
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

iRMX®

Network User’s Guide
and Reference

07-0625-01
December 1999

ii

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 1999 by RadiSys Corporation

All rights reserved.

Network User’s Guide and Reference iii

Quick Contents

Chapter 1. Introduction

Chapter 2. iRMX-NET Overview

Chapter 3. Network Access Using iRMX-NET

Chapter 4. Using the Network

Chapter 5. Example: Configuring an Administrative Unit

Chapter 6. Examples: Configuring Multiple Operating Systems

Chapter 7. Network Software Implementation

Chapter 8. iNA 960 Topology and Addressing

Chapter 9. The Multibus II Subnet and Routing Between Subnets

Chapter 10. The Programmatic Interface

Chapter 11. Using and Programming the Name Server

Chapter 12. Programming the Transport Layer

Chapter 13. Programming the Data Link Layer

Chapter 14. Using the Network Management Facility

Chapter 15. Remote Booting

Chapter 16. Internetwork Routing

Appendix A. iRMX-NET and iNA 960 Transport Configuration Values

Appendix B. Data Flow in MIP and COMMputer Jobs

Appendix C. iNA 960 Network Objects

Appendix D. Related Documentation

Appendix E. Network Error Messages

Glossary

Index

iv

Notational Conventions
The references to system calls in the text and graphics use C syntax instead of PL/M
(for example, the system call receive_message instead of receive$message). If you
are working in C, use the C header files, rmx_c.h, udi_c.h and rmx_err.h. If you are
working in PL/M, use the rmxplm.ext and error.lit header files and use dollar signs
($) in the system calls. Additional header files for network programs are listed in this
manual.

This manual uses the following conventions:

• User input, command syntax and computer output are printed
like this, in regular monospaced text.

• In examples combining user input and computer output, user
input is printed like this, in bold monospaced text.

• System call names and command names appear in bold, like this.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH).

• Bit 0 is the low-order bit unless otherwise stated.

• The following iRMX Operating System layer abbreviations are used. The
Nucleus layer is unabbreviated.

AL Application Loader

BIOS Basic I/O System

EIOS Extended I/O System

HI Human Interface

UDI Universal Development Interface

✏ Note
A note calls attention to an important fact.

▲▲! CAUTION
A caution points out something that could damage your hardware
or data.

Network User’s Guide and Reference Contents v

Contents

1 Introduction
How to Use This Book .. 1
Networking Concepts and Terminology .. 2
Network Software Choices .. 3

iNA 960 Programmatic Interfaces.. 3
iRMX-NET .. 3
TCP/IP and NFS... 5

2 iRMX-NET Overview
iRMX-NET Client and Server ... 7
Network Operation .. 8

The Name Server.. 8
The User Definition File... 11
The Client Definition File... 11

Network Security... 12
Client-based Protection... 12
Server-based Protection.. 13

3 Network Access Using iRMX-NET
Overview ... 17
Adding a Server to the Name Server Object Table.. 18

Choosing a Server Name .. 18
Entering Information Into the Object Table.. 18

Defining Network Users in the UDF ... 20
Accessing Other AUs ... 21
Backing Up the Master UDF File... 21

Adding a Client to the CDF ... 22
Diagnostics .. 23
What's Next?.. 23

vi Contents

4 Using the Network
Accessing Remote Files .. 27

Connecting to a File Server .. 27
Attaching a Server... 27
Detaching a Server .. 28
Listing Remote Connections ... 28

Using Remote Files .. 28
Copying Files Across the Network... 29

Copying the Master UDF .. 29
Copying the CDF .. 30

Making Local Files Accessible to Other Nodes... 31
Setting Up Public Directories... 33

Listing Public Directories.. 33
Removing Public Directories .. 34

Protecting Files on a Server.. 34
What's Next? ... 35

5 Example: Configuring an Administrative Unit
Configuring the Systems ... 38

Configuring the Master Node ... 38
System 1: iRMX for PCs Node .. 38
ICU-configurable Master Node... 39

Configuring the Other Nodes ... 39
System 2: Multibus I, System 320.. 40
System 3: Multibus II, System 520 .. 40
System 4: Multibus II, System 520 .. 41
System 5: PC Bus Platform.. 42

Setting Up the Administrative Unit ... 43
System 1... 43

Modcdf Example... 44
Systems 2 through 5 ... 45

6 Example: Configuring Multiple Operating Systems
The DOS System... 49

Connecting a DOS Client to an iRMX Server .. 49
On the iRMX Server ... 49
On the DOS Client .. 50

iRMX and DOS Interoperability .. 51
The PCL2 Name Server .. 51
DOS Client Restrictions .. 51

Network User’s Guide and Reference Contents vii

The UNIX System ... 53
Connecting a UNIX Client to an iRMX Server .. 53

On the iRMX Server ... 53
On the UNIX Client .. 53

Connecting an iRMX Client to a UNIX Server .. 54
On the UNIX Server.. 54
On the iRMX Client .. 54

Setting Up the Administrative Unit .. 54
iRMX and UNIX Nodes in Separate AUs... 55
iRMX and UNIX Nodes in the Same AU ... 55

iRMX and UNIX Interoperability .. 56
SV-OpenNET Server Features and Restrictions................................ 56
iRMX Server Restrictions ... 58

Connecting to Nodes on Older Versions of SV-OpenNET....................... 58

7 Network Software Implementation
Hardware Environments .. 59
Software COMMputer and MIP Environments ... 60
Overview of iNA 960 Software ... 61

The iNA Layers.. 62
The Name Server... 63
The Transport Layer.. 63
The Network Layer ... 63
The Data Link Layer ... 63
The Network Management Facility... 64

The Programmatic Interface ... 64
Overview of iRMX-NET Software ... 64

Data Flow Through iRMX-NET and iNA 960 Software.......................... 66
Configuring the MIP... 67

8 iNA 960 Topology and Addressing
The iNA 960 Network Topology... 69

General Subnetwork Types .. 70
iNA 960 Subnetworks .. 71

Network Addressing .. 71
Network Service Access Point (NSAP) Address...................................... 72
Subnet Address... 73
Internetwork Routing.. 73

iNA 960 Network Layer Addressing Schemes .. 74
Null2 Network Addressing... 74
Static Internetwork Addressing .. 75

viii Contents

End System to Intermediate System (ES-IS) Network Addressing 75
Choosing a Network Layer Configuration... 76

8 The Multibus II Subnet and Routing Between Subnets
Configuring Networks with the Multibus II Subnet... 77
Routing Between Subnets.. 78

Definition of a Router... 78
ES-IS vs. Null2 Jobs... 78
ES-IS Routing .. 79

Ethernet Addresses in the Multibus II Subnet ... 80
Data Link Subsystem ID for the Multibus II Subnet 80
Name Server Search Domain .. 81
Overview of Setting up the Multibus II Subnet ... 81
Step 1: Mapping the Network.. 82

Using Only TCP/IP Outside the Multibus II Subnet................................. 85
Step 2: Choosing the iNA 960 Jobs ... 86
Step 3: Configuring Jobs in the ICU.. 88
Step 4: Creating a Loadable Network Job .. 89
Step 5: Using Loadable Jobs.. 90
Step 6: Changing Subnet IDs on Other Systems.. 91
Step 7: Modifying the net/data File ... 92
Step 8 - 10 Overview: Configuring iNA 960 Routing 93

Using Inamon to Configure Routing .. 93
Step 8: Establishing ES and IS Hellos ... 94
Step 9: Getting the NET and Subnet Information.. 96
Step 10: Setting Up the iNA 960 Static Routing Tables 98
Step 11: TCP/IP Configuration.. 104
Increasing Performance for Remotely-Booted Boards 105

10 The Programmatic Interface
Referencing Data Buffers in Request Blocks .. 107

Using Addresses in iNA 960 Request Blocks... 108
Translating Pointers .. 108
Limitations on Buffer Size .. 108

Interface Libraries and Link Sequences... 109
Include Files .. 109
Programming with Structures.. 110
Using the cq_ System Calls ... 111
Exception Handling ... 112
System Calls to iNA 960 ... 113
cq_comm_multi_status.. 114

Network User’s Guide and Reference Contents ix

cq_comm_ptr_to_dword.. 116
cq_comm_rb.. 117
cq_comm_status .. 121
cq_create_comm_user ... 123
cq_create_multi_comm_user ... 124
cq_delete_comm_user ... 126

11 Using and Programming the Name Server
The Name Server Object Table ... 131
Adding an Object to the Name Server Object Table.. 134

Loading Objects from the :sd:net/data File... 135
Editing the :sd:net/data.ex File .. 136
Syntax of the :sd:net/data File ... 138

Other Name Server Operations.. 141
Deleting an Object from the Name Server Object Table 141
Obtaining Local Name Server Information .. 141
Obtaining Remote Name Server Information... 141

Object Table Entries at Initialization ... 142
Location of the Name Server... 146
Request Block Arguments ... 146

Example Software .. 147
Name Server Commands ... 148
ADD_NAME... 150
ADD_SEARCH_DOMAIN .. 153
CHANGE_VALUE... 155
DELETE_NAME .. 157
DELETE_PROPERTY.. 159
DELETE_SEARCH_DOMAIN.. 161
GET_NAME ... 163
GET_SEARCH_DOMAIN ... 166
GET_SPOKESMAN ... 168
GET_VALUE.. 170
LIST_TABLE.. 173

12 Programming the Transport Layer
Transport Services ... 175

Virtual Circuit Service.. 177
Example Software ... 178

Datagram Service ... 178
Buffers... 178

Buffer Addressing .. 178

x Contents

TSAP Address Buffer... 179
Contiguous Buffers... 184
Noncontiguous Buffers... 184

ISO Reason Codes... 185
Virtual Circuit Commands... 185

Commands to Establish a Connection .. 186
Commands for the Data Transfer Phase ... 186

Posting Receive Buffers for Virtual Circuits..................................... 187
Commands to Terminate a Connection .. 188

Datagram Commands .. 188
Posting Receive Buffers for Datagrams ... 189

Transport Service Commands ... 189
ACCEPT_CONNECT_REQUEST ... 190
AWAIT_CLOSE... 193
AWAIT_CONNECT_REQUEST_TRAN

AWAIT_CONNECT_REQUEST_CLIENT ... 196
CLOSE .. 206
OPEN .. 209
RECEIVE_ANY ... 211
RECEIVE_DATA... 214
RECEIVE_DATAGRAM ... 217
RECEIVE_EXPEDITED_DATA ... 220
SEND_CONNECT_REQUEST.. 223
SEND_DATA/SEND_EOM_DATA .. 229
SEND_DATAGRAM ... 233
SEND_EXPEDITED_DATA.. 236
STATUS.. 239
WITHDRAW_DATAGRAM_RECEIVE_BUFFER...................................... 249
WITHDRAW_EXPEDITED_BUFFER.. 251
WITHDRAW_RECEIVE_BUFFER... 253

13 Programming the Data Link Layer
Overview of the Data Link Layer.. 255

The External Data Link (EDL) Interface.. 256
The RawEDL Interface .. 256

iNA 960-Supported Hardware Subnets and Protocols..................................... 257
LSAP Identifiers... 258

Data Link Commands.. 260
CONFIGURE.. 264
CONNECT.. 266
DISCONNECT.. 269
FLUSH .. 271

Network User’s Guide and Reference Contents xi

IA_SETUP... 272
MC_ADD .. 274
MC_REMOVE.. 276
POST_RPD ... 278
RAW_POST_RECEIVE ... 282
RAW_TRANSMIT ... 286
READ_CLOCK... 288
TRANSMIT... 289

14 Using the Network Management Facility
NMF Services.. 293
NMF Operation ... 295

Managers and Agents ... 295
Local Versus Remote NMF Operation ... 297

Local Operation... 297
Remote Operation ... 298

NMF Communications Services... 298
Using NMF Commands... 300

Net Agent Connection Commands ... 300
Layer Management Commands.. 301

NMF Object IDs.. 301
Using Layer Management Commands .. 302

Event Notification .. 302
NMF Events .. 303

Debugging Commands ... 303
Maintenance Commands .. 303
Remote Load Operations .. 304

The NMF Commands .. 304
ATTACH_AGENT ... 306
AWAIT_EVENT... 309
DETACH_AGENT ... 312
DUMP ... 313
ECHO.. 316
READ_AND_CLEAR_OBJECT .. 318
READ_MEMORY/SET_MEMORY .. 319
READ_OBJECT/SET_OBJECT READ_AND_CLEAR_OBJECT 321
SET_MEMORY.. 327
SET_OBJECT ... 328
SUPPLY_BUFFER ... 329
TAKEBACK_BUFFER .. 332

xii Contents

15 Remote Booting
Hardware and Software Requirements .. 333
Overview of Remote Booting.. 335
Configuring the Load Files.. 337

Operating System Boot File ... 338
Generating an OS Boot File .. 338

Load-time Configuration File... 340
Remote Third Stage Bootstrap Loader ... 341
iNA 960 Load File.. 342

Generating a First Stage EPROM for the Boot Client 342
Creating a First Stage for EtherExpress 16 or EWENET......................... 343
Using the iPPS PROM Programmer... 345
Installing the EPROM .. 346

Configuring the Remote Boot Server .. 346
Creating the ccinfo File .. 346

Class Codes ... 347
Generating the ccinfo File ... 348

Loading the Boot Server... 349
Installing the Load Files ... 350

Configuring the File Server ... 350
Loading Server Names into the Name Server Database........................... 351
Adding Client Names to the CDF... 352
Adding Server Names to the :config:terminals File 352

Remote Boot Start ... 353
Booting Multibus I Systems ... 353
Booting Multibus II or PC Bus Systems... 353

System Initialization on a Diskless Node .. 353
If Remote Booting Fails .. 355
Troubleshooting... 355
Creating Custom Server Applications ... 358

Boot Request and Response ... 358
Loading Operation.. 359
Boot Module Format .. 361
Using SUPPLY_BUFFER and TAKEBACK_BUFFER 362

16 Internetwork Routing
Internetwork Routing Protocols... 365

Static Routing... 365
ES-IS Routing .. 365
Using Static and ES-IS Routing Together .. 366

Routing Tables .. 366

Network User’s Guide and Reference Contents xiii

Application Access to Routing Tables.. 367
Reading and Setting Static Routing Objects .. 368

Command and Response Buffers for Static Routing 368
Command Buffer... 369
Response Buffer .. 370
Field Descriptions for Command and Response Buffers................... 371

Reading and Setting ES-IS Routing Objects.. 374
Command and Response Buffers for ES-IS Routing................................ 376

Command Buffer... 376
Response Buffer .. 377
Field Descriptions for Command and Response Buffers................... 377
The Local End System Table Structure... 379
The Intermediate System Table Structure ... 380
The Static Intermediate System Table Structure 381
The Reachable NSAP Address Table Structure 382
The Subnet Table Structure ... 383
The Local NSAP Address Table Structure.. 384

A iRMX-NET and iNA 960 Transport Configuration Values
Files Containing iNA 960 Transport Software .. 385

iNA 960 Download Files.. 385
iNA 960 COMMputer Jobs.. 388
Configuration of iNA 960 MIP Jobs.. 388
Configuration of iRMX-NET Jobs .. 388

B Data Flow in MIP and COMMputer Jobs
Data Interchange with the MIP.. 391

Multibus I and PC Bus MIP ... 393
Multibus II MIP.. 394

Data Interchange in a COMMputer Job... 395

C iNA 960 Network Objects ... 397

D Related Documentation .. 415

E Network Error Messages
System Initialization Error Messages .. 417
MIP Error Codes.. 419

xiv Contents

Glossary ... 433

Index ... 439

Network User’s Guide and Reference Contents xv

Tables
Table 7-1. iNA 960 Services and ISO Specifications ... 61
Table 9-1. iNA 960 COMMputer Jobs for the Multibus II Subnet 86
Table 9-2. Configuring ES and IS Hellos.. 94
Table 10-1. System Calls for Access to iNA 960 and the Name Server 113
Table 11-1. Property Types for the Name Server ... 133
Table 11-2. Object Table Entries .. 142
Table 11-3. Name Server Commands ... 148
Table 11-4. Name Server Response Codes ... 149
Table 12-1. Transport Layer Commands .. 176
Table 12-2. TSAP Address Buffer Field Values... 182
Table 12-3. ISO Reason Codes ... 185
Table 12-4. Maximum Total Buffer Lengths .. 231
Table 13-1. Data Link Commands .. 261
Table 13-2. Data Link Subsystem IDs .. 262
Table 13-3. IEEE 802.3 Response Codes.. 262
Table 14-1. Network Management Facility Commands ... 305
Table 15-1. Boot Client Systems .. 334
Table 15-2. Load Files for Remote Booting.. 337
Table 15-3. ICU Definition Files for Remote Booting.. 338
Table 15-4. Remote Third Stage Bootstrap Loader Files.. 341
Table 15-5. Class Code Ranges and Defaults ... 347
Table 15-6. Remote Load File Translation ... 348
Table 15-7. Default Directories for Load Files ... 350
Table A-1. iNA 960 Download Files .. 386
Table A-2. iNA 960 Download File Configuration... 387
Table A-3. MIP Job Configuration ... 388
Table A-4. iRMX-NET Configuration.. 389
Table C-1. 802.3 Data Link Objects ... 398
Table C-2. 802.3 Data Link Objects With the 825595TX Component 399
Table C-3. 802.3 Data Link Objects With the DEC21143 Component......................... 400
Table C-4. 802.3 Data Link Objects for the Multibus II Subnet 401
Table C-5. IP Network Layer Objects... 402
Table C-6. Router Objects - Static .. 402
Table C-7. Router Objects - ES-IS.. 403
Table C-8. Transport Layer Objects - Virtual Circuit Connection Independent............ 406
Table C-9. Map 2.1 Transport Objects.. 409
Table C-10. Map 2.1 Transport Objects - Virtual Circuit Connection Dependent 411
Table C-11. Map 2.1 Transport Objects - Transport Datagram 413
Table C-12. NMF Objects... 413
Table C-13. Network Layer Events .. 413
Table C-14. Transport Layer Events... 414
Table E-1. MIP Error Codes ... 419

xvi Contents

Figures
Figure 1-1. iRMX-NET Interoperability with Other OpenNET Systems 4
Figure 2-1. Name Server Operation.. 9
Figure 2-2. Name Server Example.. 10
Figure 2-3. Client-based Protection Within an AU... 12
Figure 2-4. Server-based Protection Across AUs ... 14
Figure 3-1. Network Setup.. 16
Figure 4-1. Remote File Access.. 26
Figure 4-2. Public Directories as Seen from a Client.. 31
Figure 5-1. Single Administrative Unit... 37
Figure 6-1. The OpenNET Network ... 47
Figure 6-2. Multiple Operating System Network.. 48
Figure 7-1. ISO OSI Model .. 59
Figure 7-2. iNA 960 Software Layers... 62
Figure 7-3. iRMX-NET Data Flow on COMMputer Systems 66
Figure 7-4. iRMX-NET Data Flow on COMMengine Systems.................................... 66
Figure 8-1. A Single Subnetwork ... 69
Figure 8-2. Two Interconnected Subnetworks .. 70
Figure 9-1. Mapping Subnets.. 82
Figure 9-2. Mapping Subnets with an Internetwork.. 84
Figure 9-3. Mapping Subnets for TCP/IP Access, but no iNA 960 Access 85
Figure 9-4. Example iset.csd File ... 94
Figure 9-5. Routing Information on a Single External Network 96
Figure 9-6. Example Routing Information on a Single External Network.................... 100
Figure 9-7. Routing Information on Multiple External Networks................................. 102
Figure 11-1. The Name Server Object Table .. 132
Figure 11-2. The :sd:net/data.ex File .. 136
Figure 12-1. TSAP Address Format ... 181
Figure 12-2. Connection Request Consideration Policy.. 205
Figure 13-1. Data Link Interface .. 259
Figure 14-1. A Typical Net Manager/Net Agent Interaction .. 296
Figure 14-2. A Typical iNA 960 Network .. 297
Figure 15-1. Remote Booting the iRMX III OS, Start and Finish................................. 335
Figure 15-2. Remote Booting a Diskless Node... 336
Figure 15-3. The :sd:net/ccinfo.bdf File ... 347
Figure B-1. MIP Protocol Model .. 391
Figure B-2. Multibus I and PC Bus MIP Model ... 393
Figure B-3. Multibus II MIP Model.. 394
Figure B-4. COMMputer MIP Model... 395

Network User's Guide and Reference Chapter 1 1

Introduction 1
Network User's Guide and Reference presents a number of networking options for
iRMX computers. iRMX systems can access the network through iRMX-NET,
standalone iNA 960, or TCP/IP software and NFS, all of which are provided with the
iRMX Operating Systems (OSs). This manual is primarily an introduction and
reference to iNA 960 and iRMX-NET.

See also: TCP/IP and NFS for the iRMX Operating System

How to Use This Book
This manual contains a variety of information for users of iRMX networks,
application developers, and network administrators. Most of the earlier chapters
cover the installation, configuration, and use of iRMX-NET, which provides
transparent file access to any of Intel's family of OpenNET Local Area Network
(LAN) products. Most of the later chapters cover the interface to iNA 960, which
provides a programmatic interface to the ISO/OSI Transport software. iNA 960 is
the underlying software in iRMX network jobs.

Use this guide to determine which parts of the manual you should read.

If you are: Refer to:

An iRMX-NET user Chapters 1-4

Using multiple operating systems Interoperability information in Chapter 6, in
addition to other chapters

A network administrator Chapters 1-5, 7, 9, 11, 14-16, Appendices
A and C

Managing multiple operating systems....... Chapter 6, in addition to other chapters

An application developer Chapters 1, 2, 7-16, Appendices A-E

2 Chapter 1 Introduction

Networking Concepts and Terminology
This manual uses these networking concepts and terminology:

A user has a login on a computer system, which is called a node in the network. The
node you are logged into is the local node; any other one is a remote node. The
nodes are connected into a Local Area Network (LAN) by some type of physical
connection, such as Ethernet.

There are two levels of networking software that provide communications between
nodes:

• Transport software like iNA 960 and TCP/IP allows you to write applications
that transfer data between nodes, typically by establishing a virtual circuit
between the nodes. TCP/IP software includes utilities to transfer files between
nodes or to log in to a remote node.

• Transparent file access is provided by iRMX-NET running on iNA 960 software
or NFS running on TCP/IP. Transparent file access is the ability to work on files
on a remote node as if they were local to your own system.

The function of a network is to allow computers to share resources, such as files,
printers, tape drives, diskette drives, and modems. A computer that enables other
nodes to use its resources is a server (or server node). A computer that accesses the
resources of another node is a client (or client node). A node may be both a server
and a client.

A network can be set up with one or more dedicated servers, computers used
exclusively to provide resources to the other nodes, which act as clients.
Alternatively, all the nodes can provide resources for each other, so each one is both
a server and a client, in a peer-to-peer relationship.

The glossary at the back of the manual provides additional terms and definitions.

See also: Glossary, Introducing the iRMX Operating Systems

Network User's Guide and Reference Chapter 1 3

Network Software Choices
These network software packages are provided with the OS:

Transport
Software

iNA 960 programmatic
interface to ISO OSI
protocol

TCP/IP for Internet protocol
(requires iNA 960 on iRMX systems)

Transparent
File Access

iRMX-NET client and
server (requires iNA 960)

NFS
(requires TCP/IP)

iNA 960 Programmatic Interfaces
If you only want a programmatic interface to Transport services from your
application, instead of transparent file access by users at the iRMX command line,
use iNA 960 jobs without loading iRMX-NET jobs. By themselves, the iNA 960
jobs do not provide the iRMX-NET interface to the remote file driver, or network
user administration.

See also: Network Software Implementation, Chapter 7;
i*.job, System Configuration and Administration

iRMX-NET
iRMX-NET is distributed as part of the iRMX OS software, so this option is always
available on any iRMX computer with a compatible hardware environment.

See also: Network Software Implementation, Chapter 7

One of the major features of iRMX-NET is that it enables iRMX computers to
interconnect and interoperate easily with other OpenNET file servers and clients
running a variety of OSs, as shown in Figure 1-1.

iRMX is a registered trademark of Intel Corporation.

iRMX

UNIX

iRMX

UNIX

DOS

Servers Clients

iRMX
Server

iRMX
Client

OM02729

Arrows indicate flow of resource requests.

4 Chapter 1 Introduction

Figure 1-1. iRMX-NET Interoperability with Other OpenNET Systems

OpenNET cannot connect iRMX clients to DOS file servers. These software
modules do not use the same communication protocols.

Each node on iRMX-NET can be used as a server and a client simultaneously. This
provides great flexibility and saves the cost of a dedicated file server. On the other
hand, it increases administrative duties and can slow response times.

iRMX-NET makes it possible for users to access remote files with the same Human
Interface (HI) commands used for the equivalent operations on local files. This is
called transparent file access.

On computers running DOSRMX, the iRMX-NET file server provides remote access
to both the iRMX and the DOS file systems. Remote clients access the DOS file
system through the iRMX-NET file server.

See also: iRMX-NET Overview, Chapter 2;
Network Access Using iRMX-Net, Chapter 3;
rnetserv.job and remotefd.job, System Configuration and Administration

Network User's Guide and Reference Chapter 1 5

TCP/IP and NFS
TCP/IP network software is available on any computer running the iRMX OS.
TCP/IP utilities enable users to access other computers on the network to transfer
files and log in to remote systems.

TCP/IP software provides the advantage of industry standard networking protocols
that allow interoperability with most other OSs. Administrators of multiple OS
networks, as well as many users, are likely to be familiar with TCP/IP networks.

For transparent file access using TCP/IP protocols, NFS software is also included
with the iRMX OS.

The installation, configuration and use of TCP/IP and NFS software is covered in a
separate manual.

See also: TCP/IP and NFS for the iRMX Operating System;
ip.job, rip.job, tcp.job, udp.job, mountd.job, nfsfd.job, nfsd.job, and
pmapd.job, System Configuration and Administration

■■ ■■ ■■

6 Chapter 1 Introduction

Network User's Guide and Reference Chapter 2 7

iRMX-NET Overview 2
This chapter is a general description of how iRMX-NET works. It discusses the
software, network operation, and security methods. If you are an iRMX-NET user,
this chapter provides the background necessary for setting up the iRMX-NET
software on your computer. If you are a network administrator or application
developer, read this as an introduction to the more detailed discussions of these topics
in later chapters.

See also: Programming the Name Server, Chapter 11;
Network Software Implementation, Chapter 7

iRMX-NET Client and Server
iRMX-NET includes these jobs, which you can configure into the OS or load
separately:

iRMX-NET Client Contains the iRMX-NET file consumer and the remote file
driver (RFD) The loadable version of this job is remotefd.job.

iRMX-NET Server The file server. The loadable version of this job is rnetserv.job.

You can use either the client or the server separately or run both on the same system.
These jobs require that you also run the appropriate iNA 960 job for your board.

See also: Network Software Implementation, Chapter 7;
Loading network jobs, System Configuration and Administration;
Network configuration, ICU User's Guide and Quick Reference

8 Chapter 2 iRMX-NET Overview

Network Operation
The operation of iRMX-NET depends on information maintained in three places:

• The Name Server maps the names of network services to their addresses. It
contains information about all the servers on the network.

• The User Definition File (UDF) on each node contains names and other
information about network users that can access that node. It is used to validate
requests for remote access.

• The optional Client Definition File (CDF) on a server contains the client names
and passwords of client nodes that can access that server. It is used to validate
requests for remote access.

The Name Server
To be accessible, every server node must register its file server name with the Name
Server. The Name Server is a subsystem of iRMX-NET that dynamically maps the
names of network services to their addresses. This allows clients to find other
computers on the network.

Dynamic name resolution means you can assign a server name to a computer at any
time. If it already has another server name, you can add a second name. Once the
new name is registered with the Name Server, remote users can access the node by
using that name. They do not have to remember the network address, although they
can obtain the address associated with this server name, if they wish. This process
eliminates the administrative overhead of maintaining predetermined server names
and network addresses in a central file.

A node that is used strictly as a client does not have to be registered with the Name
Server. It may be, however, so remote users can find its net address.

Figure 2-1 shows the operation of the Name Server. Each system in the figure runs
its own Name Server software. The various Name Servers work together across the
network to provide name resolution to each node.

If your network has multiple subnets, the Name Server operates by default only on
the range of subnet IDs preconfigured into each iNA 960 job. However, you can
configure the default subnet IDs or extend the domain of subnets searched by the
Name Server.

See also: Multibus II subnets, Chapter 9

Network User's Guide and Reference Chapter 2 9

Name Server

1
iRMX III OS

3
UNIX System V

2
MS-DOS

Ethernet

The Name Server consists of all the spokesman systems on the LAN. It maps

system names to Ethernet addresses.

Figure 2-1. Name Server Operation

The Name Server works by allowing each node on the network to maintain a table of
network objects. These objects are resources available to remote clients, like file
servers, print servers, or virtual terminal servers. The object table lists the names of
network objects and the attributes, or properties, associated with each object, such as
its address and the type of service it offers. In addition to services provided by the
local node, the object table can include the services of other nodes on the network.
The only restriction is that no other object table on the network can have an object
listing with the same name and property type (except for a few initial objects). A
node that lists another computer's network services in its own Name Server object
table is a spokesman for those services. A spokesman is required for any non-iRMX
server that does not have Name Server capability.

A server name listed in a node's Name Server object table is visible to the entire
network. When you ask for information about a server, your computer sends the
request to the other computers on the network. They search their object tables for the
requested information, and the computer that finds it sends the information back to
your computer. Figure 2-2 shows an example of finding a server on the network
through the Name Server.

