
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

MSA for the iRMX
Operating System

07-0703-01
December 1999

ii

.
EPC, INtime, iRMX, and RadiSys are registered trademarks of RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

October 1999

Copyright 1999 by RadiSys Corporation

All rights reserved.

MSA for the iRMX Operating System iii

Quick Contents

Chapter 1. Introduction

Chapter 2. Bootstrap Parameters

Chapter 3. Boot Scenarios

Chapter 4. Troubleshooting

Index

iv

Notational Conventions
This manual uses the following conventions:

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH).

• Bit 0 is the low-order bit unless otherwise stated.

• Computer output is printed like this.

• User input appears like this.

• System call names and command names appear in bold.

• The logical name :rmx: in a pathname replaces /rmx386/ or /rmx286/ as required
for the specific file being accessed.

• The notation <CR>, in upper- or lower-case, indicates a carriage return at the
end of a line. An instruction to enter a value means press <CR> at the end of the
line.

• Items shown within angle brackets (< >) represent variable information, either
displayed by a command, or for which you enter the appropriate value.

• The notation <CR>, in upper- or lower-case, indicates a carriage return at the
end of a line. An instruction to enter a value means press <CR> at the end of the
line.

• The logical name :rmx: in a pathname replaces /rmx386/ or /rmx286/ as required
for the specific file being accessed.

• The following operating system layer-specific abbreviations are used.

AL Application Loader

BIOS Basic I/O System

EIOS Extended I/O System

HI Human Interface

UDIUniversal Development Interface

✏ Note
Notes indicate important information.

▲▲! CAUTION
Cautions indicate situations which may damage hardware or data.

MSA for the iRMX Operating System Contents v

Contents

1 Introduction
Why You Might Change the Bootstrap Process... 1
What Happens After Power-up or Cold Reset ... 2

Reset... 3
Board Initialization... 3
System Hardware Initialization .. 3
Bootstrap Loading .. 4

First Stage Bootstrap Loader ... 4
Second Stage Bootstrap Loader... 5

2 Bootstrap Parameters
What Are Bootstrap Parameters?... 8
Bootstrap Parameters... 9

Server Parameters... 10
Client Parameters ... 12
SPS Parameters .. 19

Using the MTH to Change Parameters .. 27

3 Bootstrap Scenarios
Overview of Examples and Terms... 29

Bootstrap Methods.. 30
Host Configurations.. 30

System Configuration .. 31
iRMX Configuration Files.. 31
Selecting Terminal Device Names ... 31
Generating Configuration Files and Submit Files..................................... 32

Making New Boot Systems ... 33
Parameters for Other I/O Server Boards... 34
Configuration Files for a Networking System .. 35

Example 1: Independent Boot Method ... 36
Hardware Configuration... 37

Contentsvi

Software Configuration .. 38
Boot Image Files ... 38
BPS.CPU File.. 39
The :config:terminals File ... 40

Testing the Boot Scenario .. 41
Example 2: Quasi-Independent Method ... 43

Hardware Configuration... 45
Software Configuration .. 45

The :config:terminals File ... 45
Boot Image Files ... 46
BPS.RMX File .. 47

Description of the Boot Scenario.. 48
Testing the Boot Scenario .. 49

Example 3: Dependent Method .. 51
Hardware Configuration... 53
Software Configuration .. 54

Boot Image Files ... 54
BPS.DEP File.. 55
The :config:terminals File ... 58
The /net/data File .. 58

Description of the Dependent Boot Scenario.. 60
Testing the Boot Scenario .. 60

Example 4: Quasi-Independent and Dependent Booting 62
Hardware Configuration... 63
Software Configuration .. 64

Boot Image Files ... 64
BPS.QI File ... 66
The :config:terminals File ... 68
The /net/data File .. 69

Description of the Boot Scenario.. 71
Testing the Boot Scenario .. 72

Example 5: Dual SCSI Bus Quasi-Independent Booting............................... 74
Hardware Configuration... 74
Software Configuration .. 75

Boot Image Files ... 75
BPS.DSQ File ... 76
The :config:terminals File ... 77

Description of the Boot Scenario.. 77
Testing the Boot Scenario .. 78

MSA for the iRMX Operating System Contents vii

4 Troubleshooting
SDM Recovery .. 81
MSA Boot Error Messages.. 81
Causing a Warm Reset .. 86

Using the HI ic Command.. 86
Using the Aliased Warmreset Command.. 87
Warm Reset from the Front Panel .. 87

Index ... 97

Contentsviii

Tables
Table 2-1. Server Parameters.. 10
Table 2-2. Client Parameters .. 12
Table 2-3. Possible Parameters for bl_boot_device .. 14
Table 2-4. SPS Parameters ... 20
Table 2-5. MTH Commands Used for Changing Bootstrap Parameters 28
Table 3-1. Bootstrap Method and Related Files.. 34

Figures
Figure 1-1. Four Phases of Initialization... 2
Figure 1-2. Sequence of Events from Cold Reset to Booting.. 4
Figure 3-1. Independent Bootstrap Model .. 36
Figure 3-2. Hardware Configuration for Independent Boot Scenario 37
Figure 3-3. Quasi-Independent Bootstrap Model.. 44
Figure 3-4. Hardware Configuration for Quasi-Independent Boot Scenario................. 45
Figure 3-5. Dependent Bootstrap Model... 52
Figure 3-6. Hardware Configuration for Dependent Boot Scenario.............................. 53
Figure 3-7. Hardware Configuration for Quasi-Independent and Dependent Boot Scenario 63
Figure 3-8. Hardware Configuration for Dual SCSI Bus Quasi-Independent Boot Scenario 74

MSA for the iRMX Operating System Chapter 1 1

Introduction 1
This manual explains how to set up boot systems Multibus II systems. A boot system
is a set of files that enables bootstrap loading of the iRMX III Operating System.
This set of files includes a target file for each host and support files needed for
bootstrap and for the operating system. A target file is also known as a bootable
image.

The instructions in the Installation and Startup manual describe default, automatic
bootstrap. They explain how to configure a default boot system for the I/O server
and CPU boards. By using this manual you can learn how to do the following:

• Change the default boot process by modifying some bootstrap parameters

• Add multiple CPU boards to the Multibus II System and change the boot
scenario to include them

The boot scenarios described in this manual are for the iRMX III Operating System
and are compatible with Multibus II System Architecture (MSA). To understand this
manual, you will need to refer its companion manuals.

See also: Installing the Software on Multibus II Systems, Installation and
Startup;
MSA Bootstrap Models, Multibus II System Architecture Bootstrap
Specification;
MSA firmware, Firmware User's Guide for MSA Firmware

The rest of this chapter describes:

• Why you might change the bootstrap process

• The four phases of initialization

• The MSA bootstrap process

Why You Might Change the Bootstrap Process
Chapter 3 of this manual provides six examples of MSA boot scenarios, each of
which demonstrates something unique. The variety of bootstrap methods of
Multibus II provides a level of flexibility not available in Multibus I or PC-based
systems. These scenarios exploit the power of distributed computing and are
examples of how to customize a system for maximum performance.

2 Chapter 1 Introduction

What Happens After Power-up or Cold Reset
MSA defines the sequence of events that occurs after power-up, which is the same as
a cold reset. Figure 1-1 shows the four basic parts of initialization: reset, board
initialization, system initialization, and bootstrap loading. Figure 1-2 on page 4
shows the sequence of events from a cold reset to booting.

• Reset: Initialization begins when power is applied to the system.

• Board Initialization: Each board verifies its own functions.

• System Hardware Initialization: One board assumes control of the Multibus II
System and verifies that the system hardware is working. During this phase, you
can change the bootstrap parameters.

• Bootstrap Loading: From its own non-volatile memory, each board invokes
code that finds the device to boot from and loads the operating software into its
memory.

The next section describes each of these phases in more detail.

W-3412

Reset

Time

Board
initialization

System
hardware

initialization

Bootstrap
loading

Operational
software
loaded and
in control of
system

t
end

t
3

t
2

t
1

t
0

Figure 1-1. Four Phases of Initialization

MSA for the iRMX Operating System Chapter 1 3

Reset
At power-up, the system receives a cold reset, which resets all the hardware in the
system.

The reset phase signals the beginning of initialization for the system. The Central
Services Module (CSM), found in every Multibus II system, handles initialization
procedures during this phase. The reset phase ends when the Reset signal (RST*) on
the Parallel System Bus (PSB) is deasserted.

Board Initialization
Each board tests itself, first running initialization checks on its own interconnect
controller. The interconnect controller is hardware that handles the interconnect
address space. Then the board checks the processor.

If all the checks pass, the board runs Built-In Self Tests (BISTs) that verify the rest of
the board. Each board reports a pass/fail result for the checks and BISTs in its
interconnect space, where the results can be read by other boards during subsequent
phases. This phase ends when the processor deasserts the Reset Not Complete signal
(RSTNC*) on the PSB.

System Hardware Initialization
The independent boards then begin to communicate with each other through
interconnect space. They use a standard method for selecting one of the boards to
control the system tests. The selected board, called the master, instructs the other
boards to run further tests on themselves and across the PSB. At the end of system
hardware initialization, the master isolates any faulty board by putting it in a reset
state; this prevents a faulty board from interfering with the bootstrap process.

While the master is in control of the system, you can request the master to run
additional tests. Also, you can influence the booting process by changing bootstrap
parameters or by attempting to boot. You can communicate with the system through
a console connected to the master.

System hardware initialization ends when the master sets the BIST Complete Bit on
all boards.

4 Chapter 1 Introduction

Ini
tia

liz
ati

on
 ch

ec
ks

BIS
T

M
as

ter
 ar

bit
ra

tio
n

M
as

ter in
 co

nt
ro

l o
f s

ys
tem

 in
itia

liz
atio

n

Boo
tst

ra
p l

oad
er

 st
ag

e 1
 (f

irm
war

e)

Boo
tst

ra
p l

oa
de

r s
tag

e 2
 (s

of
tw

ar
e)

PSB Reset signal
asserted, Reset
Not Complete
(RSTNC*) signal
asserted

Reset signal
deasserted

Reset Not
Complete signal
deasserted

BIST complete
bit is set

Board in
full operation

t t t t t
ACTIVITY

PHASE

EVENT

0 1 2 3 end

Board initialization System hardware
initialization
(user may invoke
master test handler
during this phase)

Bootstrap loadingReset

OM02049

Figure 1-2. Sequence of Events from Cold Reset to Booting

Bootstrap Loading
In the final stage of initialization, the master passes control to the next piece of
firmware, which is the first stage bootstrap loader. The first stage invokes the second
stage, which loads the operating system.

First Stage Bootstrap Loader

When the first stage loader is invoked, the boards again become a group of
independent computers, but at this stage they can communicate across the PSB. All
the boards that are enabled for bootstrap invoke their own first stage bootstrap loader.

The first stage loader is in non-volatile memory on each of the boards and is
independent of the operating system. The first stage loads the second stage from the
mass storage device, if the second stage is present and valid.

MSA for the iRMX Operating System Chapter 1 5

Second Stage Bootstrap Loader

The second stage loads the operating system. The type of second stage loader
depends on the operating system and the type of booting needed. The iRMX
Operating System provides two types of second stage loaders:

• the disk second stage loader for independent and quasi-independent booting

• the dependent second stage loader for dependent booting

The disk second stage is installed on either the diskette or hard disk when it is
formatted. Although the dependent second stage loader theoretically could be in any
file that the boot server can access, the standard pathname for iRMX III systems is
/msa32/stage2.rmx.

The second stage bootstrap process can follow one of three methods: independent,
quasi-independent, and dependent. The bootstrap loading phase ends with the system
in full operation.

See also: page for definitions of the three bootstrap methods;
Testing a Board or System, Firmware User's Guide for MSA Firmware;
Initialization Phases, Multibus II Initialization and Diagnostics
Specification

■■ ■■ ■■

6 Chapter 1 Introduction

MSA for the iRMX Operating System Chapter 2 7

Bootstrap Parameters 2
The operating system supplies two bootstrap loaders:

• MSA Bootstrap Loader. This loader can load the iRMX III Operating System
on Multibus II systems. In general, Multibus II applications use this loader. The
MSA bootstrap loader executes in Protected Virtual Address Mode (PVAM),
and is described in this manual.

• iRMX Real Mode Bootstrap Loader. This loader can load the iRMX III
Operating System on Multibus I systems.

See also: iRMX Bootstrap Loader Reference Manual for more
information on this loader

This chapter describes MSA bootstrap parameters, lists those used by the bootloaders
and the MSA boot server, and tells how to modify the parameters. To use the booting
examples in Chapter 3 you need to understand the basic concepts from this chapter.

8 Chapter 2 Bootstrap Parameters

What Are Bootstrap Parameters?
Bootstrap parameters are variables that control the bootstrap process. A bootstrap
parameter consists of a parameter name, an equal (=) sign, and a parameter value.
Various firmware and software modules read and set the bootstrap parameters at
different times during the bootstrap process.

To set parameters, a firmware/software module sends a value to the Bootstrap
Parameter String (BPS) Manager. The manager decides if the parameter is valid,
then checks if the parameter is in RAM. If the parameter is already in RAM, the
manager decides if the new value has higher precedence than the previous value. The
order of precedence depends on the source of the new values, as follows:

1. Runtime

2. Operator-entry

3. BPS file (defined on page 9)

4. Non-volatile memory

If the new source has higher precedence, the manager puts the parameter in the BPS
save area.

To read the parameters, the various firmware and software modules request them
from the BPS Manager. The following firmware and software modules use or
manage bootstrap parameters:

Firmware (EPROM) Software (Loaded from Mass Storage)
MSA First Stage Bootloader MSA Second Stage Bootloader
BPS Manager Extended I/O System (EIOS)
Bootstrap device drivers MSA boot server

SPS Manager
PCI Device Drivers
ATCS Device Drivers
Multibus II Downloader Job
iNA 960 MIP Job

MSA for the iRMX Operating System Chapter 2 9

Bootstrap Parameters
This section describes the server and client parameters. You can enter bootstrap
parameter names and their values in uppercase or lowercase.

The tables in this section use these terms:

BPS file Bootstrap parameter string file, located on the hard disk.

If you want to change the boot process, but don't want to type
the changes after every reset, edit the BPS file. Its default
filename is /msa/config/bps.

BPS save area Bootstrap parameter string save area, located in RAM.

If you want to change the boot process temporarily, use the
Master Test Handler (MTH) to write a new parameter to the
BPS save area. When the Multibus II system is turned off or
receives a cold reset, it loses these changes.

