Module Format (OMF) is compatible.
The UDI software interface provides two major advantages:

« A language processor can use well-defined, appropriate, standard calls to
communicate with theiIRMX OS. Y ou can easily adapt existing languages to
run on the OS.

« Any language processor or software tool using UDI system calls, including
user-written programs, is portable.

See also: UDI system call summary, Chapter 1 of System Call Reference;
UDI, System Concepts

For the UDI, the only ICU-configurable option is whether to include the UDI in your
system.

See dso: SUB screen, ICU User's Guide and Quick Reference

74 Chapter 6 UDI Features

Networking Features

A network is a group of independent computers connected together to exchange
information. This chapter describes the software and hardware that Intel provides for
this purpose, and provides some basic networking concepts and structure.

See also: Network User's Guide and Reference, Programming Concepts for DOS
and Windows, and TCP/IP and NFSfor the iRMX Operating System

Network Concepts and Terminology

Anindividual computer system is a node in the network. The node you are logged
into isthe local node; any other one is aremote node. The nodes are connected into a
Local Area Network (LAN), usually by a physical connection such as Ethernet.
Systems on a network can share resources such asfiles, printers, diskette drives, tape
drives, and modems. Nodes on aniRMX network can exchange information with
computers using other OSs, such as UNIX or DOS. Thisis called interoperability.

iNA 960 provides programmatic access to transport services and iRMX-NET
provides transparent file access. An ICU-configurable system running iRMX-NET
can be configured as a server (a computer that provides resources), aclient (a
computer that requests resources), or both. Typically, iRMX systems run both the
iRMX-NET client and server jobs.

TCP/IPfor iRMX OSsincludes Telnet and FTP for remote login and file access.
NFS provides transparent file access. Any iRMX system can be both aclient and a
server for TCP/IP services and for NFS.

Each network can be divided into smaller units. These are called Administrative
Units (AUs) iniRMX-NET. An AU isagroup of systems that has the same set of
USers.

Y ou can set up multiple subnetsin both iNA 960 and TCP/IP. A subnet is used for
dividing a network into reasonable sizes or logical groups; systems in the subnet do
not necessarily have the same users. To communicate between subnets you
implement routing on a node connected to two or more subnets.

A special feature of iINA 960 allows boards in a Multibus Il system to treat the
backplane as a virtual Ethernet connection without any Ethernet hardware. This

Introducing the iIRM X Operating Systems Chapter 7 75

Multibus Il subnet lets more than one board in the system run TCP/IP software. With
arouter in the system, boards that do not have a network interface card (NIC) can
access the LAN over the Multibus |1 subnet.

Network Software

You can use iINA960 by itself to provide programmatic access to the network. Along
with iNA 960 you can run iRMX-NET to provide transparent file access. You can
run TCP/IP along with iNA 960. To use NFS for transparent file access, you must
run TCP/IP.

TCP/IP for iRMX OSs

TCP/IP network software enables users to access other computers on the network.
Y ou can configure TCP/IP as both afirst-level job by using the ICU, or asajob
loaded through the sysload command. TCP/IP supports these features:

» Telnet client and server software provides virtual terminal accessto and from
non-iRMX computers.

» FileTransfer Protocol (FTP) client and server software enables file transfersto
and from other computers, as well as basic directory management.

» Network File System (NFS) client and server software enables transparent
access of remote files and directories using TCP/IP protocols.

TCP/IP software provides industry standard networking protocols. This enables
interoperability with most other OSs. Administrators of multiple OS networks, as
well as many users, are likely to be familiar with TCP/IP networks.

See also: TCP/IP and NFSfor the iRMX Operating System for more details

INA 960 and iIRMX-NET

76

iNA 960 provides general-purpose network communication services, including the
Data Link, Network, and Transport layers defined in the Open Systems
Interconnection (OSI) model. By itself, iNA 960 provides a programmatic interface
to the International Standards Organization (1SO) OS| protocol.

iRMX-NET is part of Intel's family of OpenNET Local Area Network (LAN)
products. TheiRMX-NET software requires the Nucleus and BIOS layers and an
underlying iNA 960 job. iIRMX-NET is compatible with Microsoft MS-NET for
DOS platforms. iIRMX-NET provides transparent file access and user-interface
commands.

Chapter 7 Networking Features

iNA 960 includes: I SO transport software that provides general-purpose
services, including the Data Link, Network, and Transport
Layers as defined in the ISO OSI model. iNA 960 is
available as customized jobs suitable for particular NICs.

Y ou can use iNA 960 with or without iRMX-NET. When
used by itself, iNA 960 provides only a programmatic
interface to network services through layer 4 in the OSI

Reference Model.

iRMX-NET includes:

Server job Allows remote systems to access public files on the local
system.

Client job, including Letsyou access public files on any system that runs the
File Consumer and server job, asif the fileswerelocal

Remote File Driver

(RFD)

iNA 960 and iIRMX-NET operate within the Open Systems Interconnection (OSl)
Reference Model, a seven-layer reference model defining network architecture.

TheiNA 960 software operates in either of two hardware environments:
COMMengine (offboard NIC) or COMM puter (onboard NIC).

iNA 960 supports Multibus I, Multibus 1, and PC bus architectures and is provided
asaset of ICU-configurable and loadable jobs, each specific to the particular bus and
LAN hardware.

See also: iNA 960, iIRMX-NET, COMMengine and COMM puter, Network
User's Guide and Reference;
Network jobs, System Configuration and Administration

Network Security

Any iIRMX-NET network must have at least one AU; an AU can be assmall asa
single system. AUs provide easy maintenance and security.

iRMX-NET uses two files for network definition and security:

User Definition Defines users. The same user can be in multiple AUs, but
File (UDF) must have aunique ID in each one. A client usesthe UDF to
validate a user when the user logs on.

Client Definition Defines clients with names and passwords. A server usesthe
File (CDF) CDF to validate a client when the client establishes a

connection with it.

Introducing the iIRM X Operating Systems Chapter 7 77

The system administrator sets up and maintains the AUs, UDF, and CDF.

See dso: Network Administration, AUs, UDF, CDF, in Network User's Guide
and Reference;
UDF, CDF, in System Configuration and Administration

For TCP/IP users, the Telnet and FTP applications each provide some level of
security when accessing file-based data. NFS users are provided with Unix and Short
style user authentication, but not with DES encryption as described by Request For
Comment (RFC) 1057.

Networking Between Operating Systems

78

Using the appropriate networking software, you can exchange information with
computers using other OSs, such as UNIX and DOS. If you use iRMX-NET, these
different systems interoperate using the Network File Access (NFA) protocols. Each
OS must run with a corresponding OpenNET product that uses NFA protocols.

Thisfigureillustrates the interoperations of an iIRMX OS using the iIRMX-NET
Software with other OpenNET systems, and the relationship between a server and a
client. Thedirection of the arrows indicates the flow of resource requests.

Servers i Clients
[}
iIRMX i iIRMX
[}
[}
i
IRMX : IRMX
Client p| UNIX ! UNIX » Server
[}
[}
[}
i
: DOS
[}
[}

Figure 7-1. iRMX-NET Interoperability with other OpenNet Systems

The left side of the figure shows an iRM X system configured as a client with iIRM X
and UNIX systems operating as servers. Theright side of the figure shows an iRMX
system that is configured as a server for iRMX, UNIX, and DOS clients.

TCP/IP for theiRMX OSs provides interoperability with OSs running TCP/IP and
Telnet, FTP, or NFS servers.