See also: Programming the Name Server, Chapter 11

10 Chapter 2 iRMX-NET Overview

W-2950

Name
Serveradam

homer

wendy

Ethernet

Name
Server

Name
Server

➀

➁

➂

1. System 1 sends a message for a system named "wendy".

System 1's Name Server broadcasts a message asking if there's a system named

"wendy".

2. System 2's Name Server ignores the message, since it is not a spokesman for "wendy".

3. System 3's Name Server replies that it is named "wendy" and sends its Ethernet address.

System 1 establishes a connection to System 3, using the Ethernet addresses, then

transfers the message.

Figure 2-2. Name Server Example

The User Definition File
Every iRMX computer has a UDF, which is not a special networking file, but part of
the iRMX OS itself. The UDF is an ASCII text file with users' logon names,
encrypted passwords, and user IDs. To facilitate connections to UNIX workstations
on OpenNET networks, a user definition can also include a group ID, UNIX home
directory, UNIX login shell, and a comment.

To access the network, you must be a verified user, that is, your logon name and
password must be recognized as belonging to a valid network user. Your local node
does this validation by checking for your name and password in the local UDF before

Network User's Guide and Reference Chapter 2 11

allowing you to log on. When you request network access, the remote server does
another validation, in one of two ways. First it checks the identity of your local node
in its own CDF. If it does not recognize the computer, then it checks its own UDF
for your logon name and password.

See also: password command, Command Reference;
UDF, System Configuration and Administration

The Client Definition File
You can access a remote server without being checked for a valid logon name and
password if your local node is a verified client, that is, its client name and password
are recognized by the server as belonging to a valid client. The server does this
validation by checking for the client name and password in its CDF.

The CDF is an ASCII text file maintained on every server, listing the client names
and encrypted passwords of clients that access the server. CDFs can be used to
simplify network maintenance when multiple nodes are grouped together into one
Administrative Unit (AU). Clients in other AUs are not listed in the CDF, so
connections across AUs require user validation.

You can change the default client name and password in the rmx.ini file or in the
ICU, if there is one. A node's client name is not necessarily the same as its server
name, which is listed in its Name Server object table.

See also: modcdf command, Command Reference;
CDF, System Configuration and Administration

Some other OSs (such as UNIX) use the term subnet or subnetwork in the way that
the iRMX OS uses AU. In general, you can think of an AU as a subnet. However,
the term subnet in iRMX documentation also refers to the iNA subnet address that is
defined by the Network Layer in the iNA 960 Transport Software. There is no
relation between the two uses of subnet.

See also: iNA Topology and Addressing, Chapter 8

Network Security
iRMX-NET provides two levels of network security: client-based protection and
server-based protection.

Client-based Protection
To provide client-based protection within an AU, all the nodes should have identical
UDFs and all server nodes should have identical CDFs. The network administrator
can maintain a Master UDF with verified users on one central master node, for

12 Chapter 2 iRMX-NET Overview

distribution to the other nodes in the AU. The administrator can also maintain a list
of verified clients on the master node, which can be added to the CDFs on the AU's
servers.

For client-based protection within an AU:

• The client system uses the UDF to validate the user

• The server system uses the CDF to validate the client system

• One system maintains a master copy of the UDF and CDF

Figure 2-3 illustrates the process of client-based security.

AU

Client

W-2944

System A

Server

System B

➀
➁

➂
➃

1. User validation in UDF

2. User request transmitted

3. Client validation in CDF

4. Request granted

Figure 2-3. Client-based Protection Within an AU

A client-based security system requires these steps:

1. The user at System A is validated from the UDF at System A. This validation
occurs when the user logs onto System A.

2. If step 1 is successful and the user attempts to access a file on System B, the
client transmits the user's request, along with the client name and password for
System A, to System B.

3. The server verifies the client name and password of System A using the CDF
located at System B. If the client name and password of System A are valid, the
server assumes that the user at System A is also valid.

4. If step 3 is successful, the user's request is processed.

Network User's Guide and Reference Chapter 2 13

Server-based Protection
If System A's client name and password are not in the server's CDF, step 3 in the last
section fails. The connection can still be made, however, if the server can determine
that the user on System A is a verified user. This method of confirming users prior to
granting remote file access is server-based protection, which offers the highest level
of security.

For server-based protection:

• The user's name and password must be identical in both UDFs.

• The user ID and group ID may be different. A user named Jill could have ID 5
on one system and ID 20 on another. If the passwords on both systems are the
same, Jill can access files between systems.

• The client system uses its UDF to validate the user.

• The server system uses its UDF to validate the user.

Figure 2-4 illustrates the process of server-based security.

AU A

Client

W-2945

System A

Server

System B

AU B

➀
➁

➂
➃

1. User validation in UDF

2. User request transmitted

3. User validation in UDF

4. Request granted

Figure 2-4. Server-based Protection Across AUs

A server-based security system requires these steps:

1. The user at System A is validated from the UDF at System A. This validation
occurs when the user logs onto System A.

2. If step 1 is successful and the user attempts to access a file on System B, the
client transmits the user's request, along with the client name and password for
System A, to System B.

14 Chapter 2 iRMX-NET Overview

3. The server is not able to verify the client name and password of System A, using
the CDF located at System B.

4. If step 3 fails, the server verifies the user's name and password, using the UDF
located at System B.

5. If step 4 is successful, the user's request is processed.

For user validation to succeed, the user must be defined in both AUs. The UDFs on
System A and System B must list identical user names and passwords, but the user
IDs can be different.

■■ ■■ ■■

Network User's Guide and Reference Chapter 3 15

Network Access Using iRMX-NET 3
This chapter describes how to set up iRMX-NET network access. This discussion
focuses on setting up the network files to automatically log on to the network at boot
time. However, there are many ways to set up and manage a system, and you may
prefer to do some of these operations from the command line or through the
programmatic interface.

See also: The Programmatic Interface, Chapter 10

The instructions and examples assume that the OS software has been installed in the
default directories specified in the installation instructions. If your software
installation is nonstandard, change the pathnames as needed.

Before you begin, make sure that:

• The iRMX OS is running.
• The NIC appropriate for this bus configuration has been installed.
• The NIC is connected to the Ethernet LAN hardware.

Because the network is part of the OS, some of the network setup is normally done
during general installation or system configuration. The network configuration is set
up in these places, depending on the OS:

• /net/data file
• :config:loadinfo file for loadable network jobs
• Interactive Configuration Utility (ICU) for first-level network jobs
• :config:rmx.ini file for the DOSRMX and iRMX for PCs OSs
• bps file for the iRMX III OS on a Multibus II system

That level of configuration should already be complete by the time you begin the
steps in this chapter.

See also: AU configuration and setup example, Chapter 5;
Installation, Installation and Startup;
Loading network jobs, System Configuration and Administration;
ICU User's Guide and Quick Reference

Figure 3-1 gives an overview of connecting to the network. The lighter boxes show
the steps covered in this chapter. The steps in the darker boxes are discussed
elsewhere in this or other manuals.

16 Chapter 3 Network Access Using iRMX-NET

W-3275

Network
access

from DOS
?

No

No Yes

Name Server
Map server name

to net address.

UDF
Set up network

access for users.

CDF
Set up server access

for clients.

Yes

Run-time
configuration

Load network layer.

ICU
configuration

ICU
configurable?

Use the
network

DOS network
setup

Figure 3-1. Network Setup

Overview
The process of obtaining network access through iRMX-NET varies, depending on
how you will use the node and what version of the OS it runs. These sections provide
the details of the various setup options, but here is a brief overview. You need to do
one or more of these:

Client only or
client/server node

If the AU includes other nodes, define your user name in the
Master UDF for distribution to all nodes. Add the client name
to the CDF on servers within the AU.

Network User's Guide and Reference Chapter 3 17

Server only or
client/server node

Add a server name for this computer to the Name Server object
table. If the AU includes other nodes, and you will use this
computer as a client, define your user name in the Master UDF
for distribution to all nodes. Add the other client names in the
AU to the local CDF file.

Node
communicating
outside the AU

In addition to the previous steps, make sure this system has at
least one user name and password in common with each node
you will communicate with outside the AU.

DOSRMX node In addition to the previous steps, make sure the OS is set up to
load iRMX-NET at boot time. This gives you network access
from the iRMX OS.

See also: Using iRMX-NET in a DOS Environment, System
Configuration and Administration

18 Chapter 3 Network Access Using iRMX-NET

Adding a Server to the Name Server Object Table
If the computer you are setting up will be used strictly as a client, you can skip this
section.

To make a server visible to the entire network, you must catalog its node name,
transport address, and the type of services it provides with the Name Server. Then
any other node on the network can contact this server, simply by supplying its server
name. This discussion explains the simplest case: adding the local node name to its
own Name Server object table. However, there are many other things that can be
done with the Name Server.

See also: Programming the Name Server, Chapter 11

Choosing a Server Name
The server name must be unique on the network, not just within the AU. The name is
not case-sensitive; that is, the Name Server sees COMMSYS, Commsys and
commsys as the same name. If you try to enter a duplicate name, the Name Server
displays an error message.

Entering Information Into the Object Table
The Name Server usually gets information from the loadname command.
Loadname reads the node name and description from an input file and enters the
information into the Name Server object table. By default the system is configured to
do an automatic loadname at boot time.

The input file for the loadname command is a file named data in the :sd:net
directory. Each line of the :sd:net/data file corresponds to one or two entries in the
Name Server object table. The easiest way to create this file is to edit an example
file, data.ex, that is provided with the OS software. To create a data file this way:

1. Move to the :sd:net directory and create a copy of the example file, by entering:

attachfile :sd:net

copy data.ex to data

Network User's Guide and Reference Chapter 3 19

2. Edit the data file. The first line of the file is the template for the local server
name information:

local_name/nfs: TYPE=rmx: ADDRESS=;

Substitute the node name for local_name in the first line, and delete the
remaining lines. You do not need to specify an address. The Name Server
obtains that from the NIC.

3. Enter the contents of the file into the Name Server with this command:

loadname

You can also register a server name by executing a setname command on the local
system from the command line.

See also: :sd:net/data.ex file, Chapter 11
loadname, unloadname, and setname commands, Command
Reference

20 Chapter 3 Network Access Using iRMX-NET

Defining Network Users in the UDF
On any node running the iRMX OS, the UDF contains the network user definitions.
By default the UDF is in the :sd:rmx386/config directory. On systems with an ICU,
this is configurable.

See also: Network configuration examples, Chapter 5

To make network administration easier, each AU has one Master UDF on the AU's
master node. The Master UDF is distributed to all the nodes in the AU, so any user
name in this file is known throughout the AU.

To add a new network user:

1. Add the new name to the UDF on the user's local computer. Because the UDF
contains encrypted passwords, you must create and modify it with a special
utility, rather than ordinary text editors. To do this, log on as Super and enter:

password

For the Super user, a menu of options appears. Choose Add a user from the
menu and follow the prompts. When you are prompted, create directories for the
user:

Do you want to create the user directories? y

2. Add the new name to the Master UDF. To modify the UDF, log on to the AU's
master node as Super and enter:

password

When you are prompted, do not create user directories on the master node for
this user.

3. Make sure that each of the other nodes on the network attach to the master node
and copy the new version of the Master UDF.

See also: Adding users, System Configuration and Administration;
password command, Command Reference;
Copying the Master UDF, Chapter 4

Network User's Guide and Reference Chapter 3 21

Accessing Other AUs
To access files across AUs, a user must have a definition in the UDF files on the
remote server and the local client. The user name and password must be identical in
both UDFs.

Static users cannot access files across AUs, with one exception. If the World user
with a password of <CR> (carriage return) is defined in the server's AU, then a
World static user can access the files that are available to World on that server.

See also: Static users, System Configuration and Administration

Backing Up the Master UDF File
If this is not the master node in the AU, maintain a copy of the Master UDF file on
this computer. This enables you to detach the local node from the network and
continue to use it if the master node goes down. Of course, diskless nodes, which
cannot store local copies of the system software, require the network at all times.

To copy the UDF file, attach the master node and use the remote file copy procedure
discussed later in this book.

See also: Copying the Master UDF, Chapter 4

22 Chapter 3 Network Access Using iRMX-NET

Adding a Client to the CDF
Every server has a Client Definition File (CDF) listing the names and passwords of
client nodes in the AU. By default the CDF is in the :sd:rmx386/config directory.
On systems with an ICU, this is configurable.

See also: Network configuration examples, Chapter 5

To access a server within the AU, add this node's client name and password to the
server's CDF. If this node is not listed in a server's CDF, access is controlled through
server-based protection.

You must modify the CDF with a special utility, rather than ordinary text editors.
Log on to the server as Super and enter:

modcdf

Choose Add a client from the menu. At the appropriate prompts, enter this
node's client name and password, as specified during ICU configuration or in the
rmx.ini file. (This is not necessarily the same as the node's server name, which was
registered with the Name Server.) The client name must be unique within the CDF.
The name and password are case sensitive, so nodes named COMMSYS, Commsys
and commsys could all be listed in the same CDF.

Repeat the process on every server within the AU that this node will access. In AUs
where all nodes will be used as both servers and clients, it is faster to set the CDF up
on one node and then copy the file to the other nodes when they are connected to the
network.

✏ Note
To use modcdf to update the CDF, the iRMX-NET server job must
be running on the system, either loaded with the sysload command
or configured into the OS with the ICU.

See also: modcdf command, Command Reference;
Server-based Protection, Chapter 2;
Network configuration and modcdf examples, Chapter 5;
Copying the CDF File, Chapter 4

Network User's Guide and Reference Chapter 3 23

Diagnostics
iRMX-NET provides two ways to obtain more information during the network setup
process. The netinfo command returns the Ethernet address and status of the
communications board. The inamon utility provides a variety of information about
the status of iNA 960.

See also: netinfo and inamon commands, Command Reference

What's Next?
The iRMX-NET server and client are now ready to use.

iRMX III and
iRMX for PCs
nodes

Local users can begin remote file access.

Remote users can access the public directories specified during
ICU configuration. You can extend remote access to other
local directories with the offer command.

DOSRMX nodes Local users can begin remote file access from the iRMX
screen.

Remote users can access the DOS file system as well as the
iRMX file system through iRMX-NET. You can extend
remote access to other DOS or iRMX directories with the
offer command.

See also: Public directories, Chapter 4;
offer command, Command Reference;
Using iRMX-NET in a DOS Environment, System Configuration and
Administration

■■ ■■ ■■

24 Chapter 3 Network Access Using iRMX-NET

Network User's Guide and Reference Chapter 4 25

Using the Network 4
This chapter explains how to share files across the iRMX-NET network, including
accessing files on other nodes (as a client) and providing access to local files for
users on other nodes (as a server). You can use your node as a client, a server, or
both simultaneously.

This discussion assumes that your local computer and any other computers you plan
to access are already set up as nodes on the network.

See also: Network Access Using iRMX-NET, Chapter 3

Figure 4-1 gives an overview of remote file access from both the client and the server
points of view. The lighter boxes show the steps covered in this chapter.

See also: Using iRMX-NET in a DOS Environment, System Configuration and
Administration, to use DOS networking with DOSRMX

Chapter 4 Using the Network26

W-3277

Network
access

from DOS
?

Master
node

?

Only
iRMX
nodes

on network
?

No Yes

No

Yes

NoYes

Network
connection

More setup
on local & remote

nodes.

Access the
network with

iRMX & iRMX-NET
commands.

Make server files
accessible over the

network with
offer command.

Done

Access the
network with

DOS & DOS network
commands.

Copy the
Master UDF.

Figure 4-1. Remote File Access

Accessing Remote Files
Accessing files on another computer involves making a connection to the computer
and giving it a logical name. Then the remote files are manipulated in the same way
as local files, except that the logical name in the remote file's pathname is the remote
connection.

Connecting to a File Server
iRMX provides three commands for managing connections to remote servers:
attachdevice, detachdevice, and logicalnames. These commands are also used for
other purposes, which this discussion does not cover.

See also: attachdevice, detachdevice and logicalnames commands,
Command Reference

Network User's Guide and Reference Chapter 4 27

Attaching a Server

Establish a connection to the server with the attachdevice command by entering:

attachdevice server_name as logical_name remote

Where:

server_name
is the node's server name registered with the iRMX-NET Name Server

logical_name
specifies a logical name for the server

remote indicates that the device being attached is a remote server

If more than one user logs into the local computer, you may want to invoke
attachdevice as Super. That makes the connection available to all local users, but
only Super can disconnect it.

✏ Note
If the attachdevice command is not successful, and the
server_name node is indeed configured as a server and is
running, check these items:
• The iRMX-NET client (remotefd.job) and appropriate iNA

960 job (i*.job) are installed in the/rmx386/jobs directory.
• A sysload command for these jobs is in the :config:loadinfo

file and no semicolon precedes the command (assuming that
the network jobs are loaded at runtime rather than linked
with the ICU).

Detaching a Server

To detach from a server, log on with the user name that issued the attachdevice
command. Enter:

detachdevice logical_name

Use the same logical name assigned to the server with the attachdevice command.

Listing Remote Connections

To list the remote servers connected to this computer, enter:

logicalnames l

This lists all the current logical names. Connections to remote servers are identified
as ldev (logical device name) and REM (remote file driver). For example:

System Logical Names:

Chapter 4 Using the Network28

name type fdr con dev name owner pathname

M ldev REM 0 system_a # 0 :M:

C ldev REM 0 system_c # 65505 :C:

Using Remote Files
You can use almost any OS command or program to access files and devices on a
remote server. The exceptions are commands and programs that physically
manipulate the drives, such as format. Also, access to remote files is governed by
access permissions established between the local and remote nodes.

See also: Making Local Files Accessible to Other Nodes, in this chapter

If you use a remote file's full pathname on a command line, the logical name of the
server becomes the prefix to the pathname. For example, suppose system_a is
attached as :m:. To list the files contained in the public directory usr1 residing on
system_a, use this command:

dir :m:usr1

Suppose that the usr1 directory contains a file named data1. To display the contents
of the file, use this command:

copy :m:usr1/data1

Network User's Guide and Reference Chapter 4 29

Copying Files Across the Network
In addition to accessing remote files, you can copy files from one computer to
another across the network. For example, suppose you want a local copy of the data1
file that you just looked at on system_a. Use this command to copy it to your local
computer:

copy :m:usr1/data1 to usr2/data1

Copying the Master UDF

One of the first tasks when a node is connected to the network is to copy the Master
UDF from the master node of the AU. There are two ways this can happen. ICU-
configurable systems provide an automatic UDF copy option, set on the UPD line of
the User Definition File screen. Or you can connect to the master node and do it
yourself.

See also: Setting Up the Administrative Unit, Chapter 5;
For ICU-configurable systems: UPD, ICU User's Guide and Quick
Reference

The UDF file must always be in your local :sd:rmx386/config directory. To copy the
file, you must be logged onto the client node, not the master node. For example,
suppose the master node in the AU is named pcmastr. From your local computer,
you could attach the master node and copy the file with commands similar to these:

attachdevice pcmastr as ms remote

copy :ms:rmx386/config/udf over :config:udf

Notice that the logical name :config: is used instead of the longer rmx386/config
pathname on the local computer. The exact pathname of the remote UDF file may
vary, depending on how the master node's public directories are set up for network
access.

See also: Logical names, dir and copy commands, Command Reference

Chapter 4 Using the Network30

Copying the CDF

The CDF is also kept in your local :sd:rmx386/config directory. Unlike the UDF, the
CDF file can be copied between the master node and the client node while you are
logged on to either computer. If you are logged on to a client node, use commands
similar to these:

attachdevice pcmastr as ms remote

copy :ms:rmx386/config/cdf over :config:cdf

On the other hand, if you have a number of computers to update, you can log on to
the master node and use commands similar to these:

attachdevice pcbus as pc remote

copy :config:cdf over :pc:rmx386/config/cdf

attachdevice sys320 as s3 remote

copy :config:cdf over :s3:rmx386/config/cdf

attachdevice sys520 as s5 remote

copy :config:cdf over :s5:rmx386/config/cdf

Network User's Guide and Reference Chapter 4 31

Making Local Files Accessible to Other Nodes
Not all files on a file server are available for remote access. Only when directories
are specifically made available can their contents be accessed by client nodes.

Directories that are available for access by remote users are called public directories.
They are given public names, which can differ from their local directory names. A
client sees only the public directories. These include not only the directories that
were specified as public, but also each directory's subtree, which is all the data files
and nested directories contained in the directory.

As an example, assume that a file server has a directory structure like System A in
Figure 4-2. Three of its directories are public: :vol:dept3, :vol:dept4, and
:vol:dept5/usr1.

System A
directories

Public directories
of System A

System B
directories

:m:

dept3
acctg

usr1

 files

:vol:

dept1
dept2
dept3
dept4
dept5

W-2946

util386
rmx386
sys386
lang286
user

 world

 files

:sd:

System A System B

usr1

files

System B attaches System A as logical name :m:. Users on System B see only the public

directory names from System A.

Figure 4-2. Public Directories as Seen from a Client

Now look at the view from the client, System B. It has its own directory structure,
starting from :sd:. In addition, a second directory structure, starting from :m:, is
visible. The directory :m: was created when a user on System B attached System A,
with a command line like this:

attachdevice system_a as m remote

The directory :m: is the root directory of the remote server, as seen from the client.
This is called the virtual root directory. From the client, all server directories
specified as public appear directly under the virtual root directory, regardless of
where they exist in the server's directory structure. Thus :vol:dept5/usr1 is visible
simply as :m:usr1 on System B.

Chapter 4 Using the Network32

Notice the public names. The dept3 and usr1 directories have retained their names,
but dept4 has been given the public name acctg.

Making a directory public gives remote users access to its entire subtree. In this
example :vol:dept5/usr1 is public, so :vol:dept5/usr1/files is also accessible.
However, the directories above a public directory, like :vol: and :vol:dept5, are not
visible to clients and cannot be accessed.

When a directory becomes public, access rights for local users do not change.
Remote users cannot delete a public directory on another computer, or change its
name. Otherwise, they have the same access rights as local users. To delete a file on
another computer, remote users must have both append and update access to it. File
and directory access rights are controlled by user name. For example, suppose that
the user World is given the right to list the files in directory :vol:dept5/usr1 on
System A. Then user World on System B can list the files in directory :m:usr1.

If any nodes on the network are DOS clients, make sure the files they need are
accessible to World.

See also: attachdevice and permit commands, Command Reference

Network User's Guide and Reference Chapter 4 33

Setting Up Public Directories
Several public directories, mostly sd and its sub-directories, are defined by default.
On ICU-configurable systems you can change the default on the PDIR screen of the
ICU.

You can change the list of public directories at run time, using the iRMX-NET offer
and remove commands. You must log on to the server to do this. Going back to the
example in Figure 4-2, suppose you want to give remote users access to all the files
on System A. The easiest way is to make :vol: a public directory, with this command
line:

offer :vol: as vol

Where:

:vol: is the pathname to the directory.

vol is the directory's public name.

This lets remote users move at will from :vol: down through its entire subtree.

Listing Public Directories

To find out what public directories are defined on your computer, use the publicdir
command:

publicdir l

The l (long) parameter displays the full pathname of each directory and the device
where it resides, as well as its public name. For example, now that you have made
:vol: public on System A, the public directory list looks like this:

PUBLIC DIRECTORIES OF THE SERVER

OFFERED NAME DEV NAME PATHNAME

ACCTG D_DOS /dept4

VOL D_DOS /

DEPT3 D_DOS /dept3

USR1 D_DOS /dept5/usr1

Chapter 4 Using the Network34

Removing Public Directories

Now suppose you decide to remove the other public directories, because users can get
to them through :vol:. Use this command line:

remove acctg, dept3, usr1

Any public directory can be removed, but you must be logged onto the server when
you do it.

See also: offer, publicdir, remove and permit commands,
Command Reference

Protecting Files on a Server
When remote users access a server's file system, additional file protection is often
needed. If a directory or file in a public directory's subtree does not need to be shared
with remote users, consider moving it. Especially on nodes where everything under
the :sd: directory is accessible, you might build a separate directory structure for
private files on a different logical drive.

Protect directories and files that need to be shared by using the permit command to
limit user access to them. For example, you could give World read-only access to
files, while Super gets read/append/update access. This is equally effective whether
the files are shared across the network or by a group of local users.

On DOSRMX servers, all users of a DOS file have the same access, because World
is the only user supported by the DOS file system. If some users must have append
or update access to a file, while others should have read-only access, put the file on
an iRMX partition.

See also: permit command, Command Reference

Network User's Guide and Reference Chapter 4 35

What's Next?
If your computer is a client, you have connected it to servers and begun accessing
remote files. If it is a server, you have provided local file access to remote users. If
it is not the master node in the AU, you have made a local copy of the Master UDF.

What happens next depends on the nature of the computers with which this node
communicates.

All iRMX nodes If all the nodes are running the iRMX OS, nothing more is
necessary.

DOS nodes If some DOS nodes are included, no more setup is necessary,
but you should be aware of certain restrictions.

See also: iRMX and DOS Interoperability, Chapter 6

UNIX nodes You must make changes to the iRMX UDF, and do setup on
the UNIX nodes. If these are nodes on older versions of
SV-OpenNET, they must be added to the iRMX-NET Name
Server using a spokesman node.

See also: iRMX and UNIX Interoperability, Chapter 6;
Spokesman node, Chapter 11

■■ ■■ ■■

Chapter 4 Using the Network36

Network User's Guide and Reference Chapter 5 37

Example: Configuring
an Administrative Unit

This chapter shows how to set up multiple iRMX-NET nodes in the same
Administrative Unit (AU). The example AU includes five nodes, as shown in Figure
5-1. System 1 is a PC that is the master node in the AU. System 2 is an Intel System
320 with Multibus I architecture. Systems 3 and 4 are Intel System 520s with
Multibus II architecture. System 5 is another PC.

The examples show the configuration of network parameters, but not the basic
configuration and generation of the OS.

AU A

System 2
System 3

System 520

System 4

System 1 - MASTER

System 5

W-2947

System 320

PC System

PC System System 520

System 1 contains the master UDF for Systems 1 through 5.

Figure 5-1. Single Administrative Unit

Configuring the Systems
Two of the nodes in this chapter use a load-time configuration file; the others have an
ICU. The ICU configuration examples assume the standard definition files for
networking applications, provided with the iRMX III OS in the /rmx386/icu;
directory. When you use the files, the backup version is restored to a definition file
of the same name, but with an extension of .def instead of .bck.

5

38 Chapter 5 Example: Configuring an Administrative Unit

See also: System Configuration and Administration;
ICU User's Guide and Quick Reference;
Standard definition files, Installation and Startup

Configuring the Master Node
By default any node is configured to be both a server and a client, but you can change
that on systems with an ICU. Make sure the master node is configured as a file
server, however, because it contains the Master UDF that the other nodes need to
access. The only default iRMX-NET parameters you must change on the master
node are the client name and password.

See also: The User Definition File, Chapter 2

System 1: iRMX for PCs Node

In this example the master node, named PCMASTR, is a PC platform running iRMX
for PCs. To configure an iRMX for PCs system, edit the :config:rmx.ini load-time
configuration file.

1. Put the client name and password in the appropriate lines of the rmx.ini file. For
example:

CNN='PCMASTR'; Client Node Name

CNP='PCPASS' ; Client Node Password

2. Generate the system as usual, including setting up the :sd:net/data file and
booting the system.

See also: Adding a Server to the Name Server Object Table, Chapter 3;
Starting iRMX for PCs, Installation and Startup;
rmx.ini file, System Configuration and Administration

Network User's Guide and Reference Chapter 5 39

ICU-configurable Master Node

If you choose a master node with an ICU, configure it this way:

1. Specify the client name and password on the ICU's Client Definition File (CDF)
screen. For example:

(CNN) Client Name 320MASTR

(CNP) Client Password 320PASS

2. Generate the system as usual, including setting up the :sd:net/data file and
booting the system.

See also: Adding a Server to the Name Server Object Table, Chapter 3;
Starting iRMX III.2, Installation and Startup;
CDF screen, ICU User's Guide and Quick Reference

Configuring the Other Nodes
All nodes, except the master node, must be set up as clients. By default, they are
configured to be both client and server, but you can change that on systems with an
ICU. On client nodes you only need to change a few default iRMX-NET parameters,
which are named in the sections that follow. In general, the setup involves these
steps:

1. Specify a client name and password.

2. Set up nodes with an ICU to automatically copy the Master UDF file. This
requires changing parameters on the User Definition File (UDF) and Logical
Names (LOGN) screens. On nodes without an ICU, skip this step; the Master
UDF file will be copied later.

3. Generate the system as usual.

4. Do not boot the computer yet. First the master node must be running, with a
server name assigned and with the Master UDF and CDF in place. This happens
later in the process.