Where To Set Lists where you can modify the parameter; in the BPS file or
the BPS save area (using the MTH).

Default The value used if you don't change the parameter.

Valid Values The values to use if you change a bootstrap parameter, either
in the BPS file or by using the MTH.

QI Master Quasi-independent master. The QI master is the host
responsible for running a configuration server.

See also: Bootstrap parameters, Multibus II System Architecture Bootstrap
Specification

10 Chapter 2 Bootstrap Parameters

Server Parameters
Table 2-1 lists the server bootstrap parameters. You must enclose all server
parameters within square brackets. For example, [bl_method = quasi]. If you
enter more than one parameter, they must be separated by semicolons.

✏ Note
You cannot change server parameters using the MTH.

Table 2-1. Server Parameters

Name Where To Set Read By Valid Values Default

[bl_host_id] BPS file Second Stage valid host ID or
global

none

BPS file Boot Server valid host ID or
global

none

[bl_method] BPS file Boot Server dependent or
quasi

none

[bl_second_stage] BPS file Boot Server valid pathname none

bl_host_id
Specifies the host to which the following parameters apply. For example, the
following parameters all apply to host 3:

[bl_host_id = 3....]
bl_debug = on;
rq_sd = GSCW5_2;

The second stage and boot server use this value to select a set of parameters from the
BPS file. If bl_host_id is set to global, the remaining parameters in the group
apply to all hosts. However, if any global parameters are also defined for an
individual host, the individual's parameter takes precedence.

MSA for the iRMX Operating System Chapter 2 11

bl_method
Controls how the boot server responds to the boot client. The choices are quasi-
independent and dependent booting.

If set to quasi, the boot server responds to locate config server requests from
the client. It offers a subset of the boot server called the configuration server.

If set to dependent, the boot server responds to locate boot server requests
from the client.

If not defined, the boot server responds to either locate boot server or locate
config server requests if the client making the request has a valid entry in the
BPS file. A valid entry must be in the BPS file; it looks like this:

[bl_host_id = x;
bl_method = method]

where
x is the host ID of the client requesting service
method is the bootstrap method for this client

Either the server or the client may control the method of bootstrap.

bl_second_stage
The pathname of the file containing the dependent second stage for the boot client,
defined either globally or for a specific host. For example:

[bl_host_id = global;
bl_second_stage = /msa32/stage2.rmx]

or

[bl_host_id = 3;
bl_second_stage = /msa32/stage2.rmx]

This parameter must be defined in the BPS file.

Either the server or the client can control which second stage is used. If this
parameter is not defined, the client parameter of the same name must be set on the
boot client.

See also: Client parameter bl_second_stage, page 13

12 Chapter 2 Bootstrap Parameters

Client Parameters
Table 2-2 lists the client bootstrap parameters. You can enter client parameters in
either the BPS file or the BPS save area.

To specify client parameters in the BPS file, separate them by semicolons and do not
put them in brackets. To specify client parameters in the BPS save area, use the
MTH.

Table 2-2. Client Parameters

Name Where To Set Read By Valid Values Default

bl_boot_device BPS save area
only

First Stage See Table 2-3 none

BPS save area
only

Second Stage See Table 2-3 none

bl_boot_logical_part BPS save area Second Stage 1 or more none

bl_boot_master_par
t

BPS save area Second Stage 1 to 4 Active iRMX
partition

bl_config_file BPS save area Second Stage valid pathname msa/config/bps

BPS file or BPS
save area

Boot Server valid pathname Error occurs if not
set by 2nd stage.

bl_debug BPS file or BPS
save area

Second Stage on
off

off

bl_device_type BPS save area First Stage DISK
FLOPPY
TAPE
WINI
NIL

none

bl_error_action BPS save area First Stage INT1
INT3
HALT
RESTART

INT1

bl_host_id BPS save area
(set by First
Stage)

Second Stage must be host slot
ID

host slot ID
(reserved, do not
change)

continued

MSA for the iRMX Operating System Chapter 2 13

Table 2-2. Client Parameters (continued)

Name Where To Set Read By Valid Values Default

bl_location BPS save area First Stage SCSI
NIL

none

bl_method BPS save area First Stage independent
dependent
quasi

none

bl_qi_master BPS file or BPS
save area

Boot Server host ID of
QI master

none

bl_quasi_server_id BPS save area First Stage valid host ID
0FFFFH

search (0FFFFH)

bl_retry_count BPS save area First Stage 0 to 0FFFEH
0FFFFH

forever (0FFFFH)

bl_second_stage BPS save area First Stage valid pathname none

bl_server_id BPS save area First Stage valid Host ID
0FFFFH

search (0FFFFH)

bl_target_file BPS file
or BPS save area

Second Stage valid pathname msa/boot/rmx

bl_unit BPS save area First Stage valid unit
number
0FFH

See page 18

14 Chapter 2 Bootstrap Parameters

bl_boot_device
The first stage bootstrap loader sets this parameter. After the second stage starts
executing, the board that has the MTH prints the parameter value on the console
screen, telling you which device it is using for bootstrap.

This value is also used as the system device if rq_sd is not set.

Table 2-3. Possible Parameters for bl_boot_device

Parameter Device Boot Method

IMM1 Factory test device Independent
GSCW5_2 SCSI hard drive Independent

(SCSI ID 2 only)
SCW SCSI hard drive Independent
SCF SCSI diskette drive Independent
SCT SCSI tape drive Independent
SCD Any SCSI device Independent

PCD PCI disk drive Quasi-independent
PCW PCI hard disk drive Quasi-independent
PCF PCI diskette drive Quasi-independent
PCT PCI tape drive Quasi-independent

DEP An MSA boot server supplied
by another board

Dependent

1 For factory test only. Do not use.

To find the boot device, the first stage uses the bl_boot_device parameters in the
order listed in Table 2-3; it boots from the first one it finds.

The first entry in the I/O server firmware is GSCW5_2. All other entries have
bl_unit set to 0FFH meaning search for the first available unit. Because most
Multibus II systems have one SCSI hard disk with a PCI unit number of 2, this entry
was created and put at the beginning of the boot device table so that the first stage
would first try to boot from this particular hard disk rather than searching for the first
available device. Multibus II systems boot faster this way.

MSA for the iRMX Operating System Chapter 2 15

bl_boot_logical_part
bl_boot_master_part

The second stage bootstrap loader by default boots from the active
partition. You can use the MTH to specify one or both of these
parameters to indicate a different partition from which to boot. This
applies to independent or quasi-independent boot. A partitioned iRMX
volume contains a partition table which can have up to four master
partition entries. Specify bl_boot_master_part to indicate one of
the master partitions. The second through the fourth master entries can
have logical extended partitions. Specify both
bl_boot_master_part and bl_boot_logical_part to indicate
one of the extended logical partitions. If the iRMX volume is a single
partition, do not set these BPS parameters.

bl_config_file

assigned the second stage uses it as the file name for the
BPS file

unassigned the second stage uses msa/config/bps, which is
its default value. It contains values for the
bootstrap parameters. If you enter a value, the
new value overrides the default.

The boot server uses this value as the pathname for the BPS file. If the
value is not set to a valid pathname when the boot server initializes, a
fatal error occurs and the boot server is deleted.

✏ Note
To boot a dependent board that hosts an MSA boot server, you
must specify a bl_config_file parameter for the boot server.
This parameter is required by the boot server and takes effect only
after the boot server is running. There are two ways to specify the
bl_config_file parameter:

• Set it using the MTH mp command
• Set it in the BPS file for the boot server that hosts the

dependently booting board

bl_debug Causes a break to the debug monitor after loading a target file and
before executing it.

on the second stage tells the operating system to
invoke the monitor before executing

off, or not set the target file executes without breaking to the
monitor

16 Chapter 2 Bootstrap Parameters

bl_device_type

DISK Boot from either hard disk or diskette
FLOPPY Boot from diskette
TAPE Boot from tape
WINI Boot from hard disk
NIL Boot device not specified or, as for dependent

boot, not applicable

bl_error_action

INT1 Bootstrap error routine uses interrupt 1
INT3 Bootstrap error routine uses interrupt 3

(default)
HALT Bootstrap error routine causes a processor

HALT
RESTART Bootstrap error routine restarts boot process

bl_host_id
The first stage sets this parameter in the BPS save area. The value is
always equal to the slot ID.

The second stage uses this parameter to read the host's bootstrap
parameters from the BPS file.

If the user sets this parameter, it is ignored. You can use the MTH dp
command to display this parameter. If you use the mp command to
change the parameter, the first stage overwrites your entry.

bl_location

SCSI Boot from SCSI interface
NIL I/O interface not specified

bl_method

INDEPENDENT Boot from local boot device
DEPENDENT Boot from boot server
QUASI Boot quasi-independently

If this parameter is set in the client's local BPS save area, it controls
how the boot client will bootstrap. For example, if it is quasi, the boot
client only tries a quasi-independent boot.

MSA for the iRMX Operating System Chapter 2 17

bl_qi_master
If set, the value is the Host ID of a host that acts as QI master for the
quasi-independent boot process. The QI master bootstraps without
needing a configuration server. It hosts a configuration server or a boot
server for other boards to use for their booting.

When bl_qi_master is set, the boot server only responds to locate

config server requests from the host with this Host ID (slot
number). The boot server responds with the status message
e_qi_master. This message tells the host to act as the QI master and
go directly to the PCI server for bootstrap.

When not set, the default QI master is the system boot master.

bl_quasi_server_id

valid server ID Host ID of I/O server (Quasi-independent
bootstrap)

0FFFFH Poll all hosts for an I/O server

bl_retry_count

0 to 0FFFEH Number of times to try a boot device
0FFFFH Try forever (default)

bl_second_stage
This is the file name of the second stage, used to request the second
stage from the boot server. If the value is not set, the boot server looks
in its BPS file for a second stage file name as a server parameter.

bl_server_id

valid Host ID Host ID of boot server (for dependent boot)
0FFFFH Poll all boot servers

bl_target_file

assigned the second stage uses the value as the file
name of target to load

unassigned the second stage uses /msa/boot/rmx, which is
its default value. It must contain an iRMX
target file.

18 Chapter 2 Bootstrap Parameters

bl_unit The unit ID depends on the type of booting you use. Independent
booting uses the SCSI IDs shown below. Quasi-independent booting
uses the PCI IDs.

unit number Physical or logical unit number of device to
boot from

0FFH Poll all devices

Intel
Systems
Device

SCSI
Target:LUN

Unit # for
Independent
Booting

Unit # for
Quasi-
Independent
Booting

Diskette 0:0 0 0
0:1 1 8

Hard Drive 2:0 10H 2
3:0 18H 3
4:0 20H 4
5:0 28H 5

Tape Drive 6:0 30H 6

The SCSI:LUN values shown above correspond to the SCSI ANSI
specification. The first digit is the SCSI target ID and the second digit
is the Logical Unit Number (LUN) on that target.

The unit numbering convention for quasi-independent booting is
described in the PCI driver description in the Interactive Configuration
Utility (ICU) help screens.

MSA for the iRMX Operating System Chapter 2 19

SPS Parameters
Table 2-4 lists the system parameter string (SPS) parameters. These parameters are
specific to the iRMX operating system . You can modify them in either the BPS file
or the BPS save area.

To specify SPS parameters in the BPS save area, use the MTH. To specify SPS
parameters in the BPS file, separate them by semicolons and do not put them in
brackets, using the following format:

major_parameter = minor_param_1:value,...,minor_param_n:value;

Where:

major parameter
Tells the operating system which device information table or set of
configuration variables to change. The names of the major parameters
for the PCI and ATCS device drivers are determined by the DEV
parameter on the driver ICU screen.

minor parameter
Tells the operating system which device information table field or
configuration variable to change. Most Multibus II board names are
entered into the interconnect registers in upper case characters using the
bnam minor parameter. Most board name SPS entries need to be in
upper case.

value The new value that replaces the device information table field or
configuration variable.

For example, this example line from a BPS file defines the rq_pci_a major
parameter by defining the bnam minor parameter:

rq_pci_a = bnam:486/166SE,bin:1,sin:0;

20 Chapter 2 Bootstrap Parameters

Table 2-4. SPS Parameters

Name Where to Set Used By Valid Values Default

rq_atcs_con
rq_atcs_a
rq_atcs_b
rq_atcs_c
rq_atcs_d

BPS file
BPS save area

ATCS Driver Board Name
Board Instance
Slot ID

ICU definition file
value

rq_dlj BPS file
BPS save area

Multibus II
Downloader

iRMX Device Name
File Driver

ICU definition file
value

rq_hscf BPS file
BPS save area

Human Interface :config:r?init file
replacement

:config:r?init file

rq_hterm MTH
BPS save area

Human Interface :config:terminals

file replacement

:config:terminals file

rq_mip1

rq_mip_xx2 BPS file
BPS save area

iNA 960 MIP Job Board Name
File Name
iRMX Device Name
Load Method

See page 24

rq_rnet_c BPS file
BPS save area

iRMX-NET Board Name
Board Instance

ICU definition file
value

rq_rnet_s BPS file
BPS save area

iRMX-NET Board Name
Board Instance

ICU definition file
value

rq_pci_a
rq_pci_b

BPS file
BPS save area

PCI Driver Board Name
Board Instance
Server Instance

ICU definition file
value

rq_sd BPS file
BPS save area

Second
Stage

iRMX physical device
name or remote
device of System
Device

bl_boot_device

1 Obsolete. Use rq_mip_xx to set MIP values; use rq_rnet_c and rq_rnet_s to set iRMX-NET values.
2 The value of XX denotes the board instance, ranging from 00 to 19. For more information, refer to

the description of rq_mip_xx on page 23.

MSA for the iRMX Operating System Chapter 2 21

rq_atcs_con

rq_atcs_a

rq_atcs_b

rq_atcs_c

rq_atcs_d
The parameter names you use to change the ATCS driver device information fields.
You can change the attributes of the serial controller the ATCS driver uses when the
physical device is attached, without reconfiguring the operating system. If you have
changed the DEV parameter or are not using a standard definition file, use the device
name specified for the DEV parameter on the D410 ICU screen(s). The three minor
parameters that you can change are as follows:

bnam Specifies the terminal controller board name. The related configuration
option on the D410 ICU screen is BID.