See also: Interoperability, Network User's Guide and Reference

[y

Chapter 7 Networking Features

System Development

TheiRMX OS helps you devel op real-time application systems quickly and enables
you to concentrate on the software that relates specifically to the application. The OS
includes:

« industry-standard languages:
- PL/M
- C
— Assembler

Y ou can also use non-Intel tools, such as Microsoft, Borland and Watcom C.
See also: C compilers, Programming Techniques
e Shared Clibrary

« These software tools for editing and building 1CU-configured systems:
— Aedit text editor

BLD386

BND386 for linking your code

OH386

— Mapper

Librarian

« These debuggers:
— Soft-Scope for Windows and Soft-Scope 111 for the IRMX command line
— IRMX static System Debugger (SDB)
— System Debug Monitor (SDM)
See also: Application debugging, in this manual;
Programming Techniques and Aedit Text Editor,

System Debugger Reference
Soft-Scope Debugger User’s Guide

Online help

Y ou can develop your code on the same computer that will run your application (on-
target development) or develop on one for installation later on a another platform.

See also: Installation options, Installation and Startup;
Development environment, ICU User's Guide and Quick Reference

Introducing the iIRM X Operating Systems Chapter 8 79

Shared C Library

The C library supports hundreds of C functions and macros for applications that run
in the multi-tasking iIRMX OS environment. This includes many standard C
functions that enable applications to perform common 1/O operations without making
direct IRMX system calls (OS-independent). Thereis also support for iRMX OS-
dependent operations such as multitasking, time-of-day, signal management, and
environment management; this enables you to create portable code using standard
ANSI and POSIX programming practices. Y ou can mix C library callswith direct
iRMX system calls.

The Shared C library, sharable by multiple tasks and jobs, is available as an iIRM X
OS extension job in two ways:

* Run-timeloadable job.

* Resident first level job in ICU-configurable systems. The C Libraries require
both the BIOS and EIOS.

Any number of tasks and jobs (up to the maximum that the OS allows) may share the
C library concurrently, each with its own independent C environment. The C library

automatically manages common system resources such as 1/0 interfaces and memory
when your code makes C library calls that use these resources.

See also: C Library Reference for information on supported functions

Online Help Systems

These online help systems are included:

« Windows Help for iRMX system calls and condition codes (Windows systems
only)

« Manualsviewablein Adobe Acrobat (.PDF) format (Windows systems with CD-
ROM drive only)

« Helpfor iRMX commands (at any iRMX command line prompt)
« TheInteractive Configuration Utility (at the ICU prompt)

See also: Using online help, Installation and Startup;
help command, Command Reference;
ICU help screens, ICU User's Guide and Quick Reference

80 Chapter 8 System Development

System Design

There are some general guidelines for designing and devel oping real-time systems.
Thefirst step isto define the application. This step should include:

- Ligting al the various inputs and outputs in the application. Decide which
objectsto use for intertask coordination and communication.

« Ligting al the tasks that need to be done to produce the input and output. Define
interrupts and decide which ones require determinism. Assign interrupt levels
and prioritiesto take advantage of multitasking and preemptive, priority-based
scheduling.

« Develop the detail for each task in ablock diagram.

« Decideif the application requires multiple jobs, and if so, how they will use
shared memory and dynamic memory allocation.

« Design your user interface.

« Determineif you require custom devices. Decide whether to use loadable or
resident file and device drivers. Decide whether to use custom or Intel-supplied
drivers.

This flowchart shows steps typically taken by iRMX designers.

Introducing the iIRM X Operating Systems Chapter 8 81

D Define the application

v

Decide which parts of
D the iRMX Operating
System are needed

No Is special Yes
hardware
needed ?
Build or purchase
custom hardware
Is an iRMX driver Yes
Write code available?
. Write and test Use
Compile/assemble driver available driver
code
Link with
operating system
interface libraries
iRMX is a registered trademark of Intel Corporation.

OM02725

1. Define jobs. Define tasks, interrupt levels, and priorities. Decide which objects to use.
Define interrupts, handlers, and levels.

2. Decide whether to use loadable or resident file and device drivers. Decide how to
implement a multiuser environment and/or an operator interface.

3. Decide if you need custom hardware that solves some unique problem or gathers data in a
unique way.

Figure 8-1. Typical Development Cycle for iRMX Applications

At the completion of these steps, the prototype system is ready to be tested,
debugged, and fine-tuned.

A Hypothetical System

This hypothetical application system monitors and controls dialysis. The system
consists of three main hardware components, as shown in thisfigure.

82 Chapter 8 System Development

OM02726

1. A bedside unit is located by each bed. Each unit contains a processor board with the
iIRMX OS, which performs these functions:
- Measures the toxins in the blood as it enters the unit
- Adjusts the rate of dialysis
- Removes toxins from the blood
- Generates the bedside display for bedside personnel
- Accepts commands from the bedside personnel
- Sends information to the MCU

2. The master control unit (MCU) is a PC with a screen and a keyboard. This system also
runs a version of the iRMX OS. The MCU enables one person to monitor and control the
entire system. It performs these functions:

- Accepts commands from the MCU keyboard

- Accepts messages from the bedside units (toxicity levels, bedside commands,
emergency signals)

- Creates the display for the MCU screen

3. iIRMX-NET connects the bedside units to the MCU.

Figure 8-2. TheHardware of the Dialysis Application System

The next sections describe how various iIRMX features are used in the hypothetical
system.

Interrupt and Event Processing

Interrupts and internal events occur at the bedside units: bedside personnel enter
commands asynchronously and the system computes toxicity levels at regular
intervals.

Toxicity levels, measured as the blood enters the bedside unit, are not subject to
abrupt change. The machine slowly removes toxins while the patient's body, more
dowly, putstoxins back in. Theresult is a steadily declining toxicity level. The
bedside units must monitor toxicity levels regularly, but not too frequently. For
instance, the bedside units could compute the toxicity levels once every 10 seconds,
using a clock for timing. The measurement task would measure and compute the
toxicity, put the information in a mailbox for the MCU, and suspend itself for 10
seconds.

Introducing the iIRM X Operating Systems Chapter 8 83

Command interrupts from the bedside unit occur when amedical operator types a
command and presses <Enter>. Interrupts from command entries occur at random
times. Theinterrupt handler signalsthe interrupt task. The interrupt task performs
any required processing and waits for the next interrupt.

Processing Commands From the Bedside Units

Each time a medical operator types a command and presses <Enter>, the bedside unit
receives an interrupt signal from the terminal. The bedside unit stops executing the
current instruction and begins to execute an interrupt handler.

1. Theinterrupt handler accumulates the charactersin a buffer and putsthem in a
segment. Theinterrupt handler signals the interrupt task for bedside commands.

2. Theinterrupt task gets the contents of the segment where the handler put the
command. It parses the command and does the required processing.

3. It putsthe command information, along with the number of the bedside unit, into
amessage.

4. It sends the message to the predetermined mailbox for the MCU.

Theinterrupt task begins waiting for the next interrupt. The system returnsto its
normal priority-based, preemptive scheduling.

Multitasking

Tasks in the application run using preemptive, priority-based scheduling. Thisallows
the more important tasks, such as those controlling the rate of dialysis, to preempt
lower-priority tasks, such as updating displays. New capabilities could be added to
the system by simply adding new tasks.

Intertask Coordination

A number of mailboxes used to send information from one task to another are the
only form of intertask communication.

84 Chapter 8 System Development

Enhancing the System

Multi- The application can perform statistical analysisin a different job.

programming The statistical application and dialysis application don't need to share
any objects. Using two different jobs minimizes the chance that one
application can affect the other.