See also: Setting Up the Administrative Unit, in this chapter

40 Chapter 5 Example: Configuring an Administrative Unit

System 2: Multibus I, System 320

System 2, named SYS320, is an iRMX III System 320. To configure it, invoke the
ICU using the 38620net.bck file and make these changes:

1. On the Client Definition File (CDF) screen, specify these parameters:

(CNN) Client Name SYS320

(CNP) Client Password 320PASS

2. On the User Definition File (UDF) screen, specify these parameters:

(MUL) Master UDF Location REMOTE

(MLN) Master UDF Logical Name PCM

(MPN) Master UDF Path Name /RMX386/CONFIG/

(MD) Master UDF Device PCMASTR

(LUL) Local UDF Location NAMED

(LLN) Local UDF Logical Name SD

(LPN) Local UDF Path Name /RMX386/CONFIG/

(LD) Local UDF Device w0

3. On the Logical Names (LOGN) screen, add this entry:

PCM, PCMASTR, REMOTE, 0H

System 3: Multibus II, System 520

System 3 is named SYS520. It is an iRMX III Multibus II System 520 with an SBC
486/133SE board. To configure it, invoke the ICU using the 486133.bck file and
make these changes:

1. On the Client Definition File (CDF) screen, specify these parameters:

(CNN) Client Name SYS520

(CNP) Client Password 520PASS

2. On the User Definition File (UDF) screen, specify these parameters:

(MUL) Master UDF Location REMOTE

(MLN) Master UDF Logical Name PCM

(MPN) Master UDF Path Name /RMX386/CONFIG/

(MD) Master UDF Device PCMASTR

(LUL) Local UDF Location NAMED

(LLN) Local UDF Logical Name SD

(LPN) Local UDF Path Name /RMX386/CONFIG/

(LD) Local UDF Device SCW

3. On the Logical Names (LOGN) screen, add this entry:

PCM, PCMASTR, REMOTE, 0H

Network User's Guide and Reference Chapter 5 41

System 4: Multibus II, System 520

System 4 is a Multibus II system with multiple hosts. It has two CPU hosts and an
I/O server: an SBC 386/258 with a CSM/002 in slot 0, an SBC 486/125 in slot 2, and
an SBC 386/120 in slot 3. Any combination of CPU hosts and I/O servers would
work, however. Each host has its own name, and you need to generate a separate
configuration for each one.

Host 1: 520SRV

The first host, named 520SRV, is configured as both a client and a server. It accesses
the local hard disk using the I/O server. To configure it, invoke the ICU using the
486125net.bck file and make these changes:

1. On the Client Definition File (CDF) screen, specify these parameters:

(CNN) Client Name 520SRV

(CNP) Client Password 520SPASS

2. On the User Definition File (UDF) screen, specify these parameters:

(MUL) Master UDF Location REMOTE

(MLN) Master UDF Logical Name PCM

(MPN) Master UDF Path Name /RMX386/CONFIG/

(MD) Master UDF Device PCMASTR

(LUL) Local UDF Location NAMED

(LLN) Local UDF Logical Name SD

(LPN) Local UDF Path Name /RMX386/CONFIG/

(LD) Local UDF Device SCW

3. On the Logical Names (LOGN) screen, add this entry:

PCM, PCMASTR, REMOTE, 0H

Host 2: 520CLI

The second host, named 520CLI, is configured as a client only. It accesses the local
hard disk through the iRMX-NET file server software running on the first host's
CPU. To configure it, invoke the ICU using the 386120rsd.bck file and make these
changes:

1. On the Client Definition File (CDF) screen, specify these parameters:

(CNN) Client Name 520CLI

(CNP) Client Password 520CPASS

42 Chapter 5 Example: Configuring an Administrative Unit

2. On the User Definition File (UDF) screen, specify these parameters:

(MUL) Master UDF Location REMOTE

(MLN) Master UDF Logical Name PCM

(MPN) Master UDF Path Name /RMX386/CONFIG/

(MD) Master UDF Device PCMASTR

(LUL) Local UDF Location REMOTE

(LLN) Local UDF Logical Name SD

(LPN) Local UDF Path Name /RMX386/CONFIG/

(LD) Local UDF Device 520SRV

3. On the Logical Names (LOGN) screen, add this entry:

PCM, PCMASTR, REMOTE, 0H

System 5: PC Bus Platform

System 5, named PCBUS, is a PC platform running DOSRMX. To configure this
node, the only default iRMX-NET parameters you need to change are the client name
and password. (The extra parameters you changed on the client systems with ICUs
were used to automatically copy the Master UDF, which you cannot do here.) On an
DOSRMX system, change the client name and password by editing the
:config:rmx.ini load-time configuration file.

1. Put the client name and password into the appropriate lines of the rmx.ini file.
For example:

CNN='PCBUS' ; Client Node Name

CNP='PCBPASS'; Client Node Password

2. Generate the system as usual, including setting up the :sd:net/data file and
booting the system.

Network User's Guide and Reference Chapter 5 43

Setting Up the Administrative Unit
These sections describe the files you need to modify to set up an AU and the order in
which the nodes should be booted.

System 1
To set up the master node:

1. Boot the system.

2. By default the system is configured to do an automatic loadname at boot time.
To check whether this was done, enter:

getname

If necessary, use the setname command to assign the server name. For example,
to set a server name identical to its client name:

setname PCMASTR

Server names are not case-sensitive.

See also: Adding a Server to the Name Server Object Table, Chapter 3

3. Enter a publicdir command and make sure the :sd:rmx386 directory is included
in the list of public directories, so the other nodes can copy the UDF and CDF
files in :sd:rmx386/config. If necessary, offer the directory:

offer :sd:rmx386 as rmx386

4. Invoke the iRMX password command and enter the names and passwords of
each user in the AU. Only these users are allowed to log on to any of the nodes
within the AU.

5. Invoke the iRMX-NET modcdf command. For security, remove the default
client name rmx from the CDF. Then enter the client names and passwords of
each of the client nodes in the AU. Include the master node only if it operates as
a client as well as a server. Unlike server names, both the client names and
client passwords of iRMX-NET nodes are case-sensitive.

44 Chapter 5 Example: Configuring an Administrative Unit

Modcdf Example

All client names and passwords in this example network were defined using
uppercase characters. Text following a semicolon is a comment.

MODCDF ; invoke the MODCDF command

D ; delete a node

rmx ; remove the default client name

A ; add a node

PCMASTR ; add the master node (optional entry)

PCPASS ; add master password

PCPASS ; repeat password

A ; add a node

SYS320 ; add System 2 name

320PASS ; add System 2 password

320PASS ; repeat password

A ; add a node

SYS520 ; add System 3 name

520PASS ; add System 3 password

520PASS ; repeat password

A ; add a node

520SRV ; add System 4 Host 1 name

520SPASS ; add System 4 Host 1 password

520SPASS ; repeat password

A ; add a node

520CLI ; add System 4 Host 2 name

520CPASS ; add System 4 Host 2 password

520CPASS ; repeat password

A ; add a node

PCBUS ; add System 5 name

PCBPASS ; add System 5 password

PCBPASS ; repeat password

E ; update the CDF and exit

Network User's Guide and Reference Chapter 5 45

Systems 2 through 5
After the master node is running, with a server name assigned and with the Master
UDF and CDF in place, complete the network setup for each of the other nodes
within the AU. For each node, reset and reboot the newly generated system.

During initialization an ICU-configurable node attaches to the master node and
assigns the logical name :pcm: to the remote device. Then it copies the Master UDF
over its own local UDF. (In Figure 5-1, this happens on Systems 2 and 3 and on both
hosts on System 4.)

At this point the other nodes can only connect to the master node. To enable
connections between all the nodes, you need to perform these steps on Systems 2
through 5:

1. Log on as one of the users defined on System 1, the master node. If the local
node will act as a server as well as a client, make sure its server name was set
during iRMX-NET initialization. Enter:

getname

See also: Adding a Server to the Name Server Object Table, Chapter 3

2. Copy the CDF file on the master node to :sd:rmx386/config/cdf on each local
node. Use these commands:

attachdevice PCMASTR as pcm remote

copy :pcm:rmx386/config/cdf over :config:cdf

The :sd:rmx386/config directory is the default location, which was not changed
during the configuration of the example nodes. On ICU-configurable nodes,
however, you can specify another path name on the CDF screen.

See also: Copying the CDF, Chapter 4

3. On System 5, the DOSRMX node, copy the Master UDF file to the local
:sd:rmx386/config/udf file. For example:

copy :pcm:rmx386/config/udf over :config:udf

See also: Copying the Master UDF, Chapter 4

46 Chapter 5 Example: Configuring an Administrative Unit

4. Establish a connection to any server in the AU. For example, Host 1 of System 4
is configured as both a client and a server. To attach to the Host 1 server, use
this command:

attachdevice 520SRV as 520 remote

The node name (520SRV) required by the attachdevice command is the server
name registered with the Name Server, not the client name. In this example the
two names are identical, but they do not have to be.

5. Delete the connection to a server with the detachdevice command. For
example, to delete the connection created above, use this command:

detachdevice :520:

■■ ■■ ■■

Network User's Guide and Reference Chapter 6 47

Example: Configuring
Multiple Operating Systems

This chapter explains how to configure and use the DOS and UNIX systems for
maximum interoperability with the iRMX OS. After such configuration, these other
systems can share files with iRMX nodes on iRMX-NET.

Each system runs with an OpenNET product that understands the Network File
Access (NFA) protocols, as shown in Figure 6-1. In a few cases, the server's OS
provides a capability that the client's does not, or vice versa. This chapter describes
those capabilities that are not fully transparent over OpenNET.

Figure 6-1. The OpenNET Network

Examples in this chapter add DOS and UNIX nodes to the iRMX network example in
the last chapter. The AU configured in the previous chapter, with its five iRMX
nodes, is referred to here as AU A. Two new AUs are configured in this chapter:
AU B with one DOS node and AU C with one UNIX node. Figure 6-2 shows all
three AUs.

6

48 Chapter 6 Examples: Configuring Multiple Operating Systems

AU A

System 2
System 3

System 520

System 4

System 1 - MASTER

System 5

W-2948

System 320

PC System

PC System System 520

AU B AU C

PC Running DOS

Client-based protection

Server-based protection

PC Running UNIX

System 1 contains the master UDF for Systems 1 through 5.

Figure 6-2. Multiple Operating System Network

Network User's Guide and Reference Chapter 6 49

The DOS System
A PC executing DOS and the PCL2 R3.0 (or later) software can access iRMX
servers. The MS-Net software, which is shipped with the PCL2(A) NIC, or the IBM
PC LAN software must be running on the PC.

See also: Software and hardware requirements for networking on a
DOS-based PC, OpenNET PCL2 for DOS Installation Guide

For this example, the DOS system is named SYSDOS. The AU containing the DOS
system is named AU B. Because DOS does not support multiple users, each DOS
node forms a separate AU. Users are specified only when establishing access to a
remote server.

✏ Note
The system described here is a PC running DOS as its only OS.
This section does not necessarily apply to DOSRMX systems,
which can run both DOS and the iRMX OS.

See also: Using iRMX-NET in a DOS Environment, System Configuration and
Administration

Connecting a DOS Client to an iRMX Server
To establish a connection between SYSDOS and any of the five iRMX nodes in AU
A, complete these steps.

On the iRMX Server

1. Define an iRMX user name for the DOS system. Contact the system manager of
AU A for help. The system manager uses the password command to define a
user, as shown in the example below. (Text after a semicolon is a comment.)

password ; invoke the password command

a ; add a user

pcuser ; user name

PASWD ; password must be in UPPERCASE

PASWD ; password must be in UPPERCASE

876 ; user id

<Enter> ; group id = default

<Enter> ; comments = none

50 Chapter 6 Examples: Configuring Multiple Operating Systems

<Enter> ; UNIX home directory = none

<Enter> ; UNIX shell = none

y ; add to the UDF?

y ; create the user directories?

e ; exit

The password must be defined in upper case characters, because DOS converts
all entered passwords into upper case.

2. Add the new user on each of the iRMX systems. Either add it to each node
separately, or add it to the master system, PCMASTR. From the master system
it will be distributed to each of the iRMX systems when they are rebooted or
updated.

See also: Copying the Master UDF, Chapter 4

3. Make sure that the server names of the iRMX servers are in the Name Server
object table.

See also: Adding a Server to the Name Server Object Table, Chapter 3

On the DOS Client

1. Attach an iRMX server from the DOS system. In this example the iRMX server
is PCMASTR.

net start rdr sysdos

net use e: \\pcmastr\pcuser PASWD

Where:

e: is an unused DOS drive, E:. A space must follow the colon.

pcmastr
is the iRMX server name registered with the Name Server.

pcuser
is the name of the user logging on to the iRMX server. A space must follow
the name if there is a password.

PASWD
is the optional user password. You can enter it in either upper or lower case;
whatever you enter is converted to upper case.

Now you can use E: just as you would a local drive, like A: or B:. The logical
device E: corresponds to the virtual root directory of the iRMX server.

Network User's Guide and Reference Chapter 6 51

2. Access the iRMX server from the DOS system. For example:

e:

cd user\pcuser

dir

c:

3. To detach the iRMX server, enter:

net use e: /d

iRMX and DOS Interoperability
An iRMX client cannot access a PCL2 (DOS) server. The only possible network
connection is from a DOS client to an iRMX server.

The PCL2 Name Server

PCL2 R3.0 (and later) provides a Name Server that can access the iRMX-NET Name
Server to find the Transport Address of an iRMX node.

DOS Client Restrictions

When a DOS client accesses an iRMX server, these restrictions apply:

• The iRMX-NET software does not support DOS messaging and DOS locking.
Applications that support these features cannot be used across the network.

• A DOS pathname is limited to 63 or 66 characters, so paths for remote iRMX
files are likewise limited. This restriction depends on the version of DOS, and
the character count includes 2 characters for a drive specifier (for example, C:).

• DOS filenames are limited to eight characters plus a three-character extension.
iRMX filenames that do not conform to this limit are not recognized by the DOS
system.

• A DOS application assumes that files can be created in the root directory, and
uses that directory for temporary files. Because iRMX-NET does not allow files
to be created at the virtual root, the first public directory defined in iRMX-NET
is used instead. In the default configuration, this is the work directory. Files
that a DOS client attempts to create or delete at the iRMX root are actually
created and deleted from this work directory. All other commands must specify
the real pathname, such as :e:work/filename, rather than just the virtual root
pathname of :e:filename.

52 Chapter 6 Examples: Configuring Multiple Operating Systems

• A DOS client cannot access a file on an iRMX server if the filename contains a
question mark character (?). This is because iRMX enables a question mark in a
directory or filename, but DOS does not. DOS recognizes the question mark
only as a wildcard character. For example, a DOS client cannot read the
:prog:r?logon file of an iRMX server. Attempting to access an iRMX directory
name with a ? from DOS causes an invalid path error message. Similarly,
attempting to access an iRMX filename with a ? from DOS causes an ERROR

READING FILE error message.

Network User's Guide and Reference Chapter 6 53

The UNIX System
The UNIX node in this sample network is a PC Bus system named sysunx. A UNIX
system can be in an AU with other UNIX and iRMX systems, or alone in a separate
AU. In this example sysunx is the only system in AU C. The example assumes that
the system is configured with the appropriate System V OpenNET software:

• SV-OpenNET R3.2.3 or later

• SV4-OpenNET R2.0 or later

The sample iRMX server is 520SRV, and the iRMX client is 520CLI. Both iRMX
systems are in AU A. Their setup and configuration was discussed earlier.

See also: AU configuration and setup example, Chapter 5

Connecting a UNIX Client to an iRMX Server
To establish a connection between sysunx and the iRMX server 520SRV, complete
these steps.

On the iRMX Server

1. Make sure the iRMX node's server name is registered with the Name Server.

See also: Adding a Server to the Name Server Object Table, Chapter 3

2. Use the modcdf command to add the UNIX node's client name and password to
the iRMX server's CDF file.

See also: modcdf example, Chapter 5

On the UNIX Client

1. Create the local node's client name and password, using the modself utility.

2. Check that the server name of the iRMX server you intend to access is registered
with the Name Server. For example, for the iRMX server 520SRV, use this
command:

nslocate 520SRV

3. Attach an iRMX server from the UNIX system. For 520SRV, use this
command:

net use sys2 //520srv/world

This example defines //sys2 as the name for the remote server 520SRV. Here the
user name is world, but you can specify any user name and password defined in
the UDF of the iRMX server.

54 Chapter 6 Examples: Configuring Multiple Operating Systems

4. Enter the password for the specified user when prompted.

5. To detach the iRMX server, enter:

net use sys2 /d

Connecting an iRMX Client to a UNIX Server
To establish a connection between sysunx and the iRMX client 520CLI, complete
these steps.

On the UNIX Server

1. Use the modcdf command to add the iRMX node's client name and password to
the UNIX server's CDF file.

You can find this information on the iRMX node, in the ICU's CDF screen or the
:config:rmx.ini file.

On the iRMX Client

1. Check that the server name of the UNIX server you intend to access is registered
with the Name Server. For example, for the UNIX server sysunx, use this
command:

findname sysunx

2. Attach a UNIX server from the iRMX system:

attachdevice sysunx as unx remote

3. To access files in the UNIX system, use :unx: as the logical name.

4. To detach the UNIX system, enter:

detachdevice unx

Setting Up the Administrative Unit
This example puts the UNIX and iRMX systems in separate AUs, but you can also
combine them in a single AU. If you are familiar with SV-OpenNET terminology,
the iRMX-NET term Administrative Unit (AU) is equivalent to the SV-OpenNET
term subnet.

Network User's Guide and Reference Chapter 6 55

iRMX and UNIX Nodes in Separate AUs

When UNIX and iRMX systems are in different AUs, complete these steps:

1. On one UNIX node within each AU (subnet), which contains a system being
accessed by an iRMX-NET client, edit the UNIX system files /etc/passwd,
/etc/group, and /etc/shadow to define iRMX users who will be accessing the
UNIX server.

Do not define user names whose only difference is capitalization. UNIX
distinguishes between upper- and lower-case characters in user names, but the
iRMX OS does not. Passwords are always case-sensitive, on both UNIX and
iRMX systems.

See also: UNIX OS documentation for information on adding users

2. Copy the updated /etc/passwd, /etc/shadow, and /etc/group files to all other
UNIX nodes in the same AU (subnet).

3. On the iRMX-NET system containing the Master UDF, use the iRMX password
command to define any UNIX users who will access an iRMX-NET server in the
AU. Since iRMX systems do not support groups, add the UNIX groups to the
Master UDF as iRMX users.

4. Copy the Master UDF over the local UDFs on all other iRMX systems in the
AU.

iRMX and UNIX Nodes in the Same AU

Within an AU (subnet), clients perform all user validation, and the servers then
validate the client. When UNIX and iRMX systems are in the same AU, complete
these steps:

1. Choose a UNIX node to be the master node within the AU (subnet).

2. On the master UNIX node, edit the UNIX system files /etc/passwd, /etc/group,
and /etc/shadow to define the iRMX users that will access the UNIX server.

Do not define user names whose only difference is capitalization. UNIX
distinguishes between upper- and lower-case characters in user names, but the
iRMX OS does not. Passwords are always case-sensitive, on both UNIX and
iRMX systems.

Make sure that UNIX group IDs do not conflict with the user IDs assigned.
Where conflicts occur, change the group IDs. The UNIX chgid utility can be
used to update the file system following such changes.

See also: UNIX OS documentation for information on adding users

56 Chapter 6 Examples: Configuring Multiple Operating Systems

3. Copy the updated /etc/passwd, /etc/shadow, and /etc/group files to all other
UNIX nodes in the same AU (subnet).

4. Configure the /etc/passwd file as the iRMX-NET Master UDF.

5. Copy the Master UDF to any iRMX for PCs or DOSRMX nodes in the AU. The
ICU-configurable iRMX nodes copy the Master UDF automatically when the
iRMX system is booted.

6. On each server in the AU, define all clients in the AU using the UNIX netadm
utility or the iRMX-NET modcdf command.

See also: modcdf example, Chapter 5

iRMX and UNIX Interoperability
Both UNIX and iRMX systems have capabilities that are not supported by the other
OS. These differences affect anyone going between the two systems:

• UNIX and iRMX files have different line terminators. UNIX files use a line-
feed, while iRMX files use a combination of carriage return and line-feed.

• iRMX-NET does not perform text format conversions, so file sharing between
iRMX and UNIX systems requires a compatible set of tools. Intel tools
combined with UNIX tools are often not a compatible set. For example, AEDIT
and iC-386 are compatible, and UNIX vi and cc are compatible; however,
AEDIT and cc are not compatible. You cannot compile a file edited with
AEDIT with cc unless you change the line terminators.

These sections list other differences that are mainly concerns when going from iRMX
to UNIX nodes, or from UNIX to iRMX nodes, but not both.

SV-OpenNET Server Features and Restrictions

When an iRMX client accesses remote UNIX files, these restrictions apply:

• iRMX users see UNIX filenames without consideration for case. For example,
iRMX users cannot distinguish between the UNIX files ABC and abc. If the two
files are in the same directory, the iRMX client can only address the first file.

• iRMX users cannot specify the iRMX carat (^) and leading slash (/) symbols for
UNIX pathnames, but they can specify the UNIX . (dot) and .. (dot-dot) symbols
instead. iRMX users cannot see the . and .. in UNIX directory listings, however.

• E_LIMIT errors pertain to UNIX server resources.

Network User's Guide and Reference Chapter 6 57

• The rename command cannot move a UNIX directory out of the parent
directory. For example, this command, where tmpdir is a directory, succeeds:

rename :unx:tmp/tmpdir to :unx:tmp/newtmpdir

This command fails:

rename :unx:tmp/tmpdir to :unx:usr/newtmpdir

This restriction does not apply to UNIX data files.

• UNIX supports groups, but iRMX does not. An iRMX client considers all
entries of an access list as accessors to be checked in the client's UDF. A UNIX
server considers the first entry of an access list as the file's owner, and checks the
entry in the server's UDF. The server considers the second entry of an access list
to be the group, and checks the entry in the Group Definition File.

• UNIX treats the first ID of an access list as the file owner. The permit
command can change rights associated with the first ID, but not the ID itself.
The permit command can change both the second ID of the access list and the
rights associated with it. UNIX always contains the World's rights in the third
entry of the access list; the permit command cannot remove World from the
access list, even if World has no rights. When an iRMX user lists remote UNIX
directories, the iRMX client displays all three accessors (first ID, second ID, and
World) even if they have no rights.

• iRMX and UNIX servers calculate file access rights differently. The iRMX
servers grant the user the logical sum of the rights allowed if the user exists in
the access list, plus any rights given to World. UNIX servers grant only the
rights allowed to the first accessor in the access list whose ID matches that of the
user ID. If the user ID matches the first access list entry, a UNIX server grants
the rights allowed to the first accessor. If this check fails and if the group
affiliated with the user matches the second access list entry, a UNIX server
grants the rights for the second accessor. If both checks fail, a UNIX server
grants the third accessor's rights, which are the World's rights.

An iRMX client attempts to compensate for this discrepancy by this technique:
when the World user creates a remote UNIX file, the iRMX client places World
with full access rights in all three access list entries. When an iRMX user grants
rights to remote UNIX files for the user World, the iRMX client grants these
same permissions to all three accessors. When an iRMX user denies rights to
remote UNIX files, the iRMX client does not remove from any of the accessors
the rights that the World accessor has.

58 Chapter 6 Examples: Configuring Multiple Operating Systems

iRMX Server Restrictions

When a UNIX client accesses remote iRMX files, these restrictions apply:

• Neither the owner nor the group of an iRMX file can be changed.

• Links cannot be used to create additional names for iRMX files. This restriction
prevents the use of some UNIX utilities.

• File and record locking are not available for iRMX files.

• The STICKY, SETUID, and SETGID file attributes are not supported. Any
attempt to set these bits to 1 is rejected, and any attempt to reset these bits to 0 is
ignored.

• An iRMX file cannot be opened in append mode from a UNIX client.

Connecting to Nodes on Older Versions of SV-OpenNET
This example assumes that the UNIX nodes were on SV-OpenNET R3.2.3 or SV4-
OpenNET R2.0 or later. These versions provide Name Server capability. You can
also interoperate with older versions by creating some additional Name Server
entries.

An iRMX client can communicate with an earlier UNIX server if you load the
server's name and address into an iRMX-NET Name Server object table. The iRMX
node whose local object table includes the UNIX server's information becomes a
spokesman for the server.

See also: Programming the Name Server, Chapter 11

For a UNIX client without Name Server capability to access an iRMX-NET server,
enter the name and Transport Address of the iRMX-NET server into the /net/data file
on the UNIX system. SV-OpenNET provides the netadm utility to manipulate the
/net/data file. The netadm utility assumes that the iRMX TSAP-ID is 1000H and the
subnet is 1. If you use different values (typically, the subnet is 0), use netadm to add
the address, and then manually edit the /net/data file to change those values.

See also: SV-OpenNET documentation for information on the netadm utility

■■ ■■ ■■

Network User's Guide and Reference Chapter 7 59

Network Software Implementation 7
The iRMX network jobs are part of the iRMX OS software. The basic network jobs
are called iNA 960. Separate iRMX-NET jobs run on top of iNA 960 to provide
transparent file access. Figure 7-1 illustrates how iNA 960 and iRMX-NET services
fit into the International Standards Organization (ISO) Open Systems Interconnection
(OSI) model. iNA 960 general-purpose network services include the Data Link,
Network, and Transport layers defined in the OSI model. iNA 960 has no
relationship to, and does not run on, the Intel i960 microprocessor.

Application

Presentation

Session

Transport

Network

Logical Link Control

Media Access Control
Data Link

Physical

Implemented by iNA 960

Implemented by
Network Interface Hardware

1

2

3

4

5

6

7

iRMX-NET

OM04342

Figure 7-1. ISO OSI Model

iRMX-NET includes a command-line interface and file services, in addition to the
programmatic network access provided by the underlying iNA 960 software.

Hardware Environments
The iNA 960 software is based on subnetworks that at the Data Link level use the
IEEE 802.3 Ethernet specification. The software supports the 82586, 82596, and
82595TX Ethernet components, as well as the virtual Ethernet provided in the

60 Chapter 7 Network Software Implementation

Multibus II subnet. Unless otherwise specified, this manual uses the term 82586 to
refer to all hardware Ethernet components.

iNA 960 supports PC Bus, Multibus I, and Multibus II systems.

Software COMMputer and MIP Environments
The iNA 960 software is provided by a variety of board-specific network jobs that
can be configured with or loaded onto the iRMX OS. These are called iNA 960
COMMputer jobs or MIP jobs:

• A COMMputer job is a version of iNA 960 that executes on the same board as
the OS and the application. The board can use either a hardware Ethernet
connection or the virtual Ethernet connection provided in the Multibus II subnet.
The Ethernet hardware can be built into the baseboard or can be a Network
Interface Connector (NIC), such as a MIX 560 module, that works integrally
with the baseboard.

See also: Multibus II subnet, Chapter 9

• MIP jobs support what is called a COMMengine environment, where the OS
runs on one board and iNA 960 runs on a separate board. If this separate board
is a standalone NIC, you set up the MIP job to download an iNA 960 file to the
NIC. However, in a Multibus II system you also have the option of using a
different COMMputer board as the NIC for a board that runs a MIP job. In this
case, you do not download an iNA 960 file from the MIP job, because the
separate COMMputer already includes iNA 960. In either case, the MIP job acts
as an interface between iNA 960 on the other board and application programs on
the board that runs the MIP job.

MIP jobs were formerly called Multibus Interprocessor Protocol jobs, but with
the added support for PCs in recent releases of the OS, the name has changed to
Message Interprocess Protocol.

See also: MIP details and error messages, Appendix B

The iNA 960 MIP and COMMputer jobs are referred to collectively as i*.job. This
manual uses the term iNA 960 to refer to the capabilities of both MIP and
COMMputer jobs. As far as your application is concerned, there is no difference
between them. Both types of job provide the iNA 960 services described in this
manual.

Network User's Guide and Reference Chapter 7 61

Some COMMputer jobs support multiple subnets so they can act as routers between
subnets. These jobs are preconfigured to use specific NICs as the ports to subnets.
Some of them can also use the Multibus II backplane as a virtual Ethernet interface.

See also: Multibus II Subnets, Chapter 9
i*.job, System Configuration and Administration for details about which
jobs run in which hardware environments

Overview of iNA 960 Software
Table 7-1 shows the specific ISO services provided by the iNA 960 software and the
ISO specifications used to implement those services.

Table 7-1. iNA 960 Services and ISO Specifications

ISO Service Provided By iNA
ISO Specifications Used
To Implement the Service

Transport Virtual Circuit
IS 8072

IS 8073 Class 4

Transport Datagram
IS 8072 Addendum 1

IS 8602

Connectionless Network Layer*
IS 8348 Addendum 2

IS 8473

Internetwork Routing IS 9542 or Static User Entries

Data Link
IEEE 802.2

IEEE 802.2 Type 1 and
IEEE 802.3 Ethernet

* There is no external interface to this service.

62 Chapter 7 Network Software Implementation

The iNA Layers
Figure 7-2 shows the layers of iNA 960 software.

Figure 7-2. iNA 960 Software Layers

Network User's Guide and Reference Chapter 7 63

The Name Server

The Name Server maps network addresses and other numeric values to more easily-
remembered names. Your application can use the programmatic interface to the
Name Server. If you run iRMX-NET in addition to iNA 960, iRMX-NET uses the
Name Server services to provide user commands.

The Transport Layer

The Transport Layer provides transparent data transfer between processes. Two
types of data transfer service are implemented: virtual circuit and datagram. The
virtual circuit service provides point-to-point, error-free, guaranteed delivery of
messages in the sequence they are sent. It also provides a high-priority message
delivery mechanism, called expedited data. The datagram service attempts to deliver
messages without guaranteeing delivery, order of delivery, or integrity of the
message.

The Network Layer

The Network Layer performs message routing and relay. It delivers messages within
a subnetwork and across interconnected subnetworks. The Network Layer also offers
a datagram delivery service to higher layers. There is no direct application interface
to the Network Layer.