Values: From 1 to 10 characters that must match the value specified in
the board ID registers in the interconnect space on the terminal
controller board. The case of the characters must match. For example:

String Board
186/410 186/410 controller
486/150 486/150 board with an MPI 450 board
MIX486DX66 MIX 486DX66 baseboard with a

MIX 450 controller module

bin Identifies a particular board in a system containing multiple boards with
the same board name. The related configuration option on the D410
ICU screen is IN. The board in the lowest slot has a board instance of
1. The board of the same name in the next higher slot has a board
instance of 2, and so on.

Value: [0-21] Use an H to indicate hex values. 0 means that this
parameter is ignored and the slot parameter sid is used.

See the ATCS driver in the ICU help screens for more information on
the default ATCS driver configuration in the standard ICU definition
files.

sid Specifies the Multibus II slot ID in which the ATCS server board
resides. It is used only if the bin parameter is 0.

Value: [0-20, 31] 31 means that the ATCS driver uses the ATCS
server on the same host.

22 Chapter 2 Bootstrap Parameters

rq_dlj
This is the major parameter name you use to change the Multibus II Downloader Job
configuration variables. You can change the attributes of the device from which the
file /rmx386/config/dload.mb2 is loaded, without reconfiguring the operating system.
The file name cannot be changed. This parameter applies only to the ICU-
configurable downloader job and not the dload cusp. The two minor parameters you
can change are as follows:

dev Specifies the physical device name (DUIB name) of the storage device
containing the configuration file for the Downloader Job. The related
configuration option on the DLJ ICU screen is SD.

Value: [1-14 Chars]

fdvr Specifies the file driver for the storage device specified by the dev
parameter. The related option on the DLJ ICU screen is FD.

Value: Specify remote if it is a remote device, otherwise, specify
named for this parameter.

See also: dload, downloader job, System Configuration and Administration
rq_hscf

Use this parameter to specify an alternative initialization file in place of
:config:r?init. When you specify this parameter in a specific section of the BPS file,
the HI on that board uses the alternative file for its initialization. This allows you to
use different initialization sequences for different boards. For example, if you don’t
want to use the default loadinfo file for a board, use a replacement for r?init that
submits a different file than :config:loadinfo. Use this syntax:

rq_hscf=file:filename;

filename The name of a file in the :config: directory. Do not specify :config: as
part of the filename.

rq_hterm
Use this parameter to specify an alternative terminal initialization file in place of
:config:terminals. You can use this parameter to recover from a situation where the
HI will not initialize because the terminals file is invalid or has become corrupted.
Prepare a replacement file in the :config: directory that contains only a generic
terminal device name, such as t0. Then, if the HI fails to initialize using the
:config:terminals file, you can enter the rq_hterm parameter in the Master Test
Handler (MTH) during the boot sequence to point to your generic alternative file. At
the MTH prompt, use this syntax:

rq_hterm=file:filename

filename The name of a file in the :config: directory. Do not specify :config: as
part of the filename.

MSA for the iRMX Operating System Chapter 2 23

rq_mip

✏ Note
This parameter is obsolete. Use the rq_mip_xx parameter to set
values for the MIP job, and use the rq_rnet_c and rq_rnet_s

parameters to set values for the iRMX-NET jobs.

rq_mip_xx
The name you use to change the iNA 960 MIP job configuration variables. This
parameter allows you to change the attributes of the Ethernet controller your
iNA 960 application uses, without reconfiguring the operating system. These
parameters are valid only for the Multibus II iNA 960 COMMengine jobs, either
configured into the iRMX target image or sysloaded as file icemb2.job. You can
change the following minor parameters:

00 - 19 Replace xx with a number that specifies the iNA 960 server instance in
your Multibus II system. Server instances must be in ascending,
consecutive order starting at 00. This value overrides the CBI
parameter on the CEBI screen of the ICU.

bnam Specifies the Ethernet board name that resides in the system; overrides
board names specified on the CEBN screen of the ICU.

Values: From 1 to 20 characters which must match the value specified
in the board ID registers in interconnect space on the Ethernet board.
The case of the characters must match. For example:

String Board
186/530 186/530 board
486/166SE 486/166SE board
P5120ISE P5120ISE board
SBCP5090 SBCP5090 board
MIX486DX66 MIX 486DX66 baseboard board

file Specifies the pathname of the iNA 960 load file for non-MSA
communication boards; overrides the FN parameter on the CEBI screen
of the ICU. This parameter is only relevant if the load minor
parameter is set to local (in the ICU) or load (in the BPS file).

Values: [1-80 Chars]

24 Chapter 2 Bootstrap Parameters

rq_mip_xx (continued)

dev Specifies the name of the device on which the iNA 960 software
resides; overrides the DN parameter on the CEBI screen of the ICU.
For example, you might set the device to SD or scw_2. This parameter
is only relevant if the load minor parameter is set to local (in the
ICU) or load (in the BPS file).

Values: [1-14 Chars]

load Specifies how the COMMengine is loaded with the iNA 960 Transport
Software. This value overrides the LD parameter on the CEBI screen
of the ICU.

Values:

load specifies that the iNA 960 software loads from the local
disk storage (same as “local” when specified in the LD
parameter of the ICU).

noload specifies that the COMMengine is loaded by some
mechanism other than iRMX-NET.

prom specifies that the iNA 960 software is in PROM.

The default parameters for the preconfigured iNA 960 MIP Job are shown below.

Major Parameter Minor Parameters

rq_mip_00 bnam=486/166SE
load=NOLOAD

rq_mip_01 bnam=MIX486DX66
load=NOLOAD

rq_mip_02 bnam=MIX386/560
load=LOAD
dev=GSCW5_2
file=/net/ina560n.32L

rq_mip_03 bnam=186/530
load=LOAD
dev=GSCW5_2
file=/net/ina530n.32L

MSA for the iRMX Operating System Chapter 2 25

rq_rnet_c

rq_rnet_s
Use these to change the name of the iRMX-NET Client (rq_rnet_c) and Server
(rq_rnet_s) jobs, either when configured as first-level jobs in the ICU or the
loadable jobs remotefd.job (client) and rnetserv.job (server).

bnam The name of the Ethernet board from which the iRMX-NET client or
server takes iNA 960 COMMengine services This overrides the CBN
parameter from the RCJ (client) or RSJ (server) screen of the ICU.

Values: From 1 to 20 characters which must match the value specified
in the board ID registers in interconnect space on the Ethernet board.
The case of the characters must match. For example:

String Board
186/530 186/530 board
486/166SE 486/166SE board
P5120ISE P5120ISE board
SBCP5090 SBCP5090 board
MIX486DX66 MIX 486DX66 baseboard board

bin The board instance of the particular type specified in the bnam
parameter. The first instance is number 1 and the second instance (in a
higher slot number) is 2, etc. This overrides the CBI parameter from
the RCJ (client) or RSJ (server) screen of the ICU.

Values: [0-20] Use an H to indicate hex values.

26 Chapter 2 Bootstrap Parameters

rq_pci_a

rq_pci_b
The names you use to change the PCI driver device information fields. These
parameters allow you to change the attributes of the SCSI controller that the PCI
driver uses when the physical device is attached. There are two sets of PCI driver
parameters to access two different PCI Servers in all standard ICU definition files. If
you have changed the DEV parameter or are not using a standard ICU definition file,
use the device name specified for the DEV option on the DPCI ICU screen(s). The
parameters apply only to the ICU-configured PCI server job and not the loadable
PCIDRV driver. The minor parameters that you can change are as follows:

bnam Specifies the name of the I/O Server board in your system. The related
configuration option on the DPCI ICU screen is BI.

Values: From 1 to 10 characters that match the values specified in the
board ID registers in the interconnect space on the I/O Server board.
The case of the characters must match. For example, the string
"P5120ISE" specifies the P5120ISE board and the string "486/166SE"
specifies the 486/166SE board.

bin Indicates if there are other boards in this system of the same board type.
The related configuration option on the DPCI ICU screen is IN.

Values: [0-31] Use an H to indicate hex values.

sin Specifies the instance of the PCI Server on the controller. The related
configuration option on the DPCI ICU screen is SIN. A single
controller board may host multiple instances of PCI Servers; the sin
parameter identifies the server instance within the board. For example,
the 386/258D board has two PCI servers; one for the single-ended SCSI
channel (sin:0) and one for the differential SCSI channel (sin:1).
Value: [1-32] Use an H to indicate hex values.

rq_sd
The physical device name or remote file server name used by the EIOS when it
attaches the iRMX system device (if Automatic Bootstrap Device Recognition is
enabled). The system device always has the logical name :sd:. The file driver
associated with the system device cannot be changed.

assigned the second stage passes this value to the
target

unassigned the second stage uses the value of
bl_boot_device and passes it to the
target

MSA for the iRMX Operating System Chapter 2 27

Using the MTH to Change Parameters
By using MTH commands, you can change the MSA bootstrap parameters. Only a
few of the commands are discussed here. To access the MTH, use the following
steps:

1. After turning on power or performing a cold reset, the system starts initializing.
When you see the first characters on the screen, type:

u

You will see a screen similar to this:

MULTIBUS SYSTEMS ARCHITECTURE Master Test Handler ID: 515723

Copyright 1991, Intel Corporation

Reset Type: COLD

SYSTEM CONFIGURATION AND BIST STATUS...........................PASS

1 --> Run System Diagnostics

2 --> Go to Operator Interface (Selected if no character entered)

3 --> Go to Boot Phase

Enter number: ?

2. At this point, type:

2

and you will see the MTH prompt:

MTH [0]

The [0] in the MTH prompt indicates that the master board for the initialization
process is in slot 0. To see the help menu, type:

MTH [0] H <CR>

Table 2-5 describes the commands which are useful for changing bootstrap
parameters. The default slot tells the MTH which board to use when it carries out the
command. Changing the default slot does not change the prompt. You may type the
commands in uppercase or lowercase.

See also: MTH commands, Firmware User's Guide for MSA Firmware

28 Chapter 2 Bootstrap Parameters

Table 2-5. MTH Commands Used for Changing Bootstrap Parameters

Command Short Form Description

Slot S Displays the default slot number is. Most commands act upon
the board in the default slot.

Slot# S# Changes the default slot to the number entered. (For example,
entering S3 <CR> sets the default slot number to 3.)

InitbP IP Initializes the bootstrap parameters for the board in the default
slot. It clears all of the operator-supplied parameters. It asks
you to verify the action before initializing the parameters.

DispP DP Displays the operator-supplied bootstrap parameters of the
board in the default slot.

After power-up or cold reset, the parameters are initialized. If
no new parameters are entered during the initialization phase,
the parameters are taken from preconfigured sources (a BPS
file, the boot parameter string in non-volatile memory, or the
bootstrap loader's run-time parameters). Because there are no
default parameters in non-volatile memory on the boards, this
command displays no values for the BPS unless you enter
them. If no parameters are entered, the code uses the default
values.

After a warm reset, this command displays whatever was put in
the Bootstrap Parameter String.

ModbP MP Asks you for new parameter names and new values.

Be careful to distinguish between new parameter and new
value. Whatever you enter at the new value prompt is assigned
to the parameter that was most recently displayed. If you don't
want to change its value, type <CR>.

The subcommands are:

deletes the parameter
. ends the entry process
<CR> goes to the next item

Bphase B Executes the first valid entry in the Program Table, which is the
bootstrap loader. (The Program Table is a list of pointers to
modules in the firmware.)

■■ ■■ ■■

MSA for the iRMX Operating System Chapter 3 29

Bootstrap Scenarios 3
This chapter provides several examples of the three type of MSA bootstrapping:
independent, quasi-independent, and dependent. This chapter explains the three
methods and then describes the scenarios for each one.

Overview of Examples and Terms
Using the examples in this chapter, you can learn MSA bootstrapping concepts and
understand how MSA bootstrapping works.

Try as many of the examples in this chapter as your hardware configuration can
support. While the examples assume specific hardware configurations, you can
modify them to use other boards and configurations: select the appropriate BPS file
(see the list of directories and files on page 33 and Table 3-1 on page 34) and the
appropriate target files. The following examples are provided:

Example 1 Independent booting using an I/O server board.

Example 2 Quasi-independent booting of an I/O server board and a CPU board.

Example 3 Dependent booting an I/O server board and a CPU board.

Example 4 A combination of quasi-independent and dependent booting using an
I/O server board, multiple CPU boards, and an Ethernet controller
board.

Example 5 Quasi-independent booting using an I/O server board, one CPU board,
and two hard drives on separate SCSI buses.

See also: Multibus II standard definition files, Installation and Startup

30 Chapter 3 Boot Scenarios

Bootstrap Methods
As stated in Chapter 1, the second stage bootstrap process can follow one of three
methods: independent, quasi-independent, and dependent. These methods are
defined as follows:

Independent The boards loads its own bootstrap software from a locally-
attached device, such as a disk. Boards that boot independent
can become servers to assist other boards in booting
dependently.

A board without a locally attached device must boot across the
PSB, either quasi-independently or dependently, and must
broadcast its need for boot service.

Quasi-independent The CPU board boots across the PSB using a boot server
running on a different host. In a Multibus II system, either the
SBCP5090, P5120ISE, 386/258 or the 486/166SE boards can
act as the boot server, supporting quasi-independent booting
with a block-level protocol. PCI is the peripheral controller
interface used on the I/O Server and CPU boards. PCI is built
on top of the Multibus II Transport Protocol; it is a block-level
protocol for message passing.

Dependent The CPU board relies on the help of a boot server from a board
that booted independently or quasi-independently. When a
boot server responds, the host uses boot server protocol (a
high-level, file protocol) to bootstrap.

Host Configurations
The boot scenario examples in this chapter use the following terms to describe host
configurations:

Diskfull describes a host that, after booting, executes from a local
(non-network) system device.

Diskless describes a host that, after booting, executes from a remote
(network) system device.

MSA for the iRMX Operating System Chapter 3 31

System Configuration

iRMX Configuration Files
MSA boot systems require three files that reflect the desired system configuration:

BPS File Contains the parameters needed to bootstrap
Multibus II systems.

:sd:net/data Defines the network names of the processor boards. A
network can be entirely inside a single Multibus II
system or connected to other systems. This file is
required only if a network is needed. Networking is
required if a board is booted dependently and has a
remote system device.

:config:terminals Associates terminal names with processor boards on the
basis of the network name. (The network name is
defined in the :sd:net/data file.)