If the two applications need to share alittle information, the shared
data can be passed from one job to the other without losing the
benefits of isolation.

Massstorage The application can include recording information about patientsin
files files on tape, diskettes and hard disks.

Device If the application is extended to allow the MCU operator to send

independence recorded datato several devices (such as a printer, magnetic tape, or
disk), the device-independent 1/O system enables recording the data
without adding code specific to each possible device.

Bootstrap Loading (iIRMX Il OS and iRMX for PCs)

TheiRMX Il OSand iRMX for PCs provide a Bootstrap L oader that enables your
application system to reside on disk and be loaded into RAM (random access
memory) when the system starts.

The Bootstrap Loader resides partly in ROM (read-only memory) and partly on disk
on your application hardware. When your system isreset, the Bootstrap L oader
receives control, and loads the rest of the software, including the iRMX OS and the
application software, into RAM. The Bootstrap Loader provides these advantages:

« By placing the Bootstrap L oader in ROM, you can shift the rest of your
application system to RAM. This decreases the amount of ROM required. Since
ROM requires that information be burned or masked into memory, the Bootstrap
Loader reduces your masking or burning expenses and manufacturing costs.

« TheBootstrap Loader smplifies providing updated software to your customers.
Y ou can ship diskettes containing the updated software, reducing the cost of
updating your software.

Introducing the iIRM X Operating Systems Chapter 8 85

86 Chapter 8 System Development

Application Debugging

TheiRMX OS provides several levels of debugging support. Sometimes you will use
the features listed in this section as part of your system, and sometimes you will use
them only during development.

System Debug Monitor

The System Debug Monitor (SDM) is an assembly-level debugger that enables you to
load and run code, examine registers and memory, and disassemble code.

This monitor is soft-loaded into RAM. The monitor can run on target on a stand-
alone development system, or in a development environment with a separate iRM X
host and target.

The SDM monitor provides commands that perform these functions:
« Load and execute the code module

« Examine and modify memory and CPU registers

« Display the contents of descriptor tables (protected mode only)
« Move, compare, and search blocks of memory

+ Read and writeto an I/O port

- Disassemble code and execute one instruction at atime

« Disassemble code and sequentially execute instructions until encountering a call
instruction

See also: SDM, System Debugger Reference

System Debugger

TheiRMX System Debugger (SDB) extends the capabilities of SDM. It provides
static debugging for when the system hangs or crashes, when you wish to freeze the
system and examine it, or when synchronization reguirements preclude debugging
selected tasks. By stopping the system, the SDB provides a global view of the
system. The SDB requires only the Nucleus to run.

Introducing the iIRM X Operating Systems Chapter 9 87

The SDB enables you to:

« ldentify and interpret iRMX system calls

« Examine atask's stack to determine system call history

- Digplay information about iRMX objects

« Digplay information about the job hierarchy

- Digplay the register contents

« Single step

See also: System Debugger Reference for details on debugging

Soft-Scope Debugger

88

The Soft-Scope debugger is a tasking debugger, which enables multiple tasks to be
debugged simultaneously while the rest of the system continuesto run. Itisan
interactive, source-level, symbolic debugging tool that enables debugging code
modules at the source level, such as C or PL/M, rather than at the assembly level.
There are two versions of this debugger:

e Soft-Scope 11: Installed with the OS, this version operates from the iRM X
command line. Y ou invoke it with the ss command.

e Soft-Scope for Windows NT: Installed from CD on aWindows NT Host system,
this version downloads and debugsiRM X applications remotely over either a
TCP/IP or seria connection. You invoke it using itsicon (which points to
sswin32.exe).

Y ou do not have to deal with the details of the CPU’s machine code, or with the inner
workings of theiRMX OS. Features of the Soft-Scope debugger include;

« All the features of SDB and SDM

« Full-screen windowed display, mouse- or keyboard-activated menu and dialog
boxes (Windows version)

« Source code interface and online listings

« Accessto program variables by source-code name, including arrays, structures,
and bit fields

« High-level breakpoints, execution breakpoints in ROM, and accessto
data breakpoints

+ Disassembly of instructions

« Second terminal option for remote debugging

Chapter 9 Application Debugging

« Unlimited size of source files and number of symbols

« Ability to create C-like macros and C-like expression syntax within commands
* Run-time exception handling

« Ability to suspend and resume tasks

« Full support for the protection features of the microprocessor, including
automatic trapping of protection exceptions

See also: Soft-Scope Debugger User’s Guide: the first manual bound into this
volume describes Soft-scope for Windows; the second manual describes
Soft-Scope |11 for the iRMX command line

Introducing the iIRM X Operating Systems Chapter 9 89

0 Chapter 9 Application Debugging

System Configuration

Configuration really means two things:

« Setting up your development system to include the programmers and terminalsin
your work environment

« Modifying the iRM X OS as your application requires, before installing it on your
application systems

See also: Configuring users and terminalsin System Configuration and
Administration for information about configuring the devel opment
environment

Y ou can use the Interactive Configuration Utility (ICU) and/or loadable jobs and
drivers to modify your OS configuration.

ICU Configuration

Y ou can configure any iRMX OS with the ICU. Inan DOSRMX or iRMX for PCs
installation you must specify a generation environment if you want to include the
ICU. TheiRMX Il OS awaysincludes an ICU and the underlying generation tools.
The ICU creates a custom system for your application. It enables you to choose and
modify the parts of the OS you need.

The OSingallation contains preconfigured bootable images of the iIRMX OS that
you can use. The ICU definition files used to create these images are also included.
Using the definition files provides these advantages:

* Youdon't have to make hardware or software changesto install the OS on Intel's
System 310, 320, and 520 microcomputers.

« The start-up systems use the most current, complete, and accurate version of the
os.

e You can start using the OS immediately, and perhaps even run your application
software, without redefining or reconfiguring the OS.

Introducing the iIRM X Operating Systems Chapter 10 i

The advantages of using the ICU include:

e You can configure application systems, even complex systems, relatively easily.
The ICU displays a series of menus, each describing a number of features. You
can accept the default or change the value for each feature.

» The choices you make during configuration are saved in adefinition file. You
can use thisfile later as a base when you need to change your configuration.

See also: ICU User's Guide and Quick Reference for details on using the ICU
screens and for alist of definition files

IRMX for PCs and DOSRMX Configuration

At installation, the system asks questions about the system bus type, networking, etc.
Then it setsup an initia configuration.

Y ou can further configure iIRMX for PCs and DOSRM X by maodifying an
initialization file, rmx.ini. With thisfile, you can modify parts of the OS, although
you cannot exclude layers.

During initialization, each layer reads a block of entries from thisfile. The values
you enter here override the default val ues shipped with the software.

See also: rmx.ini in System Configuration and Administration

Y ou can also use loadable jobs and drivers to modify your configuration.

Loadable Jobs

L oadable jobs enable you to add drivers, networking, the C library, and your
application to the OS either during initialization or dynamically while the systemis
running. Loading jobs dynamically reduces the size of the boot image and can help
conserve memory if you remove jobs when you no longer need them. Y ou can also
load custom device and file drivers you have written.

Typically you load jobs and drivers with the HI sysload command in the loadinfo file
when the system initializes. Loaded jobs become a part of the OS and remain a part
of the system until you explicitly delete them or reboot the system. The loadinfo file
isone of thefilesin the :config: directory.