For each system bus type there are two preconfigured versions of iNA 960 that differ
at the Network Layer. The Null2 version does not provide internetwork routing. The
ES-IS version includes an IP-protocol internetwork routing service. The routing
tables can be built and updated statically by the application or dynamically using the
ISO ES-IS routing protocol (IS 9542).

The Data Link Layer

The Data Link Layer transforms the raw transmitted and received data of the
Physical Layer into a communication channel that appears error-free to the Network
Layer. A Data Link connection is built upon one or more physical connections. This
layer provides the functions and protocols used to establish, maintain and release
Data Link connections. In addition, the Data Link Layer is responsible for framing
packets and detecting errors. The Data Link Layer has two interfaces:

• The External Data Link (EDL) interface enables an application to bypass the
Transport and Network layers and directly access the services of the Data Link
layer (IEEE 802.2 LLC Type 1).

64 Chapter 7 Network Software Implementation

• The RawEDL interface lets an application access non-802.3 packets, so non-ISO
protocol stacks can run on top of iNA 960. Thus the ISO Transport services can
coexist with such non-ISO protocols as TCP/IP or NetWare, sharing the same
NIC. The RawEDL services can also be used to capture and monitor non-ISO
packets for network analysis.

The Network Management Facility

The Network Management Facility (NMF) provides functions for reading and setting
database objects that are maintained internally by each of layer of iNA 960. By
monitoring these objects, an application can gather network usage information such
as peak activity, total packets sent, and CRC errors. The application can change the
values of database objects to optimize network performance or manage internetwork
routing tables.

The Programmatic Interface
An application requests iNA 960 services by using data structures called request
blocks. All request blocks contain a common set of header fields and, depending on
the function being requested, may have additional function-specific fields.

See also: Chapter 10 for the general request block interface and the system calls
used to manipulate request blocks;
Chapters 11-16 for request block structures for each iNA 960 or Name
Server function

Overview of iRMX-NET Software
The iRMX-NET software executes within the boundaries of the Session,
Presentation, and Application Layers; however, the Presentation and Session Layers
are not formally implemented. You can use one or both of these parts of iRMX-
NET; they are jobs that you configure into the OS (with the ICU) or load separately
(with a sysload command):

• Client, or File Consumer (remotefd.job) provides transparent file access to
systems that run the iRMX-NET File Server.

• File Server (rnetserv.job) makes files on the local system available to remote
systems that run the iRMX-NET Client.

Network User's Guide and Reference Chapter 7 65

The iRMX-NET Client and Server includes these parts:

Name Server iRMX-NET uses the iNA 960 Name Server to provide transparent
file access. Most iRMX-NET user commands use the Name
Server to access remote files.

See also: Name Server, Chapter 2

User
Administration

The User Administration (UA) module maintains the files that are
used by a system administrator when making additions and
deletions of users and systems in an iRMX-NET environment. A
system administrator has the responsibility of overseeing the
assignment of users and systems, and of maintaining general
network security.

Apex File
Access

The Apex File Access (AFA) module is the operating system-
dependent part of the server. AFA receives requests from the File
Server module. The AFA executes the necessary file operations
that correspond to the user's requests.

File Consumer The File Consumer module, with the Remote File Driver (RFD),
provides the functions of the client system. The RFD passes the
local user requests to the File Consumer, which then transmits the
requests across the network. The File Consumer is independent of
the OS; it does not make iRMX file system I/O calls. However,
the RFD, as part of the BIOS, does make iRMX system calls.

File Server Together, the File Server and AFA modules provide the server
functions. The File Server performs transactions for users at
remote nodes. When a remote user initiates a request, the File
Server receives the request, interprets it, and passes the request to
the AFA module for processing. The File Server is independent of
the OS; it does not use iRMX file system I/O calls.

66 Chapter 7 Network Software Implementation

Data Flow Through iRMX-NET and iNA 960 Software
Figures 7-3 and 7-4 illustrate the functions of the iRMX-NET modules for
COMMputer and COMMengine systems.

OM04345

Name Server

iNA 960

Ethernet

AFA UA

iRMX Operating System

File Server

UA RFD

File Consumer
(Client)

Figure 7-3. iRMX-NET Data Flow on COMMputer Systems

AFA UA

MIP

Bus

MIP

Name
Server

iNA 960

Ethernet

NIC

iRMX Operating System

File Server

UA RFD

File Consumer
(Client)

OM04344

Figure 7-4. iRMX-NET Data Flow on COMMengine Systems

Network User's Guide and Reference Chapter 7 67

Configuring the MIP
In earlier releases of the OS you had to edit configuration files and use assembler
macros to configure the MIP driver used with iNA 960 software in a COMMengine
environment. You now configure the MIP with the IMIPJ screen in the ICU.

■■ ■■ ■■

68 Chapter 7 Network Software Implementation

Network User's Guide and Reference Chapter 8 69

iNA 960 Topology and Addressing 8
This chapter introduces and defines the topology and addressing schemes used by the
iNA Network Layer. Topology refers to how the network is physically or logically
constructed. The topology of a network also plays an important role in determining
how entities within the network are addressed.

The iNA 960 Network Topology
An iNA 960 network is one or more interconnected subnetworks, usually called
subnets. A subnet is two or more connected end systems, as shown in Figure 8-1.
An end system (ES) is a node that runs either the Null2 or the ES-IS Network Layer
of iNA 960 software. Subnets are connected by intermediate systems or internetwork
routers (also implementations of iNA 960 software). Intermediate systems (IS)
handle relay and routing between end systems in one subnet and end systems in other
subnets using the most efficient path. Depending on network topology, relay and
routing may occur across two subnets or across many subnets.

Figure 8-1 illustrates a network consisting of a single subnet. Such a network
includes only end systems. The end systems may use either a Null2 or ES-IS
network job.

Ethernet

W-3398

End
System 1

End
System n

Figure 8-1. A Single Subnetwork

Chapter 8 iNA 960 Topology and Addressing70

Figure 8-2 illustrates a network consisting of two subnets connected by an
intermediate system (an internetwork router). The end systems typically run the
ES-IS version of iNA 960, which enables either static or ES-IS routing.

Subnet 1

Subnet 2

End
System 1

End
System 2

End
System 3

End
System 4

Intermediate
System

A

(Router)

W-2955

End
System 5

End
System 6

End
System 7

Figure 8-2. Two Interconnected Subnetworks

General Subnetwork Types
The basic building block for a network is the subnet. There are three generic types of
subnets:

• Point-to-point subnet

• Broadcast subnet

• General topology subnet

A point-to-point subnet supports only two systems. The two systems can be either
two End Systems or an End System and an Intermediate System.

Network User's Guide and Reference Chapter 8 71

A broadcast subnet supports an arbitrary number of end systems and intermediate
systems. Any system in a broadcast subnet can transmit a single message to one, all,
or some subset of the systems in the subnet. To transmit a message to all of the
systems, the application uses a broadcast address defined for the particular subnet
implementation. To transmit a message to a subset of the systems, the application
uses a multicast address defined for that subnet implementation. An example of a
broadcast subnet is one employing the IEEE 802.2 Type 1 LLC (Logical Link
Control) and IEEE 802.3 MAC (Media Access Control).

Similar to a broadcast subnet, a general topology subnet supports an arbitrary number
of end systems and intermediate systems. However, a general topology subnet may
or may not support the broadcast and multicast transmission capability of a broadcast
subnet. An example of a general topology subnet is one employing the IEEE 802.2
Type 1 LLC.

iNA 960 Subnetworks
iNA 960 subnet implementations are broadcast subnets which use the IEEE 802.2
Type 1 LLC and the IEEE 802.3 MAC.

Network Addressing
As defined in the OSI Reference Model, the layer entities on a node can
communicate with their counterparts or peers on other nodes. The iNA 960 software
implements a mechanism that enables peer entities to communicate over a network.
The peers identify and locate each other with an identifier called an address.

There are one or more addresses for each layer entity; for example, there are
transport (TSAP) addresses, network (NSAP) addresses, and data link or subnet
addresses. This section discusses the iNA NSAP (Network Service Access Point)
addresses and subnet addresses. TSAP (Transport Service Access Point) addresses
are described in the Transport Layer chapter.

The NSAP address tells how to reach a user of the Network Layer services. In the
iNA 960 software, the only user of the Network Layer services is the Transport
Layer. An NSAP address tells iNA how to reach the Transport Layer services.
Applications cannot directly access iNA Network Layer services.

Chapter 8 iNA 960 Topology and Addressing72

Network Service Access Point (NSAP) Address
An iNA 960 NSAP is the equivalent of an IP address in TCP/IP protocols. However,
unlike TCP/IP, iNA 960 does not make the NSAP address available to the user at the
command line. You can set NSAP addresses in the /net/data file and can access them
programmatically.

See also: /net/data.ex file, Chapter 11

The connection between the Network Layer and the Transport Layer is an NSAP,
identified by an NSAP address. The NSAP address supplies the information needed
by the Network Layer to identify the NSAP (and thereby the Transport Layer) at
either a local or remote node. Because Network Layer users access services at
NSAPs, the NSAP address is how a Network Layer user may be identified.

An NSAP address should not be confused with a data link or subnet (e.g., IEEE 802
MAC) address. Strictly speaking, an NSAP address is a logical address assigned by
an addressing authority. For any network implementation, there may or may not be
some syntactic relationship between an NSAP address and the subnet address that
maps to it. A syntactic relationship is not required by ISO standards.

NSAP addresses are defined hierarchically. An NSAP address is assigned by an
addressing authority. That authority may allocate a complete NSAP address or
authorize a sub-authority to allocate addresses out of the authorizing authority's
address space. The sub-authority may in turn authorize lesser authorities to allocate
portions of its address space. Each authority administers a domain of the NSAP
address space. The NSAP address structure mirrors this domain structure.

An NSAP address consists of two parts, an Initial Domain Part (IDP) and a Domain
Specific Part (DSP). The IDP is further divided into two parts, an Authority and
Format Identifier (AFI) and an Initial Domain Identifier (IDI). The AFI determines
the format of the IDI and the syntax of the DSP. Given an AFI, the maximum length
of an NSAP address is known. The AFI specifies the authority that allocates values
of the IDI, and the IDI indicates which authorities allocate values for the DSP. The
DSP may in turn have further structure as defined by the authority indicated by the
IDI. Initial portions of an NSAP address are used for routing to a specific subnet
while some latter portion in the DSP is used for determining a specific node in the
subnet.

The least significant byte of the DSP is the NSAP selector. The selector indicates
which one of the (possibly many) Transport Layer entities requesting service at an
NSAP that the NSAP address refers to.

Network User's Guide and Reference Chapter 8 73

Subnet Address
In iNA 960, subnet addresses are much simpler than NSAP addresses. A subnet
address identifies a Subnet Point of Attachment (SNPA). The SNPA is the
conceptual point where a system is attached to a subnet. Like NSAPs, SNPAs are
abstractions and their meaning in network implementations is up to the implementer.
A subnet address is the addressing information that the Network Layer gives to the
subnet service provider to indicate where the subnet service should send the message.
iNA 960 subnet addresses are a concatenation of a node's 48-bit IEEE 802 Media
Access Control (MAC) address and the Network Layer LSAP (Data Link Service
Access Point) selector. By convention, the LSAP selector is FEH. The MAC
address is more commonly called an Ethernet address and is typically assigned by the
manufacturer of the network interface hardware, usually in PROM.

Internetwork Routing
The routing function maps an NSAP address supplied by the user to a subnet address
that the subnet service understands. That subnet address may be the address of the
message destination or the address of a router that will perform another mapping and
relay the message to another router or to the message's destination. This routing
function can occur in both end systems and intermediate systems.

See also: Internet routing, Chapter 16

Chapter 8 iNA 960 Topology and Addressing74

iNA 960 Network Layer Addressing Schemes
The iNA 960 software supports two Network Layer addressing schemes. These
addressing schemes recognize NSAP addresses that conform to the format described
in IS 8348 Addendum 2:

• Null2, which is the inactive subset of the IS 8473 protocol, does not support
internetwork routing

• ES-IS (end system to intermediate system) addressing supports two internetwork
routing methods:

— Static, which uses the MAP 2.1 routing scheme for mapping NSAP
addresses to subnet addresses.

— End system to intermediate system (ES-IS), for dynamic routing. This
implements the protocol described in IS 9542.

The iNA 960 software is preconfigured with a Network Layer using either Null2 or
ES-IS addressing. The ES-IS jobs support both static and dynamic (ES-IS) routing.

See also: i*.job, System Configuration and Administration

Null2 Network Addressing
iNA Network Layers configured for Null2 addressing recognize 11-byte NSAP
addresses. When specified as a hexadecimal string, the Null2 address has this form:

4900xxyyyyyyyyyyyyFE00

Where:

49 The Authority and Format Identifier (AFI). By convention, the AFI for
iNA NSAP addresses is 49H.

00xx A local subnet identification number. The second byte (xx) in a Null2
address has no meaning, but the value 0 is recommended.

yyyyyyyyyyyy
The six-byte Ethernet address for the node.

FE The Data Link LSAP selector. By convention the iNA LSAP selector is
0FEH.

00 The NSAP selector. For Null2, this byte is optional. If not present, it is
assumed to be 0. However, for compatibility with ES-IS routing, this
byte must always be present.

Network User's Guide and Reference Chapter 8 75

Static Internetwork Addressing
The ES-IS configurations of iNA 960 support static internetwork addressing, where
the application maintains static routing tables with NMF commands. Static routing
recognizes two NSAP address formats. One format is the Null2 format described in
the previous section. The other format is an extension of the Null2 format as shown
in this:

49xxxxyyyyyyyyyyyyFE00

Where:

xxxx A two-byte subnet identification number.

yyyyyyyyyyyy
The six-byte Ethernet address for the node.

The subnet ID specifies a particular subnet to which packets can be routed.

Except for the subnet ID, all other bytes in the address are the same as in a Null2
address. However, the NSAP selector (the last byte of the address) is not optional; it
must be present. An NSAP selector of 0 specifies the Null 2 addressing scheme. For
ES-IS addressing, the NSAP selector must not be 0.

ES-IS static addressing Network layers implement the MAP 2.1 static internetwork
routing scheme. Nodes can be configured as end systems or intermediate systems
(routers). Routing is determined by user-defined static tables located in intermediate
systems.

See also: Routing tables, Chapter 16

End System to Intermediate System (ES-IS) Network
Addressing

iNA Network Layers configured for ES-IS network addressing recognize the
previously described Null2 and Static internetwork addresses.

✏ Note
ES-IS addressing assumes that the last byte of an NSAP address is
present and is the NSAP selector.

An NSAP address in an ES-IS environment is given meaning by routing tables
located in End Systems and/or Intermediate Systems. These tables are dynamically
updated based on configurable parameters. Systems in a network can periodically
notify other systems of their existence and new systems can announce their presence
at startup.

ES-IS configured Network layers implement the internetwork routing protocol
described in IS 9542.

Chapter 8 iNA 960 Topology and Addressing76

Choosing a Network Layer Configuration
The iNA 960 jobs are available in both Null2 and ES-IS versions. If you use the
ES-IS version of a job, dynamic (ES-IS) routing is performed by default, unless you
set up static routing tables with NMF commands. The routing algorithm checks both
static and dynamic routing tables to see if a subnet can be reached. Preconfigured
ES-IS versions of iNA 960 can store up to three static table entries (three
intermediate system addresses).

Use these guidelines to help determine which Network Layer configuration is right
for a particular subnet implementation.

A Null2 configuration may provide the best network performance under these
conditions:

• The network has only one local subnet, with no internet router

• The node configurations are nearly homogeneous

• It is unlikely that nodes are to be added or removed often

A Static internetwork configuration performs similarly to an ES-IS configuration if
both types of network remain stable. This is true whether the subnet configurations
are homogeneous or nonhomogeneous. The key criterion is stability. A Static
configuration is best where:

• The network includes multiple subnets whose membership is stable

• The internetwork router connections are fixed (nonexpanding)

• Systems on the network don't regularly go down

An ES-IS configuration may provide the best tradeoff between performance and ease
of making changes, where:

• The network is large and subnet membership is constantly changing

• The network requires the flexibility to be easily changed

• The internetwork router connections change often

■■ ■■ ■■

Network User’s Guide and Reference Chapter 9 77

The Multibus II Subnet and
Routing Between Subnets

Configuring Networks with the Multibus II Subnet
Although iNA 960 has always supported routing in the ES-IS configurations, the
software shipped with the iRMX OS did not always contain jobs preconfigured to
support multiple NICs. Jobs without this support could not act as routers from one
subnet to another.

The OS now includes iNA 960 jobs for Multibus II systems that support all possible
combinations of NICs for those systems; these jobs act as routers between the
subnets. In addition, some jobs support the Multibus II subnet, which is a virtual
Ethernet interface across the backplane.

The Multibus II subnet enables all boards in a Multibus II system to act as
independent network hosts. Each host has at least one network address and Ethernet
address, regardless of whether a given board includes its own Ethernet controller.
This allows communication between boards using iNA 960 (with or without iRMX-
NET) or TCP/IP, using the Multibus backplane as the LAN medium. When the
system includes at least one iNA 960 router between the Multibus II subnet and a
hardware NIC, you have access to both this internal backplane network and any
external Ethernet networks.

With the Multibus II subnet, an iNA 960 transport stack runs on every board in the
Multibus II system. With a separate Ethernet address and iNA transport stack, each
board can run TCP/IP independently. This eliminates the need for systems where:

• Boards without NIC hardware had to set up a COMMengine environment (MIP
job) to share a single transport stack that ran on the board with NIC hardware.

• For boards that ran MIP jobs, GDT slots 4096-4767 were unavailable for use by
the application.

• Only one Ethernet address (per NIC) applied to all boards in the system.
• Only one iNA 960 RawEDL client was allowed in the system, which meant that

only the host board with a NIC could run TCP/IP.

This chapter describes mostly the configuration changes needed to use the Multibus
II subnet, with or without routing to an external subnet. However, some iNA 960
jobs support multiple hardware NICs, and route between subnets without using the
Multibus II subnet. The routing principles described here also apply to those jobs.

9

78 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Routing Between Subnets
Any Multibus II board that has an Ethernet controller connecting to an external
network and that also uses the Multibus II subnet must be set up as a router between
the two subnets. If you use both iNA 960/iRMX-NET and TCP/IP on the external
subnet you must configure the board to be both an ES-IS router for iNA 960 and an
IP router for TCP/IP.

✏ Note
The descriptions in this chapter apply only to configuring iNA 960
routers. For details about configuring TCP/IP, see Configuring
TCP/IP for the Multibus II Subnet, TCP/IP and NFS for the iRMX
Operating System

Definition of a Router
This manual refers to the hosts that transfer packets between subnets as routers,
whether they use iNA 960 or TCP/IP networking. As used here, the term “router” is
synonymous with the term “gateway” as commonly used in TCP/IP literature.

Some people define a gateway to mean a system that not only separates different
segments of network, but also translates protocols as it passes packets between the
networks. The term router used here does not mean that type of gateway.

The discussion of configuring routers applies only to iRMX systems used to route
packets between subnets. It is beyond the scope of this manual to describe
configuration of any independent routers you may use to separate interconnected
subnets. However, use the principles described here when you do any such
configuration. For example, if you support iNA 960 protocols across an independent
router, you must assign unique iNA 960 subnet IDs to each subnet.

ES-IS vs. Null2 Jobs
There are two basic kinds of network jobs defined by iNA 960:

• ES-IS jobs are capable of routing network packets. Jobs with names that end in
e are ES-IS, for example, imix560e.

• Null2 jobs are not capable of routing network packets. Jobs with names that end
in n are Null2, for example, imix560n.

An ES-IS job is not necessarily a router, but it forms network addresses so that they
can be routed. Only ES-IS jobs that support multiple subnets can act as routers.

Network User’s Guide and Reference Chapter 9 79

ES-IS Routing
Each iNA 960 ES-IS job maintains tables of systems it can contact. The tables
contain the names and network addresses of those other systems. There are two parts
to these routing tables:

• Static routing tables specify all the other Intermediate Systems that can be
contacted from the local host (be it ES or IS). You must set up the static routing
information on each IS.

• Dynamic routing tables are built by each system based on hellos, or
acknowledgments sent periodically between End Systems and Intermediate
Systems. Each IS builds a list of all ES systems with which it has direct contact.
Conversely, each ES builds a list of the IS(s) with which it has direct contact.
You set up each board to be an ES or IS by specifying what types of hellos it
sends and receives. Based on the hellos it receives, each system automatically
builds its own dynamic routing tables.

With the static and dynamic routing tables in place, you can send a packet from an
ES on one subnet to an ES on another subnet, without any direct knowledge of the
network path required to get there. When you send the message, your ES puts the
packet on your subnet. If the packet has a different subnet ID than your own, the IS
forwards the packet to whatever IS in its routing tables is specified to handle that
subnet. If the destination ES is on the subnet connected to the second IS, the packet
is delivered there.

However, the ES you are attempting to contact may be separated from your subnet by
at least one intermediate subnet, each connected by one or more ISs. If so, the
second IS passes the packet along to whatever IS is specified in its (the second IS’s)
static routing tables to handle the destination subnet, and so on. Through this process,
the packet is routed to the subnet for which it is intended, and is received by the
destination ES.

If there are multiple ISs on the same subnet, each one needs information about which
subnets the other ISs can reach. You add this information when you set up the static
routing tables.

Later sections in this chapter describe the process of setting up iNA 960 routers.

See also: iNA 960 Topology and Addressing, Chapter 8
Internetwork Routing, Chapter 16

80 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Ethernet Addresses in the Multibus II Subnet
An Ethernet address is a six-byte hexadecimal value used to identify a particular host
on the network. The Ethernet address is also called a MAC (media access control)
address. Typically, MAC addresses are coded into the firmware on an Ethernet
network interface controller, or NIC.

Since there is no Ethernet hardware associated with the subnet on the backplane, the
iNA 960 jobs for the Multibus II subnet assign MAC addresses to each board
according the slot number. In every system the base address is A2 A4 A6 A8 AA 00.
This is the MAC address of the board in slot 0. The software sets the last byte of the
address to the slot number. The board in slot 1 has address A2 A4 A6 A8 AA 01, and
the addresses progress to A2 A4 A6 A8 AA 13 for a 20-slot system. This ensures
that each board on the subnet has a unique MAC address.

Although every Multibus II subnet uses the same range of MAC addresses, the
combination of a unique subnet ID with the MAC address provides a unique iNA 960
network address for each board. With TCP/IP software, you assign a unique IP
address to each board.

Router boards that use the Multibus II subnet and also have one or more hardware
NICs have multiple MAC addresses. The virtual NIC provided by the Multibus II
subnet is assigned the MAC address described above. Each hardware NIC has its
own MAC address embedded in the firmware.

Data Link Subsystem ID for the Multibus II Subnet
In programming calls to iNA 960 you specify a subsystem ID as part of the request
block (RB) interface. The subsystem ID specifies the iNA 960 subsystem being
called. For the Data Link layer, there are several subsystem IDs, depending on the
type of subnet in use. To specify the Data Link for the Multibus II subnet, use the
subsystem value 2FH.

See also: Data Link calls, Chapter 13

Network User’s Guide and Reference Chapter 9 81

Name Server Search Domain
When you use the attachdevice command to connect to a remote system, the iNA
960 Name Server searches only subnet ID 1 by default. If your network includes
multiple subnets, or even if it includes only one subnet but you have changed the
subnet ID from the default, you must set the Name Server search domain to include
all appropriate subnet IDs. There are two ways to do this: in the ICU configuration
or with a domain command. The instructions in this chapter describe using both
methods.

See also: domain command, Command Reference

You need to set the search domain only if you use iNA 960/RMX-NET across
different subnets. For TCP/IP access only, the Name Server search domain is not
needed.

Overview of Setting up the Multibus II Subnet
These are the steps you will perform to make use of the Multibus II subnet. Some
steps are optional, depending on your system and the kind of networks you want to
use:

• Make a map of the total network to identify what iNA 960 subnet IDs you need
to assign.

• Choose the correct iNA 960 job(s) for your hardware.

• Configure the iNA 960 job(s) into the OS with the ICU or set up a loadable
version of the job. In either case, you may have to change the subnet IDs
configured into the job, depending on your subnet map of the network.

• Optionally change subnet IDs on other systems in the network to match those set
up in your Multibus II system(s).

• Use either the inamon utility or your application program to set up iNA 960
routing tables.

• If you plan to use TCP/IP on more than one board in the system, set up the
TCP/IP configuration files for the Multibus II Subnet and (optionally) for
routing.

82 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Step 1: Mapping the Network
Before you begin configuring the network software, set up a map of your network
and determine what iNA 960 subnet IDs to assign. For example, Figure 9-1 shows a
simple network consisting of two Multibus II systems. Each is attached to an
external network through an Ethernet controller. This can be any onboard Ethernet
controller, such as on the SBC 486/166SE board.

System A System B

Board3 (ES)

Board2 (ES)

Board1 (IS) Board4 (IS)

Board5 (ES)

Board6 (ES)

Backplane
subnet 2

Backplane
subnet 3

External Ethernet Network

subnet 1 subnet 1

Ethernet
Adapter

Ethernet
Adapter

OM03562

Figure 9-1. Mapping Subnets

The map of this network assigns subnet ID 1 to the Ethernet connections. The
backplane of each system has a unique subnet ID, so that System A’s backplane is
subnet 2 and System B’s is subnet 3.

Boards 1 and 4 are routers, called Intermediate Systems (ISs) in iNA 960
terminology, because they have two network connections and connect two subnets.
In each case, one of the subnets is the Multibus II subnet, and the other subnet is the
external Ethernet connection.

Network User’s Guide and Reference Chapter 9 83

Boards 2, 3, 5, and 6 are End Systems (ESs), because they have a single network
connection, in this case the Multibus II subnet. You typically configure Intermediate
Systems to also be End Systems, but it is pointless to configure a system with only
one network attachment to be an Intermediate System.

Although it is not mandatory to assign subnet ID 1 to the external Ethernet
connection, this simplifies the work in configuring the systems. It also allows for
compatibility with existing systems on the external network that do not route packets,
since Null2 networking jobs are preconfigured to use subnet 1.

✏ Note
If necessary, you can configure a Null2 job to use a different subnet
ID, using the ICU. See Step 6, on page 91.

You could have a more complicated internetwork scheme with multiple external
subnets connected by routers. If you use only TCP/IP to access interconnected
external subnets, each external subnet can have the same iNA 960 subnet ID. For
example, you could have the situation shown in the top and middle external subnets
of Figure 9-2, where the two subnets connected by Router A are both subnet 1, and
two of the Multibus systems on either side of the router are both subnet 3. You can
use iNA 960/iRMX-NET on both subnets with ID 1, because each Multibus II subnet
attached to each subnet 1 has a unique subnet ID. (The non-Multibus systems on
these subnets use subnet ID 1, since there is no internal subnet.)

However, to use iNA 960 or iRMX-NET through a router, all subnets on either side
of the router must have a unique iNA 960 subnet ID. This is shown in the middle and
bottom external subnets of Figure 9-2, on either side of Router B. Not only are the
external subnets unique (IDs 1 and 2), but each Multibus II subnet has a unique ID.

In the example in Figure 9-2, you would configure Router A as a TCP/IP router only.
You would configure Router B to be both a TCP/IP router and an iNA 960
Intermediate System.

84 Chapter 9 The Multibus II Subnet and Routing Between Subnets

External Ethernet Network

Multibus II System
subnet 2

Multibus II System
subnet 3

non-Multibus System

subnet 1 subnet 1 subnet 1

 Router A

Multibus II System
subnet 3

Multibus II System
subnet 4

subnet 1 subnet 1

Router B

TCP/IP access only,
iRMX-NET communications

cannot cross this point
due to identical iNA

subnet IDs on both sides

TCP/IP and iRMX-NET
communications can cross

this point, iNA subnet IDs on
both sides are unique

Multibus II System
subnet 6

Multibus II System
subnet 7

subnet 2 subnet 2

OM03563

non-Multibus System

subnet 1

non-Multibus System

subnet 2

Figure 9-2. Mapping Subnets with an Internetwork

Network User’s Guide and Reference Chapter 9 85

Using Only TCP/IP Outside the Multibus II Subnet
You might want to use iNA 960 and/or iRMX-NET transport services within the
Multibus II system, but not across the external network. In that case, all external
subnets could have ID 1, and all Multibus II subnets could have ID 2 (or any other
ID), as illustrated in Figure 9-3. In this example, boards within System A can
communicate with each other using iNA 960/iRMX-NET, and so can boards in
System B, but they must use TCP/IP to communicate between the systems.

In the example in Figure 9-3, you would not configure any iNA 960 Intermediate
Systems. You would configure the boards connected to the external network as
TCP/IP routers, or gateways.

System A System B

Multibus II System
subnet 2

Multibus II System
subnet 2

External Ethernet Network

subnet 1 subnet 1

OM03564

Figure 9-3. Mapping Subnets for TCP/IP Access, but no iNA 960 Access

86 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Step 2: Choosing the iNA 960 Jobs
For every board in the system, choose one of the iNA 960 jobs listed in Table 9-1.
Each job is preconfigured with one or more subnets. Table 9-1 indicates which
subnet is used for an onboard Ethernet NIC and which is used as the Multibus II
(backplane) subnet. The order is important when you assign the subnet IDs, as
described in subsequent steps.