See also: Bootstrap Parameters, Chapter 2;
:sd:net/data file, Network User’s Guide and Reference;
:config:terminals file, System Configuration and Administration

Selecting Terminal Device Names
Two sample versions of :config:terminals are contained in the :config:default
directory. The one you select depends on what device you use for the system
console. If your system uses a 279A graphics module, select the terminals.279 file.
If your system uses a serial terminal, select the terminals.arc file. For example, to
select the terminals.arc file, enter:

copy :config:default/terminals.arc over :config:terminals <CR>

32 Chapter 3 Boot Scenarios

Use the skim command to examine both of these files. In general, use the physical
device name t279_x is used to communicate with the atcs279 server and use the
physical device name atcs_con_0 is used to communicate with the atcs279 server
or the arc server. Refer to the ICU help screens for a discussion of the ATCS driver
configuration.

Based on this discussion, you can now select the appropriate terminals file for your
system.

Generating Configuration Files and Submit Files
The ICU uses a definition file to make iRMX configuration files and a Submit file for
a specific configuration of the operating system. The Submit file assembles and
compiles the configuration files. It binds and builds them with the iRMX libraries to
make a target file. The target file is also called a bootable image. During bootstrap
loading, the second stage loader loads the bootable image and transfers control to it.

This chapter refers to files with a .bck extension. These files are Standard Definition
files for the operating system. Definition files contain all the configuration
information for the operating system, including information about hardware in your
system, desired user jobs, configured device drivers, and desired parts of the iRMX
Operating System.

See also: Multibus II standard definition files, ICU User’s Guide and Quick
Reference

MSA for the iRMX Operating System Chapter 3 33

Making New Boot Systems
Following is the directory structure for the target files and the BPS files. If you have
a 386/258 board in slot 0 or slot 1, the BPS files in /msa32/386258 apply to your boot
system. If you have a 486/166SE board in slot 0, the BPS files in /msa32/486133
apply to your boot system. It is assumed that the 486/166SE, SBCP5090, and
P5120ISE boards use a CSM/002, not a CSM/001 (no bps1* files are supplied for
such a configuration). All boot files are contained in the /msa32/boot directory. The
file /msa32/readme.txt contains a summary of the BPS parameters.

Directories and Files

msa32 msa32 msa32
38625 486133 p5090

bps.258 bps.133 bpsise.90
bps.cpu bps.166 bpsise.120
bps.d bps.cpu bps.90
bps.dep bps.dep bps.cpu
bps.dkt bps.dkt bps.dep
bps.dl bps.dsq bps.dkt
bps.qi bps.dl bps.dsq
bps.rmx bps.qi bps.dl
bps1.dl bps.rmx bps.qi
bps1.qi bps.rmx
bps1.rmx
bpsmdp.dkt
bpsmdp.qi
bpsmdp.rmx

34 Chapter 3 Boot Scenarios

Table 3-1 shows the relationship between the various boot scenarios and the BPS
files.

Table 3-1. Bootstrap Method and Related Files

Boot Method CSM Configuration
Default Bootstrap

Parameter String File

Independent CSM/002
CSM/001

bps.cpu
bps.cpu

Quasi-independent CSM/002
CSM/001

bps.rmx
bps1.rmx

Dependent CSM/001
CSM/002

bps.dep
bps.dep

Quasi-independent
and Dependent

CSM/002
CSM/001

bps.qi
bps1.qi

Dual SCSI
Quasi-independent

CSM/002
CSM/001

bps.dsq
bps.dsq

Do not modify the default BPS files listed in Table 3-1. Instead, copy the default file
that most closely matches your requirements to another file name. Then edit the
newly created file. You should change the default boot system defined in the
/msa/config/bps file only when you are confident that the modified BPS file correctly
boots your system.

Typically, in more complex systems you will need entries from several BPS files.
You should initially use the file that fits your application most closely and remove
entries from other BPS files. Be very careful to ensure entries from other BPS files
point to the correct I/O server boards and correct server instance.

Parameters for Other I/O Server Boards
The example boot scenarios in this chapter use a P5120ISE and 486/166SE as an I/O
server board.

MSA for the iRMX Operating System Chapter 3 35

Configuration Files for a Networking System
Each host must have a name that is unique, not just within the system, but within the
entire local area network. Before connecting an Ethernet transceiver cable to the
Multibus II system, choose new names for each of the host boards in the system. A
useful convention is to choose one name and append the slot ID, creating a different
name for each host.

If the default iRMX and iRMX-NET configurations have been used so far, the
software does not have to be reconfigured. Instead, modify the following three files:

:sd:net/data Change the names of the file server and the diskless hosts to
the new names chosen. The file server entry is typically the
first entry and does not have a specified address. The diskless
host entries are of type=PT0005H and are by default slotnn.

:config:terminals Specify new names of diskless hosts. The names must match
those listed in the :sd:net/data file.

BPS file Specify the name of the file server as the system device
(rq_sd) for each of the diskless hosts in the BPS file you are
using. The name listed here must match that listed in the
:sd:net/data file.

See also: :sd:net/data file, Network Concepts and Network Programmer's
Reference;
:config:terminals file, System Configuration and Administration;
Bootstrap Parameters, Chapter 2

The file server boot file does not need to be reconfigured. The diskless host boot files
do not have to be reconfigured unless they specify that iRMX-NET attaches the file
server. The default is to have the EIOS attach the file server. If iRMX-NET attaches
the file server, the name of the file server must be configured in the master UDF
device (ND) parameter of the user definition file (UDF) screen and in the CDF
device (CD) parameter of the client definition file (CDF) screen in the ICU.

36 Chapter 3 Boot Scenarios

Example 1: Independent Boot Method
You can use independent bootstrapping for any board with a local SCSI subsystem,
provided you have an I/O server board, such as a SBC P5120ISE, SBCP5090,
486/166SE, or a 386/258 board. In this example, the SBC P5120ISE board uses the
SCSI protocol to communicate with the local disk. This allows the iRMX Operating
System to be booted independently on the P5120ISE board.

When the P5120ISE board is booted this way, it forms a single-board Multibus II
system that contains SCSI I/O software (PCI) and iRMX-NET networking software.
Figure 3-1 shows the independent boot model.

W-3415

RAM ROM

1. Transfer control to first stage (in ROM)
2. Get second stage from boot device and load in RAM
3. Transfer control to second stage (in RAM)
4. Get bootstrap parameters from
 Bootstrap Parameter file
5. Load target file from disk
6. Transfer control to target file (in RAM)

Independent Bootstrap Model

I/O Server

➋
➍
➎

➌
➏ ➊

PSB

Figure 3-1. Independent Bootstrap Model

MSA for the iRMX Operating System Chapter 3 37

Hardware Configuration
Figure 3-2 shows the hardware configuration for this example. This P5120ISE-based
single-board system provides the same functionality as a system using a 386/258
SCSI peripheral controller, a 486/150 CPU board, and a MIX486DX66 with a
MIX560 Ethernet controller.

OM04450

Multibus II PSB

SBC
P5120ISE

(Slot 0)

SCSI Bus

GSCW5_2 (SCSI ID = 2)

Figure 3-2. Hardware Configuration for Independent Boot Scenario

38 Chapter 3 Boot Scenarios

Software Configuration
This section describes the three types of files required for this example: the boot
image file, the BPS file, and the :config:terminals file.

Boot Image Files

The file p90scp.bck is used to create the /msa32/boot/p90scp target file. The p90scp
target file causes the board to act as an independent host. It contains the human
interface (HI), application loader (AL), and iRMX-NET networking software. The
slot 0 board runs the PCI server and the atcs/279/arc server.

Before trying this boot scenario, verify the existence and status of the required target
file.

1. Look for the required target files for this configuration using the command:

find p90scp.out / <CR>

If the file is present, the find command displays the pathname of the file and you
can proceed to step 0. If the file is not found, create the target files, as described
in the next step.

2. Create the target files using the following command:

mksys p90scp <CR>

The boot file produced by this command is /msa32/boot/p90scp.

3. Use the grep and skim commands to display any error messages in the
p90scp.out file:

grep error p90scp.out >error <CR> ;write errors to file

skim error <CR> ;display the lines with error messages

delete error <CR> ;delete the error message grep file

MSA for the iRMX Operating System Chapter 3 39

BPS.CPU File

The following is a listing of /msa32/p5090/bps.cpu, the BPS file used for this boot
scenario.

#

--* BPS.CPU *-*-*

#

iRMX III MSA Bootstrap Parameter String configuration file for

use on Multibus II Microcomputers when an iSBC P5120ISE board

boots Independently from a diskette on its local SCSI I/O

subsystem using the default Multibus II boot file pathname

/msa/boot/rmx.

#

The iSBC P5120ISE may be in slot 0 or in slot 1.

#

Refer to /msa32/readme.txt for a description of the BPS and SPS

parameters.

[bl_host_id = 0]

bl_target_file = /msa/boot/rmx;

rq_pci_a = bnam:P5120ISE,bin:1,sin:0;

rq_atcs_con = bnam:P5120ISE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:P5120CPU,bin:0,sid:31;

rq_dlj = dev:GSCW5_2,fdvr:named;

rq_sd = GSCW5_2

[bl_host_id = 1]

bl_target_file = /msa/boot/rmx;

rq_pci_a = bnam:P5120ISE,bin:1,sin:0;

rq_atcs_con = bnam:P5120ISE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:P5120CPU,bin:0,sid:31;

rq_dlj = dev:GSCW5_2,fdvr:named;

rq_sd = GSCW5_2

40 Chapter 3 Boot Scenarios

The bl_target_file parameter has the value /msa32/boot/rmx. This is the name
of the default target file for an independently booting host. Using this name assures
that your default target file is not overwritten when you create new target files with
the ICU. There is no standard definition file that creates a target file with this name.
Using this convention allows you to experiment with configurations but not risk
losing the ability to easily load a functional boot system. The file
/msa32/boot/p90scp must be copied over /msa32/boot/rmx to use the default
/msa32/p5090/bps.cpu file.

The :config:terminals File

The first device in :config:terminals is used by the P5120ISE board in this scenario.
The :config:terminals file should be as follows:

2

atcs_con_0,,,ANY

t82530_0,,,ANY

.

.

.

Using atcs_con_0 (rather than t279_0) will bring up a user whether you are using
an iSBX_ 279A or a serial terminal.

MSA for the iRMX Operating System Chapter 3 41

Testing the Boot Scenario
The /msa32/boot/rmx target file is the default for this configuration. When booting
the system in this configuration, you don't need to specify a bl_target_file or
bl_config_file parameter from the MTH. To boot this configuration, use the
steps described below.

1. Shutdown the system by typing:

sh <CR>

2. Reset the system.

3. When you see the first characters on the screen, type:

u

4. Invoke the boot phase by typing:

Enter number: ? 3

As the system boots, you will see a screen display similar to the following:

INITIALIZATION PHASE SUMMARY Proceed to

Slot Product Code Test Summary Status Boot Phase?

0 P5120ISE Passed Active Yes

System now entering Boot Phase...

MSA Bootstrap Loader

Leaving First Stage

Booting from SCW_2

Loading boot parameters from /msa/config/bps

Loading target file /msa32/boot/rmx

42 Chapter 3 Boot Scenarios

An HI version of the operating system boots on the slot 0 board.

First, the date and time are set. Then you will see an iRMX bannerhead for the
slot 0 board. The host ID is printed in square brackets ([]) before the LOGON
prompt. The bannerhead looks similar to this:

-

iRMX* III.x.y Operating System

* iRMX is a registered trademark of RadiSys Corp

-

[0]Logon:

5. Logon as Super and enter the default password (in lower case) as follows:

[0] Logon: super <CR>

Password: passme <CR>

MSA for the iRMX Operating System Chapter 3 43

Example 2: Quasi-Independent Method
In this boot scenario, the 486/166SE board boots the operating system independently
from its local hard disk. The 486/150 board boots the operating system quasi-
independently. The quasi-independent scenario is similar to a traditional boot
process: the 486/150 board is the MSA boot master and treats the 486/166SE board
like an I/O controller. The HI executes on the 486/150 board only.

During the boot phase, the 486/166SE board firmware uses the SCSI protocol to boot
independently; it then hosts the PCI server. The 486/150 board firmware uses the
PCI protocol to boot quasi-independently.

After the boot phase, the 486/166SE board provides the PCI server, which is part of
its iRMX software. The 486/150 board uses a PCI driver, part of its iRMX software
to communicate with the PCI Server on the 486/166SE board and to access data on
the disk.

Figure 3-3 on page 44 illustrates the quasi-independent boot scenario.

44 Chapter 3 Boot Scenarios

W-3416

Server

➋
➍
➎

Quasi-independent Bootstrap Model

Server: I/O Server
Boots independently or uses a
 ROM-based control program
Provides PCI Server

Client: CPU board

RAM ROM

Client

➌
➏ ➊

1. Transfer control to first
 stage (in ROM)
2. Get second stage from
 I/O Server
3. Transfer control to second
 stage (in RAM)
4. Get bootstrap parameters from
 Bootstrap Parameter file
5. Get target file from boot device
6. Transfer control to target file

I/O Server
Application

PSB

Figure 3-3. Quasi-Independent Bootstrap Model

MSA for the iRMX Operating System Chapter 3 45

Hardware Configuration
Figure 3-4 shows the hardware configuration for this example.

OM04451

Multibus II PSB

SBC
486/166SE

(Slot 0)

SBC
486/150

(Slot 2)

SCSI Bus

GSCW5_2 (SCSI ID = 2)

Figure 3-4. Hardware Configuration for Quasi-Independent Boot Scenario

Software Configuration
This section describes the three types of files required for this example: the
:config:terminals file, the boot image files, and the BPS file.

The :config:terminals File

The first device in :config:terminals is used by the 486/150 board in this scenario.
Because the 486/166SE board has no HI, it requires no :config:terminals entries.
Refer to page 40 for a listing of a :config:terminals file that will work for this boot
scenario.

46 Chapter 3 Boot Scenarios

Boot Image Files

Use the 433io.bck and 486150.bck files (or 486150net.bck for a networking boot
system) to create boot images for this example. These files contain the following:

433io.bck This file configures the 486/166SE board as an I/O controller.
It has no HI or AL. This version of the operating system is
loaded from the hard disk, but does not have the system device
(:sd:). The 486/166SE board runs the PCI server. This leaves
the disk free for use by the 486/150 board. The target file
created, /msa32/boot/433io, must be copied over
/msa32/boot/rmxio to set up the default boot system.

486150.bck or 486150net.bck
The target file created by this file includes the HI. The
486/150 board owns the disk that is attached to the 486/166SE
board; the server on the 486/166SE board does not. The
486/150 board runs the PCI driver. The file
/msa32/boot/486150 must be copied over /msa32/boot/rmx to
set up the default boot system.