See also: Loadable jobs, sysoad command, Command Reference;
Loadable jobs and drivers, System Configuration and Administration;
Writing drivers, Driver Programming Concepts

[y

92 Chapter 10 System Configuration

Related Publications

IRMX Manual Set

Startup Manuals

Installation and Sartup
Introducing the iRMX Operating Systems

Programming Concepts Manuals

iRMX System Concepts

iRMX Driver Programming Concepts

iRMX Network User's Guide and Reference

TCP/IP and NFSfor the iRMX Operating System

Programming Concepts for DOS

iRMX Programming Techniques and Aedit Text Editor

Peripheral Controller Interface (PCl) Server

Real-Time and Systems Programming for PCs, by Christopher Vickery

Reference Manuals

iRMX Command Reference and iRMX Quick Reference to Commands
iRMX System Call Reference

iRMX C Library Reference

iRMX System Debugger Reference

iRMX Master |ndex

Introducing the iIRM X Operating System Appendix A

93

Configuration Manuals
« IRMX System Configuration and Administration
« MSA for the iIRMX Operating System
« ICU User's Guide and Quick Reference

Tools Manuals

« ASM386 Macro Assembler Operating Instructions and
ASM386 Assembly Language Reference Manual

« iC-386 Compiler User's Guide

« Intel386 Family Utilities User's Guide
« PL/M-386 Programmer's Guide

« Soft-Scope Debugger User’s Guide

94 Appendix A Related Publications

Glossary

absolute address
access control
accessrights
AL

dias

ANSI

application system

asynchronous

asynchronous
system call

attributes

AU

background process

BIND

Introducing the iIRM X Operating Systems

The physical address that is permanently assigned to a storage
location in memory.

Controlling a user's access to perform selected operations, such as
reading or changing, on an object, file, or directory.

The bit settings that determine a user's permission to perform
operations on an object, file, or directory.

Application Loader loads programs into memory and executes them
from an application program.

A symbolic name for an object, file, directory, command, etc.
American National Standards I nstitute.

The set of components needed to solve an application problem: your
program, other software, and hardware.

Non-synchronous timing. A method in which signals between
networked systems are not timed; sending data a character at atime
without prior arrangement. An event or device that is not
synchronous with CPU timing or another device'stiming. See
synchronous.

Can run concurrently with the calling task. See synchronous system
call.

The set of characteristics and properties that define a given object
type.

Administrative Unit. AniRMX-NET concept that defines alogical
grouping of systemsin anetwork. The systemsthat share acommon
set of users.

A command or program that runs without interaction with the
operator, and allows the operator to enter other commands whileitis
running.

Linking object modules using the BND386 utility.

Glossary 95

binding

BIOS

blocking

boot

boot client

bootloadable

bootstrap

bootstrap loader

buffer

buffer pool

buffered device

cache

call gates

CDF

channel

checksum field

96 Glossary

L etting each task know the locations of the variables and procedures
that it uses.

The Basic I/O System layer of theiIRMX OS. Thisisdifferent from
the ROM BIOS stored in ROM on a DOS system.

Two meanings. reading or writing afile in sector-size blocks; a
system call waiting at an exchange until a necessary resource or
object isavailable.

To use abootstrap loader. Thisterm is generally used to describe
starting a computer system.

The system that requests a remote boot from the remote boot server.
Typically, this system does not have mass storage provided by a hard
disk or diskette drive. A diskless system or workstation.

A program with absolute addresses instead of relocatable addresses.

Starting a computer, which usually clears memory, setsup 1/0
devices, and |oads the OS.

A program that residesin ROM. When the system is reset, the
bootstrap loader receives control, and loads the OS and application
software into RAM.

A temporary holding area for memory segments; used for reading
and writing data.

A collection of preallocated buffers that provides quick accessto
reusable memory.

An intelligent communications device that hasits own CPU. It
manages its own character buffers separately from those managed by
the Terminal Support Code or Random Access Support Code. See
non-buffered device.

A high-speed buffer memory used between the CPU and main
memory. Instructions and programs can operate at higher speed if
they are in the cache.

Redirect flow within a task from one code segment to another. Used
to enter theiRMX OS and OS extensions.

Client Definition File. Contains the names and passwords of client
systemsin a network's Administrative Unit.

A data path.
A field in the fnode file used to verify disk integrity.

child job

ICi:

CLI

client, network

.CO:

command line parsing
COMMengine

COMM puter

composite object
concurrent condition
code

condition code

configuration

connection

console

CPU

Introducing the iIRM X Operating Systems

A job created by another job, called the parent job. Child jobs obtain
their resources, such as memory, from their parent job.

Standard logical nhame for the terminal keyboard, or console input.
Each user's :ci: refersto the terminal associated with that user.

Command Line Interpreter, the default initial program; includes
commands with optional parameters.

A network system that requests and uses resources located at another
(remote) network system. Intel's transport protocol is based on the
client-server model, in which client jobs request data from server
jobs, and server jobs respond to the requests. Sometimes called
consumer.

Standard logical name for the terminal screen, or console output.
Each user's :co: refersto the terminal associated with that user.

Retrieving and interpreting the parameters of a command.

A networking hardware environment that uses separate boards for
the host CPU and LAN controller. The iNA Transport Software runs
on the LAN controller and the iIRMX-NET runs on the host CPU
withiRMX OS.

A single-board computer with on-board integrated networking
hardware. The COMMputer hostsiRMX-NET, iNA 960, and the
iRMX OS.

An object of anew type designated by an extension object.

A condition code that is returned as a result of asynchronous
processing.

A message returned when an error occurs during execution of a
program or system. Same as exception or error code.

Using the ICU to change attributes about the iIRMX 111 OS. Also
loading and modifying :config:, rmx.ini, and loadinfo filesin iIRMX
for PCs and DOSRMX.

An object, returned by the 1/0 system whenever afileis created, that
represents the bond between a device or file and a program.

A specific terminal attached to a system that is used to invoke the
Bootstrap Loader.

The central processing unit of a computer: the module in charge of
receiving, decoding, and executing instructions.

Glossary 97

CPU trap

current directory

datagram

datafile
deadlock

dedicated server

default prefix

descriptor

descriptor table

device

device driver

directory file

download
DUIB

dynamic logon

terminal

98

Glossary

See hardware exception.

TheiRMX directory that acts as the default when you specify a
filename without a preceding pathname. The current directory
always has the logical name : $:.

A connectionless message-delivery mechanism that does not
guarantee delivery or the order of delivery.

A file containing programs and data. See directory file.

The impasse resulting when two or more tasks each hold exclusive
access to resources needed by the other task(s).

A network system used exclusively to provide resources to client
systems.

A prefix 1D used by default whenever anull prefix is presented to the
1/O system.

An entry in adescriptor table that contains the physical address,
length, and other information about an object, which is viewed by the
Nucleus as the token for the object. It isassigned by the iRMX OS
when an object is created.

A hardware-defined table that contains descriptors, which point to
memory. There arethreekinds: aglobal descriptor table (GDT),
one or more local descriptor tables (LDT), and an interrupt
descriptor table (IDT).

Hardware connected to the computer system that is used for reading
and writing data, such asterminals, printers, plotters, display tubes,
and robots.

Software that controls device operation, and provides a system-
defined, device-independent interface to the device. Device drivers
are implemented at the BIOS level.

The type of file that contains the disk addresses of associated data
files and other directory files. See datafile.

Sending data from a server system to a workstation or end system.

Device Unit Information Block, a collection of information about a
device unit (a device and a controller) that includes its name,
granularity, and addresses of device driver routines.