For boards that will act as routers, choose the correct multiple-subnet job for that
board. For boards that do not act as routers, use the impe job to give access to the
Multibus II subnet and the iNA 960 transport stack without using a hardware NIC. If
the system does not contain a router, you can use the Null2 version of the Multibus II
subnet job, impn, but boards that use this job cannot send or receive packets across a
router to another subnet. Table 9-1 also lists jobs that do not include the Multibus II
subnet, such as the ihisxe job. Boards that use such jobs cannot use the backplane as
a network connection. These jobs support routing between multiple external subnets,
but not to the Multibus II subnet.

All jobs are available either as loadable or linkable jobs. Choose the type of job
according to your OS configuration for each board. For example, where you
configure the application into ROM, or on a diskless application (*rsd.bck definition
file), you must use the ICU to include the linkable version of the job. Otherwise, you
can use a loadable job.

Table 9-1. iNA 960 COMMputer Jobs for the Multibus II Subnet

Job OS Subnets NICs (and Default Subnet IDs) for 1st, 2nd, 3rd, 4th Subnet
ihisxe III 2 SBC 486/1xxSE (1), SBX 586 (2)
ihimpe III 2 SBC 486/1xxSE (1), MB II backplane (2)
ihisxmpe III 3 SBC 486/1xxSE (1), SBX 586 (2), MB II backplane (3)
imxmpe III 2 1 MIX560 (1), MB II backplane (2)
i2mxe III 2 2 MIX 560s (1, 2)
i2mxmpe III 3 2 MIX 560s (1, 2), MB II backplane (3)
i3mxe III 3 3 MIX 560s (1-3)
i3mxmpe III 4 3 MIX 560s (1-3) MB II backplane (4)
ie1mpe all 2 SBC 486SX/DXxx with EWENET (1), MB II backplane (2)
ie2mpe all 2 SBC P5090 or P5120 (1), MB II backplane (2)
Ie3mpe all 2 SBC P5200(1), MB II backplane (2)
imp? all 1 MB II backplane only (1)
? Specify N for Null2 (no routing capability) or E for ES-IS routing
III/all iRMX III OS only, or any of iRMX for PCs, DOSRMX, or iRMX III OS

Network User’s Guide and Reference Chapter 9 87

Table 9-1 shows the default subnet ID(s) associated with each subnet in a job. The
default subnet IDs may not match the ones you have assigned in your map of the
network. If so, change the subnet IDs either when you load the job (with SNIDx
parameters in the sysload command) or by reconfiguring the job with the ICU. The
process of using the ICU to generate either first-level or loadable iNA 960 jobs is
described in the next steps.

✏ Note
You can use Multibus II subnet jobs on some boards in the system
along with non-Multibus II subnet jobs on other boards in the same
system. In other words, you might still choose to use a MIP job on
a board for which you do not need to use the Multibus II subnet.

However, do not use a MIP job on any board for which you choose
a Multibus II subnet job. Also, do not use a MIP job on one board
as an interface to a Multibus II subnet version of iNA 960 running
on another board.

Table 9-1 does not list any of the MIP jobs or other iNA 960 jobs
that do not relate to the Multibus II subnet or to routing.

See also: i*.job, System Configuration and Administration for a
complete list of iNA 960 jobs

88 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Step 3: Configuring Jobs in the ICU
If you use only the loadable iNA 960 jobs provided with the OS, ignore the
instructions in this step and proceed to Step 5. However, you can use the instructions
in this step and Step 4 to produce a loadable job that has different default subnet IDs
than the loadable jobs supplied with the OS.

For each board where you use a linkable iNA 960 job or need to change the
configuration of a loadable job, invoke the ICU and configure the job as follows:

A. NET screen: Set the MIP parameter to No and the CMP parameter to Yes, to
include an iNA 960 COMMputer job. (You may also choose to add the iRMX-
NET server and client, and/or TCP/IP on this screen.)

B. ICMPJ screen: Specify the iNA 960 job name in the OFN parameter. Use one
of the names shown in Table 9-1 without a .job extension.

C. ICMPJ screen: For the impn job, leave the Network Layer, or NL parameter set
to 1 for a Null2 network. For any other job, set NL to 3, for ES-IS.

D. ICMPJ screen: Specify the appropriate subnet IDs in the SN1 through SN4
parameters. For example, Table 9-1 shows that for the imxmpe job, the first
subnet applies to the MIX560 NIC and the second subnet is the backplane. Set
the values according to your subnet ID map of the network. If your external
network is subnet 3 and your internal network is subnet 7, set the SN1 parameter
to 3 and the SN2 parameter to 7. Do not set any SN* parameters that do not
apply; the imxmpe job contains only two subnets and you cannot add more.

E. NSDOM screen: Specify all subnet IDs that you want the Name Server to
search when you attach to a remote system. Use your map of the network and
include all subnet IDs to which you want to connect with either iNA 960 or
iRMX-NET. The maximum number of subnets to be searched is 80 (the ICU
displays a new screen for each set of 20 IDs). You can specify subnet IDs not
currently in use, for future expansion. However, adding more subnet IDs to the
search domain slows down Name Server operations.

F. If you plan to configure the iNA 960 job into the OS, make sure that on the
ICMPJ screen the CLJ parameter is set to No. Then continue with any other
necessary ICU configuration. Generate the system as usual and submit the .csd
file produced by the ICU to build the OS image. However, if you want to
produce a loadable job with the new configuration, do not generate the system
now, but proceed with the instructions in Step 4.

Network User’s Guide and Reference Chapter 9 89

✏ Note
Some preliminary instructions for using the Multibus II subnet
described these changes: On the FC screen for the iRMX-NET
File Consumer, you were instructed to change the DDS parameter
from 1488 to 1344. On the iRMX-NET File Server AFAU screen
where the USS parameter is set to 70H, you were instructed to
change the SBS parameter from 1488 to 1344. These instructions
applied only for preliminary software shipped prior to release 2.2
of the OS. Do not change the default value of 1488 for these
parameters. The value 1488 is required to work with all versions of
iNA 960 jobs shipped with the OS.

Step 4: Creating a Loadable Network Job
To create a loadable job from a linkable job that you have configured, as in Step 3,
follow this process:

A. ICMPJ screen: While in the ICU, make any configuration changes you need,
such as changing the subnet IDs for the job.

B. ICMPJ screen: Specify the new network job name in the OFN parameter.

C. ICMPJ screen: Set the CLJ (create loadable job) parameter to Yes.

D. When done, use the ICU Generate command to generate the system, but don’t
submit the .csd file produced by the ICU.

E. To create the loadable iNA 960 job, submit the icmp.csd file produced by the
ICU. This generates the loadable job in the directory where you invoked the
ICU, with the name of the linkable job and a .job extension.

F. If you made configuration changes to the iRMX-NET server, create a loadable
version of the job by submitting the rnetsrv.csd file produced by the ICU. This
generates a new rnetserv.job file in the directory where you invoked the ICU.

G. If you made configuration changes to the iRMX-NET Consumer (the client and
remote file driver job), create a loadable version of the job by submitting the
rnetcln.csd file produced by the ICU. This generates a new remotefd.job file in
the directory where you invoked the ICU.

H. Add the new loadable job(s) to the loadinfo file as described in Step 5.

90 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Step 5: Using Loadable Jobs
If you use only linkable iNA 960 jobs, ignore the instructions in this step and proceed
to Step 6.

A. For each board in the system on which you use loadable network jobs, choose the
appropriate job from Table 9-1.

B. If the job’s default subnet IDs are not correct for your map of the network,
configure new subnet IDs and create a loadable job from the linkable job as
described in Steps 3 and 4.

C. Edit the rmx386/config/loadinfo file to remove or comment out the sysload
invocation of any current iNA 960 jobs. Add a line to load the new iNA 960 job,
specifying the job’s pathname and .job extension, for example:

sysload /rmx386/jobs/imxmpe.job

D. If you did not set up the job’s Name Server search domain in the ICU with the
NSDOM screens, use the domain command to set the search domain of all
subnets the Name Server will access. You can add the command to the loadinfo
file following the sysload command that loads the iNA 960 job. The syntax is:

domain [-a ID[-range]] [-d ID[-range]]

Without any parameters, domain displays the current search domain. The -a
parameter adds one or more subnet IDs. The -d parameter deletes one or more.
With either parameter, domain displays the current search domain after the
addition or deletion. Specify either a single subnet ID or a range of IDs,
separated with a dash (-) and no spaces. The ID must be a four-digit
hexadecimal number followed by an H.

Example 1: To add subnet 4 to the current search domain, enter:

domain -a 0004H

Example 2: Assume that your external subnet ID is 3, with Multibus II subnets 4, 5,
and 6. Your external subnet is connected through a router to subnet 1, which
contains Multibus II subnets 10 through 26 (0AH through 1AH). To enable
searching of all subnets from 1 to 1AH, enter:

domain -a 0001H-001AH

The maximum number of subnets to be searched is 80. You can specify subnet IDs
not currently in use. However, adding more subnet IDs to the search domain
slows down Name Server operations.

Network User’s Guide and Reference Chapter 9 91

Step 6: Changing Subnet IDs on Other Systems
You may have non-Multibus II systems on your network that use either ES-IS or
Null2 versions of iNA 960 jobs. The Null2 jobs (i*n jobs) do not implement routing.
However, both types of jobs will work properly on a network with an IS as long as
their subnet IDs match the one you assign to their subnet.

iNA 960 jobs with a single subnet are preconfigured with subnet ID 1. If you set up
the external network to be subnet 1, or if you don’t have any non-Multibus II systems
using iNA 960 jobs on the network, ignore this step.

If you assign the external network any subnet ID other than 1, you must change the
subnet ID for both Null2 and ES-IS network jobs used by any systems on that
network:

A. Follow the instructions in Steps 3 and 4 to produce either linkable or loadable
versions of the jobs.

B. For loadable jobs, make a backup copy of the original iNA 960 job shipped with
the OS, then copy the new version of the job from your ICU generation directory
to the \rmx386\jobs directory on the target machine.

C. For loadable jobs, install the job as described in Step 5.

92 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Step 7: Modifying the net/data File
For every diskless board (*rsd.bck files), you must change the network address for
the remote boot client in the /net/data file on the file server. This applies to any
system that boots remotely, not only to remote-boot clients on Multibus II subnets.

iRMX-NET file servers that support remotely booted nodes have an entry in the
/net/data file that contains the Ethernet (MAC) address of the client with the
Multibus II slot ID appended. The slot ID field is 00 for Multibus I systems and PCs.
For example, in previous releases of the OS, the /net/data entry for a client in slot 2
was like the one below, where the address is the MAC address used by the client
followed by the slot number:

client_name: TYPE=PT0005: ADDRESS=00AA00021E2702;

Slot number
MAC address

OM03570

This address has been expanded by two bytes to also include the subnet ID, as shown
below:

client_name: TYPE=PT0005: ADDRESS=0005A2A4A6A8AA0202;

Slot number
MAC address
Subnet ID

OM03571

A. Modify the /net/data entry for every remote boot client to use the second form
shown above. Substitute the client name, subnet ID, MAC address and slot
number in your entries. Note that the MAC address in the example above is the
one imposed by the Multibus II subnet, where the last byte of the MAC address
is also the slot number.

See also: /net/data.ex file, Chapter 11

Network User’s Guide and Reference Chapter 9 93

Step 8 - 10 Overview: Configuring iNA 960 Routing
To set up routing on an iNA 960 job that supports multiple subnets, you need to
change a variety of network objects in tables that control routing and interaction at
the network level between ESs and ISs. To change network objects, you can:

• Write an application program that modifies the objects directly or that accepts
user input regarding addresses and system names the router needs to contact.

• Use the inamon utility to modify the objects directly from the command line.

• Modify and run a submit file supplied with the OS that invokes inamon to
supply the necessary information.

The following discussion and Steps 8 through 10 describe an example of the last
method: using the iset.csd submit file to invoke inamon and change the appropriate
network objects for routing. If you want to set up routing in another way, use this
discussion as an example of what objects to examine and modify.

See also: List of network objects, Appendix C
Chapter 16 for information about programmatically changing objects
inamon, Command Reference

Using Inamon to Configure Routing
The OS installs a submit file, /net/iset.csd, that you can use to set iNA 960 ES-IS
routing objects. The submit file invokes the inamon utility in batch mode and
changes network objects according to the way you edit the file. You can invoke it
from the :config:loadinfo file to automatically set up the network for each board,
using this syntax:

submit :sd:net/iset

For each board, make a copy of the file you will submit and edit the file according to
these guidelines (described in the following steps):

• On every board that uses the Multibus II subnet, set four flags that determine
whether the system is an ES, IS, or both.

• On IS boards only, configure the static routing tables, which specify all other IS
routers that can be contacted from this IS.

The format of the iset.csd file is shown in Figure 9-4 on page 94; the line numbers are
not part of the file. Edit the file in a three-step process as described in the following
sections.

94 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Line #

1. inamon batch

2. set 3912 ff

3. set 3913 ff

4. set 3915 ff

5. set 3916 ff

6. ; 3 set ST 49 00 03 00 aa 00 03 24 9f fe 00 ROUTER3 SBX586 00 aa 00

03 17 a3 fe

7. ; exit

8. ; 3 set N ROUTER3 49 00 03

9. ; exit

10. exit

Figure 9-4. Example iset.csd File

Step 8: Establishing ES and IS Hellos
Table 9-2 lists the network objects that determine whether a board is an ES, an IS, or
both. In this step you will set up the appropriate objects to make each board operate
in the ES-IS protocol.

Table 9-2. Configuring ES and IS Hellos

Object # Object Name ES only IS only ES and IS

3912H Send ES Hellos True (FF) False (00) True (FF)

3913H Send IS Hellos False (00) True (FF) True (FF)

3915H Receive ES Hellos False (00) True (FF) True (FF)

3916H Receive IS Hellos True (FF) False (00) True (FF)

A. For every board in the system, make a copy of iset.csd. Edit lines 2-5 of each
file to specify whether the board is an ES, IS, or both. Set the final value in each
line to 00 (false) or FF (true) according to Table 9-2. In most cases, you should
configure every IS to also be an ES. The only reason you would not do this is
when the IS is used purely as a router, not as a workstation.

As Table 9-2 indicates, an End System is one that sends ES hellos and receives IS
hellos; it does not receive and process hellos from other End Systems. An
Intermediate System is one that sends IS hellos and receives ES hellos. An
Intermediate System does not receive and process hellos from other Intermediate
Systems unless it is also an End System.

Network User’s Guide and Reference Chapter 9 95

B. Leave lines 6-9 of iset.csd commented out with a semicolon for this step.
Inamon does not recognize the semicolon as a comment, but it does not perform
any commands that begin with a semicolon. Instead it issues an error message.
When you submit iset.csd later in this step, inamon will display this message for
each commented line:

Invalid command
You can ignore this error message.

C. Add the command submit <pathname>iset to the :config:loadinfo file, after
the invocation of any loadable network jobs and any domain commands. If you
use different files to load different sets of jobs for remotely-booted boards, add
the appropriate submit line to the file for each board.

D. Assuming you have done all the other configuration steps to this point, reboot the
system. Do this for all Multibus II systems on the network.

E. With the systems running the Multibus II subnet jobs, and each board in its ES-
IS configuration, remotely-booted boards should boot properly. This indicates
that the Multibus II subnet on each system is configured correctly. If remotely-
booted boards do not boot, review the configuration steps to this point.

The next step is to use inamon to get the routing information needed to complete the
editing of iset.csd. This is described in the following section.

✏ Note
If you use only TCP/IP outside the Multibus II subnet, you do not
need to configure the iNA 960 static routing tables on IS boards.
Remove lines 6-9 of the iset.csd file. At this point in the
configuration, you can ignore Steps 9 and 10, and proceed to set up
TCP/IP.

See also: Configuring TCP/IP for the Multibus II subnet, TCP/IP
and NFS for the iRMX Operating System

If you use iNA 960 and/or iRMX-NET outside of the Multibus II
subnet (in other words, on external subnets), continue with Step 9.

96 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Step 9: Getting the NET and Subnet Information
On every Intermediate System there are three items of information you need to
obtain:

• Network Entity Title (NET), which is the primary NSAP address used by iNA
960 for this IS (an NSAP address is the iNA 960 term for a network address, or
Network Service Access Point).

• Subnet name(s) used by this IS for any subnet(s) that lead to any other IS

• MAC address(es) corresponding to the subnet(s) that lead to any other IS

Use the map of your system to record this information so it is available for Step 10.
For example, assume your network looks like the one in Figure 9-5. As you perform
this step, fill in the information shown in the blanks in this figure.

Router A NET
(Network Entity Title)

Backplane
subnet 2

External Ethernet Network subnet 1

System A

Router B NET
(Network Entity Title)

Backplane
subnet 3

System B

Router C NET
(Network Entity Title)

Backplane
subnet 4

System C

subnet 1 name

MAC address

subnet 1 name

MAC address

subnet 1 name

MAC address

OM03565

Figure 9-5. Routing Information on a Single External Network

✏ Note
Each board may have a different name for the subnet it is attached
to, depending on the iNA 960 job running on that board. For
example, in Figure 9-5, there is not a single name for subnet 1. If
the three IS systems run different iNA 960 jobs, each may have a
different name for subnet 1.

A. Invoke inamon on each IS.

Network User’s Guide and Reference Chapter 9 97

B. Type 3 to get the Router Management menu.

C. Examine object 391E, which displays the subnet table, similar to the following.
The items you’re interested in are the subnet names and IDs:

[391E] SUBNET TABLE

I82596 / 08H / FEH / 49 00 01 1 000000FE
MPSN / 08H / FFH / 49 00 02 0 000000FE

Subnet names Subnet IDs

OM03572

D. Refer to your map and record the name(s) of any subnet connections that lead to
other ISs. In the example listing above, if there were other ISs on both subnets 1
and 2, you would record I82596 as this board’s name for subnet 1 and MPSN as
this board’s name for subnet 2.

E. Now examine object 3919, which displays NSAP addresses for this host, similar
to the following. An ES would have only one NSAP address, but each IS has
multiple addresses. The first address in the list is the NET, which is the primary
NSAP address used for this host. Embedded in each NSAP address is a subnet
ID and MAC address.

[3919] LOCAL NSAP ADDRESSES

49 00 01 00 AA 00 03 17 E3 FE 00
49 00 02 A2 A4 A6 A8 AA 02 FE 00

MAC addresses
Subnet IDs

NET

OM03573

F. Record the NET for this IS.

G. Refer to your map and record the MAC address(es) of any subnet connections
that lead to other ISs. In the example listing above, if there were other ISs on
both subnets 1 and 2, you would record MAC address 00 AA 00 03 17 E3 as the
connection to subnet 1 and A2 A4 A6 A8 AA 02 as the connection to subnet 2.

H. Exit inamon by typing E twice.

98 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Step 10: Setting Up the iNA 960 Static Routing
Tables

As shown in Figure 9-4 on page 94, lines 6 and 8 of iset.csd are examples of the two
pieces of information you need to establish on each IS.

Line 6 defines a path to another IS that has access to a remote subnet. It adds an
entry to the static routing table on this IS. The format is:

3 set ST 49 00 03 00 AA 00 02 1E 27 FE 00 ROUTER3 SBX586 00 AA 00 02 1E 27 FE

MAC address of port on
the destination router that
is attached to this subnet

Source
router's
name for
subnet
leading to
destination
router

Arbitrary
name for
destination
router

NET of destination routerSets a
static
route

Invokes menu 3, Router Management in inamon Always FE,
standard LSAP
 (link service
access point)

OM03574

Line 8 tells iNA 960 to use that IS for access to a specific subnet. It adds an entry to
the NSAP reachable table on this IS. The format is:

3 set N ROUTER3 49 00 05

Always 49, standard Authority and Format Identifier (AFI)
Subnet to be reached through this router

Name specified for destination router in previous line

Sets this value in the NSAP reachable table
Invokes menu 3, Router Management in inamon

OM03575

Network User’s Guide and Reference Chapter 9 99

A. For each subnet to be reached, add a pair of such lines to iset.csd. For example, if
all routers are attached to a single external network as shown in Figure 9-6 (page
100), every router points to all the other routers on the network. Router A uses
two lines in iset.csd to point to Router B and two lines to point to Router C.
Router B points to A and C, while Router C points to A and B.

1. In the first line (similar to line 6 of iset.csd), substitute:
• NET of the destination router
• An arbitrary name for that router
• Name of the subnet leading to the destination router, as defined by this

(the source) router
• MAC address of the destination router on the subnet that connects the

two routers

2. In the second line (similar to line 8 of iset.csd), substitute:
• The name of the destination router that you used in the first line
• Subnet ID of the subnet that can be reached through the destination

router

For example, consider the possible routing information shown in Figure 9-6 on page
100 and Figure 9-7 on page 102.

100 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Router A NET
(Network Entity Title)

Backplane
subnet 2

External Ethernet Network subnet 1

System A System B System C

subnet 1 name
_SBX586_____

MAC address
00AA00AAAAAA

subnet 1 name
_I82596_____

MAC address
00AA00BBBBBB

subnet 1 name
_I82586_____

MAC address
00AA00CCCCCC

Router B NET
(Network Entity Title)

Backplane
subnet 3

Router C NET
(Network Entity Title)

Backplane
subnet 4

OM03566

49000100AA00CCCCCCFE0049000100AA00BBBBBBFE0049000100AA00AAAAAAFE00

Figure 9-6. Example Routing Information on a Single External Network

Assume that Routers A, B, and C have the NET values, MAC addresses, and local
names for subnet 1 that are shown in Figure 9-6. You would add the lines shown
below to the iset.csd files for the three routers (in place of lines 6-9 as shown in
Figure 9-4). You could substitute your own names for Router2, Router3, and Router4
in these lines.

Router A
3 set ST 49 00 01 00 AA 00 BB BB BB FE 00 ROUTER3 SBX586 00 AA 00 BB BB BB FE

exit

3 set N ROUTER3 49 00 03

exit

3 set ST 49 00 01 00 AA 00 CC CC CC FE 00 ROUTER4 SBX586 00 AA 00 CC CC CC FE

exit

3 set N ROUTER4 49 00 04

exit

Router B
3 set ST 49 00 01 00 AA 00 AA AA AA FE 00 ROUTER2 I82596 00 AA 00 AA AA AA FE

exit

3 set N ROUTER2 49 00 02

exit

3 set ST 49 00 01 00 AA 00 CC CC CC FE 00 ROUTER4 I82596 00 AA 00 CC CC CC FE

exit

3 set N ROUTER4 49 00 04

exit

Network User’s Guide and Reference Chapter 9 101

Router C
3 set ST 49 00 01 00 AA 00 AA AA AA FE 00 ROUTER2 I82586 00 AA 00 AA AA AA FE

exit

3 set N ROUTER2 49 00 02

exit

3 set ST 49 00 01 00 AA 00 BB BB BB FE 00 ROUTER3 I82586 00 AA 00 BB BB BB FE

exit

3 set N ROUTER3 49 00 03

exit

102 Chapter 9 The Multibus II Subnet and Routing Between Subnets

To reach subnets that are separated by more than one IS, the first IS points to the next
IS, which in turn points to the next. For example, Figure 9-7 shows two Multibus II
systems. System A contains one IS, Router A. System B has two ISs, Routers B and
C. For boards in System A to send messages on external subnet 5, Router A must
send packets through Router B, which forwards the packets to Router C.

Router A NET
(Network Entity Title)

Backplane
subnet 2

 External subnet 1

subnet 1 name

System A

System B

Router B NET
(Network Entity Title)

Backplane
subnet 4

 External subnet 5

Router C NET
(Network Entity Title)

subnet 5 name

MAC address

subnet 1 name

MAC address

MAC address

subnet 4 name

MAC address

subnet 4 name

MAC address

OM03567

Figure 9-7. Routing Information on Multiple External Networks

Network User’s Guide and Reference Chapter 9 103

B. For multiple router hops as shown in Figure 9-7, include lines like the following in
the iset.csd files for the routers. Make sure to add exit statements after each line,
as show in Figure 9-4 on page 94.

Router A
3 set ST <NET_of_IS_B> ROUTER4 <IS_A_name_of_subnet_1> <IS_B_MAC_on_subnet_1>FE

3 set N ROUTER4 49 00 04

3 set N ROUTER4 49 00 05

The first line above defines the name Router4 (it could be any name) for
Intermediate System B. The second line says to use Router4 for access to subnet
4. The third line says to also use Router4 for access to subnet 5.

Router B
3 set ST <NET_of_IS_A> ROUTER2 <IS_B_name_of_subnet_1> <IS_A_MAC_on_subnet_1>FE

3 set N ROUTER2 49 00 02

3 set ST <NET_of_IS_C> ROUTER5 <IS_B_name_of_subnet_4> <IS_C_MAC_on_subnet_4>FE

3 set N ROUTER5 49 00 05

The first two lines above establish the name Router2 for Intermediate System A
and specify that Router2 is used for access to subnet 2. The last two lines
establish the name Router5 for Intermediate System C and specify that Router5
is used for access to subnet 5. Note that the third line specifies Router C’s MAC
address on Multibus II subnet 4, since that is the route from Router B.

Router C
3 set ST <NET_of_IS_B> ROUTER1 <IS_C_name_of_subnet_4> <IS_B_MAC_on_subnet_4>FE

3 set N ROUTER1 49 00 01

3 set N ROUTER1 49 00 02

The first line above defines the name Router1 for Intermediate System B. The
second line says to use Router1 for access to subnet 1. The third line says to also
use Router1 for access to subnet 2.

C. After editing the iset.csd file on every IS in the overall network, reboot all the
systems. You should now be able to connect from a board on one subnet to a
board on another, using iNA 960 transport or iRMX-NET commands.

104 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Step 11: TCP/IP Configuration
After you have iNA 960 networking operable on the Multibus II subnet, you can set
up TCP/IP to work as well. When using the Multibus II subnet, you can run TCP/IP
on more than one board in the system. However, there are configuration changes
necessary when some boards that run TCP/IP do not have a local hard disk and must
boot remotely.

See also: Configuring TCP/IP for the Multibus II subnet, TCP/IP and NFS for the
iRMX Operating System

Network User’s Guide and Reference Chapter 9 105

Increasing Performance for Remotely-Booted
Boards

Once you have the configuration working, there is a performance enhancement step
for remotely-booted boards. These boards attach to the file server using the name of
the server from the /net/data file. By default, that means they use the external MAC
address for the server instead of the server’s Multibus II MAC address. To increase
the performance of file access, you can make a new file server name available, with
the NSAP address that includes the Multibus II subnet MAC address and subnet ID.

A. Specify server names for individual subnets in one of the following ways:

• Use the local_name/nfsx mechanism in the /net/data file to specify
individual server names, as illustrated in the /net/data.ex file.

See also: /net/data.ex file, Chapter 11

• Use the SNIDx parameter in the setname command to specify server names
for individual subnets.

See also: setname, Command Reference

B. Set the new file server name as a BPS (bootstrap parameter string) value for the
boot clients. To do this, edit the /msa/config /bps file. Find the sections that
designate the boot client boards. For example, the BPS parameters for the board
in slot 2 follow the line [bl_host_id = 2]. In every section of the file that
applies to a boot client, add a line like this:

rq_sd = newname;

where newname is the new file server name you specified in the setname command.
Use the syntax and spacing shown above. All lines except the last in each
section of the BPS file must end with a semicolon.

See also:BPS Parameters, MSA for the iRMX Operating System

■■ ■■ ■■

106 Chapter 9 The Multibus II Subnet and Routing Between Subnets

Network User's Guide and Reference Chapter 10 107

The Programmatic Interface 10
Application programs request iNA 960 network services through data structures
called request blocks. Request blocks exchange control information and response
information between iNA 960 and the network application. A request block may also
contain data to be sent or received between applications, or may point to separate
buffers holding such data.

To perform a network function, the application first allocates and fills any data
buffers to be sent with the request block, and formats the request block. Then it
makes a cq_comm_rb system call to deliver the request block to iNA 960. When
iNA 960 has executed the function specified in the request block, it returns the
request block and data (if any) to the application.

See also: cq_comm_rb in this chapter for the general request block format

The application must implement resource management system calls to reclaim
request blocks and any associated buffers that remain after the process that owns
them terminates or is aborted. The system calls described in this chapter ensure that
iNA 960 network services (e.g., open virtual circuits at the Transport Layer) are
closed when the application process terminates or is aborted.

Referencing Data Buffers in Request Blocks
Request blocks can only accommodate small amounts of data. Larger amounts of
data are held in application memory segments or buffers and referenced in the request
block. For example, an application that sends a data packet does not place the data
into the request block. Instead, it formats a request block that contains a field
pointing to a separate data buffer. In the same fashion, an application that expects to
receive a data packet formats a request block pointing to a data buffer where iNA 960
will write the received data.

You cannot use pointers to data buffers in request blocks sent to iNA 960 and the
Name Server. Instead you must specify the absolute address of the buffer. Although
your code may use pointers, you must translate the pointers to addresses before
sending the request blocks.

Chapter 10 The Programmatic Interface108

Using Addresses in iNA 960 Request Blocks
For iNA 960, a data buffer reference must be a 32-bit value that is meaningful on the
board where iNA 960 operates. As described earlier, iNA 960 may be operating on a
separate NIC (using a MIP job in a COMMengine environment) or on the same CPU
as the application (a COMMputer job). The application does not know whether iNA
960 is on the same board or a different one.

However, since iNA 960 may be on a different board, you cannot use pointers in iNA
960 request blocks. Your application must translate pointers to absolute addresses
before sending the request block.