Before trying this boot scenario, verify the existence and status of the required target
files.

1. Look for the required target files for this configuration using the command:

find 433io.out / <CR>

If the file is present, the find command displays the pathname of the file and you
can proceed to step 0. If the file is not found, create the target files, as described
in the next step.

2. Create the target files using the following command:

mksys 433io <CR>

The Boot File produced by the commands above is /msa32/boot/433io.

3. Use the grep and skim commands to display any error messages in the 433io.out
file:

grep error 433io.out >error <CR> ;write errors to file

skim error <CR> ;display the lines with error messages

delete error <CR> ;delete the error message grep file

Repeat these steps for the 486150.out or 486150net.out file, depending on which of
the two you are using. If you use the mksys command to create the other target files
for this scenario, the boot file is /msa32/boot/486150 or /msa32/boot/486150net.

MSA for the iRMX Operating System Chapter 3 47

BPS.RMX File

The following is a listing of /msa32/486133/bps.rmx, the BPS file used for this boot
scenario.

#

--* BPS.RMX *-*-*

#

iRMX III MSA Bootstrap Parameter String configuration file for

use on Multibus II Microcomputers when:

1) an iSBC 486/166SE board boots Independently from its local

SCSI I/O subsystem using the default I/O controller boot

file pathname /msa32/boot/rmxio and executes in an I/O

controller-only mode.

2) a single CPU board boots Quasi-independently from that

iSBC 486/166SE board using the default Multibus II boot

file pathname /msa32/boot/rmx.

#

Refer to /msa32/readme.txt for a description of the BPS and SPS

parameters.

#

The iSBC 486/166SE must be in slot 0; the QI-master CPU must be

in slot 2. BPS Parameters for an iSBC 486/166SE board booting

Independently.

[bl_host_id = 0]

bl_target_file = /msa32/boot/rmxio;

bl_qi_master = 2

BPS Parameters for a CPU board booting Quasi-independently in

slot 2.

[bl_host_id = 2;

bl_method = quasi]

bl_target_file = /msa32/boot/rmx;

rq_pci_a = bnam:486/166SE,bin:1,sin:0;

rq_atcs_con = bnam:486/166SE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:486/150,bin:0,sid:31;

rq_dlj = dev:GSCW5_2,fdvr:named;

rq_mip_00 = bnam:486/166SE,load:noload;

48 Chapter 3 Boot Scenarios

rq_rnet_c = bnam:486/166SE,bin:1;

rq_rnet_s = bnam:486/166SE,bin:1;

rq_sd = GSCW5_2

The /msa32/433io/bps.rmx file contains the required boot parameters. In this
example, override the default target file name (/msa32/boot/rmx) with a target file
name /msa32/boot/433io created earlier.

The bl_qi_master flag for the 486/166SE board is set to 2. This tells the
486/166SE board not to go to the disk to get the BPS file for the 486/150 board,
which leaves the disk free for the 486/150 board to own the disk.

Description of the Boot Scenario
Both boards boot from the same disk. The 486/166SE board boots independently
from its SCSI hard disk, but requires no further access of the hard disk. The 486/150
board hosts an HI and boots quasi-independently, which requires exclusive use
(ownership) of the hard disk. The sequence of the quasi-independent boot of the
486/150 board is as follows:

1. The 486/150 board broadcasts its need for an MSA configuration server.

2. The 486/166SE board becomes a limited configuration server and tells the
486/150 board to become the QI master.

3. Then, the 486/150 board becomes the QI master, bootstraps itself, and takes
control of the system device.

This scenario can be called diskfull because the operating system on the 486/150
board has full control of the disk.

Note the following items concerning this boot scenario:

• As in the independent boot example, default boot system file names can be used.
The default name of the I/O controller-only version of the operating system for
the 486/166SE board is /msa32/boot/rmxio. The default name of the HI version
of the operating system for the 486/150 board is /msa32/boot/rmx. Using this
convention allows you to experiment with configurations but not risk losing the
ability to easily load a functional boot system. The default
/msa32/486133/bps.rmx file contains these parameters.

• The target file /msa32/boot/rmx can include iRMX-NET for remote file access.

MSA for the iRMX Operating System Chapter 3 49

Testing the Boot Scenario
Use the MTH to modify several parameters so that you can boot the 486/150 board
quasi-independently.

1. Shutdown the system by typing:

sh <CR>

2. Reset the system.

3. When you see the first characters on the screen, type:

u

4. Request the MTH by typing:

2

5. At the MTH [0] prompt, enter the following commands to change the
bl_config_file parameter values for the slot 0 and slot 2 boards:

MTH [0] mp

bl_target_file = /msa32/boot/433io <CR>

new parameter

bl_config_file = /msa32/486133/bps.rmx <CR>

new parameter

<CR>

save changes ([y] or n)

<CR>

MTH [0] slot 2 <CR>

Default Slot is 2.

MTH [0] mp <CR>

Modify Boot Parameters for slot 2:

Store Bootstrap Parameter

new parameter

bl_target_file = /msa32/boot/486150 <CR>

new parameter

bl_config_file = /msa32/486133/bps.rmx <CR>

new parameter

<CR>

save changes ([y] or n)

<CR>

MTH [0]

50 Chapter 3 Boot Scenarios

6. Tell the MTH to invoke the boot phase by typing:

MTH [0] b <CR>

An I/O controller version of the operating system boots on the 486/166SE board.
An HI version of the operating system boots on the 486/150 board.

First, the date and time are set. Then you will see an iRMX bannerhead for host
2, the 486/150 board, because it contains the HI. The host ID is printed in square
brackets ([]) before the LOGON prompt. The bannerhead looks similar to this:

*-

iRMX* III.x.y Operating System

* iRMX is a registered trademark of RadiSys Corp

-

[2]Logon:

7. If the system booted successfully, you can now try out the next scenario.

8. If you want to establish this boot scenario as the default, type:

COPY /MSA32/BOOT/433io OVER /MSA32/BOOT/RMXIO <CR>

COPY /MSA32/BOOT/486150 OVER /MSA32/BOOT/RMX <CR>

COPY /MSA32/486133/BPS.RMX OVER /MSA/CONFIG/BPS <CR>

9. To establish a networking boot system, type:

COPY /MSA32/BOOT/486150NET OVER /MSA32/BOOT/RMX <CR>

Be certain you have selected the appropriate terminals file.

MSA for the iRMX Operating System Chapter 3 51

Example 3: Dependent Method
Figure 3-5, on page 52, shows the dependent scenario. The 486/166SE board boots
independently from the SCSI hard disk. The 486/150 board boots dependent with
help from the MSA boot server on the 486/166SE board. This scenario is called
diskless because the 486/150 board communicates indirectly with the disk. It uses the
iRMX-NET remote file server and the Ethernet controller (on the 486/166SE board)
to access files on the disk.

Because it uses networking, the dependent scenario allows user files to be shared
between the 486/150 board and the 486/166SE board.

During the boot phase, the 486/166SE board firmware uses the SCSI protocol to boot
independently; it then hosts the MSA boot server. The 486/150 board firmware,
which is the client, uses the MSA boot server protocol to boot dependently.

After the boot phase, the 486/166SE board provides the iRMX-NET Remote File
Server, which is part of its iRMX software. The 486/150 board uses the iRMX-NET
client, part of its iRMX configuration, to access files on the disk attached to the
486/166SE board.

✏ Note
A Multibus II system containing an Ethernet controller board is a small local
area network, even without a cable connection to an outside net. Refer to
page 35 for information on how to set up the required files for a networking
system. Until you have set up these files, you should not connect an
Ethernet cable to the system.

52 Chapter 3 Boot Scenarios

W-3417

Server

➌
➎
➏

Dependent Bootstrap Model

Server: I/O Server Client: CPU board

RAM ROM

Client

➍
➑ ➊Bootserver

PSB

➋➐

Boots independently or runs
ROM-based control program
Runs Bootserver application

1. Transfer control to first stage
 (in ROM)
2. Locate and connect to Bootserver*
3. Load second stage file from
 Bootserver*
4. Transfer control to second stage
 (in RAM)
5. Get parameters from Bootserver*
6. Get target file from Bootserver*
7. Disconnect from Bootserver*
8. Transfer control to target file
 (in RAM)

*Uses Bootserver Protocol

Figure 3-5. Dependent Bootstrap Model

MSA for the iRMX Operating System Chapter 3 53

Hardware Configuration
Figure 3-6 shows the hardware configuration for this example.

OM04452

Multibus II PSB

SBC
486/166SE

(Slot 0)

SBC
486/150

(Slot 2)

GSCW5_2

Figure 3-6. Hardware Configuration for Dependent Boot Scenario

54 Chapter 3 Boot Scenarios

Software Configuration
This section describes the four types of files required for this example: the boot
image file, the BPS file, the :config:terminals file, and the /net/data file.

Boot Image Files

Use the 433scp.bck and 486150rsd.bck files to create boot images for this example.
The definition files contain the following:

433scp.bck causes the slot 3 board to act as an independent host. It
contains an HI, AL, PCI server, and iRMX-NET networking
software. This version of the operating system is loaded from
the hard disk, but because the BPS file tells the board to boot
quasi-independent, it becomes the QI master. The slot 3 board
has a hard disk as the system device (:sd:).

486150rsd.bck Contains the iRMX-NET client and an HI. It is configured to
use a remote device as its system disk.

The MSA boot server is in software on the 486/166SE board and the boot client is in
firmware on the 486/150 board.

Before trying this boot scenario, verify the existence and status of the required target
files.

1. Look for the required target files for this configuration using the command:

find 433scp.out / <CR>

If the file is present, the find command displays the pathname of the file and you
can proceed to step 3. If the file is not found, create the target files, as described
in the next step.

2. Create the target files using the following command:

mksys 433scp <CR>

The Boot File produced by this command is /msa32/boot/433scp.

3. Use the grep and skim commands to display any error messages in the
433scp.out file:

grep error 433scp.out >error <CR> ;write errors to file

skim error <CR> ;display the lines with error messages

delete error <CR> ;delete the error message grep file

Repeat these steps for the 486150rsd.out file. If you use the mksys command to
create the other target files for this scenario, the boot file is /msa32/boot/486150rsd.

MSA for the iRMX Operating System Chapter 3 55

BPS.DEP File

The following is a listing of /msa32/486133/bps.dep, the BPS file used for this boot
scenario. This configuration file can also be used if you are using a CSM/001 in
slot 0 and a 486/166SE board in slot 1.

#

--* BPS.DEP *-*-*

#

iRMX III MSA Bootstrap Parameter String configuration file for

use on Multibus II Microcomputers when:

1) an iSBC 486/166SE board boots Independently from its local

SCSI I/O subsystem and hosts the MSA Bootserver.

2) From 0 to 5 CPU boards boot Dependently from the

iSBC 486/166SE which hosts the MSA Bootserver.

#

Refer to /msa32/readme.txt for a description of the BPS and SPS

parameters.

The iSBC 486/166SE may be in slot 0 or in slot 1.

BPS Parameters for the iSBC 486/166SE board booting

Independently.

[bl_host_id = 0]

bl_target_file = /msa32/boot/433scp;

rq_pci_a = bnam:486/166SE,bin:1,sin:0;

rq_atcs_con = bnam:486/166SE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:486/150,bin:0,sid:31;

rq_dlj = dev:GSCW5_2,fdvr:named;

rq_sd = GSCW5_2

[bl_host_id = 1]

bl_target_file = /msa32/boot/433scp;

rq_pci_a = bnam:486/166SE,bin:1,sin:0;

rq_atcs_con = bnam:486/166SE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:486/150,bin:0,sid:31;

rq_dlj = dev:GSCW5_2,fdvr:named;

rq_sd = GSCW5_2

56 Chapter 3 Boot Scenarios

BPS Parameters for CPU boards booting Dependently.

[bl_host_id = 2;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/486150rsd;

rq_atcs_con = bnam:486/166SE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:486/150,bin:0,sid:31;

rq_mip_00 = bnam:486/166SE,load:noload;

rq_rnet_c = bnam:486/166SE,bin:1;

rq_rnet_s = bnam:486/166SE,bin:1;

rq_sd = FSERVER

[bl_host_id = 3;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/486150rsd;

rq_atcs_con = bnam:486/166SE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:486/150,bin:0,sid:31;

rq_mip_00 = bnam:486/166SE,load:noload;

rq_rnet_c = bnam:486/166SE,bin:1;

rq_rnet_s = bnam:486/166SE,bin:1;

rq_sd = FSERVER

MSA for the iRMX Operating System Chapter 3 57

[bl_host_id = 4;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/486150rsd;

rq_atcs_con = bnam:486/166SE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:486/150,bin:0,sid:31;

rq_mip_00 = bnam:486/166SE,load:noload;

rq_rnet_c = bnam:486/166SE,bin:1;

rq_rnet_s = bnam:486/166SE,bin:1;

rq_sd = FSERVER

[bl_host_id = 5;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/486150rsd;

rq_atcs_con = bnam:486/166SE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:486/150,bin:0,sid:31;

rq_mip_00 = bnam:486/166SE,load:noload;

rq_rnet_c = bnam:486/166SE,bin:1;

rq_rnet_s = bnam:486/166SE,bin:1;

rq_sd = FSERVER

[bl_host_id = 6;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/486150rsd;

rq_atcs_con = bnam:486/166SE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:486/150,bin:0,sid:31;

rq_mip_00 = bnam:486/166SE,load:noload;

rq_rnet_c = bnam:486/166SE,bin:1;

rq_rnet_s = bnam:486/166SE,bin:1;

rq_sd = FSERVER

58 Chapter 3 Boot Scenarios

The :config:terminals File

The first device in :config:terminals is used by the 486/166SE board in this scenario.
Refer to page 40 for a listing of a :config:terminals file that will work for this boot
scenario.

The /net/data File

The 486/166SE board needs a correct :sd:net/data file to provide remote system
device services to other hosts in the system. This section tells how to modify the
:sd:net/data file so that the 486/150 board has a remote system device.