A terminal configured to service many different operatorson a
request-by-request basis. Userslog on to the system with a name
and password. See static logon terminal.

dynamic memory
allocation

dynamic user

EIOS

end point

end system

environment

error code

escape sequence
event

exception code

exception handler

exchange object

extension object

FIFO

file consumer

file driver

file pointer

Introducing the iIRM X Operating Systems

Memory that is allocated to jobs only when tasks request it. This
enables jobs to share memory and change the amount of memory
they use as their needs change, using less memory overall. See static
memory allocation.

A Human Interface user created by entering a name and password on
adynamic logon system. The user must be defined in the UDF prior
to being created at logon.

The Extended 1/0 System.

The system at either end of a network communication connection. A
network system or node. Also called an end system.

See end point.

The general operating characteristics that are imposed on a computer
system.

Same as a condition code.

Characters preceded by an ESC character.
A system state change.

Same as a condition code.

A procedure that corrects certain exceptional conditions, or deletes
or suspends the job that caused the error.

A class of objects used to aid communication, synchronization, and
mutual exclusion between tasks. See mailboxes, ports, regions, and
semaphores.

Designates a new type of object. See composite object.

First In, First Out order of operation, meaning that the least recent
item added is the first one removed.

The iRMX-NET software module that enables alocal user to
transparently access remote files.

Software that the BIOS usesto control file operation. Thereisa
driver for each of the types of files: named, physical, stream,
remote, DOS, and EDOS. There are also loadable file drivers, such
asNFsS.

An indicator that marks a connection's current position in afile. The
next sequential read or write starts at the pointer. When afileis
opened, the pointer is at the beginning of thefile.

Glossary 99

file server TheiRMX-NET software module that receives requests from remote

users.

file system A complete hierarchy of logically related files, including a root
directory.

filetree A hierarchical file structure that reflects the relationships between
files.

file types There are these types of filesin theiRMX OS: named, physical,
stream, remote, and DOS.

firmware Software that is permanently fixed onto a memory chip (ROM).

first level jobs Children of theroot job: some of the OS layers are first level jobs,

and applications can also befirst level jobs.

fixed updating Updating done at the same time interval for al devices, with the
interval being independent of 1/O activity. See timeout updating.

fnodefile Thefile descriptor node file, afile in the BIOS that stores
information about named files, such as the file name, location,
creation and last modification dates.

Ghyte Gigabyte

GDT Global Descriptor Table, the system-wide table containing
descriptors that are shared among all jobsin the system.

generation output file A file containing the results of the ICU generate command, which
generatesan iIRMX system. The file has an .out extension.

global A programming reference that means the same thing throughout the
entire program.

global job An interactive job or user session.

global object directory An object directory, found in each global job, that stores objects
(including logical names) for that job. These objects remain valid

for the life of the user job or until they are detached, and other users
do not have access to them.

granule A block of allocated space on a mass storage device.

granularity The size of ablock of allocated space on a mass storage device.

handshaking Signalsthat are used to synchronize communications equipment
during the set-up period.

hardware The physical equipment of a computer system.

hardware exception An error that occurs as the result of a hardware protection feature.

100 Glossary

hardware interrupt

HI

home directory

host

ICU

IDT

initial task

interoperability

interrupt handler

interrupt task
1/0 job

IORS

1/O system

iRMX
iRMX-NET

1SO
job

The point at which external processes enter the computer. Inthe
iIRMX OS, the device that handles hardware interrupts is the 8259A
Programmabl e Interrupt Controller (PIC).

Human Interface, which performs logon and logoff functions, creates
jobs, assigns memory, and startsinitial programs.

The directory you automatically enter when you log on to the IRM X
OS. The system manager assigns your home directory when initially
setting up your account. It has the logical name :home:.

The CPU board in a computer.

Interactive Configuration Utility. A screen-oriented utility to help
build the OS configuration you want.

Interrupt Descriptor Table, the system-wide table that contains
descriptors for the system's interrupt handlers.

Thefirst task to execute after creation of ajob. Its sole purposeisto
initialize the environment for the new job.

The ability of iRMX-NET to share files with other systems besides
theiRMX OS.

A procedure that isinvoked by hardware to respond to an external
asynchronous event (an interrupt). The handler decides how
important the interrupt is and either returns to the original task or
invokes an interrupt task.

A task that runs when a specific interrupt occurs.

A job that is a child of the EIOS rather than the Nucleus. 1/0 jobs
can use EIOS system calls.

1/0 Request/Result Segment, a device driver data structure created to
record and control the action taken for each 1/0 request.

The layer of an OS that provides input and output functions. The
iRMX OS hastwo: the BIOS and the EIOS.

Intel's Real-time Multitasking Executive, the OS.

Intel networking software that provides transparent file access
between systems.

The International Organization for Standardization.

One or more tasks and the resources they need (objects, an object
directory, and a memory pool).

Introducing the iIRM X Operating Systems Glossary 101

Kbyte
LAN

LDT

LIFO

local

local environment

local object directory

local node

logical name

LRS

mailbox

Mbyte

media

memory pool
MIP

102

Glossary

Kilobyte.

Local AreaNetwork. Anin-house data communications system that
connects a number of independent devices.

Local Descriptor Table, atable that stores descriptorsand is
managed by theiRMX OS.

Last In, First Out order of operation, meaning that the last item
added is the first one removed.

In networking, the specific environment that is directly controlled by
agiven computer, such as disk drives and printers attached to a
system. Local also refersto a user's own system and files, as
opposed to those available across a network.

The execution environment for a set of tasks. Same asjob.

When you invoke a command, the OS creates a job and alocal object
directory for that command. The objects cataloged in this directory
can only be used in the context of this job, and they remain valid
only until the job exits or is deleted.

The node a user islogged into isthe local node. All other nodes are
remote nodes.

Anidentifier (astring of characters, usually bounded on both ends by
colons) for afile, directory, device, or remote computer system that
the EIOS associates with a particular file connection or device
connection. May be either local to ajob or global acrossall jobs.

L oader Result Segment. Records the action taken by Application
L oader system calls.

An object that atask uses to exchange objects, tokens, or information
with other tasks. There are two kinds: data mailboxes and message
mailboxes.

Megabyte.

The physical partsthat store or transport data, such as a CD-ROM, or
the interconnection between devices attached to a LAN (broadband
coax, twisted pair, and fiber optics, etc.).

A configurable amount of memory allocated to a job and its children.

The software module that provides an interface between the local
CPU board and iNA 960 Transport Software operating on a separate
network interface controller (NIC).

Multibus

multiplex

multiprogramming

multitasking

multiuser

mutual exclusion

Name Server

network

network object

NFS

NIC
node

non-buffered device

nonresident user

Nucleus

object code

Introducing the iIRM X Operating Systems

Two bus standards (Multibus | and Multibus 11) designed and
supported by Intel for multiprocessor systems.

To use one structure for more than one function.

A technique used to independently run several unrelated applications
on asingle application system.

A type of system that supports the execution of multiple tasks, each
of which needs control of the processor to run.

A type of system that enables multiple usersto log in and perform
work asif each were the only user on the system.

A means of allowing only one task to have accessto a shared
resource at any given time.

TheiRMX-NET software module that provides the network
directory service for local and remote users.

A group of independent computer systems that are interconnected for
communication.

A resource that can be accessed over a network by clients, such as
file servers, print servers, or virtual terminal servers.

Network File Support. NFS enables hosts to share their local
resources with remote hosts (clients) in a manner that hides the
heterogeneous nature of a network. For example, a server running the
iIRMX OS may share a specific directory with a client machine
running the Unix OS. The client can access the directory using
commands and calls that appear to be directed at local resources.