Translating Pointers

In a protected-mode environment, an application cannot easily translate pointers to
physical (absolute) addresses. The iNA 960 interface libraries include the translation
system call cq_comm_ptr_to_dword to translate pointers to double word (32-bit)
physical addresses.

The application must use the cq_comm_ptr_to_dword call to convert any pointer
fields in the request block, before sending the request block. Each application must
keep track of its own pointers. When a request block is returned, the application
accesses the data buffers by mapping the physical address in the request block to the
corresponding pointer.

✏ Note
Beginning with release 2.2 of the OS, you must also perform the
pointer conversion described above in request blocks sent to the
Name Server. Earlier versions of iNA 960 used pointer fields in
the Name Server request blocks.

Limitations on Buffer Size

Typically, the application formats a request block as the first data structure in a
memory segment, with data buffers following the request block in the same segment.
There is no limit on the size of such a segment, or on the location of data buffers
within the segment. The data buffers need not be contiguous with the request block.
However, data buffers cannot be larger than 64K bytes.

Network User's Guide and Reference Chapter 10 109

Interface Libraries and Link Sequences
The general iRMX system call libraries provide the interface to the cq_ system calls
described in this chapter.

See also: Interface Libraries, System Call Reference

✏ Caution
Prior to release 2.2 of the OS, applications that called the cq_
system calls used the cqc.lib, cql.lib, and cqc32.lib libraries in the
/rmx386/rmxnet/lib directory. These libraries are no longer
provided. You must link your existing applications with the
appropriate general OS interface libraries.

Bind the appropriate library with applications that call cq_ system calls. For an
example of the bind (link) sequence to use with your application, see the network
example programs under the \rmx386\demo directory.

See also: Bind sequences, Intel386 Family Utilities

Include Files
Include the appropriate files listed below in your code. The include files provide
external declarations for system calls, and define constants and data types for request
blocks and other data structures used in this manual. The include files for C are in
the /intel/include directory; PL/M files are in the /rmx386/inc16 directory.

C PL/M Description
cqcomm.h cqcomm.ext External declarations of cq_ system calls

cqcommon.h cqcommon.lit Definition of the common request block
header and other literal values common to all
layers

cqname.h cqnam.lit Literals for the Name Server layer

cqtransp.h cqtransp.lit Literals for the Transport layer

cqdatal.h cqdatal.lit Literals for the Data Link layer

cqnmf.h cqnmf.lit Literals for the NMF layer

cqroute.h cqroute.lit Literals for routing structures

Two other PL/M files are in the /rmx386/inc16 directory strictly for backward
compatibility with older PL/M applications: cqrb.ext and cqname.lit. You should
use cqcomm.ext and cqnam.lit, listed in the table above, instead of these older files.

Chapter 10 The Programmatic Interface110

Programming with Structures
This manual displays request blocks and data buffers as structures, using C syntax.
When you write a program that uses the structures shown in this manual, these
considerations apply:

• All structures shown as typedefs are defined in the appropriate header file, listed
in the previous section. In your program you may use these structure types
without defining them yourself.

• All structures must be packed; each field shown in the structure must be exactly
the length shown. Many C compilers pad structure fields with bytes of 0 so that
each field is a multiple of the compiler word size. If this padding is performed
by default, you must specifically disable the padding for iRMX and iNA 960
structures. In the iC-386 compiler, you disable padding with a #pragma
noalign statement. Structures defined as types in the C header files have the
padding disabled with such a statement. If you use these structure types, you do
not have to disable padding in your code. The PL/M compiler does not pad
structures.

• Many structures in this manual include array fields whose lengths can vary.
Such arrays are shown with a length of 1, because the array length must be
specified to define the structure as a type. Array fields are typically preceded by
a length field, as shown in the Name Server structure below:

typedef struct name_buffer {

unsigned char name_length;

unsigned char name[1];

} NAME_BUFFER;

When you use a structure with such an array, set the array length to the correct
value for your code. For example, in the structure above, you could specify a
value for name_length, then set the name array to that length. Other
alternatives are to specify the length of a given array to its maximum allowable
size, or to a size that you consistently use in your code.

Network User's Guide and Reference Chapter 10 111

Using the cq_ System Calls
Invoke the system calls in this order:

1. Create a user for the application with the cq_create_comm_user call. This call
also ensures that network resources are released if the application is terminated
or aborted.

2. Create a message mailbox with the rq_create_mailbox system call. The
mailbox will be used to receive request block segment tokens that are returned
by iNA 960.

See also: rq_create_mailbox, System Call Reference

3. Format a request block and any associated data buffers.

4. Convert pointers to data buffers into 32-bit absolute addresses, using the
cq_comm_ptr_to_dword system call. Place the addresses in pointer fields of
the request block.

5. Send the request block to iNA 960 using the cq_comm_rb call.

6. Check the except_ptr field of cq_comm_rb for exception codes.

7. Wait at the mailbox with a rq_receive_message system call for the request
block segment token to be returned.

See also: rq_receive_message, System Call Reference

8. Check the response field of the returned request block for exceptions.

9. Continue processing with the results from the request block.

10. Return to step 3. You need not repeat step 4 if the application uses the same data
buffers and keeps track of the pointers to them.

11. When the application is done with a particular user session, use the
cq_delete_comm_user call to release network resources. The application
should also release its other resources, such as mailboxes and request blocks,
using the appropriate resource management system calls.

If you use the same data buffers in subsequent calls to iNA 960, you need not repeat
the cq_comm_ptr_to_dword conversion. Use the same values in the request block
buffer fields after converting them to absolute addresses, then separately keep track
of the pointer values for these addresses.

Chapter 10 The Programmatic Interface112

The maximum number of response mailboxes in use by applications calling
cq_comm_rb is limited by the number of external mailboxes in MIP jobs. The
default value is 10. For an application that calls cq_comm_rb and uses a MIP job,
configure the MIP job increase the number to at least the number of mailboxes
created by the application. Use the NEM parameter on the appropriate MIP1, MIP2,
or MIPAT screen of the ICU. If the number of external mailboxes exceeds the
maximum configured value, an E_MBX_LIMIT (0FFF6H) exception is returned as a
response code in the request block.

In a COMMengine environment, if an application makes a cq_create_comm_user or
cq_comm_rb call and the iNA 960 COMMputer or MIP is not running, the system
will hang. To prevent this, look up the object INARDY in the root directory, with the
lookup_object system call. This object is cataloged when iNA 960 has been loaded
and is functioning. If this object does not exist, do not make cq_ calls.

Exception Handling
If you develop an iNA 960 application that sets up its own exception handler, you
must bind the application so that the local exception handler resides in the lower 64K
of the code segment. Otherwise, the internal cq_ routines that do a
get_exception_handler call followed by a set_exception_handler call will fail,
returning a code of 8003H.

Network User's Guide and Reference Chapter 10 113

System Calls to iNA 960
Table 10-1 lists the system calls you use to communicate with iNA 960 and the Name
Server. The following sections describe each iNA 960 system call. The descriptions
contain the calling syntax for both PL/M and C; the PL/M syntax is listed first.

Table 10-1. System Calls for Access to iNA 960 and the Name Server

Call Description

cq_comm_multi_status Returns NIC and iNA 960 status information from a specified
NIC

cq_comm_ptr_to_dword Converts a pointer to the corresponding 32-bit absolute
address

cq_comm_rb Delivers a request block to iNA 960 or to the Name Server for
processing

cq_comm_status Returns NIC and iNA 960 status information

cq_create_comm_user Creates a user ID for programmatic access to iNA 960

cq_create_multi_comm_user Creates a unique user ID for programmatic access to a
specified NIC and iNA 960 job

cq_delete_comm_user Releases all resources and returns all request blocks held on
behalf of a specified user ID

cq_comm_multi_status

Chapter 10 The Programmatic Interface114

cq_comm_multi_status
Returns NIC and iNA 960 software status information for a specific NIC. This
routine is not applicable in environments where the application and the iNA 960
software run on the same processor.

Syntax, PL/M and C

call cq$comm$multi$status (instance, name_ptr, host_id_ptr,
nic_status_ptr, except_ptr);

cq_comm_multi_status (instance, name_ptr, host_id_ptr,
nic_status_ptr, except_ptr);

Parameter PL/M Data Type C Data Type
instance WORD_16 unsigned short
name_ptr POINTER unsigned char *
host_id_ptr POINTER unsigned char *
nic_status_ptr POINTER unsigned short far *
except_ptr POINTER unsigned short far *

Parameters
instance

A value between 0 and 19 that specifies the NIC board that is returning the software
status information.

name_ptr
A pointer to a string containing the name, in ASCII, of the NIC.

host_id_ptr
A pointer to a 6-byte array containing the Ethernet address of the NIC.

nic_status_ptr
A pointer to the test number that failed. The high byte is the failed test number and
the low byte identifies the type of Multibus II test performed:

Low Byte Meaning
10H Microcontroller initialization check
11H Processor initialization check
12H Built-In Self Test (BIST)

except_ptr
A pointer to a variable declared by the application where the call returns a condition
code.

cq_comm_multi_status

Network User's Guide and Reference Chapter 10 115

Condition Codes

0000H NIC has not yet been initialized.

0001H NIC is in the run state.

0003H NIC has been reset.

0004H NIC failed to respond to a command (timeout).

0005H There are no NIC boards in the system.

0006H The specified NIC board is not in the system

00FFH NIC did not respond to a boot command.

0FFFEH Multi-NIC calls not supported by this system.

cq_comm_ptr_to_dword

Chapter 10 The Programmatic Interface116

cq_comm_ptr_to_dword
Converts a pointer to the corresponding 32-bit absolute address.

Syntax, PL/M and C

dw = cq$comm$ptrtodword (ptr, except_ptr);

dw = cq_comm_ptr_to_dword (ptr, except_ptr);

Parameter PL/M Data Type C Data Type
dw WORD_32 unsigned long
ptr POINTER void far *
except_ptr POINTER unsigned short far *

Return Value

dw The returned absolute address.

Parameters

ptr The pointer to convert.

except_ptr
A pointer to a variable declared by the application where the call returns a condition
code.

Additional Information

For request blocks to be sent to iNA 960, make this call to convert each pointer
before filling in pointer fields of the request block. iNA 960 request blocks that
reference data buffers must contain absolute physical addresses rather than pointers
to the buffers.

The size of data buffers referenced in the request block must not be larger than 64K
bytes.

Condition Codes

0000H No exceptional conditions.

0008H This function call is not part of the present configuration.

cq_comm_rb

Network User's Guide and Reference Chapter 10 117

cq_comm_rb
Delivers a request block to iNA 960 or to the Name Server for processing.

Syntax, PL/M and C

call cq$comm$rb (rb_token, except_ptr);

cq_comm_rb (rb_token, except_ptr);

Parameter PL/M Data Type C Data Type
rb_token SELECTOR selector
except_ptr POINTER unsigned short far *

Parameters
rb_token

The iRMX token for a segment containing a request block.

except_ptr
A pointer to a variable declared by the application where the call returns a condition
code. If a MIP exception occurs, the call returns an E_MIP_ERROR exception. This
means the actual error is indicated in the response field of the returned request
block, rather than in this field.

Additional Information

To request the services of iNA 960, an application first formats a request block of
parameters, then sends the request block with the cq_comm_rb system call. The
system call returns without waiting for the request block to be processed. The iNA
960 software receives the request block, executes the command, and writes values
into the request block. Then it returns the token for the request block's segment to a
mailbox specified in the request block itself. The application waits at the mailbox for
this token with a rq_receive_message system call. The application does not need to
catalog the return mailbox in any object directory.

The general format of a request block is shown below. Each iNA 960 command is
specified by an opcode and a subsystem value. The first nine fields are common to
all request blocks; the application must set these fields before calling cq_comm_rb.

Different iNA 960 commands have varying lengths of request block arguments
following the response field. The argument fields are described in the individual
commands in this manual. Initialize all reserved and unused fields to 0 before
sending a request block.

cq_comm_rb

Chapter 10 The Programmatic Interface118

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length;

selector user_id;

unsigned char resp_port;

selector resp_mbox;

selector rb_seg_tok;

unsigned char subsystem;

unsigned char opcode;

unsigned short response;

} RB_COMMON;

struct rb {

RB_COMMON header;

unsigned char args[];

};

reserved
Set to 0.

length The total number of bytes in the request block, which is 16 plus the length of the
arguments fields.

user_id
An identifier specifying the user issuing the command. This is the value returned
from the cq_create_comm_user or cq_create_multi_comm system calls.

resp_port
Specify 0FFH as the response port for an iRMX application.

resp_mbox
An iRMX token for the mailbox that receives a message when the request block is
returned.

rb_seg_tok
The iRMX token for the segment holding this request block.

cq_comm_rb

Network User's Guide and Reference Chapter 10 119

subsystem
A value specifying an iNA 960 subsystem, as shown below:

Value Subsystem

20H
Data Link for:

Boards with 82586 component, including first MIX560 board in the system
21H SBX 586 board, EWENET module, or EtherExpress™ 16
22H Second MIX560 board in the system
23H Third MIX560 board in the system
24H 82595TX component, EtherExpress™ PRO/10, SBC P5090 and P5120

PC-compatible boards, all versions
25H DEC 21143 component, SBC P5200 PC-compatible boards, all versions
2FH Multibus II subnet
40H Transport Virtual Circuit
41H Transport Datagram
50H Name Server
80H Network Management Facility (NMF)
81H NMF boot server commands: SUPPLY_BUFFER and TAKEBACK_BUFFER

opcode
A code that specifies a particular iNA 960 command.

See also: Following chapters for each command's opcode

response
Initialize to 0 before calling cq_comm_rb. If iNA 960 receives the request block, it
fills in the response code before returning the request block. The response code
indicates the success or failure of the command. Response codes applicable to each
command are listed in the individual command descriptions in this manual.

The MIP job can also return response codes in the request block, if an error occurs
while sending the request block to iNA 960. The existence of these response codes is
indicated by an E_MIP_ERROR in the except_ptr parameter of the cq_comm_rb
system call. Any other MIP errors will print to the screen and delete the network job.

0FFE8H The iRMX-NET software is not running yet. A problem occurred at
initialization that prevented the network job from coming up. Reboot the
system and look for error messages at initialization.

0FFECH All internal tables are currently full. Try the command again after a
request block is returned.

0FFF0H The MIP has encountered an unexpected iRMX error. Verify the OS
configuration.

cq_comm_rb

Chapter 10 The Programmatic Interface120

0FFF6H The limit for the number of available user mailboxes has been reached.
Change the limit with one of these methods:

• In an ICU-configurable system, increase the NEM parameter
(number of external mailboxes) in MIP configuration, and
regenerate the MIP job.

• Wait before sending the request to iNA until after a posted request
block has been returned.

0FFF8H A fatal, unrecoverable error has occurred in the MIP driver that
communicates with iNA, for one of these reasons:

• The request block was incorrectly formatted

• iNA 960 is not responding

• For Multibus I systems, the MIP request queues have been
overwritten

• There is a hardware failure

Verify that the request block is formatted correctly and that the iNA
transport software is functional. If the problem continues, reboot the OS
and try again.

0FFFAH iNA 960 is out of resources. Try the request later, after some posted
request blocks have been returned.

FFEEH (Multibus II only). MIP Driver Internal Buffer Management error. The
buffer size must be an even number of bytes.

See also: MIP Error Codes, Appendix E

Condition Codes

0000H No exceptional conditions.

00FFH The MIP driver is unable to deliver the request block to the iNA 960
software. See the request block response field for the error code returned
by MIP.

cq_comm_status

Network User's Guide and Reference Chapter 10 121

cq_comm_status
Returns NIC and iNA 960 software status information. This routine is not applicable
in environments where the application and the iNA 960 software run on the same
processor.

Syntax, PL/M and C

call cq$comm$status (name_ptr, host_id_ptr, nic_status_ptr,
except_ptr);

cq_comm_status (name_ptr, host_id_ptr, nic_status_ptr,
except_ptr);

Parameter PL/M Data Type C Data Type
name_ptr POINTER unsigned char *
host_id_ptr POINTER unsigned char *
nic_status_ptr POINTER unsigned short far *
except_ptr POINTER unsigned short far *

Parameters
name_ptr

A pointer to an iRMX OS string (RMX_STRING data type) containing the name, in
ASCII, of the NIC.

host_id_ptr
A pointer to a 6-byte array containing the Ethernet address of the NIC.

nic_status_ptr
A pointer to the test number that failed. If the low byte is less than 10H, then the
board is Multibus I and the byte value is the failed test number. If the low byte is
greater than or equal to 10H, then the high byte is the failed test number and the low
byte identifies the type of Multibus II test performed:

Low Byte Meaning
10H Microcontroller initialization check
11H Processor initialization check
12H Built-In Self Test (BIST)

except_ptr
A pointer to a variable declared by the application where the call returns a condition
code.

cq_comm_status

Chapter 10 The Programmatic Interface122

Condition Codes

0000H NIC has not yet been initialized.

0001H NIC is in the run state.

0003H NIC has been reset.

0004H NIC failed to respond to a command (timeout).

00FFH NIC did not respond to a boot command.

cq_create_comm_user

Network User's Guide and Reference Chapter 10 123

cq_create_comm_user
Creates a user ID for programmatic access to iNA 960.

Syntax, PL/M and C

comm$user = cq$create$comm$user (except_ptr);

comm_user = cq_create_comm_user (except_ptr);

Parameter PL/M Data Type C Data Type
comm_user WORD_16 selector
except_ptr POINTER unsigned short far *

Return Value
comm_user

A unique value representing the created user. Use this value in the user_id field of
request blocks.

Parameter
except_ptr

A pointer to a variable declared by the application where the call returns a condition
code.

Additional Information

Call cq_create_comm_user once before making any other cq_ calls. In all
subsequent calls to iNA 960 from this application, specify the value returned from
cq_create_comm_user in the user_id field of the request block.

This system call helps ensure that communication between iNA 960 and an
application job is gracefully released when the application terminates, for example,
when the user types <Ctrl-C>. The clean-up mechanism frees resources such as
virtual circuits. It also prevents iNA 960 from returning request blocks or delivering
data into memory that is no longer allocated to a terminated job.

Condition Codes

0000H No exceptional conditions.

cq_create_multi_comm_user

Chapter 10 The Programmatic Interface124

cq_create_multi_comm_user
Creates a user ID for programmatic access to iNA 960 associated with a specified
NIC.

Syntax, PL/M and C

comm$user = cq$create$multi$comm$user (instance, except_ptr);

comm_user = cq_create_multi_comm_user (instance, except_ptr);

Parameter PL/M Data Type C Data Type
comm_user WORD_16 selector
instance WORD_16 unsigned short
except_ptr POINTER unsigned short far *

Return Value
comm_user

A unique value representing the created user. Use this value in the user_id field of
request blocks.

Parameters
instance

A value between 0 and 19 that specifies the NIC board for which the user ID is
obtained.

except_ptr
A pointer to a variable declared by the application where the call returns a condition
code.

Additional Information

This system call helps ensure that communication between iNA 960 and an
application job is gracefully released when the application job terminates, for
example, when the user types <Ctrl-C>. The clean-up mechanism frees resources,
such as virtual circuits. It also prevents iNA 960 from returning request blocks or
delivering data into memory that is no longer allocated to a terminated job.

cq_create_multi_comm_user

Network User's Guide and Reference Chapter 10 125

The mechanism works like this:

1. The application job calls cq_create_multi_comm_user to obtain a unique user
ID token. This call should be made before any request blocks are sent to iNA
960.

2. The application includes the user ID token obtained from
cq_create_multi_comm_user in the user_id field of all request blocks.

3. When the application job is terminated (normally or abnormally) the OS invokes
an MIP clean-up mechanism that will free up all iNA 960 resources held on
behalf of the job's user ID. This includes virtual circuits and unreturned request
blocks.

Condition Codes

0000H No exceptional conditions.

0FFF4H NIC is off-line.

0FFFEH Multi-NIC calls not supported by this system.

cq_delete_comm_user

Chapter 10 The Programmatic Interface126

cq_delete_comm_user
Invokes the clean-up mechanism described under cq_create_comm_user and
cq_create_multi_comm_user, causing iNA 960 to release all resources (such as
virtual circuits) and return all request blocks held on behalf of a specified user ID.

Syntax, PL/M and C

call cq$delete$comm$user (rb_token, except_ptr);

cq_delete_comm_user (rb_token, except_ptr);

Parameter PL/M Data Type C Data Type
rb_token SELECTOR selector
except_ptr POINTER unsigned short far *

Parameters
rb_token

The iRMX token for the delete request block. The contents of a delete request block
are described below. A delete request block causes the iNA 960 software to delete all
pending requests, and then return all request blocks associated with the user specified
in the comm_user_id field of the delete request block. The request blocks are
returned to the iRMX mailbox specified in the resp_mbox field in the delete request
block.

except_ptr
A pointer to a variable declared by the application where the call returns a condition
code. If the condition code is 0FFH, check the response field of the delete request
block for the condition code.

cq_delete_comm_user

Network User's Guide and Reference Chapter 10 127

Additional Information

A delete request block has this format:

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length;

selector user_id;

unsigned char resp_port;

selector resp_mbox;

selector rb_seg_tok;

unsigned char subsystem;

unsigned char opcode;

unsigned short response;

} RB_COMMON;

struct delete_rb {

RB_COMMON header;

selector comm_user_id

};

reserved For the use of and filled in by the iNA 960 software. Set to 0.

length The length in bytes of the entire request block, including the reserved
and length fields. This field must be filled in by the user.

user_id A unique value associated with the resource management task making
the delete request. This is the value returned from a call to the
cq_create_comm_user or cq_create_multi_comm_user function in
the resource management task (not the user_id value associated with
the aborted application job). The field value must be filled in by the
user.

resp_port
Specify 0FFH as the response port for an iRMX application.

resp_mbox
An iRMX token for the mailbox that will receive a message when the request block is
returned.

rb_seg_tok
The iRMX token for the segment holding this request block.

subsystem
Zero must be filled in by the user.

opcode
Zero must be filled in by the user.

cq_delete_comm_user

Chapter 10 The Programmatic Interface128

response
A value returned by the iNA 960 software that indicates the result of the delete
request. A value in the range 0H through 80H and FFFEH identify iNA 960 errors
while a value in the FFxxH range (except FFFEH), identify a MIP error.

0FFF6H The limit for the number of available user mailboxes has been reached.
Change the limit with one of these methods:

• In an ICU-configurable system, increase the NEM parameter
(number of external mailboxes) in MIP configuration, and
regenerate the MIP job.

• Wait before sending the request to iNA until after a posted request
block has been returned.

0FFF8H A fatal, unrecoverable error has occurred in the MIP driver that
communicates with iNA, for one of these reasons:

• The request block was incorrectly formatted
• iNA 960 is not responding
• For Multibus I systems, the MIP request queues have been

overwritten
• There is a hardware failure

Verify that the request block is formatted correctly and that the iNA
transport software is functional. If the problem continues, reboot the OS
and try again.

0FFFAH iNA 960 is out of resources. Try the request later, after some posted
request blocks have been returned.

0FFFCH The port specified in the response_port field of the request block cannot
be used. Specify a different port and try again.

FFEEH (Multibus II only). MIP Driver Internal Buffer Management error. The
buffer size must be an even number of bytes.

See also: MIP Error Codes, Appendix E

cq_delete_comm_user

Network User's Guide and Reference Chapter 10 129

comm_user_id
The user_id value associated with the aborted application job. This is the value
returned from a call to the cq_create_comm_user or cq_create_multi_comm_user
function in the application job (not the user_id value associated with the resource
management task). The field value must be filled in by the user.

Application programs loaded dynamically under the iRMX HI rarely use this call,
because the clean-up mechanism is invoked automatically at the time the application
job is terminated. However, some applications, particularly if they are run as
background jobs, may find this call useful, such as when resetting themselves after a
catastrophic error.

The routine passes a special delete_request_block to the iNA 960 software. This
special delete request block releases the iNA 960 request blocks and internal iNA 960
resources associated with the specified application process.

After cq_delete_comm_user is called, the User ID token obtained from
cq_create_comm_user or cq_create_multi_comm_user is still valid. This means
that multiple cq_delete_comm_user calls can be made on this token.

Condition Codes

0000H No exceptional conditions.

00FFH The MIP driver is unable to deliver the request block to the iNA 960
software. See the request block response field for the error code returned
by MIP.

■■ ■■ ■■

cq_delete_comm_user

Chapter 10 The Programmatic Interface130

Network User's Guide and Reference Chapter 11 131

Using and Programming
the Name Server

This chapter covers the Name Server, which manipulates a distributed database of
network objects. The primary purpose of the Name Server is to correlate an OS-
defined or user-defined name with a numeric value, such as the network address of a
server system. This discussion assumes that you have read the introduction to the
Name Server earlier in this book.

See also: iRMX-NET Overview, Chapter 2

The procedures in this chapter include several iRMX-NET commands used to
manipulate the Name Server. The full syntax and explanation of these commands is
not covered here.

See also: Individual commands, Command Reference

Through the Name Server programming interfaces, an application can dynamically
add, delete, and inspect the network objects contained in the Name Server object
table. The application sends and receives request blocks using the cq_comm_rb call
to program the Name Server.

See also: Using the cq_ System Calls, Chapter 10

The Name Server Object Table
The Name Server's main function is to dynamically map the names of network
objects to their addresses. OpenNET networks are made up of many kinds of objects:
AUs, servers, clients, devices, and users. The network objects the Name Server deals
with most often are servers.

The Name Server operates as a distributed database. Each node on the network
maintains its own Name Server object table, where it lists information about network
objects. Several entries in the object table are placed there automatically when
iNA960/iRMX-NET software is initialized on a computer. These fixed entries
include the Ethernet address and details about the network implementation and the
computer architecture. You can add other local objects for resources on the local
node available to remote users, such as a file server or a virtual terminal server.

11

132 Chapter 11 Using and Programming the Name Server

If the network contains nodes that do not have Name Server capability, you can
catalog the node's server name and address in the local object table, making your
computer a spokesman for these objects. The only OpenNET nodes that require a
separate spokesman are UNIX systems earlier than SV-OpenNET R3.2.3.

Figure 11-1 shows the object table for an example node as displayed by the listname
command. Each entry in the Name Server object table contains the name, property
type (Property column), and property value (Value column) of a network object. The
first two sections in the figure are fixed entries. The last two sections are entries for
the iRMX-NET file server and client. These are not fixed entries and may appear in
the opposite order, depending on whether the server or client job loads first.

Name Property Unique PV_Type Value

FSTSAP 00000H NO SIMPLE 10 00H

FCTSAP 00001H NO SIMPLE 11 00H

INARELNUM 00004H NO SIMPLE 03H

INANLNUM 00004H NO SIMPLE 01H

NSCOMMENGINE 00004H NO SIMPLE FFH

TLCOMMENGINE 00004H NO SIMPLE 00H

The following entries depend on the number of subnets in the iNA 960 job. For
example, there can be up to 4 MYHOSTID entries, 1 for each subnet, where xx varies
from 01 to 04.

MYHOSTID 00004H NO SIMPLE 00 AA 00 02 57 86H

MYHOSTIDxx 00004H NO SIMPLE 00 AA 00 02 57 86H

INASUBNET 00004H NO SIMPLE 00 01H

INASUBNETxx 00004H NO SIMPLE 00 01H

The following entries are added by file servers from the /net/data file. The BSMB2
entry is for the server in slot 0 and the BSSLOT2 entry is needed by the client in slot
2 (note that the last two digits of addresses in the Value column are the slot number
for these entries).

RNETSRV 00004H NO SIMPLE 52 4E 45 54 53 52 56 00 AA 00

02 57 86H

BSMB2 00003H YES SIMPLE 0B 49 00 00 00 AA 00 02 57 86 FEH

00 02 10 00H

BSMB2 00005H YES SIMPLE 00 AA 00 02 57 86 00H

BSMB2 00006H YES SIMPLE 0B 49 00 00 00 AA 00 02 57 86 FEH

00 02 30 00H

BSSLOT2 00005H YES SIMPLE 00 01 00 AA 00 02 57 86 02H

NSDONE 00004H NO SIMPLE 52 4D 58 00 AA 00 02 57 86H

The following entry is for the client (file consumer), taken from the /net/data file.
MYNAME00 00002H NO SIMPLE 72 6D 78H

Figure 11-1. The Name Server Object Table

Network User's Guide and Reference Chapter 11 133

In the object table, Name means the name of the object, such as the server name
BSMB2 in this example.

The Property column lists the property type, a numeric code that tells what kind of
information is represented by the property value in the last column. Table 11-1 lists
the possible property types:

Table 11-1. Property Types for the Name Server

Property Type Meaning
0000H File Server TSAP ID
0001H File Consumer (client) TSAP ID
0002H Name of the client
0003H File Server Transport Address
0004H Configuration objects
0005H Host-unique ID
0006H Remote Launch Server Transport Address
0007H Reserved
0008H VT Server Transport Address
0009H - 7FFFH Reserved
8000H - FFFFH Available for applications

Property types 0, 1, 2, and 4 are for fixed entries, automatically added by iNA 960.
Objects that you or iRMX-NET add to the table generally have property types 3, 5,
6 and 8.

Unique indicates whether this combination of object name and property type are
unique on the network. The fixed entries are not unique; the object table on every
node in the network includes these objects. Other non-unique objects can be added to
the object table through the programmatic interface. Non-unique objects are, in
effect, local objects. Each computer can read the value of the object in its own object
table, but it cannot access the object with that name on a remote node. The Name
Server guarantees the uniqueness of any object entered through the Human Interface.
Before it accepts a new object, it checks all the other object tables on the network for
objects with the same name and property type.