See also: Loading Objects from the :sd:net/data File, Network User's Guide and
Reference

1. Make sure your terminal type is set up for AEDIT on your Multibus II system.
To enable the line editor of the iRMX command line interpreter (CLI), type:

set terminal=<your terminal type> <CR>

See also: AEDIT Text Editor User's Guide for iRMX Systems for
more information on using AEDIT

2. To get the address of the Ethernet board in the system, type:

getaddr <CR>

3. Write down the address.

4. Prepare to modify the :sd:net/data file by copying a sample file to :sd:net/data,
as follows:

af /net <CR>

copy data.ex to data <CR>

aedit data <CR>

5. The file contains extra lines, which are examples. Delete all of them except the
following:

local_name1/nfs: TYPE=rmx: ADDRESS=;

slot2: TYPE=PT0005: ADDRESS=ssss############02;

slot3: TYPE=PT0005: ADDRESS=ssss############03;

slot4: TYPE=PT0005: ADDRESS=ssss############04;

slot5: TYPE=PT0005: ADDRESS=ssss############05;

slot6: TYPE=PT0005: ADDRESS=ssss############06;

MSA for the iRMX Operating System Chapter 3 59

6. Replace local_name with the actual name of the server as specified by rq_sd

in the BPS file. Substitute ssss with the subnet ID that applies. Substitute
############ with the Ethernet (MAC) address. Delete any comments that
follow the semicolons.

This example substitutes the Ethernet address 00AA00912345 for the number
symbols and uses subnet ID 0001 (the default subnet ID for the Ethernet in all
iNA 960 jobs):

FSERVER/nfs: TYPE=rmx; ADDRESS=;

slot2 TYPE=PT005 ADDRESS=000100AA0091234502;

slot3 TYPE=PT005 ADDRESS=000100AA0091234503;

slot4 TYPE=PT005 ADDRESS=000100AA0091234504;

slot5 TYPE=PT005 ADDRESS=000100AA0091234505;

slot6 TYPE=PT005 ADDRESS=000100AA0091234506;

By using the default names, you avoid having to make additional changes, but
you cannot use these files to access systems outside of the Multibus II chassis.

7. Quit the AEDIT editor while saving the file, by using these commands:

<ESC>

q

e

This writes a new version of the /net/data file to the disk.

60 Chapter 3 Boot Scenarios

Description of the Dependent Boot Scenario
In this scenario, the 486/166SE board boots independently from the SCSI device
attached to it and hosts the MSA boot server. When the 486/150 board broadcasts its
need for bootstrap, the boot server on the 486/166SE board reads the second stage
bootstrap loader from the disk and sends it to the 486/150 board. The second stage
begins running on the 486/150 board and asks the MSA boot server to send it the
target file that contains the operating system. The second stage then loads the target
file into the memory of the 486/150 board and transfers control to it.

The 486/166SE board must finish bootstrapping before it can provide the MSA boot
server for the 486/150 board.

The client sets the rq_sd parameter to FSERVER, the name of the iRMX host used
as a file server by the diskless host. (The name, FSERVER, is defined in the
:sd:net/data file.)

Testing the Boot Scenario
1. Ensure the :config:terminals file describes your terminals with the correct

network names for each host CPU board. The default version of
:config:terminals contains the names, slot2, slot3, slot4, slot5, and slot6 to
demonstrate these MSA boot scenarios.

The network names are defined in the :sd:net/data file, and the terminal names
are iRMX DUIB (device unit interface block) names defined in definition files.

To view the :config:terminals file, type:

skim :config:terminals <CR>

2. To shutdown the system, type:

sh <CR>

3. Reset the system.

4. When you see the first characters on the screen, type:

u

5. Request the MTH by typing:

2

MSA for the iRMX Operating System Chapter 3 61

6. At the MTH [0] prompt, enter the following commands to change the
bl_config_file parameter value and to enable booting:

MTH [0] mp

new parameter

bl_config_file=/msa32/486133/bps.dep <CR>

new parameter

<CR>

save changes ([y] or n)

<CR>

MTH [0] b <CR>

First you will see an iRMX bannerhead for the 486/166SE board, because it is the
first board to boot. Then, an iRMX bannerhead for the 486/150 board covers most of
the first screen. A bannerhead looks like this:

-

iRMX* III.x.y Operating System

* iRMX is a registered trademark of RadiSys Corp

-

[0]Logon:

See also: ARC Server in System Configuration and Administration for
information on switching between hosts using a character-based
terminal;
Appendix D in Command Reference for information on switching
between hosts using an iSBX 279A

62 Chapter 3 Boot Scenarios

Example 4: Quasi-Independent and Dependent
Booting

This scenario is a combination of the quasi-independent scenario and the dependent
scenario described in previous sections. In this example, the P5120ISE board in slot
2 boots quasi-independently and the remaining CPU boards boot dependently.

The slot 0 board and the slot 2 board boot off the same disk. The slot 0 board boots
independently from its SCSI hard disk but operates as an I/O server and Ethernet
controller and requires no further access of the hard disk. The slot 2 board boots
quasi-independently. The slot 2 board offers an HI which requires exclusive use
(ownership) of the hard disk. The P5120CPU boards boot dependently from the
MSA boot server on the slot 2 board.

During the boot phase, the slot 0 board firmware uses the SCSI protocol to boot
independently; it then hosts the PCI server. The firmware on the slot 2 board uses the
PCI protocol to boot quasi-independently. It then hosts the MSA boot server. The
P5120CPU boards use the MSA boot server protocol to boot dependently.

After the boot phase, the slot 0 board provides the PCI server, which is part of its
iRMX software. The slot 2 board uses a PCI driver, part of its iRMX software, to
communicate with the slot 0 board and to access data on the disk. The slot 2 board
also provides the iRMX-NET remote file server. The P5120CPU boards use the
iRMX-NET client, part of their iRMX configuration, to access files on the disk
owned by the slot 2 board.

MSA for the iRMX Operating System Chapter 3 63

Hardware Configuration
Figure 3-7 shows the hardware configuration for this example.

SBC P5120CPU
(Slot 6)

SBC P5120CPU
(Slot 5)

SBC P5120CPU
(Slot 4)

OM04453

Multibus II PSB

SBC
P5120ISE

(Slot 0)

SBC
P5120ISE

(Slot 2)

SCSI Bus

GSCW5_2 (SCSI ID = 2)

SBC
P5120CPU

(Slot 3)

Figure 3-7. Hardware Configuration for Quasi-Independent and
Dependent Boot Scenario

64 Chapter 3 Boot Scenarios

Software Configuration
This section describes the four types of files required for this example: the boot
image files, the BPS file, the :config:terminals file, and the /net/data file.

Boot Image Files

Use the p90io.bck, p90net.bck, and p90rsd.bck files to create boot systems for this
example. These files contain the following:

p90io.bck The configuration causes the slot 0 board to act like an I/O and
Ethernet controller. It has no HI or AL. This version of the
operating system is loaded from the hard disk, but does not
have the system device (:sd:). This leaves the disk free for use
by the slot 2 board.

The slot 0 board runs the PCI server, the atcs/279/arc server,
and iTP4.

p90cp.bck This file includes the HI. The slot 2 board runs diskfull. The
slot 2 board owns the disk that is attached to the slot 0 board;
the server on the slot 0 board does not. The p90cp.bck also
includes the iRMX-NET file server which is required to
provide remote file access to the P5120CPU boards in the
system.

p90rsd.bck This file includes the HI and the iRMX-NET client. It is
configured to use a remote device as the system disk. This
board runs diskless.

MSA for the iRMX Operating System Chapter 3 65

Before trying this boot scenario, verify the existence and status of the required target
files.

1. Look for the required target files for this configuration using the command:

find p90io.out / <CR>

If the file is present, the find command displays the pathname of the file and you
can proceed to step 0. If the file is not found, create the target files, as described
in the next step.

2. Create the target files using the following command:

mksys p90io <CR>

The boot file produced by this command is /msa32/boot/p90io.

3. Use the grep and skim commands to display any error messages in the p90io.out
file:

grep error p90io.out >error <CR> ;write errors to file

skim error <CR> ;display the lines with error messages

delete error <CR> ;delete the error message grep file

Repeat these steps for the p90net.out, and p90rsd.out files. If you use the mksys
command to create the other target files for this scenario, the boot files are
/msa32/boot/p90net and /msa32/boot/p90rsd, respectively.

66 Chapter 3 Boot Scenarios

BPS.QI File

The following is a listing of /msa32/p5090/bps.qi, the BPS file used for this boot
scenario.

#

--* BPS.QI *-*-*

#

iRMX III MSA Bootstrap Parameter String configuration file for

use on Multibus II Microcomputers when:

1) An iSBC P5120ISE board boots Independently from its local

SCSI I/O subsystem and executes in an I/O and Ethernet

controller-only mode.

2) A single CPU board boots Quasi-independently from that

iSBC P5120ISE board and hosts the MSA Bootserver.

3) From 0 to 4 P5120CPU boards boot Dependently from the

CPU which hosts the MSA Bootserver.

#

Refer to /msa32/readme.txt for a description of the BPS and SPS

parameters.

#

The iSBC P5120ISE must be in slot 0; the QI-master CPU must be

in slot 2. BPS Parameters for an iSBC P5120ISE board booting

Independently.

[bl_host_id = 0]

bl_target_file = /msa32/boot/p90io;

bl_qi_master = 2

BPS Parameters for a CPU board booting Quasi-independently in

slot 2.

[bl_host_id = 2;

bl_method = quasi]

bl_target_file = /msa32/boot/p90net;

rq_pci_a = bnam:P5120ISE,bin:1,sin:0;

rq_atcs_con = bnam:P5120ISE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:P5120CPU,bin:0,sid:31;

rq_dlj = dev:GSCW5_2,fdvr:named;

rq_mip_00 = bnam:P5120ISE,load:noload;

MSA for the iRMX Operating System Chapter 3 67

rq_rnet_c = bnam:P5120ISE,bin:1;

rq_rnet_s = bnam:P5120ISE,bin:1;

rq_sd = GSCW5_2

BPS Parameters for CPU boards booting Dependently in slots

3, 4, 5 and 6.

[bl_host_id = 3;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/p90rsd;

rq_atcs_con = bnam:P5120ISE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:P5120CPU,bin:0,sid:31;

rq_mip_00 = bnam:P5120ISE,load:noload;

rq_rnet_c = bnam:P5120ISE,bin:1;

rq_rnet_s = bnam:P5120ISE,bin:1;

rq_sd = FSERVER

[bl_host_id = 4;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/p90rsd;

rq_atcs_con = bnam:P5120ISE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:P5120CPU,bin:0,sid:31;

rq_mip_00 = bnam:P5120ISE,load:noload;

rq_rnet_c = bnam:P5120ISE,bin:1;

rq_rnet_s = bnam:P5120ISE,bin:1;

rq_sd = FSERVER

[bl_host_id = 5;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/p90rsd;

rq_atcs_con = bnam:P5120ISE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

68 Chapter 3 Boot Scenarios

rq_atcs_d = bnam:P5120CPU,bin:0,sid:31;

rq_mip_00 = bnam:P5120ISE,load:noload;

rq_rnet_c = bnam:P5120ISE,bin:1;

rq_rnet_s = bnam:P5120ISE,bin:1;

rq_sd = FSERVER

[bl_host_id = 6;

bl_second_stage = /msa32/stage2.rmx;

bl_method = dependent]

bl_target_file = /msa32/boot/p90rsd;

rq_atcs_con = bnam:P5120ISE,bin:1;

rq_atcs_a = bnam:186/410,bin:1;

rq_atcs_b = bnam:186/450,bin:1;

rq_atcs_c = bnam:MIX486DX66,bin:1;

rq_atcs_d = bnam:P5120CPU,bin:0,sid:31;

rq_mip_00 = bnam:P5120ISE,load:noload;

rq_rnet_c = bnam:P5120ISE,bin:1;

rq_rnet_s = bnam:P5120ISE,bin:1;

rq_sd = FSERVER

The :config:terminals File

The first device in :config:terminals is used by the slot 2 board in this scenario. The
slot 0 board does not host an HI and, therefore, does not require a :config:terminals
file. Refer to page 40 for a listing of a :config:terminals file that will work for this
boot scenario.

MSA for the iRMX Operating System Chapter 3 69

The /net/data File

The slot 2 board needs a correct :sd:net/data file to provide remote system device
services to other hosts in the system. This section tells how to modify the
:sd:net/data file.

See also: Loading Objects from the :sd:net/data File, Network User's Guide and
Reference

1. Make sure your terminal type is set up for AEDIT on your Multibus II system.
To enable the line editor of the iRMX command line interpreter (CLI), type:

set terminal=<your terminal type> <CR>

See also: AEDIT Text Editor User's Guide for iRMX Systems for
more information on using AEDIT

2. To get the address of the Ethernet board (the P5120ISE board in slot 0), type:

getaddr <CR>

3. Write down the address.

4. Prepare to modify the :sd:net/data file by copying a sample file to :sd:net/data,
as follows:

af /net <CR>

copy data.ex to data <CR>

aedit data <CR>

5. The file contains extra lines, which are examples. Delete all of them except the
following:

local_name1/nfs: TYPE=rmx: ADDRESS=;

slot2: TYPE=PT0005: ADDRESS=ssss############02;

slot3: TYPE=PT0005: ADDRESS=ssss############03;

slot4: TYPE=PT0005: ADDRESS=ssss############04;

slot5: TYPE=PT0005: ADDRESS=ssss############05;

slot6: TYPE=PT0005: ADDRESS=ssss############06;

70 Chapter 3 Boot Scenarios

6. Replace local_name with the actual name of the server as specified by rq_sd

in the BPS file. Substitute ssss with the subnet ID that applies Substitute
############ with the Ethernet (MAC) address. Delete any comments that
follow the semicolons.

This example substitutes the Ethernet address 00AA00912345 for the number
symbols and uses subnet ID 0001 (the default subnet ID for the Ethernet in all
iNA 960 jobs):

FSERVER/nfs: TYPE=rmx; ADDRESS=;

slot2 TYPE=PT005 ADDRESS=000100AA0091234502;

slot3 TYPE=PT005 ADDRESS=000100AA0091234503;

slot4 TYPE=PT005 ADDRESS=000100AA0091234504;

slot5 TYPE=PT005 ADDRESS=000010AA0091234505;

slot6 TYPE=PT005 ADDRESS=000100AA0091234506;

By using the default names, you avoid having to make additional changes, but
you cannot use these files to access systems outside of the Multibus II chassis.

7. Quit the AEDIT editor while saving the file, by using these commands:

<ESC>

q

e

This writes a new version of the /net/data file to the disk.

MSA for the iRMX Operating System Chapter 3 71

Description of the Boot Scenario
In this scenario, the slot 0 board boots independently from its local hard disk. The
slot 2 board boots quasi-independently. The remaining boards boot dependently.

1. The slot 2 board broadcasts its need for an MSA configuration server.

2. The slot 0 board becomes a limited configuration server and tells the slot 2 board
that it should become the QI master.