Network Interface Controller.

A computer system functioning as the end point in a network. Each
node isidentified by a network address.

A communications device that must be managed by the host
processor board. The Terminal Support Code on the host processor
board must manage the character buffers of the non-buffered device.
See buffered device.

A user defined either in the system configuration files or with the
password command. See resident user.

The basic layer and computational heart of the iRMX OS.

Output of a BIND (linker) command or of a compiler such as C,
PL/M or ASM.

Glossary 103

object directory

object file

object module

objects

object-based

OMF

operating system

OS extension

0SsC

OSl Reference

Model

overlays

owner

packet

104

Glossary

A place in memory where atask can catalog an object under an
ASCII name, which can then be used for access instead of the
object's token.

A filethat contains the binary object code that results from the
compilation of a program or procedure.

The output of a single compilation, a single assembly, or asingle
invocation of a BIND command.

Data structures and the operations performed on them. Objects are
system building blocks, and include:

Segments Mailboxes
Semaphores Regions

Jobs, 1/0 jobs Extension objects
Tasks Composite objects
Buffer pools Ports
Connections Users

A concept that focuses on data structures and the actions performed
on them.

Object Module Format, the format of linkable modules.

The software that manages the hardware and logical resources of a
system, including device handling, scheduling, and file management.

Operating system extension, away to add custom functionsto a
system to meet the needs of the design.

Operating System Command: in the context of aterminal driver, a
sequence of characters used by an application task or the operator to
communicate with the Terminal Support Code.

Open Systems Interconnection Reference Model, a model that
defines network architecture with seven layers:

1) Physical 5) Session

2) DatalLink 6) Presentation
3) Network 7) Application
4) Transport

Logically independent subsections of a program, which can be
loaded one at atime in the same block of memory by the AL.

The user ID associated with afile.

A group of data bits and control elements that are transmitted across
anetwork as a composite whole.

parameter A variable that can be assigned a constant value for a specific

function.
parent directory Thefile directory immediately above the current directory.
parsing a command Retrieving and interpreting the parameters of a command.
partition An area on ablock device such asadisk or tape.
pathname The designation used by the OS to find or specify afile or directory.
peer Equivalent computer systems, software modules, or protocol layers.

peer-to-peer resource In networking, an organization where al the nodes can provide
sharing resources for each other while also running local applications, so
each oneis both a server and aclient.

portability Used to describe language processors and software tools that can run
on several OSs, often because they use UDI system calls.

port An object that can send messages to or receive messages from other
processors on the same bus. Ports enable message addressing to a
given task, and are usually used for synchronization.

private Files, accessed locally, that are not available to remote users across a
network.
priority A number used for scheduling a task relative to other tasks.

Priorities range from O through 255, with 0 being the highest priority
and 255 the lowest.

program state The registers and data used by a program. If the program stateis
saved during task switching, the OS can restart the program later.

PROM Programmable Read-Only Memory. A memory device in which
information can be changed after manufacture, but is then
permanent.

protected mode See PVAM.

protocol Rules for network communications between equivalent (peer) layers
in regard to the format and content of the messages exchanged.

public Files that are available for access by remote users on a network.

PVAM Protected virtual address mode: microprocessor memory

management feature that trand ates virtual addresses to physical
memory addresses. It supports 4 Ghbytes of physical memory. It also
protects the OS from unauthorized modification by application
programs, and isolates each user from other users. Seerea address
mode.

Introducing the iIRM X Operating Systems Glossary 105

read-ahead

real address mode

rebooting

recovery resident user

region

remote

remote node

resident user

resources

response time

RFD

root directory

root module

root object directory

round-robin
scheduling

106

Glossary

A method of overlapping I/O operations so that tasks can continue
running while the EIOS is transferring information to or from
devices. Seewrite-behind.

The method of execution on an Intel386 or later microprocessor that
supports 1 Mbyte of physical memory in RAM or ROM. TheiRMX
OS does not run in real address mode except for a short time when
the system boots up. DOSRMX switchesto Virtual 86 mode, aform
of real mode, to run DOS and its applications. See PVAM.

Resetting the processor without cutting power. Only the contents of
static memory remain valid after rebooting.

See resident user.

An object that controls access to critical areas, such as a collection of
shared data. A region has special deletion and suspension features.
Useregionsin cases where a section of data must be read and written
completely by one task before another can accessiit.

In networking, an environment that is not local, or directly controlled
by a given computer. For example, disk drives and printersthat are
attached to another network system are remote disk drives and
printers. Seelocal.

In anetwork, a node other than the local node.

A user defined in the Human Interface configuration files, which
gains control only if an initialization error occurs in the configuration
files. Same asrecovery resident user. See nonresident user.

The data and devices on a server that may be accessed by a client.

Thetime it takes between the occurrence of an event or interrupt and
the system's response to it.

Remote File Driver is part of the BIOS subsystem and closely
parallels the Named File Driver of the local OS.

The topmost directory in a hierarchical file system.
An object module that controls the loading of overlays.

An object directory for the root job, containing logical names for
devices. These abjects remain valid until they are detached or the
system isreinitialized, and every user has access.

A priority-based time-slicing system of scheduling tasks for
processing. Multiple tasks of equal priority are each allotted the
same amount of execution time, and alternate running until finished.

run-time linking

SBC
SBX
SDM
sector
segment

semaphore

server, network

session

spokesman

stack

start-up systems

static logon
terminal

static memory
allocation

static user

stream file

L etting each program know the locations of the variables and
procedures that it uses while the system is actually running.

Single Board Computer.

Single Board Expansion Module.

System Debug Monitor, a software debugging tool.

A device granule (block of allocated space) for disk media.

A contiguous unit of memory addressed by a descriptor. Tasks use
segments for purposes such as stacks, data storage, and buffers.

An object that is a counter, and provides a very fast method of task
synchronization, or can be used for mutual exclusion.

A network system that responds to and provides the resources that
are requested and accessed by aclient system.

In networking, a point-to-point (virtual-circuit) connection between
peer systems.

In networking, the system that contains the names and addresses of
other systems.

An ordered collection of itemsin memory, into which new items
may beinserted or removed. When a program makes acall, datais
passed or stored on the program’ s stack. Stacksare LIFO (last in,
first out) meaning that the most recent item added is the first one
removed.

Bootable images of the iIRMX OS that are ready to run.

A terminal configured to service one specific user. Thelogonis
invisible to the user. See dynamic logon terminal.

A memory-allocation method in which memory is allocated to jobs
when the system is started, and cannot be freed for other jobs. Thus,
the total memory requirement of the system is always the sum of the
memory requirements of all jobs. See dynamic memory allocation.

A user that comes up automatically when a static logon systemis
booted.

A temporary stream of bytesin memory, which isread on a FIFO
basis and destroyed after reading.

Introducing the iIRM X Operating Systems Glossary 107

string

subnetwork

subtree

Super user

SXM

synchronization

synchronous

synchronous system
call

system
system call

system manager

task

task priority

task switching

TCP

108 Glossary

AniRMX dtring is a character string consisting of 1+n consecutive
bytes. Thefirst byte contains the character count. The following n
bytes contain the ASCII codes for the characters.

Thisis different from a C string, which is null terminated: thereis
no count byte and the string ends at the first byte containing zero.

Synonym for Administrative Unit (AU) used by UNIX and other
OSs.

All the data files and nested directories contained in a directory.

Usually the system administrator; has auser ID of 0 and accessto all
files and devices on the system.

System Extension Module.

A programming technique that enables dependent tasks to take turns
in their use of shared data or system resources.