SIMPLE in the PV_Type column means that the property value in the last column is
a simple string, rather than a complex structure in which each element is an object,
such as a mail list made up of network users. Structured property types are not
supported in iNA 960/iRMX-NET.

The Value column is the property value, a field containing specific information
about this object, usually based on the network address. For objects of property types
3, 6 and 8, the Value column contains the server's transport address. For objects of
property type 5, that column contains the host-unique ID, combining the Ethernet
address and a slot ID.

134 Chapter 11 Using and Programming the Name Server

Adding an Object to the Name Server Object Table
You can make entries in the object table by:

• Performing an automatic loadname command during system initialization. By
default, the iRMX-NET file server job is configured to do this.

• Invoking the loadname command on any iRMX-NET node.

• Invoking the setname command on any iRMX-NET server node.

• Using the ICU to configure the iRMX OS to perform an automatic setname
during system initialization, by setting the ICU's FSN parameter on the FS screen
to the name of the server.

• Adding entries programmatically with a Name Server ADD_NAME command.

Enter information for the setname command on the command line. For example, the
following command adds the name of the file server with the Ethernet address for the
second subnet configured into the iNA 960 job:

setname bsmb2_2 SNID2

Or, for a computer that is used strictly as a client node:

setname labsys2 HID

The loadname command, on the other hand, loads information from an input file,
typically /net/data. For convenience, loadname is most often used.

See also: setname and loadname commands, Command Reference;
ADD_NAME command, in this chapter

✏ Note
In a Multibus II system with boards that boot dependently, it is
important that you have a /net/data file with valid entries. The
client boards need the address of the server, and the existence of
this file enables an initialization sequence between the file server
and clients. See the NSDONE and RNETSRV parameters on page
145 for details.

Network User's Guide and Reference Chapter 11 135

Loading Objects from the :sd:net/data File
The :sd:net/data file is the input file for the loadname command. Typically, the only
entry you need in the file is the local file server (nfs) name. (See the first line in
Figure 11-2). You may need to add entries with the name and address of systems that
need a network spokesman or entries for a particular use by your application. For
example, you might want to store an iNA 960 transport address, which is a different
format than Name Server addresses. You can copy an existing net/data file
containing all required servers from another iRMX or UNIX system. If none is
available, copy and edit the example file, :sd:net/data.ex, or create the file yourself.

See also: Adding a Server to the Name Server Object Table, Chapter 3,
Transport addresses, Chapter 12

After you create the :sd:net/data file, invoke loadname to read the names and
property values of objects from the file and enter the information into the Name
Server object table. Each line in the file becomes one or two entries in the object
table. The next time you reboot the system, an automatic loadname loads the
information; you need not repeat the loadname at the command line.

136 Chapter 11 Using and Programming the Name Server

Editing the :sd:net/data.ex File

The example file, :sd:net/data.ex, is provided with the OS. Each line of the file is a
sample entry for a different network object. Figure 11-2 lists the data.ex file. The
fields in italic (including the # characters) are variables to be replaced with the
specific values for the object being entered. Each entry's first variable is based on the
type of object the template is intended for, including the OS and architecture of the
computer where the object resides.

Using data.ex as an example, add all the required servers to the \net\data file and
delete any unused example lines. Then invoke the loadname command.

local_name1/nfs: TYPE=rmx: ADDRESS=;

local_name2/nfs2: TYPE=rmx: ADDRESS=;

local_name3/nfs3: TYPE=rmx: ADDRESS=;

local_name4/nfs4: TYPE=rmx: ADDRESS=;

slot2: TYPE=PT0005: ADDRESS=ssss############02;

slot3: TYPE=PT0005: ADDRESS=ssss############03;

slot4: TYPE=PT0005: ADDRESS=ssss############04;

slot5: TYPE=PT0005: ADDRESS=ssss############05;

slot6: TYPE=PT0005: ADDRESS=ssss############06;

rmx_mb1_rsd: TYPE=PT0005: ADDRESS=ssss############00;

rmx_mb2_rsd: TYPE=PT0005: ADDRESS=ssss############$$;

rmx_mb2_msd: TYPE=PT0005: ADDRESS=ssssA2A4A6A8AA$$$$;

xnx_srv_i1/nfs: TYPE=xenix: ADDRESS=0X80000A00000001############000000;

xnx_srv_i2/nfs: TYPE=xenix: ADDRESS=0X80000A00000001############000000;

xnx_vts_i2/vts: TYPE=xenix: ADDRESS=0X40000A00000001############000000;

ndx_srv_i1/nfs: TYPE=indx: ADDRESS=0X80000A00000001############000000;

vms_srv_i1/nfs: TYPE=vms: ADDRESS=0X80000A00000001############000000;

vms_vts_i1/vts: TYPE=vms: ADDRESS=0X40000A00000001############000000;

unx_srv_i1/nfs: TYPE=unix: ADDRESS=0X80000A00000001############000000;

unx_srv1_i3/nfs: TYPE=unix: ADDRESS=0X80000A00000001############000000;

unx_vts_i3/vts: TYPE=unix: ADDRESS=0X40000A00000001############000000;

unx_srv2_i3: TYPE=PT0003: ADDRESS=0X80000A00000001############000000;

unx_mb2_srv/nfs: TYPE=unix: ADDRESS=0X80000A00000001############000000;

rmx_vts_mb1/vts: TYPE=rmx: ADDRESS=0X40000A00000001############000000;

rmx_vts_sl2/vts: TYPE=rmx: ADDRESS=0X40020A00000001############000000;

any_object: TYPE=PT####: ADDRESS=####...##########;

Figure 11-2. The :sd:net/data.ex File

Network User's Guide and Reference Chapter 11 137

Make substitutions in the data.ex file to create a /net/data file as follows:

local_name entries
For each subnet in a job, make an entry for the local server. Each name
must be unique. These entries do not require an Ethernet address
because that value is already stored in the local myhostidxx object.
These entries set the local server name for the file server, VT server,
and remote load server.

The entry followed by /nfs (or /nfs1, which has the same effect)
applies to the first subnet in a job. The entry followed by /nfs2

applies to the second subnet, etc. Use only the entries that apply to your
iNA 960 job. Any entries that do not apply revert to the first subnet.
For example, if you include local_name entries for /nfs3 and
/nfs4, but use a job with only two subnets, the names for the /nfs3
and /nfs4 objects are set to the Ethernet address of the first subnet.

See also: Chapter 9 for iNA 960 jobs with multiple subnets

slot entries
On a Multibus II system where other host boards share the local
Ethernet address, include entries for the other hosts, such as slot2-
slot6. The entries are not limited to six slots; specify the appropriate
names for hosts in slots on your system. Include entries like these
examples only when you do not use the Multibus II subnet, where every
board on the subnet has its own Ethernet address assigned.

In the ssss part of the address, substitute the subnet ID that applies. In
the ############ part, substitute the Ethernet (MAC) address,
followed by the slot number.

rmx_mb1_rsd and rmx_mb2_rsd entries
On a system where remote boot clients use the local hard disk of the
boot server, include entries for the boot client hosts. The entries are not
limited to clients in the same system. Specify the appropriate names for
the boot clients.

In the ssss part of the address, substitute the subnet ID that applies. In
the ############ part, substitute the Ethernet (MAC) address,
followed by the slot number (in place of $$) for boot clients in a
Multibus II slot. For boot clients in PCs or Multibus I systems, specify
00 for this last byte.

138 Chapter 11 Using and Programming the Name Server

rmx_mb2_msd entries
On a system where remote boot clients use the Multibus II subnet to
connect to the boot server in the same system, include an entry like this
for each boot client.

In the ssss part of the address, substitute the subnet ID that applies. In
the first $$, substitute the slot ID of the client as the last byte of the
special Multibus II MAC address. In the second $$, also substitute the
slot ID of the client.

xnx_srv_i1 through rmx_vts_sl2 entries
These are examples of how to specify file servers (/nfs) and remote
login VT servers (/vts) on other OSs. For example, you would replace
unx_mb2_srv with the server name of a UNIX server on Multibus II
and replace ############ with the Ethernet address.

any_object entry
This is a general-purpose example of how to specify an object in the
/net/data file. These entries require a 4-digit property type; choose one
from Table 11-1 on page 133. Instead of the Ethernet address alone,
specify the entire 34-digit transport address.

See also: Transport addresses, Chapter 12

Syntax of the :sd:net/data File

The general syntax of lines in the :sd:net/data file is:

name/object_type:TYPE=system:ADDRESS=net_address;

Where:

name The name of the network object being accessed on the system. The
name must follow the Name Server object-naming conventions.

object_type
An optional field representing the type of network object. If you
specify object type nfs or nfs1 through nfs4 (network file server), the
loadname command generates two entries; one for property type 3 and
one for property type 5. If you specify object type vts (virtual terminal
server), there is one entry for property type 8. The loadname command
ignores other object types.

system Identifies the system or property type of an object. The maximum
length of this field is six characters. If the object type is nfs or vts,
loadname ignores this field, but you can use the field to specify one of
the supported OSs unix or rmx (entered in either upper or lower case
characters).

Network User's Guide and Reference Chapter 11 139

If the object type is not nfs or vts, then you must specify the property
type in the system field as follows:

TYPE = PT property

Where PT indicates that the characters to follow represent the property
type, and:

property
A string of four hexadecimal digits representing the numeric
property type.

net_address
The value for the specified property type. The syntax example in the
data.ex file for other OSs such as Unix (unx_mb2_srv/nfs example) is a
transport address as follows (but without the separating spaces):

addr_id tsap 0A subnet E_net 000000;

Where:

addr_id
A two-character field indicating the format of the subsequent
address to be entered into the Name Server object table. The
two characters can be one of these two values:

0X Indicates that the subsequent data is used to
generate an iNA 960 transport address that
corresponds to the version of iNA 960 used in the
local system.

i1 Indicates that the subsequent address is to be
entered in iNA R1.3 format, irrespective of the iNA
960 release running on the NIC. This is necessary
for communicating from an iNA R1.3 client to an
iNA R3.0 server, because the iNA R1.3 client
cannot recognize the iNA R3.0 server address
format.

tsap The iNA 960 TSAP-ID for the server, from this list:

8000H for UNIX
1000H for iRMX Multibus I or PC Bus
10xxH for iRMX Multibus II, where xx represents the

slot ID of the server's host CPU
3000 for the rls type
4000 for the vts type

0A A constant for this form of address.

subnet A constant that identifies the subnet. For this form of address,
the value must always be 00000001 for iRMX and UNIX

140 Chapter 11 Using and Programming the Name Server

servers using an iNA 960 Null2 network layer. You cannot
substitute one of the subnet IDs used by the Multibus II subnet
versions of iNA 960.

E_net The 12-digit (6-byte) hexadecimal Ethernet address of the
NIC. This is the string shown as ############ in Figure 11-
2. To find the Ethernet address of a UNIX system, use the SV-
OpenNET enetinfo command.

000000 An unused field.

For example, if the address is for a VT server running on a Multibus II
board in slot 3, with Ethernet address 00AA00025A70, the
net_address would be:

0X40030A0000000100AA00025A70000000

You can omit the net_address field when specifying a local name. The syntax for
a local system name is:

name/nfs:TYPE=rmx:ADDRESS=;

The syntax of the address for property type 5 is:

subnet E_net slot

Where:

subnet The 4-digit (2-byte) hexadecimal subnet ID.

E_net The 12-digit hexadecimal address uniquely specifying an Ethernet NIC.

slot The 2-digit slot ID of the host CPU in Multibus II systems. For
Multibus I and PC Bus systems, this value is 00.

Network User's Guide and Reference Chapter 11 141

Other Name Server Operations
iRMX-NET commands can also remove objects from the object table, display local
Name Server information, and obtain information about other nodes on the network.

See also: Command Reference for details on commands described here

Deleting an Object from the Name Server Object Table
Objects remain in the object table until the system is rebooted or until they are
removed by the user that entered them. You can use deletename to remove an object
that was entered into the object table with the setname or loadname command. For
example:

deletename bsmb2

To remove all the objects in your :sd:net/data file from the object table, use the
unloadname command. This works like loadname, in reverse.

Obtaining Local Name Server Information
To see the Name Server object table on your computer, use the listname command.
Sample output of this command is shown in Figure 11-1.

Use the getaddr command to retrieve the Ethernet address of the local system. This
returns the value for the local object named myhostid.

If you use an iNA 960 job with multiple subnets, use the netinfo command to get the
Ethernet address and other information about all subnets in the job.

Obtaining Remote Name Server Information
Two commands allow you to get information about remote nodes. If you know the
server name, use the findname command with the L switch to find the Ethernet
address. For example:

findname unixs1 P=0008 L

The P=0008 is the property value for the virtual terminal server. If you do not
specify a property value, the command defaults to property type 5, the file server.

If you know the Ethernet address, use the getname command to return the name of
the server. This is the object name of property type 5 in that computer's object table.
For example:

getname A=00AA00025A70

If you do not include an Ethernet address, getname returns the local server name.

142 Chapter 11 Using and Programming the Name Server

Object Table Entries at Initialization
When an iRMX network system is loaded, the system is initialized with certain
entries in the Name Server object table. These fixed entries are not configurable. All
of the entries are used internally by the iRMX-NET subsystems; therefore, you must
not modify or delete the values. However, network applications can look up their
values, such as the Ethernet address of the system.

The initial fixed objects are non-unique; every Name Server object table on the
network contains them. Table 11-2 gives a definition of the objects, and each one is
explained in detail in the following pages. For the format of the object table entries,
see Figure 11-1 earlier in this chapter.

The server_name and MYNAMExx entries in Table 11-2 are not fixed. They are
configurable and are added to the object table by iRMX-NET when it initializes.

Table 11-2. Object Table Entries

Name
Property

Type Field Meaning

FSTSAP 0 The File Server TSAP-ID.

FCTSAP 1 The File Consumer TSAP-ID.

INARELNUM 4 The release number of the iNA 960 Software.

INANLNUM 4 Code for the Network Layer that is configured in the iNA 960
Transport Software.

NSCOMMENGINE 4 Indicates if the Name Server runs on the communications or host
board.

TLCOMMENGINE 4 Indicates if iRMX-NET runs in a COMMengine or COMMputer
environment.

MYHOSTIDxx 4 Ethernet address(es), where xx represents the first through fourth
subnet in the job.

INASUBNETxx 4 Subnet ID(s), where xx represents the first through fourth subnet
in the job.

server_name 3,5,6 File Server names.

MYNAMExx 4 The iRMX-NET client (File Consumer) name, where xx
represents the slot ID in a Multibus II system.

RNETSRV 4 The iRMX-NET server catalogs this object during its initialization.
RSD clients (boards that boot remotely) wait for the NSDONE
object below only if RNETSRV is cataloged.

NSDONE 4 The iRMX-NET server catalogs this object after loading entries
from /net/data so client systems can synchronize initialization.

Network User's Guide and Reference Chapter 11 143

FSTSAP This object indicates the File Server TSAP-ID. Although two bytes are
stored in the Name Server object table for the TSAP-ID, only the first
byte is valid. For an iRMX file server, it is 10H. The second byte is
always stored as a 0. iRMX-NET leaves the second byte set to 0 for
Multibus I and PC Bus systems. In Multibus II systems, iRMX-NET
overwrites the second byte with the slot ID of the host.

See also: TSAP addresses, Chapter 12

FCTSAP This object name represents the File Consumer (client) TSAP-ID. As
with FSTSAP, only the first byte is valid. For an iRMX client, it is
11H. The second byte is always stored as a 0. iRMX-NET leaves the
second byte set to 0 for Multibus I and PC Bus systems. In Multibus II
systems, iRMX-NET overwrites the second byte with the slot ID of the
host.

INARELNUM
This is the release number of the iNA 960 Transport software used with
iRMX-NET. The value of this entry is:

1 for iNA 960 Release 1.X
2 for iNA 960 Release 2.X
3 for iNA 960 Release 3.X

iRMX-NET only supports iNA 960 Release 3.X.

INANLNUM
This object represents the network layer configuration of the iNA 960
Transport Software. In ICU-configurable systems you can specify this
value in the NL parameter of the ICMPJ or IMIPJ screen. The value of
this entry is:

0 for the Null1 Network Layer
1 for the Null2 Network Layer
3 for the ES-IS Network Layer

The iNA 960 software supplied with the OS includes either the Null2 or
the ES-IS Network Layer.

See also: iNA 960 Network Layer Addressing Schemes, Chapter 8

144 Chapter 11 Using and Programming the Name Server

NSCOMMENGINE
This entry is a flag to indicate whether the Name Server runs on the
host board or the NIC. If this value is 0, then the Name Server runs on
the host board. If this value is 0FFH, the Name Server runs on the NIC.
On COMMengine systems the Name Server runs on the NIC, even
though this value is 0.

See also: Network Software Implementation, Chapter 7

TLCOMMENGINE
This object indicates whether iRMX-NET operates in the
COMMengine environment or in the COMMputer environment. If the
value is 0, the COMMengine environment is used. Otherwise, a
COMMputer is used.

MYHOSTIDxx
These entries contain the system's Ethernet addresses. If the job has
more than one subnet, there are multiple entries with the Ethernet
addresses for each subnet. The Ethernet address is obtained from the
iNA 960 Transport Software NMF layer, and entered by the Name
Server when the system is booted. This entry can be used by an
application to locate the Ethernet address of the system.

This object should not be confused with the property type 5 objects that
contain a host's unique ID. This object contains only the Ethernet
address. The property type 5 object contains a combination of Ethernet
address and slot-ID for Multibus II systems, and Ethernet address and
00 for Multibus I and PC Bus systems.

If an application uses a configuration of iNA 960 that does not contain
NMF, or if a non-Ethernet subnet is used, the value for this object can
be provided by the application. The Name Server makes a call to a
procedure called ns_get_host_id (which you can supply) if the call to
iNA 960's NMF layer fails.

INASUBNETxx
These entries contain the iNA 960 subnet IDs used in iNA 960 transport
addresses in the Name Server protocol packets. If the job has more than
one subnet, there are multiple INASUBNETxx entries with the IDs for
each subnet. The subnet ID is also used for transport addresses that are
loaded into the object table of the system. In ICU-configurable
systems, set the subnet ID(s) in the SN1 through SN4 parameters of the
ICMPJ screen.

Network User's Guide and Reference Chapter 11 145

server_name
These entries represent the name of the iRMX-NET File Server. On
iRMX for PCs or DOSRMX systems, set the server name in the rmx.ini
file. On ICU-configurable systems, set the name in the FSN parameter
of the FS screen. To add more names for servers, use the /net/data file.

MYNAMEslot-ID
This entry represents the name of the File Consumer (client) used by
iRMX-NET when making a connection with a remote file server. On
iRMX for PCs or DOSRMX systems, set the client name in the rmx.ini
file. On ICU-configurable systems, set the name in the CNN parameter
of the CDF screen. iRMX-NET adds the slot ID as the last byte in the
name in Multibus II systems. In Multibus I and PC systems, the slot ID
is replaced with a 0.

RNETSRV This entry is added by the file server when its initialization begins. This
value is used together with NSDONE below during a dependent boot
sequence.

NSDONE This entry is added by the file server once it has finished adding all the
entries from the /net/data file. In a Multibus II system where some
diskless boards boot dependently, iRMX-NET clients in any other slot
than the file server use this value to synchronize their initialization with
the file server. These clients attempt to synchronize using NSDONE
only if the RNETSRV object is cataloged by the file server.

▲▲! CAUTION
The NSDONE initialization mechanism occurs automatically as
long as there is a /net/data file with any entries in it. If you do not
have such a file or if it is empty, the dependent boot sequence fails.

146 Chapter 11 Using and Programming the Name Server

Location of the Name Server
The Name Server always runs with the iNA 960 software:

• In COMMengine systems, the Name Server runs on the NIC along with the iNA
960 transport software. The other iRMX-NET modules run on the host CPU
board along with the iRMX OS. In these systems, regardless of the OS, the
Name Server is preconfigured along with the iNA 960 download file.

Running the Name Server on Multibus II COMMengine systems facilitates the
presence of multiple hosts in the same chassis. One Name Server provides
services and acts as the spokesman for all hosts within the Multibus II system.

• In COMMputer systems all the network software, including the Name Server,
runs on the same CPU board as the iRMX OS. In DOSRMX and iRMX for PCs,
the Name Server is preconfigured into the iNA 960 job. In ICU-configurable
systems, you can configure Name Server values on the NS screen of the ICU.

See also: Name Server preconfigured values, Appendix A;
Overview of iRMX-NET Software, Chapter 7

Request Block Arguments
The Name Server commands listed in this chapter all use the same argument
structure following the common header fields in the request block. However, not all
of the commands use every field in the request block arguments. Each command
description lists which fields are input and output arguments. Initialize reserved
fields and unused fields to 0. The argument fields have this structure:

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr;

unsigned char unique_name_flag;

unsigned short property_type;

unsigned char property_value_type;

unsigned long pv_buffer_addr;

unsigned long extra_buffer_addr;

unsigned short extra_buffer_length;;

} NAME_SERVER_RB;

Where:

name_buffer_addr
An address that points to a buffer containing the name of the object.
The name has a maximum length of 16 characters.

Network User's Guide and Reference Chapter 11 147

unique_name_flag
A flag that indicates if the object is unique.

property_type
The property type of the object. This code specifies what type of
property value is stored in this object.

See also: Defined property types, ADD_NAME command

property_value_type
Indicates whether the property value is simple (00H) or structured
(01H). Structured property values are not supported; set this to 0.

pv_buffer_addr
An address that points to a buffer containing the property value. This
buffer can be up to 256 bytes long. The property value is the numeric
data associated with this object's name, typically a network address.

extra_buffer_addr
An address that points to a buffer where the Name Server returns
additional information for some commands. This buffer can be up to
4096 bytes long.

extra_buffer_length
The size of the extra buffer, in bytes.

✏ Note
For the addresses in the structure above, you must use the
cq_comm_ptr_to_dword call to convert pointers to addresses
before sending the request block in Name Server commands.

See also: Using Addresses in iNA 960 Request Blocks, Chapter
10

Example Software
The OS software includes an example application using the Name Server. See the
network example files under the /rmx386/demo directory.

148 Chapter 11 Using and Programming the Name Server

Name Server Commands
Table 11-3 lists the opcodes and command names for the Name Server functions.
Use the subsystem and opcode fields in the request block header (rb_common) to
specify the Name Server command. The command names are declared as literal
values in the include files for the Name Server; you can specify these command
names as opcodes.

See also: Include Files, Chapter 10,
Programming with Structures, Chapter 10

Table 11-3. Name Server Commands

Opcode Literal Description

0H ADD_NAME Adds a new object to the local object table.

08H ADD_SEARCH_DOMAIN Specifies subnet IDs the Name Server will search.

03H CHANGE_VALUE Changes the property value of an object in the
local object table.

01H DELETE_NAME Deletes all properties of an object from the local
object table.

04H DELETE_PROPERTY Deletes the property value of an object in the local
object table.

09H DELETE_SEARCH_DOMAIN Removes subnet IDs from the Name Server
search.

05H GET_NAME Returns the object name, given its property type
and value.

0AH GET_SEARCH_DOMAIN Returns subnet IDs currently enabled to search.

06H GET_SPOKESMAN Returns the Ethernet address for the local system.

02H GET_VALUE Returns the property value of an object.

07H LIST_TABLE Lists all objects in the local object table.

Network User's Guide and Reference Chapter 11 149

Table 11-3 lists response codes that can be returned in Name Server request blocks.

Table 11-4. Name Server Response Codes

Code Literal Meaning

01H OK_RESPONSE The operation was successful.

02H E_NAME_EXIST The object name with the specified property already
exists in the network.

04H E_NAME_NOT_EXIST The object name with the specified property does not
exist in the network.

06H E_BAD_NAME The object name in the request block is not valid (for
example, it is longer than 16 characters), or the name
buffer pointer does not point to a valid buffer.

08H E_PT_EXIST The property type specified for the object already exists in
the network.

0AH E_PT_NEXIST The property type specified for the object does not exist
in the network.

0CH E_BAD_PVT The specified property value type is invalid.

0EH E_BAD_PV The length of the specified property value exceeds the
configured maximum, or pv_buffer_ptr is not valid.

10H E_NSPACE The local object table is full; no new objects can be added
unless the size of the table is increased.

12H E_BUFF_SPACE The buffer supplied for returning parameters is too small.

14H E_NAME_OPCODE The opcode specified in the request block is invalid.

16H E_MAX_RESP The number of responses received by the Name Server
for the query exceeds the configured limit.

18H E_BAD_BUF_PTR The extra buffer pointer is not valid.

1AH E_NO_MEMORY No internal buffers are available. Try the function after
some outstanding Name Server RBs are returned.

1CH E_NO_DELETION Deletion is not allowed on this object; entries needed by
iRMX-NET cannot be deleted by applications.

1EH E_RB_FORMAT_BAD The request block is not formatted correctly.

ADD_NAME Name Server

150 Chapter 11 Using and Programming the Name Server

ADD_NAME
ADD_NAME adds a new object to the local Name Server object table and broadcasts
names over the network. The new object is composed of a name, a property type,
and a property value, which you supply as input parameters to the function.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user

*/

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 0H or ADD_NAME */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* input */

unsigned char unique_name_flag; /* input */

unsigned short property_type; /* input */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* input */

unsigned long extra_buffer_addr; /* not used */

unsigned short extra_buffer_length; /* not used */

} NAME_SERVER_RB;

Input Arguments
name_buffer_addr

An address that points to a buffer containing the name of the object, with this
structure. The maximum length is 16 bytes.

typedef struct name_buffer {

unsigned char name_length;

unsigned char name[1]; /* set to length */

} NAME_BUFFER;

Name Server ADD_NAME

Network User's Guide and Reference Chapter 11 151

unique_name_flag
Specifies whether the new object is unique (0FFH) or non-unique (0).

property_type
Specifies the type of property value stored in the new object, from these values:

Value Type
0000H File Server TSAP ID (used by iRMX-NET)
0001H File Consumer TSAP ID (iRMX-NET)
0002H Name of the consumer (iRMX-NET)
0003H File Server Transport Address (iRMX-NET)
0004H Configuration objects
0005H Host-unique ID
0006H Remote Launch Server Transport Address
0007H Reserved
0008H VT Server Transport Address (iRMX Virtual Terminal)
0009H - 7FFFH Reserved
8000H - FFFFH Available for applications

property_value_type
Set to 0.

pv_buffer_addr
An address that points to a buffer containing the property value for the new object,
with this structure:

typedef struct value_buffer {

unsigned short length;

unsigned char value[1]; /* set to length */

} VALUE_BUFFER;

Responses

Output Arguments

None

Response Codes

See Table 11-4 on page 149.

Additional Information

The Name Server responds with an E_BAD_NAME response code if the name
length is greater than 16 characters. The maximum length of the property value is a
Name Server configuration parameter. The Name Server responds with an
E_BAD_PV response code if the property value length exceeds the configured
maximum length.

ADD_NAME Name Server

152 Chapter 11 Using and Programming the Name Server

If the object already exists, either locally or remotely, the Name Server returns an
error. If you specify the new object as unique, the Name Server checks to see if the
same object is used elsewhere in the network; if so, it returns an error. For non-
unique objects, the Name Server checks to make sure the same object is not entered
as unique elsewhere in the network; if so, it returns an error.

Name Server ADD_SEARCH_DOMAIN

Network User's Guide and Reference Chapter 11 153

ADD_SEARCH_DOMAIN
ADD_SEARCH_DOMAIN adds new subnet IDs to the list of subnets the Name
Server searches to resolve a name into an address.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user

*/

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 8H or

ADD_SEARCH_DOMAIN */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* not used */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* not used */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* input */

unsigned long extra_buffer_addr; /* not used */

unsigned short extra_buffer_length; /* not used */

} NAME_SERVER_RB;

ADD_SEARCH_DOMAIN Name Server

154 Chapter 11 Using and Programming the Name Server

Input Arguments
property_value_type

Set to 0.

pv_buffer_addr
The address pointing to a buffer that holds the list of subnet IDs, with this structure:

struct domain_list_struct {

unsigned short length; /* overall */

unsigned char count;

unsigned short search_domain_list[1]; /* set to count */

} DOMAIN_LIST_STRUCT;

Where:

length The total number of bytes in length, count and the array of subnet IDs,
with a maximum value of 163.

count The number of entries in the list, with a maximum of 80.

search_domain_list

An array of subnet IDs to add to the search domain.

Responses

Response Codes

See Table 11-4 on page 149.

Additional Information

You can add up to 80 subnet IDs. The Name Server will search all the specified
subnets when you make a request to attach to a remote device. If your network has
iNA 960 subnets that are not on the Name Server search domain, the Name Server
will not make requests of those subnets. You can add subnet IDs that are not
currently in use, for future expansion, but searching unused subnet IDs slows down
the Name Server operations.

Name Server CHANGE_VALUE

Network User's Guide and Reference Chapter 11 155

CHANGE_VALUE
CHANGE_VALUE overwrites the existing property value of an object in the local
Name Server object table.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 3H or CHANGE_VALUE */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* input */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* input */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* input */

unsigned long extra_buffer_addr; /* not used */

unsigned short extra_buffer_length; /* not used */

} NAME_SERVER_RB;

CHANGE_VALUE Name Server

156 Chapter 11 Using and Programming the Name Server

Input Arguments
name_buffer_addr

An address that points to a buffer containing the object name whose property value is
to change. The buffer has this structure:

typedef struct name_buffer {

unsigned char name_length;

unsigned char name[1]; /* set to length */

} NAME_BUFFER;

property_type
The type of property value whose value is to change.