3. Then, the slot 2 board becomes the QI master, bootstraps itself, takes control of
the system device, and hosts the MSA boot server.

4. When the remaining boards broadcast their need for bootstrap, the boot server on
the slot 2 board reads the second stage bootstrap loader from its disk and sends it
to each of the client P5120CPU boards. The second stage begins running on
each of the remaining boards and requests the MSA boot server to send it the
appropriate target file. The second stage then loads the target file into the
memory of the client boards and transfers control to them.

The slot 2 board must finish bootstrapping before it can provide the MSA boot
server for the remaining boards.

The client sets the rq_sd parameter to FSERVER, the name of the iRMX host used
as a file server by the diskless host. (The name, FSERVER, is defined in the
:sd:net/data file.)

The bl_qi_master flag for the slot 0 board is set to 2. This tells the slot 0 board
not to go to the disk to get the BPS file for the slot 2 board, which leaves the disk free
for the slot 2 board to own the disk. If the slot 2 board were in slot 3, you would set
the bl_qi_master flag to 3.

72 Chapter 3 Boot Scenarios

Testing the Boot Scenario
1. Ensure that the :config:terminals file describes your terminals with the correct

network names for each host CPU board. The default version of
:config:terminals contains the names slot2, slot3, slot4, slot5, and slot6 to
demonstrate these MSA boot scenarios.

The network names are defined in the :sd:net/data file, and the terminal names
are iRMX DUIB names defined in definition files.

To view the :config:terminals file, type:

skim :config:terminals <CR>

This file contains the lines of the example terminals file you selected earlier.

2. Shutdown the system by typing:

sh <CR>

3. Reset the system.

4. When you see the first characters on the screen, type:

u

5. Request the MTH by typing:

2

6. Set the bl_config_file parameter for the slot 0 board using the following
commands:

MTH [0] mp

new parameter

bl_config_file=/msa32/486133/bps.qi <CR>

new parameter

<CR>

save changes ([y] or n)

<CR>

MTH [0]

MSA for the iRMX Operating System Chapter 3 73

7. Set the bl_config_file parameter for the slot 2 board using the following
commands:

MTH [0] slot 2 <CR>
Default slot is 2.
MTH [0] mp <CR>
Modify Boot Parameters for slot 2:
Store Bootstrap Parameter
new parameter
bl_config_file=/msa32/486133/bps.qi <CR>
new parameter
<CR>
save changes ([y] or n)
<CR>
MTH [0]

8. Tell the MTH to invoke the boot phase by typing:

MTH [0] b <CR>

First you will see an iRMX bannerhead for host 2, the P5120ISE board in slot 2,
because it is the first board to boot. The host ID is printed in square brackets ([])
before the LOGON prompt. Next, the iRMX bannerheads for the remaining
P5120CPU boards cover most of the first screen. A bannerhead looks like this:

-

iRMX* III.x.y Operating System

* iRMX is a registered trademark of RadiSys Corp

-

[2]Logon:

See also: ARC Server in System Configuration and Administration for
information on switching between hosts using a character-based
terminal;
Appendix D in Command Reference for information on switching
between hosts using an iSBX 279A

74 Chapter 3 Boot Scenarios

Example 5: Dual SCSI Bus Quasi-Independent
Booting

This scenario is similar to the quasi-independent boot scenario described in Example
2, but with several differences in the hardware configuration. Here is an overview:

• The slot 0 board boots independent as an I/O controller using GSCW5_2.

• The slot 3 board boots quasi-independently using GSCW5_2. This board is
diskfull.

• A second hard drive on a separate SCSI bus is available for access from both
boards.

Hardware Configuration
Figure 3-8 shows the hardware configuration for this example. The main difference
between this example and the previous examples is the addition of a second SCSI
bus. This hardware configuration is also used in Example 6.

OM04454

Multibus II PSB

SBC
486/166SE

(Slot 0)

SBC
486/166SE

(Slot 3)

SCSI Bus

GSCW5_2

SCSI Bus

(SCSI ID = 2) (SCSI ID = 2)GSCW5_B2

Figure 3-8. Hardware Configuration for Dual SCSI Bus
Quasi-Independent Boot Scenario

MSA for the iRMX Operating System Chapter 3 75

Software Configuration
This section describes the three types of files required for this example: the boot
image files, the BPS file, and the :config:terminals file.

Boot Image Files

This scenario uses the 433io.bck and 433scp.bck files to create boot images. These
files contain the following:

433io.bck causes the slot 0 board to act as an I/O controller. It has no HI or AL.
This version of the operating system is loaded from the hard disk, but
does not have the system device (:sd:). This leaves the disk free for use
by the QI master. The slot 0 board runs the PCI server and the
atcs/279/arc server.

433scp.bck causes the slot 3 board to act as an independent host. It contains an HI,
AL, PCI server, and iRMX-NET networking software. This version of
the operating system is loaded from the hard disk, but because the BPS
file tells the board to boot quasi-independent, it becomes the QI master.
The slot 3 board has a hard disk as the system device (:sd:).

Before trying this boot scenario, verify the existence and status of the required target
files, beginning with 433io.out.

1. Look for the required target files for this configuration using the command:

find 433io.out / <CR>

If the file is present, the find command displays the pathname of the file and you
can proceed to step 0. If the file is not found, create the target files, as described
in the next step.

2. Create the target files using the following command:

mksys 433io <CR>

The Boot File produced by this command is /msa32/boot/433io.

3. Use the grep and skim commands to display any error messages in the 433io.out
file:

grep error 433io.out >error <CR> ;write errors to file

skim error <CR> ;display the lines with error messages

delete error <CR> ;delete the error message grep file

Repeat these steps for the 433scp.out file. If you use the mksys command to create
the other target files for this scenario, the boot files are /msa32/boot/433scp.

76 Chapter 3 Boot Scenarios

BPS.DSQ File

The following is a listing of /msa32/486133/bps.dsq, the BPS file used for this boot
scenario.

--* BPS.DSQ *-*-*
#
iRMX III MSA Bootstrap Parameter String configuration file for
use on dual SCSI bus Multibus II Microcomputers with the
following configuration.
1) An iSBC 486/166SE in slot 0 boots Independently from its
local SCSI I/O subsystem and executes in an I/O controller

and ATCS server mode.
2) An iSBC 486/166SE in slot 3 boots Quasi-independently from
the SCSI I/O subsystem on the slot 0 board, contains a
Human Interface, and acts as a SCSI (PCI) controller and an
Ethernet controller.
#
Refer to /msa32/readme.txt for a description of the BPS and SPS
parameters.
#
BPS Parameters for an iSBC 486/166SE in slot 0 booting
Independently.
[bl_host_id = 0]

bl_target_file = /msa32/boot/433io;
bl_qi_master = 3

BPS Parameters for an iSBC 486/166SE in slot 3 booting Quasi-
independently from the first disk on the SCSI bus controlled by
the iSBC 486/166SE in slot 0.
#
[bl_host_id = 3;

bl_method = quasi]
bl_target_file = /msa32/boot/433scp;
rq_pci_a = bnam:486/166SE,bin:1,sin:0;
rq_pci_b = bnam:486/166SE,bin:2,sin:0;
rq_atcs_con = bnam:486/166SE,bin:1;
rq_atcs_a = bnam:186/410,bin:1;
rq_atcs_b = bnam:186/450,bin:1;
rq_atcs_c = bnam:MIX486DX66,bin:1;
rq_atcs_d = bnam:486/150,bin:0,sid:31;
rq_dlj = dev:GSCW5_2,fdvr:named;
rq_sd = GSCW5_2

MSA for the iRMX Operating System Chapter 3 77

There are three parameters for host ID 3 that should be examined:

bl_method Before booting with bps.dsq file, you must specify a bl_method of
quasi for board 3 from the MTH. Although it may seem redundant to
specify the bl_method when the parameter is included in the BPS file,
it is necessary. The reason is that an I/O controller board, by default,
tries to boot across its own SCSI bus. Specifying the bl_method from
the MTH insures that the slot 3 board boots quasi-independently, as
required by this scenario.

rq_pci_b This parameter indicates a second instance of an I/O controller in the
system (in this case, a second 486/166SE board). Having this parameter
in the file allows access to a device with a b in its DUIB. For this
configuration, the device is GSCW5_B2, the hard drive on the second
SCSI bus.

The :config:terminals File

The first device in :config:terminals is used by the slot 3 board in this scenario.
Refer to page 40 for a listing of a :config:terminals file that will work for this boot
scenario.

Description of the Boot Scenario
In this boot scenario, the slot 0 board boots independently from its local hard disk.
The slot 3 board boots quasi-independently:

1. The slot 3 board broadcasts its need for an MSA configuration server.

2. The slot 0 board becomes a limited configuration server and tells the slot 3 board
that it should become the QI master.

3. Then, the slot 3 board becomes the QI master, bootstraps itself, and takes control
of GSCW5_2, the system device, which is attached to the board in slot 0.

78 Chapter 3 Boot Scenarios

Testing the Boot Scenario
1. Shutdown the system by typing:

sh <CR>

2. Reset the system.

3. When you see the first characters on the screen, type:

u

4. Request the MTH by typing:

2

5. Set the bl_config_file parameter value for the slot 0 board using the
following commands:

MTH [0] mp <CR>

new parameter

bl_config_file = /msa32/486133/bps.dsq <CR>

new parameter

<CR>

save changes ([y] or n)

<CR>

MTH [0]

6. Set the bl_config_file and bl_method parameters for the slot 3 board using
the following commands:

MTH [0] slot 3 <CR>

Default Slot is 3.

MTH [0] mp <CR>

Modify Boot Parameters for slot 3:

Store Bootstrap Parameter

new parameter

bl_config_file = /msa32/486133/bps.dsq <CR>

new parameter

bl_method = quasi <CR>

new parameter

<CR>

save changes ([y] or n)

<CR>

MTH [0]

MSA for the iRMX Operating System Chapter 3 79

7. Tell the MTH to invoke the boot phase by typing:

MTH [0] b <CR>

An I/O controller version of the operating system boots on the slot 0 board. An
HI version of the operating system boots on the slot 3 board.

First, the date and time are set. Then you will see an iRMX bannerhead for the
slot 3 board because it contains the HI. The host ID is printed in square brackets
([]) before the LOGON prompt. The bannerhead looks similar to this:

-

iRMX* III.x.y Operating System

* iRMX is a registered trademark of RadiSys Corp

-

[3]Logon:

8. Logon as Super and enter the default password (in lower case) as follows:

[3] Logon: super <CR>

Password: passme <CR>

80 Chapter 3 Boot Scenarios

After booting the system using the bps.dsq file, prepare the hard disk attached to
board 3. These steps assume a 700 Mbyte or larger hard disk.

See also: Determining disk parameters, "Step 4. Determining Disk Parameters,"
Chapter 4 of Installation and Startup

1. Attach the device using the following command:

attachdevice gfcw5_b2 as :w: <CR>

2. Format the hard drive using the following command:

format :w:rmxIII IL=1 files=64000 msaboot <CR>

This command formats the drive with the logical name rmxIII at an interleave
factor of 1 with a maximum number of 64,000 files and writes an MSA second
stage loader to the disk. The format operation takes about 30 minutes to
complete.

See also: Second Stage Bootstrap Loader, page

3. Copy all files and subdirectories from the hard drive attached to the slot 0 board
to the newly-formatted hard drive attached to the slot 3 board using the following
command:

copydir :sd: over :w: <CR>

This operation takes about 30 minutes, but will vary depending on the number
and size of files on the system device. After finishing the copy operation, you
can access the hard disk attached to the slot 3 board. The generic DUIB of the
device is GSCW5_B2.

■■ ■■ ■■

MSA for the iRMX Operating System Chapter 4 81

Troubleshooting 4
SDM Recovery

When an error occurs during the first or second stage of booting, the System Debug
Monitor (SDM monitor) is invoked. If the error occurs on the board that is master
during booting, the board displays an error message on the screen. A slave board
does not display a message. Instead, the board invokes the SDM monitor.

When the monitor is invoked after a bootstrap error, it displays this message:

Not a 286 Task State Segment SDM[n].

To exit the monitor during bootstrap you need to reset the system.

MSA Boot Error Messages
This section discusses various MSA boot error messages and suggests solutions for
these errors.

Boot master error message: Not a 286 Task State Segment SDM[n].

Cause Solution

The bootstrap target filename was not
found.

Verify that the bl_target_file entry contains
the correct pathname and that the target
file exists.

The target file being downloaded is
corrupted because the network
interface adapter (NIA) board was not
correctly downloaded.

Verify that the BNAM entry of the
rq_mip_xx parameter matches the string
returned by the ic -c agents command.
Verify that the board instance (BIN) and
server instance (SIN) are correct.
Verify that the iNA 960 file being
downloaded to the NIA board (FILE) is the
correct one for this NIA board.

82 Chapter 4 Troubleshooting

Boot master message: Error Opening target file.

Cause Solution

The target file was not found. Check that the pathname for the target file,
either the default name or the name
entered with the MP (Modify Parameter)
command, is correct. Check that the file
exists. Check that the file contains an
iRMX target file.

iRMX-NET error during boot: Comm Board not found

Cause Solution

The network interface adapter board
being downloaded was not correctly
specified in the BPS file's rq_mip_xx
parameters.

Verity that the BNAM entry of the
rq_mip_xx parameter matches the string
returned by the ic -c agents command.
Verify that xx, in rq_mip_xx refers correctly
to the board instance. Verify that the iNA
960 file being downloaded to the NIA
board is the correct one for this NIA board.

iRMX-NET error during boot: No response from the Comm Board

Cause Solution

The network interface adapter board
being downloaded was not correctly
specified in the BPS file's rq_mip_xx
parameters.

Verity that the BNAM entry of the
rq_mip_xx parameter matches the string
returned by the ic -c agents command.
Verify that xx, in rq_mip_xx refers correctly
to the board instance. Verify that the iNA
960 file being downloaded to the NIA
board is the correct one for this NIA board.

MSA for the iRMX Operating System Chapter 4 83

Boot failure symptom: No logon session is created for a diskless CPU board.

Cause Solution

The BPS file does not contain an
entry for this CPU board.

Verify that the BPS file contains an entry
beginning with the correct bl_host_id for
this board.

The network name for the diskless
CPU boards are not consistent among
the BPS file, the /net/data file, and the
:config:terminals file (on the
appropriate hard drives).

Verify that the network names for all CPU
boards are consistent among these three
files.

The rq_pci_a entry in the BPS file is
incorrect for this CPU board.