At precisely the sametime. An event or device that isin time with
the CPU or another device. In networking, a method by which
signals between systems are timed, with a pre-arranged number of
bits per second being sent across the communicationsline. See
asynchronous.

A call that must complete before control of the computer is returned
to the calling task. See asynchronous system call.

All the hardware and software components of a given computer.

A programmatic interface used to manipulate objects or control the
computer's actions.

The Super user, with an 1D of 0, who defines users and systems
within an Administrative Unit.

System activities that execute instructions and manipulate data. Can
be viewed as a simple program that appears to be running on a
computer by itself.

A value from 0 through 255, with 0 being the highest priority. Used
in task scheduling along with the task state.

Temporarily stopping one task and running another. The registers
and data (called the program state) of the first task are saved, and it
can be resumed later at the same point at which it was interrupted.

Transmission Control Protocol. A transport layer protocol for the
Internet. It isa connection-oriented, stream protocol defined by RFC
793.

TCP/IIP

Telnet

Terminal Support

Code (TSC)

timeout updating

time-dicing

token

top-down
programming

transparency

trap
TSC

UA

UDF

uDlI

user

user job

Transmission Control Protocol/Internet Protocol. A set of computer
networking protocols and applications that enables two or more hosts
to communicate. TCP/IP includes a suite of protocols besides TCP
and | P; it has been widely adopted as a networking standard.

A TCP/IP protocol used for remote login between hosts.

A set of commands that control terminal modes and operation.

Updating done at intervals set individually for each device, with the
interval beginning at the end of each 1/0 operation. See fixed

updating.

A non-priority-based system of scheduling tasks for processing.
Multiple tasks are each allotted the same amount of execution time,
and alternate running until finished.

A value representing the logical address and the characteristics of an
object. See descriptor.

A programming concept that focuses on control flow, in contrast to
object-based programming, which focuses on data structures and the
processes performed on them. See object-based programming.

Remote file access that enables the user application to manipulate
remote files asif they werelocal.

See hardware exception.

Terminal Support Code, a set of commands that control terminal
modes and operation.

User Administration. The iRMX-NET software module that
maintains the files used by a system manager when making additions
and deletions of users and systemsin an iIRMX-NET environment.

User Definition File. AniRMX OSfile that contains information
about valid users of a system. Used by the server system in
maintaining the server-based protection scheme.

Universal Development Interface acts as an interface between the OS
and the application program.

Used by iRMX to determine access rights to files and systems. A
user job is created when an operator logs onto a system to obtain
access to the system.

A child job of the HI.

Introducing the iIRM X Operating Systems Glossary 109

verified client

verified user

Virtual 86 mode

virtual circuit

virtual root directory

VVM86 Dispatcher

volume

wildcard character

write-behind

110 Glossary

A client system verified by a server as a node entitled to access the
server.

A dynamically logged-on user. Verification only has meaning when
the user is attempting to access remote files using a network.

A form of real mode used by DOSRMX to run DOS and its
applications.

A reliable, connection-oriented message delivery service. A
connection through the Transport Layer of the OS| Reference Model
that delivers error-free, point-to-point messages in the same
sequence as the messages are sent.

Theroot directory of aremote server system, as seen from the client
system.

Allows DOS to run as atask under DOSRM X.

The medium used to store information on a device, such asa
diskette, tape reel, or hard disk.

A character that can substitute for any single character (typically ?)
or any sequence of characters (typically *), providing the ability to
specify several filesin asingle reference.

A method of overlapping I/O operations that enables tasks to
continue running while the EIOS is transferring information to or
from devices. See read-ahead.

[y

Index

A

access
controlling user, example, 44
access mode
control in connections, 45
access rights
for DOS/IRMX files, 50
for NFSfiles, 50
addressing modes, 17
Administrative Unit, see AU
Aedit, see Programming Techniques and Aedit
Text Editor manual
AL (Application Loader), 69
asynchronous/synchronous system calls, 70
description, 69
dynamic loading from devices, 70
alarms, Kernel, 40
allocating
memory, 13
application development, 79
debugging, 87
design, 81
examples, 83
Application Loader, see AL
asynchronous system calls
definition, in BIOS, 48
inAL, 70
AU (Administrative Unit)
definition of, 77
automatic reattachment of devices, 56

B

Basic I/0 System, see BIOS

BIOS (Basic |/O System)
advantages, 58
compared with EIOS, 58
system call types, 48

Introducing the iIRM X Operating System

blocking, buffers, 56
bootstrap loading, 85
buffer pools, 27
with ports, 31
buffering
agorithm, custom, 58
1/0, 56
buffers
and granularity, 55
choosing number of, 56
1/0, 56
type-ahead, 57
bus architectures, 19

C

C library
and 1/O systems, 59
overview, 80
C Library
calsfrom1/Ojobs, 47
cal gates, 33
CDF (Client Definition File), 77
CD-ROM files
definition, 51
CLI (Command Line Interpreter)
features, 66
special function keys, 67
client, 78
and server, networking, 78
name, iRMX-NET, 77
clock
global, 57
locdl, 57
code portability, 74
command lines
parsing, example, 63
communicating
between tasks, 10, 52

Index

111

composite objects, 32
condition codes, 38
configuration
definition, 91
iRMX for PCs, 92
iRMX for Windows, 92
iIRMX 11, 91
connections, 56
and access mode, 45
device, 46
file, 45
controlling
devices, 54
cursor
moving, 67
customer support, inside back cover

D

data
validity of, 12
data packets, 20
deadlock, 30
debugging tools, 87
System Debug Monitor, 87
System Debugger, 87
default user object
definition, 44
descriptor, 33

designing application system, guidelines, 81

determinism, 6
device connections, 46
devicedrivers
definition, 54
|loadable, 92
device granularity, 55
devices
automatic reattachment, 56
control, 54
independence, definition, 53
logical names, 47
disk integrity, 55

DOS

networking, 78
DOSfiles

definition, 51

drivers, seedevicedrivers, filedrivers

112 Index

dynamic loading
inAL, 70
loadable jobs, 92
dynamic logon terminal, definition, 65

E

EIOS (Extended I/O System)
advantages, 59
compared with BIOS, 58

escape sequences, 57

event-driven applications, 5

examples
application systems, 83
interrupt handlers, 37, 83
multitasking, 84
mutual exclusion, 29, 30
parsing commands, 63
regions, 30
semaphores, 29
synchronizing tasks, 11
user access control, 44

exception handlers, 38

exchanging information
between tasks, 10

execution state, 34

Extended I/O System, see EIOS

extension objects, 32

F

file connections, 45

filedrivers
definition, 53
loadable, 92

file fragmentation
controlling, 55

file granularity, 55

file integrity, 55

file pointers, 46

files
access control of, user, 43
accessrightsto, 50
and multiple users, 49
concurrent access to, 46
hierarchical, 49
independence of, 51

logical names of, 47
types of
CD-ROM, 51
DOS, 51
named, 51
physical, 52
remote, 51
stream, 52
updating, 54
fixed updating, definition, 54
flat model, 14

G

global clock, 57
granularity

types of, 55
guidelines for designing applications, 81

H

hardware environments
networking, 77

HI (Human Interface)
description, 61
operation, 64

HI command, 62

hierarchical files, 49

Human Interface, see Hl

I1/10
buffering, 56
overlapping, 56
random-access, 56
redirecting, 68
sequential, 56
1/0 jobs
and AL, 70
definitionin EIOS, 47
ICU (Interactive Configuration Utility), 91
advantages, 92
online help, 80
iNA 960, 77
Transport Software, 77
initial program, 66