Verify that the rq_pci_a bnam entry points
to the board ID as displayed by the ic -c
agents command, and that the board
instance (BIN) and server instance (SIN)
are correct.

A diskless target file was specified
with an rq_sd pointing to a network
name that could not be found by the
diskless CPU board.

Verify that non-remote system device
(RSD) target files are not specified if rq_sd
points to a hard drive. Also, see the
discussion above about coordinating
network names among the BPS, /net/data,
and :config:terminals files.

The rq_atcs_con entry does not
correctly point at the CPU board with
the iSBX 279 module or the system
terminal.

Verify that the board name (BNAM)
parameter of the rq_atcs_con entry
contains the exact characters returned by
the ic -c agents command. Verify that the
board instance (BIN) parameter is correct.

84 Chapter 4 Troubleshooting

iRMX-NET error during boot: Could not attach :sd:sys386 as

system:

Cause Solution

The CPU board was not able to find
the specified system device or the
SYS386 directory on that device.

Verify that the specified system device
exists. Verify that the specified system
directory has an iRMX file system with the
correct directory structure to serve as a
system device.

The network interface adapter (NIA)
board is not functioning properly.

Verity that the BNAM entry of the
rq_mip_xx parameter matches the string
returned by the ic -c agents command.
Verify that xx, in rq_mip_xx refers correctly
to the board instance. Verify that the iNA
960 file being downloaded to the NIA
board is the correct one for this NIA board.

iRMX-NET error during boot: 0021H: iRMX error while loading

iNA 960 961

Cause Solution

The specified iNA 960 file to be
downloaded to the network interface
adapter (NIA) board does not exist.

Verity that the BNAM entry of the
rq_mip_xx parameter matches the string
returned by the ic -c agents command.
Verify that xx, in rq_mip_xx refers correctly
to the board instance. Verify that the iNA
960 file being downloaded to the NIA
board is the correct one for this NIA board.

MSA for the iRMX Operating System Chapter 4 85

Boot failure symptom: No logon session for the second diskfull CPU board

Cause Solution

BPS file indicates wrong boot
scenario.

Verify that there is only one boot master with a
bl_method of quasi, and that the second
diskfull CPU board has a bl_method of
dependent with the proper bl_second_stage
parameter.

BPS file indicates incorrect
system device.

Verify that the rq_sd entry for this CPU board
does not collide with another CPU board's
rq_sd entry.

The :config:terminals entry for the
second diskfull CPU board
collides with a port/window
already open by another board.

Verify that the :config:terminals file on the
second diskfull CPU board's hard drive
assumes that this board is the first entry in the
file, and the entries do not collide with any
entries in the :config:terminals file on the first
disk-full CPU board's hard drive.

Boot failure symptom: No logon sessions on iSBC 186/410 ports

Cause Solution

The iSBC 186/410 was not
downloaded.

Verify that the :config:dload.mb2 file is
correct for your system. An example of
this file is :config:default/dload.mb2.

The rq_atcs_b parameters in the BPS
file are incorrect.

Verify that the BNAM and BIN entries in
the BPS file do not collide with the entries
for another board.

86 Chapter 4 Troubleshooting

Causing a Warm Reset
A warm reset can be caused in any of these ways:

• Using the HI ic (read or write to interconnect space) command

• Using the warmreset command, which is an aliased Multibus II specific CLI
command

• Using the front-panel keyswitch

These three methods are discussed here.

Using the HI ic Command
If the board you are resetting has a CSM/002, you can issue an ic command that
instructs the CSM/002 to cause a warm reset. The examples below assume you want
to cause a warm reset on a 486/133SE board in slot 0 with a CSM/002 installed. The
commands are:

ic -c set 0 151 2 <CR>

or

icwrite 0 151 2 <CR>

Either of these commands writes a value of 2 to the CSM command register, thereby
causing a warm reset. To use these commands, you must know the offset of the CSM
command register. A simpler method is to use a form of the ic command that
directly specifies a reset to desired board. For example, to cause a warm reset of the
board in slot 0, type:

- ic -c reset 0 warm <CR>

You are prompted:

RESET COMMAND - Are you sure (Y/[N]) ?

Type:

y <CR>

MSA for the iRMX Operating System Chapter 4 87

Using the Aliased Warmreset Command
The file :prog:alias.csd contains an alias for the warmreset command. To cause a
warm reset, type:

- warmreset <CR>

You are prompted:

RESET COMMAND - Are you sure (Y/[N]) ?

Type:

y <CR>

The default setting of the alias causes the warm reset to applied to the board in slot 0.
Warmreset is an alias for the following command:

- ic -c reset 0 warm

You can change the alias to reset a different board.

Warm Reset from the Front Panel
In some Multibus II systems, turning the front panel keyswitch to the reset position
causes a cold reset. It is possible to change the default reset type to a warm reset. In
order to do this, you need to remove the cover on the system to get access to the P2
backplane for slot 0. On the P2 backplane there is a jumper which selects the type of
reset. Because it is easier to cause a warm reset using the methods described above,
it is not recommended that you change this jumper. If you want to change the
jumper, refer to the hardware manuals that were shipped with your Multibus II
system.

88 Chapter 4 Troubleshooting

■■ ■■ ■■

MSA for the iRMX Operating System Index 89

Index

/net/data file, 31, 35, 58, 69
:config:terminals file, 31, 35
:sd:/net/data file, 31, 35, 58, 69

A
ATCS

atcs/279 server, 32
atcs/279/arc server, 38, 64, 75
atcs/arc server, 32
driver, 8, 19, 21, 32
list of related SPS parameters, 20
SPS parameter descriptions, 21

attachdevice command, 80

B
bl_boot_device, 14
bl_boot_logical_part, 15
bl_boot_master_part, 15
bl_config_file, 15
bl_debug, 15
bl_device_type, 16
bl_error_action, 16
bl_host_id

client parameter, 16
server parameter, 10

bl_location, 16
bl_method

client parameter, 16
server parameter, 11

bl_qi_master, 17
bl_quasi_server_id, 17
bl_retry_count, 17
bl_second_stage

client parameter, 17
server parameter, 11

bl_server_id, 17

bl_target_file, 17
bl_unit, 18
board initialization, description of phase, 3
boards

386/258, 33
486/150, 43, 62
486/166SE, 36, 62, 74

boot error messages, 81
boot failure symptoms, 83, 85
boot scenarios

dependent boot, 51
dual SCSI bus quasi-independent boot, 74
independent boot, 36
quasi-independent and dependent boot, 62
quasi-independent boot, 43

boot systems, making new, 33
bootable image, 1, 32
bootstrap loaders

first stage loader, 4
MSA bootstrap loader, 7
second stage loader, 5

bootstrap methods
dependent booting, 30
independent booting, 30
quasi-independent booting, 30

bootstrap parameter string files, see BPS files
bootstrap parameter string manager, 9
bootstrap parameter string save area, 9
bootstrap parameters

changing with the MTH, 27
client parameters, 12
definition of, 8
operating system specific parameters, 19
server parameters, 10
SPS parameters, 19

bps files
bps.cpu, 39
bps.dep, 55
bps.dsq, 77

90 Index

bps.qi, 66
bps.rmx, 47

BPS files
definition of, 9
for a networking system, 35
list of for boot scenarios, 34

BPS manager, 8
BPS SA (save area), 9
bps.cpu, listing of, 39
bps.dep, listing of, 55
bps.dsq, listing of, 76
bps.qi, listing of, 66
bps.rmx, listing of, 47

C
Central services module, see CSM/001 and

CSM/002
client parameters

bl_boot_device, 14
bl_boot_logical_part, 15
bl_boot_master_part, 15
bl_config_file, 15
bl_debug, 15
bl_device_type, 16
bl_error_action, 16
bl_host_id, 16
bl_location, 16
bl_method, 16
bl_qi_master, 17
bl_quasi_server_id, 17
bl_retry_count, 17
bl_second_stage, 17
bl_server_id, 17
bl_target_file, 17
bl_unit, 18
list of all, 12

cold reset, events after a, 2
configuration directories and files, 34
configuration files, 31, 32
CSM/001, 33, 34
CSM/002, 33, 34, 86

D
definition (.bck) files

433io.bck, 64, 75

433net.bck, 64
433scp.bck, 38, 75
486150.bck, 46
486150net.bck, 46
486150rsd.bck, 64
description of, 32

dependent booting
boot scenario example, 51
definition of, 30
diagram of bootstrap model, 53

directories for MSA configuration, 34
diskfull host

definition of, 31
in boot scenarios, 48, 64, 74

diskless host
definition of, 31
error messages related to, 83
host names, 35
in dependent boot scenario, 51
in quasi-independent and dependent boot

scenario, 65
name in dependent boot scenario, 60
name in quasi-independent and dependent

boot scenario, 71
dual SCSI bus quasi-independent booting

boot scenario example, 74

E
error messages, 81
errors, iRMX-NET, 82, 84
examples

dependent boot scenario, 51
dual SCSI bus quasi-independent boot

scenario, 74
independent boot scenario, 36
quasi-independent and dependent boot

scenario, 62
quasi-independent boot scenario, 43

F
failure, boot symptoms, 83, 85
files for MSA configuration, 34
first stage bootstrap loader, 4
format command, 80

MSA for the iRMX Operating System Index 91

H
host configurations

diskfull, 31
diskless, 31

I
ic command, causing a warm reset with, 86
icwrite command, causing a warm reset with, 86
iNA 960 MIP

job, 20
job configuration values, 23
job parameters, 24

independent booting
boot scenario example, 36
definition of, 30
diagram of bootstrap model, 38
unit numbers for, 18

initialization
board phase of, 3
bootstrap loading phase of, 4
four phases of, 2
reset phase, 3
system hardware phase of, 3

interconnect controller, 3
iRMX_NET

client, 25
rq_net_c SPS parameter, 25
rq_net_s SPS parameter, 25
server, 25

iRMX-NET
client, 51, 54, 63, 65
errors, 82, 84
in dependent boot scenario, 51
in dual SCSI bus quasi-independent boot

scenario, 75
in independent boot scenario, 36, 38
in quasi-independent and dependent boot

scenario, 63
in quasi-independent boot scenario, 49
remote file server, 51, 54, 63, 65
rq_mip SPS parameter, 20, 23

iSBC 486/150 board, 43, 62
iSBC 486/166SE board, 36, 62, 74
iTP4, 64

M
master test handler, see MTH
messages, error, see Chapter 4
microcontroller, see interconnect controller
MIP job parameters, 23, 24
MSA boot error messages, 81
MTH

changing bootstrap parameters with, 9, 27
commands for changing bootstrap

parameters, 28

O
operating system specific parameters, see SPS

parameters

P
PCI

driver, 8, 18, 19, 26, 44, 46, 54, 62
IDs, 18
parameters for bl_boot_device, 14
relationship with transport protocol, 30
rq_pci_a SPS parameter, 20, 26
rq_pci_b SPS parameter, 20, 26
server, 17, 26, 38, 44, 46, 54, 62, 64, 75
unit number, 14

peripheral controller interface, see PCI
power-up, events after, 2

Q
quasi-independent and dependent booting

boot scenario example, 62
quasi-independent booting

boot scenario example, 43
definition of, 30
diagram of bootstrap model, 45
unit numbers for, 18

R
reset

causing a warm reset, 86
description of phase, 3
events after a, 2

92 Index

from front panel, 87
using aliased warmreset command, 87
using HI ic command, 86

rq_atcs_a, 21
rq_atcs_b, 21
rq_atcs_c, 21
rq_atcs_con, 21
rq_atcs_d, 21
rq_dlj, 22
rq_hscf, 22
rq_hterm, 22
rq_mip, 23
rq_mip_xx, 23
rq_net_c, 25
rq_net_s, 25
rq_pci_a, 26
rq_pci_b, 26

S
save area, see BPS SA
SCSI IDs, 18
SDM recovery, 81
second stage bootstrap loader, 5
server parameters

bl_host_id, 10
bl_method, 11
bl_second_stage, 11
list of all, 10

service information, see inside back cover
SPS parameters

list of, 20
rq_atcs_a, 21
rq_atcs_b, 21

rq_atcs_c, 21
rq_atcs_con, 21
rq_atcs_d, 21
rq_dlj, 22
rq_hscf, 22
rq_hterm, 22
rq_mip, 23
rq_mip_xx, 23
rq_net_c, 25
rq_net_s, 25
rq_pci_a, 26
rq_pci_b, 26

standard definition files, see definition files
submit files, 32
system debug monitor, 81
system hardware, initialization of, 3

T
target file, 1, 32
transport protocol, 30
troubleshooting information, 81

U
unit numbers, table of, 18

W
warm reset

causing a, 86
from front panel, 87

warmreset command, 87

	MSA for the iRMX Operating System
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: Introduction
	Why You Might Change the Bootstrap Process
	What Happens After Power-up or Cold Reset
	Reset
	Board Initialization
	System Hardware Initialization
	Bootstrap Loading

	Chapter 2: Bootstrap Parameters
	What Are Bootstrap Parameters?
	Bootstrap Parameters
	Server Parameters
	Client Parameters
	SPS Parameters

	Using the MTH to Change Parameters

	Chapter 3: Bootstrap Scenarios
	Overview of Examples and Terms
	Bootstrap Methods
	Host Configurations

	System Configuration
	iRMX(Configuration Files
	Selecting Terminal Device Names
	Generating Configuration Files and Submit Files

	Making New Boot Systems
	Parameters for Other I/O Server Boards
	Configuration Files for a Networking System

	Example 1: Independent Boot Method
	Hardware Configuration
	Software Configuration
	Testing the Boot Scenario

	Example 2: Quasi-Independent Method
	Hardware Configuration
	Software Configuration
	Description of the Boot Scenario
	Testing the Boot Scenario

	Example 3: Dependent Method
	Hardware Configuration
	Software Configuration
	Description of the Dependent Boot Scenario
	Testing the Boot Scenario

	Example 4:	Quasi-Independent and Dependent�			Booting
	Hardware Configuration
	Software Configuration
	Description of the Boot Scenario
	Testing the Boot Scenario

	Example 5:	Dual SCSI Bus Quasi-Independent�		Booting
	Hardware Configuration
	Software Configuration
	Description of the Boot Scenario
	Testing the Boot Scenario

	Chapter 4: Troubleshooting
	SDM Recovery
	MSA Boot Error Messages
	Causing a Warm Reset
	Using the HI ic Command
	Using the Aliased Warmreset Command
	Warm Reset from the Front Panel

	Index