Introducing the iIRM X Operating System

installing iIRMX, see Installation and Startup
manual
interactive command, custom, 63
Interactive Configuration Utility, seeICU
interoperability, 78
interrupt handlers, 5, 36
examples, 37, 83
interrupt responsetime, 6
interrupt task
when used, 37
intertask communication, 52
iRMX
compatibility, 48
configuration, 91
features and functions, 2
layers, 15
iRMX for PCs
configuration, 92
features, 20
iRMX for Windows
configuration, 92

J

jobs, 22
loadable, 92
loading, 61
operator or user, 65
tree, 22

K

Kernel
features, 40
task management, 41
time management, 41
whentouse, 42

L

languages, 79
layers of operating system, 15
libraries

uDlI, 74
limitations

maximum objectsin system, 22
loadable jobs, 92

Index 113

loading N

jobs, 61
local clock, 57 named files, 51
logical names network, 17
cataloging, 47 between operating systems, 78
definition, 47 definition of, 75
logon hardware, 77
process, 65 Network File Access (NFA) protocols, 78
Nucleus
M functions, 21
mailboxes @)
Kernel, 40
Nucleus, 28 object directories, 24, 33, 47
manuals Object Module Format (OMF), 73
iRMX, 93 objects
on CD, 80 definitions, 21
memory maximum in system, 22
alocating and sharing, 13 types, 9
and physical files, 52 user-created, 32
and stream files, 52 OMF (Object Module Format), 73
conserving, 70 online help, 80
protection, 19 online help command, 80
memory pools, 25 on-target development, 79
Kernel requirements, 41 OpenNET, 78
memory segments, 26 operating systems
microcomputers, 1 switching between, 74
microprocessors, 1 overlapping
addressing modes, 18 1/0, 56
protection features, 19 processing in AL, 70
modular programming, 3
Multibus | P
features, 19
supported by iRMX-NET, 77 packets, data, 20
Multibus 1 page fault, 19
features, 19 page tables, 19
supported by iRMX-NET, 77 paging subsystem, 14
multiple terminals password
support, 64 defined in CDF, 77
multiprogramming, 7 PC Bus, 77
multitasking, 3 PC features, 19
examples, 84 physicdl files
multiuser support, 64, 65 definition, 52
mutual exclusion, 12 pointers
examples, 29, 30 to locationsin files, 46
portability
of code, 74

114 Index

ports, 30

preemptive schedules, 4

priority-based schedules, 4

program development, see application
development

protected mode, see PVAM

PVAM (protected virtual address mode), 18

R

RAM, 85
random-access |/O

and buffers, 56
read-ahead, 56
real mode, 18
real-time response, 2
recalling command, 67
recalling commands, 67
redirecting

1/0, 68
regions

Kernel, 40

Nucleus, 30
remote files

definition, 51
response time, predictable, 6
ROM, 85
round-robin schedules, 35

S

sectors and granularity, 55
segments, 26
semaphores

Kernel, 40

Nucleus, 29
sequential 1/O

and buffers, 56
server

and client, networking, 78
service information, inside back cover
sharing

memory, 13
Soft-Scope debugger, 88
standard initial program, 66
start-up systems, 91
static logon terminal, definition, 65

Introducing the iIRM X Operating System

stream files
definition, 52
switching
operating systems, 74
synchronizing
tasks, 11
synchronous system calls
definition, in BIOS, 48
inAL, 70
system calls
asynchronous/synchronousin AL, 70
asynchronous/synchronous in BIOS, 48
definition, 14
differences between BIOS and EIOS, 47
online help, 80
prefixes, 48
system clock, 57
system configuration, 91
System Debug Monitor (SDM), 87
System Debugger (SDB), 87

T

task states, 6

task switch time, 6

tasks, 26
communication, 10
concurrent access to file, 46
coordination, 10
message passing, 10
priority of, 34
scheduling, 33
synchronizing, 11

termcap file, 67

Terminal Support Code, see TSC

terminals
controlling output, 57
dynamic and static, definition, 65
setting variables, 57
support for multiple, 65
support for various types, 67

timeout updating
definition, 54

tokens, 33

tools, 79

top-down programming, 3

tranglation

Index 115

definition, 57
transparent mode, 57
transporting code between OSs, 74
TSC (Terminal Support Code)
definition and functions, 57
type manager, 32
type-ahead
buffer, 57
inCLI, 67
typing input, 67

U

UDF (User Definition File), 77

UDI (Universa Development Interface) libraries,
74

Universal Development Interface, see UDI

UNIX

116 Index

networking, 78
updating files

fixed and timeout, 54
User Definition File, see UDF
user ID, 77
user job, 65

Vv

virtual memory, 14
volumes
and physical files, 52
integrity, 55

W
write-behind, 56

	Introducing the iRMX® Operating Systems
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Basic Concepts
	iRMX Operating System Features
	Real-time Processing
	Objects and System Calls
	Example Code and Demonstration Programs
	Network Support
	32-Bit Architecture, Addressing, and Protection
	Bus Architecture Support

	iRMX for PCs Special Features

	Chapter 2: Nucleus and Kernel Features
	Nucleus Objects
	Jobs
	Tasks
	Memory Segments
	Buffer Pools and Heaps
	Exchange Objects
	Extension Objects and Composite Objects
	Object Directories, Tokens and Descriptors

	Nucleus Task Scheduling
	Priority
	Execution State
	Round-robin Scheduling

	Nucleus Interrupt and Exception Handling
	Interrupt Handlers
	Exceptional Conditions

	Nucleus Messaging Service
	Kernel Features
	Kernel Objects
	Kernel Task Management
	Kernel Time Management
	Kernel Interrupt Handling
	When To Use the Kernel

	Chapter 3: BIOS and EIOS Features
	I/O System Objects, Logical Names and System Calls
	User Objects, Users and User Access Control
	Connections and File Access Modes
	I/O Jobs
	Logical Names for Files and Devices (EIOS Only)
	BIOS and EIOS System Call Differences

	Files and Directories
	Hierarchical File System
	File Access Rights
	File Types

	Devices and Device Control
	Device Independence
	Device Control

	System Clock
	Choosing Between I/O Systems
	BIOS
	EIOS
	Making the Decision

	Chapter 4: Human Interface Features
	Run-time Loading of Jobs
	HI Commands
	Human Interface System Calls
	Custom Command Line Parsing

	Multiuser Support
	HI Initialization
	System-wide Setup
	Logon
	Operator Job Creation
	Command Line Interpreter (CLI)

	Chapter 5: Application Loader Features
	Dynamic Loading
	Loading Flat Model Applications
	Objects and System Calls

	Chapter 6: UDI Features
	Chapter 7: Networking Features
	Network Concepts and Terminology
	Network Software
	TCP/IP for iRMX OSs
	iNA 960 and iRMX-NET
	Network Security

	Networking Between Operating Systems

	Chapter 8: System Development
	Shared C Library
	Online Help Systems
	System Design
	A Hypothetical System
	Interrupt and Event Processing
	Multitasking
	Intertask Coordination
	Enhancing the System

	Bootstrap Loading (iRMX III OS and iRMX for PCs)

	Chapter 9: Application Debugging
	System Debug Monitor
	System Debugger
	Soft-Scope Debugger

	Chapter 10: System Configuration
	ICU Configuration
	iRMX for PCs and DOSRMX Configuration
	Loadable Jobs

	Appendix A: Related Publications
	iRMX Manual Set

	Glossary
	Index