See also: Property types, ADD_NAME command

property_value_type
Set to 0.

pv_buffer_addr
An address that points to a buffer containing the new value for the property, with this
structure:

typedef struct value_buffer {

unsigned short length;

unsigned char value[1]; /* set to length */

} VALUE_BUFFER;

Responses

Output Arguments

None

Response Codes

See Table 11-4 on page 149.

Additional Information

You could accomplish the CHANGE_VALUE function by using the
DELETE_PROPERTY and ADD_NAME commands. However, ADD_NAME has
the additional overhead of broadcasting names over the network, which is not
necessary just to change the value of the property.

Name Server DELETE_NAME

Network User's Guide and Reference Chapter 11 157

DELETE_NAME
DELETE_NAME deletes the specified object and all properties associated with it,
from the local Name Server object table. To delete only one property of an object,
use DELETE_PROPERTY.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 1H or DELETE_NAME */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* input */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* not used */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* not used */

unsigned long extra_buffer_addr; /* not used */

unsigned short extra_buffer_length; /* not used */

} NAME_SERVER_RB;

Input Arguments
name_buffer_addr

An address that points to a buffer containing the name of the object to delete, with
this structure. The maximum length is 16 bytes.

typedef struct name_buffer {

unsigned char name_length;

unsigned char name[1]; /* set to length */

} NAME_BUFFER;

property_value_type
Set to 0.

DELETE_NAME Name Server

158 Chapter 11 Using and Programming the Name Server

Responses

Output Arguments

None

Response Codes

See Table 11-4 on page 149.

Name Server DELETE_PROPERTY

Network User's Guide and Reference Chapter 11 159

DELETE_PROPERTY
DELETE_PROPERTY deletes a property from the specified object. To delete all the
object's properties, use the DELETE_NAME command.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 4H or DELETE_PROPERTY */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* input */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* input */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* not used */

unsigned long extra_buffer_addr; /* not used */

unsigned short extra_buffer_length; /* not used */

} NAME_SERVER_RB;

DELETE_PROPERTY Name Server

160 Chapter 11 Using and Programming the Name Server

Input Arguments
name_buffer_addr

An address that points to a buffer containing the name of the object, with this
structure. The maximum length is 16 bytes.

typedef struct name_buffer {

unsigned char name_length;

unsigned char name[1]; /* set to length */

} NAME_BUFFER;

property_type
Specifies the type of property value to delete.

See also: Property types, ADD_NAME command

property_value_type
Set to 0.

Responses

Output Arguments

None

Response Codes

See Table 11-4 on page 149.

Name Server DELETE_SEARCH_DOMAIN

Network User's Guide and Reference Chapter 11 161

DELETE_SEARCH_DOMAIN
DELETE_SEARCH_DOMAIN removes subnet IDs from the list of subnets the
Name Server searches to resolve a name into an address.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 9H or

DELETE_SEARCH_DOMAIN */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* not used */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* not used */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* input */

unsigned long extra_buffer_addr; /* not used */

unsigned short extra_buffer_length; /* not used */

} NAME_SERVER_RB;

DELETE_SEARCH_DOMAIN Name Server

162 Chapter 11 Using and Programming the Name Server

Input Arguments
property_value_type

Set to 0.

pv_buffer_addr
The address pointing to a buffer that holds the list of subnet IDs, with this structure:

struct domain_list_struct {

unsigned short length; /* overall */

unsigned char count;

unsigned short search_domain_list[1]; /* set to count */

} DOMAIN_LIST_STRUCT;

Where:

length The total number of bytes in length, count and the array of subnet IDs,
with a maximum value of 163.

count The number of entries in the list, with a maximum of 80.

search_domain_list

An array of subnet IDs to remove from the search domain.

Responses

Response Codes

See Table 11-4 on page 149.

Name Server GET_NAME

Network User's Guide and Reference Chapter 11 163

GET_NAME
GET_NAME returns the name(s) of the object that has the given property type and
value.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 5H or GET_NAME */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* not used */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* input */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* input */

unsigned long extra_buffer_addr; /* in/out */

unsigned short extra_buffer_length; /* input */

} NAME_SERVER_RB;

Input Arguments
property_type

The type of property value for the object.

See also: Property types, ADD_NAME command

property_value_type
Set to 0.

GET_NAME Name Server

164 Chapter 11 Using and Programming the Name Server

pv_buffer_addr
An address that points to a buffer containing the property value, with this structure:

typedef struct value_buffer {

unsigned short length;

unsigned char value[1]; /* set to length */

} VALUE_BUFFER;

extra_buffer_addr
An address that points to a buffer where the Name Server will return a list of names
having the given property type and value.

extra_buffer_length
The size of the extra buffer in bytes.

Responses

Output Arguments

extra_buffer_addr
An address that points to the buffer where the Name Server returns a list of names,
with this structure:

typedef struct each_name {

unsigned char entry_length;

unsigned char entry_name[1];

} EACH_NAME;

struct extra_buffer {

unsigned short length; /* overall */

unsigned char count; /* of names */

EACH_NAME name_list[1] /* set to count */

};

Where:

count The number of entries in the list

name_list
The list of returned names. The first byte of each entry contains the
length of the name that follows.

Response Codes

See Table 11-4 on page 149.

Name Server GET_NAME

Network User's Guide and Reference Chapter 11 165

Additional Information

Since the Name Server enables you to enter different names for objects having the
same property type and value, more than one name may be returned for this function.
The request is retransmitted over the network and object names are collected and
returned by the Name Server.

The Name Server is preconfigured with values for the number of times the request is
retransmitted, the time interval between each retransmission, and the maximum
number of responses that can be handled by the Name Server. In ICU-configurable
systems you can configure these values with the RET, NR and RSP parameters on the
NS screen of the ICU.

If the number of responses is more than the configured maximum, the Name Server
returns an E_MAX_RESP response code. An E_BUFF_SPACE response code is
returned if the extra buffer length is too short to hold all names. However, in both
cases, the list of names will be valid. If E_BUFF_SPACE is returned, try the
function again with a larger buffer.

See also: Name Server configuration values, Appendix A

GET_SEARCH_DOMAIN Name Server

166 Chapter 11 Using and Programming the Name Server

GET_SEARCH_DOMAIN
GET_SEARCH_DOMAIN returns the list of subnet IDs that the Name Server is
enabled to search.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 0AH or

GET_SEARCH_DOMAIN */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* not used */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* not used */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* in/out */

unsigned long extra_buffer_addr; /* not used */

unsigned short extra_buffer_length; /* not used */

} NAME_SERVER_RB;

Name Server GET_SEARCH_DOMAIN

Network User's Guide and Reference Chapter 11 167

Input Arguments
property_value_type

Set to 0.

pv_buffer_addr
An address pointing to an application buffer where the Name Server will return the
list of subnet IDs. The buffer must be large enough to hold all possible subnet IDs;
its maximum size is 163 bytes.

Responses

Output Arguments

pv_buffer_addr
An address pointing to the application buffer where the Name Server returns the list
of subnet IDs, using this structure:

struct domain_list_struct {

unsigned short length; /* overall */

unsigned char count;

unsigned short search_domain_list[1]; /* set to count */

} DOMAIN_LIST_STRUCT;

Where:

length The total number of bytes in length, count and the array of subnet IDs,
with a maximum value of 163.

count The number of entries in the list, with a maximum of 80.

search_domain_list

An array of subnet IDs currently in the search domain.

Response Codes

See Table 11-4 on page 149.

GET_SPOKESMAN Name Server

168 Chapter 11 Using and Programming the Name Server

GET_SPOKESMAN
GET_SPOKESMAN finds the spokesman ID (Ethernet address) of the system whose
Name Server has cataloged the specified object.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 6H or GET_SPOKESMAN */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* input */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* input */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* not used */

unsigned long extra_buffer_addr; /* in/out */

unsigned short extra_buffer_length; /* in/out */

} NAME_SERVER_RB;

Input Arguments
name_buffer_addr

An address that points to a buffer containing the name of the object for which the
spokesman ID is required. The buffer has this structure.

typedef struct name_buffer {

unsigned char name_length;

unsigned char name[1]; /* set to length */

} NAME_BUFFER;

Name Server GET_SPOKESMAN

Network User's Guide and Reference Chapter 11 169

property_type
The property type of the object.

See also: Property types, ADD_NAME command

property_value_type
Set to 0.

extra_buffer_addr
An address that points to a buffer where the Name Server will return the Ethernet
address of the system where the object is cataloged.

extra_buffer_length
The size of the extra buffer in bytes. An Ethernet address is six bytes long.

Responses

Output Arguments

extra_buffer_addr
An address that points to a buffer holding the returned Ethernet address.

extra_buffer_length
The size of the extra buffer in bytes. The Name Server changes the length of the
extra buffer to the actual length of the returned value.

Response Codes

See Table 11-4 on page 149.

Additional Information

The GET_SPOKESMAN function finds the Name Server system where a given
object is entered. This information is particularly helpful for administering and
maintaining a network.

GET_VALUE Name Server

170 Chapter 11 Using and Programming the Name Server

GET_VALUE
GET_VALUE returns the property value of an object, which can be in either the local
Name Server object table or on another system.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 2H or GET_VALUE */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* input */

unsigned char unique_name_flag; /* input */

unsigned short property_type; /* input */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* in/out */

unsigned long extra_buffer_addr; /* not used */

unsigned short extra_buffer_length; /* not used */

} NAME_SERVER_RB;

Input Arguments
name_buffer_addr

An address that points to a buffer containing the name of the object, with this
structure. The maximum length is 16 bytes.

typedef struct name_buffer {

unsigned char name_length;

unsigned char name[1]; /* set to length */

} NAME_BUFFER;

Name Server GET_VALUE

Network User's Guide and Reference Chapter 11 171

unique_name_flag
A flag indicating whether to return a unique value for the object: 00H for non-unique
and 0FFH for unique. You may specify unique even if the object is stored as non-
unique; the command will return the value for only the local non-unique object. For
example, if you want the value for the local MYHOSTID object of type 4H, specify
unique in this field even though the MYHOSTID object is non-unique.

property_type
Specifies the type of property value to return.

See also: Property types, ADD_NAME command

property_value_type
Set to 0.

pv_buffer_addr
An address that points to a buffer where the Name Server returns the property value.
The structure of the value buffer depends on the value of unique_name_flag, but
in either case, set the length of the value buffer large enough to hold returned values
before issuing the request block.

typedef struct value_buffer {

unsigned short length;

unsigned char value[1]; /* set to length */

} VALUE_BUFFER;

When unique_name_flag is set to unique, the buffer has this structure:

typedef struct value_buffer {

unsigned short length;

unsigned char value[1];

} VALUE_BUFFER;

When unique_name_flag is set to non-unique, the buffer has this structure:

typedef struct each_value {

unsigned short value_length;

unsigned char value[1];

} EACH_VALUE;

typedef struct nu_value_buffer {

unsigned short length; /* overall */

unsigned char count;

EACH_VALUE value_list[1];

} NU_VALUE_BUFFER;

GET_VALUE Name Server

172 Chapter 11 Using and Programming the Name Server

Responses

Output Arguments

pv_buffer_addr
An address that points to the value buffer returned by the Name Server (see the
structures shown above). The count and value fields are filled in by the Name
Server.

Response Codes

See Table 11-4 on page 149.

Additional Information

The GET_VALUE function can retrieve the property value of a unique or non-unique
object. For a unique object, the returned value buffer contains just one property
value. For a non-unique object, the returned buffer contains a list of property values.
The Name Server obtains the list of values by retransmitting the request over the
network up to a configured maximum number of times, and collecting the responses
from various systems. The list of returned values for a non-unique object is shown in
the nu_value_buffer structure under the pv_buffer_ptr parameter above.

The Name Server is preconfigured with values for the number of times the request is
retransmitted, the time interval between each retransmission, and the maximum
number of responses that can be handled by the Name Server. In ICU-configurable
systems you can configure these values with the RET, NR and RSP parameters on the
NS screen of the ICU.

If a response is not received after retransmitting the request the maximum number of
times, the Name Server returns an E_NAME_NOT_EXIST response code. If the
number of responses received is more than the configured maximum, an
E_MAX_RESP response code is returned. However, in this case, property values
returned in the list are valid. A response code of E_BUFF_SPACE is returned if the
value buffer length is not sufficient to hold the property values.

See also: Name Server configuration values, Appendix A

Name Server LIST_TABLE

Network User's Guide and Reference Chapter 11 173

LIST_TABLE
LIST_TABLE lists all objects cataloged in the local Name Server object table.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of name_server_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 50H or NAME_SERVER */

unsigned char opcode; /* 7H or LIST_TABLE */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct name_server_rb {

RB_COMMON header;

unsigned char reserved[6];

unsigned long name_buffer_addr; /* not used */

unsigned char unique_name_flag; /* not used */

unsigned short property_type; /* not used */

unsigned char property_value_type; /* set to 0 */

unsigned long pv_buffer_addr; /* not used */

unsigned long extra_buffer_addr; /* in/out */

unsigned short extra_buffer_length; /* input */

} NAME_SERVER_RB;

Input Arguments
property_value_type

Set to 0.

extra_buffer_addr
An address pointing to a buffer that will hold the list of objects returned by the Name
Server.

extra_buffer_length
The size of the extra buffer in bytes.

LIST_TABLE Name Server

174 Chapter 11 Using and Programming the Name Server

Responses

Output Arguments

extra_buffer_addr
An address that points to the buffer where the Name Server returns the list of objects,
in this structure:

typedef struct each_object {

unsigned char name_length;

unsigned char name[1]; /* name_length */

unsigned char unique_name_flag;

unsigned short property_type;

unsigned char pv_type;

unsigned short pv_length;

unsigned char property_value[1]; /* pv_length */

} EACH_OBJECT;

struct list_buffer {

unsigned short length; /* overall */

unsigned char count;

EACH_OBJECT object_list[1]; /* set to count */

} LIST_BUFFER;

Where:

count The number of entries in the list.

object_list
An array of returned objects. For a description of the fields in the
each_object structure, see the request block fields in the
ADD_NAME command.

Response Codes

See Table 11-4 on page 149.

Additional Information

The LIST_TABLE function returns only the objects defined in the local object table.
It does not list objects cataloged on remote systems. The application must provide a
buffer large enough to hold all the returned names, property types and values. An
E_BUFF_SPACE response code indicates the buffer is too small; however, the list of
returned objects is valid.

■■ ■■ ■■

Network User's Guide and Reference Chapter 12 175

Programming the Transport Layer12
The iNA 960 Transport Layer provides message delivery or transport services
between application processes running on network end systems. The applications
send and receive request blocks using the Transport Layer, using the cq_comm_rb
call.

See also: Using the cq_ System Calls, Chapter 10

The applications are identified by transport service access point (TSAP) addresses,
consisting of a network service access point (NSAP) address and TSAP selectors. A
TSAP selector identifies the access point between the client process and the
Transport service.

See also: NSAP (Network Service Access Point), Chapter 8

✏ Note
This chapter refers to the application as a client, meaning it is a
client of the Transport service. This has no meaning in terms of the
client/server relationship between applications. Both client and
server applications are clients of the Transport service.

Transport Services
The Transport service provides these two types of message delivery services:

• A reliable connection-oriented virtual circuit (VC) message delivery service
between two TSAP addresses.

• A non-guaranteed connectionless datagram delivery service between one TSAP
address and another (point-to-point delivery), or between one TSAP address and
several other TSAP addresses (multicast delivery).

176 Chapter 12 Programming the Transport Layer

Table 12-1. Transport Layer Commands

Opcode Literal Description

4H ACCEPT_CONNECT_REQUEST Accepts the connection request after
the
AWAIT_CONNECT_REQUEST_CLIE
NT command

0DH AWAIT_CLOSE Notifies the client when a connection
is terminated

3H AWAIT_CONNECT_REQUEST_CLIENT Enables the application to directly
control whether a connection is
accepted

2H AWAIT_CONNECT_REQUEST_TRAN Permits the Transport service to
independently accept a connection
request

0CH CLOSE Closes a connection or indicates that
an incoming connection request is
being refused.

0H OPEN Sets up a CDB (connection database)
to manage a specific VC (virtual
circuit) connection between the
service client and the external process

16H RECEIVE_ANY Receives data by VC service using a
buffer that may be used by any CDB

7H RECEIVE_DATA Receives normal data by VC service
for a specific CDB

12H RECEIVE_DATAGRAM Receives datagrams

0AH RECEIVE_EXPEDITED_DATA Receives expedited data from the
remote node for a specific CDB

1H SEND_CONNECT_REQUEST Attempts to establish an active
connection to the remote node

5H SEND_DATA Sends data using normal VC service

11H SEND_DATAGRAM Sends data using datagram service

6H SEND_EOM_DATA Sends data using normal VC service
and marks EOM (end of message)

9H SEND_EXPEDITED_DATA Sends up to 16 bytes of data using
expedited VC delivery service

continued

Network User's Guide and Reference Chapter 12 177

Table 12-1. Transport Layer Commands (continued)

Opcode Literal Description

0EH STATUS Provides status information for VC
services from the Transport Layer and
for a specific CDB

13H WITHDRAW_DATAGRAM_RECEIVE_
BUFFER

Withdraws one or more datagram
receive buffers to reclaim resources

0BH WITHDRAW_EXPEDITED_BUFFER Withdraws one or more expedited VC
receive buffers to reclaim resources

8H WITHDRAW_RECEIVE_BUFFER Withdraws one or more normal VC
receive buffers to reclaim resources

Virtual Circuit Service
The VC Transport service uses the ISO 8073 standard Class 4 transport protocol
which provides these services:

Reliable Delivery Data on a VC is delivered to the destination in the exact
order it was sent by the source with no errors, duplicates or
losses, regardless of the quality of service available from the
underlying network service.

Data Rate Matching
(flow control)

The Transport service attempts to maximize throughput
while conserving communication subsystem resources by
controlling the rate at which messages are sent. This is based
on the availability of receive buffers at the destination and its
own resources.

Process Multiplexing Several processes can use the Transport service
simultaneously with no risk that progress or lack of progress
by one process will interfere with other processes.

Variable Length
Messages

Short or long messages can be arbitrarily submitted for
transmittal without regard for the minimum or maximum
network service data unit (NSDU) lengths supported by the
underlying network services.

Expedited Data
Service

Short, urgent messages can be transmitted ahead of the
normal messages by bypassing the normal flow control
mechanisms.

178 Chapter 12 Programming the Transport Layer

The Transport service provides these services by means of a connection or VC. A
pair of applications set up the connection (connection establishment phase), transfer
data (data transfer phase) and terminate or disconnect the connection (connection
termination phase) between themselves.

Example Software

The OS software includes an example application using the Transport VC services.
See the files under the /rmx386/demo/network directory.

Datagram Service
The datagram Transport service uses the ISO 8602 Connectionless Transport protocol
to transfer data between application processes without setting up a connection. This
service gives no guarantee of data delivery. Data may be lost or misordered. In
addition, data may be multicast at one time to a single destination or to several
destinations.

Buffers
Use of the Transport service requires passing address information and data back and
forth between the Transport service client and the Transport service. The application
loads address information and data into a buffer memory area, and then uses a 32-bit
addresses to specify the location of the buffers.

There are three types of buffers used by the Transport service:

• The TSAP Address Buffer

• Contiguous Buffers

• Noncontiguous Buffers

Buffer Addressing
If the Transport service client uses pointers to reference data buffers, the pointers
must be translated to physical addresses for use in request blocks. The client is
responsible for both the forward and reverse translation.

See also: Translating pointers, Chapter 10

Network User's Guide and Reference Chapter 12 179

TSAP Address Buffer
The TSAP address buffer holds both the local and remote address information to
establish a Transport service connection or transfer. The TSAP address buffer
consists of local NSAP and TSAP selectors, a remote NSAP address, and a remote
TSAP selector. The local TSAP selector describes the location of the local Transport
service client. The remote NSAP address identifies the remote node. This can be
either the remote end of the VC connection or the remote destination of a datagram.
A remote TSAP selector must be specified for an active connection to a remote
client.

The local network service access point ID (NSAP selector) specifies the access point
through which the Transport service gains the services of the Network Layer. The
local Transport service most often uses a default local NSAP selector, or optionally,
the application can specify one.

The formats for an NSAP address are specified in ISO 8348 Addendum 2. The
NSAP selector is usually 1 byte long and is the last byte of the NSAP address. The
length of an NSAP address or NSAP selector depends on the underlying network
service provided to the Transport service. For an iNA 960 Network Layer, the
application should always specify the NSAP selector value and an NSAP selector
length of 1 byte (do not allow either to default). The content of the NSAP address is
transparent to the Transport service, although the length must be known in order to
allocate memory that will be used to store the address.

The TSAP selector length has not been standardized (by ISO) since it depends on the
conventions of the Transport service client. For the iNA 960 Transport service the
TSAP selector length is 2 bytes. The maximum length TSAP selector in iNA 960 is
32 bytes.

The Transport service enables for variable length NSAP addresses, NSAP selectors,
and TSAP selectors. The Transport service client stores these values in a client-
defined buffer and gives the address of this buffer to the Transport service.

This structure logically illustrates the contents of a TSAP address buffer allocated by
a Transport service client. For the actual structure see Figure 12-1 or the cqtransp.h
or cqtransp.lit include files. The local NSAP selector is usually defaulted, with
loc_nsap_sel_len set to zero, and the loc_nsap_sel field does not appear in
the typedef for the structure ta_buffer. In this case, the Transport service depends
on the Network Layer to maintain the default local NSAP.

180 Chapter 12 Programming the Transport Layer

struct TSAP_address_buffer {

unsigned char loc_nsap_sel_len;

unsigned char loc_nsap_sel [loc_nsap_sel_len];

unsigned char loc_tsap_sel_len;

unsigned char loc_tsap_sel [loc_tsap_sel_len];

unsigned char rem_nsap_addr_len;

unsigned char rem_nsap_addr [rem_nsap_addr_len];

unsigned char rem_tsap_sel_len;

unsigned char rem_tsap_sel [rem_tsap_sel_len];

};

The client must be aware of the lengths and formats of the NSAP addresses used to
specify the remote ends of a connection or datagram transfer. The client loads the
length of the NSAP address into the remote NSAP address length field and allocates
enough space in the TSAP address buffer to load the address.

Application processes communicating using the Transport service must agree on
formats and lengths of NSAP/TSAP selectors. The lengths are loaded into the
appropriate TSAP address buffer length fields where enough buffer space has been
allocated to accommodate them. Limits on the maximum lengths of the NSAP
address and TSAP selectors are configured into the iNA 960 software.

Use of NSAP or TSAP selectors in an address is optional. A null NSAP or TSAP
selector is one with a length of 0. In this case, there is no corresponding content field
in the TSAP address buffer. On transmission, a null local NSAP selector relies on
the underlying Network Layer to provide a default NSAP selector for transmitting the
transport protocol data units (TPDUs).

The default remote NSAP selector for iNA Network layers in the rem_nsap_sel
field in remote_nsap_address is a 1-byte NSAP selector set to 0. An NSAP
selector of 0 specifies the Null2 addressing scheme. A nonzero NSAP selector
specifies the IP addressing scheme. Null local or remote TSAP selectors cause the
Transport service to use a default TSAP selector value. This value is determined by
the Transport Layer configuration. Incoming connect requests or connect confirm
TPDUs that don't have TSAP selectors in them also cause the Transport service to
use a default TSAP selector value. A connection with a null TSAP selector listens
for default incoming TSAP selectors.

See also: iNA Network Layer Addressing Schemes, Chapter 8,
Configuration values, Appendix A

Network User's Guide and Reference Chapter 12 181

Figure 12-1 shows a sample transport address as it might appear in the iRMX
:sd:net/data file. Your application could use the structures in Figure 12-1 to fill a
TSAP address buffer with such an address. The numbers above elements of the
address correspond to the numbers at the end of lines in the structure declarations.
This is an example of a fully specified TSAP address.

See also: :sd:net/data file, Chapter 11,
LSAP Identifiers, Chapter 13

1 2 3 4 5 6 7 8 9 10 11

node_1:address=0x 00 02 4141 0B 49 0003 00AA000003A2 FE 00 02 4141;

struct nsap_addr {

unsigned char afi; /* 5 */

unsigned short subnet; /* 6 */

unsigned char host_id[6]; /* 7 */

unsigned char lsap_sel; /* 8 */

unsigned char nsap_sel; /* 9 */

} NSAP_ADDR;

struct ta_buffer {

unsigned char loc_nsap_sel_len; /* 1, set to zero */

unsigned char loc_tsap_sel_len; /* 2 */

unsigned char loc_tsap_sel [loc_tsap_sel_len]; /* 3 */

unsigned char rem_nsap_addr_len; /* 4 */

NSAP_ADDR rem_nsap_addr;

unsigned char rem_tsap_sel_len; /* 10 */

unsigned char rem_tsap_sel [rem_tsap_sel_len]; /* 11 */

};

Figure 12-1. TSAP Address Format

182 Chapter 12 Programming the Transport Layer

Table 12-2 shows valid and invalid values for the fields in the TSAP address buffer
structure, ta_buffer, for active and passive connections.

Table 12-2. TSAP Address Buffer Field Values

Address Buffer Field Active Connection Passive Connection

loc_nsap_sel_len

= 0 Valid 1 Valid 1

= 1 Valid Valid

loc_nsap_sel

= 0 Valid 2 Valid 2

≠ 0 Valid 2 Valid 2

loc_tsap_sel_len

= 0 Valid 1 Valid 1

= 2 Valid 3 Valid 3

loc_tsap_sel

= 0 Invalid Invalid

≠ 0 Valid Valid

rem_nsap_addr_len

= 0 Invalid Invalid

≠ 0 Valid 4 Valid

rem_nsap_addr

= 0 Invalid Valid 5

≠ 0 Valid Valid

rem_tsap_sel_len

= 0 Valid 1 Valid 1

= 2 Valid 6 Valid

rem_tsap_sel

= 0 Invalid Valid 7

≠ 0 Valid Valid

1 Use configuration default
2 Depends on Transport Layer configuration
3 Only if loc_tsap_sel ≠ 0
4 Only if rem_nsap_addr ≠ 0
5 NSAP address is unspecified and TSAP address is unspecified or partially specified

depending on value of rem_nsap_addr
6 Only if rem_tsap_sel ≠ 0
7 Only if NSAP address is unspecified (rem_nsap_addr = 0)

Network User's Guide and Reference Chapter 12 183

TSAP addresses are either specified, partially specified, or unspecified depending on
the contents of the TSAP address buffer.

Fully specified
TSAP address

Required for active connections and has specified the loc_tsap_sel,
rem_nsap_addr, and rem_tsap_sel fields with these values:

loc_nsap_sel_len = 0 or 1

loc_tsap_sel_len = 0 or 2

loc_tsap_sel ≠ 0

rem_nsap_addr_len ≠ 0

rem_nsap_addr ≠ 0

rem_tsap_sel_len ≠ 0

rem_tsap_sel ≠ 0

Partially specified
TSAP address

Works only with passive connections and has these values:

loc_nsap_sel_len = 0 or 1

loc_tsap_sel_len = 0 or 2

loc_tsap_sel ≠ 0

rem_nsap_addr_len ≠ 0

rem_nsap_addr = 0

rem_tsap_sel_len = 0 or 2

rem_tsap_sel ≠ 0

Unspecified TSAP
address

Works only with passive connections and has these values:

loc_nsap_sel_len = 0 or 1

loc_tsap_sel_len = 0 or 2

loc_tsap_sel ≠ 0

rem_nsap_addr_len ≠ 0

rem_nsap_addr = 0

rem_tsap_sel_len = 2

rem_tsap_sel = 0

Use these guidelines for specifying addresses:

• Unspecified means that the address or selector value, not the length, is zero.

• Unspecified local TSAP selectors are invalid.

• Using fully specified NSAP addresses with unspecified remote TSAP selectors is
invalid.

184 Chapter 12 Programming the Transport Layer

Contiguous Buffers
With the VC service, the transport protocol enables the optional transfer of a small
amount of data during the connection establishment and termination phases. Up to 32
bytes of data can be transferred during the connection establishment phase
(SEND_CONNECT_REQUEST and AWAIT_CONNECT_REQUEST commands)
and up to 64 bytes of data can be transferred during the connection termination phase
(CLOSE command). To transfer data during these phases, the Transport service
interface requires that a single contiguous buffer block be allocated in application
memory to send or receive the data.

The iNA 960 software follows certain rules regarding the transfer of data during the
connection establishment and termination phases, depending on the values of buffer
length (client_data_len) and address (client_data_buf_addr) fields
specified in the iNA 960 command request block. These rules are used by the iNA
960 software:

• If client_data_len = 0, no data is sent. Data can be received if
client_data_buf_addr ≠ 0.

• If client_data_len ≠ 0, data of specified length is sent.

• If client_data_buf_addr = 0, no data is sent or received.

• If client_data_buf_addr ≠ 0, data may or may not be sent depending on the
value of client_data_len.

Regardless of the value of client_data_len for data to be sent, data may be
received and can be up to 64 bytes in length. Therefore, client_data_buf_addr
should always point to the start of a contiguous 64 byte block.

Noncontiguous Buffers
For transferring data through VCs or datagrams, the application may allocate
multiblock noncontiguous buffers to hold the data. The buffers are set up as an array
of structures of this type within the request block. The address of each buffer in the
array must be converted from a pointer to a 32-bit physical address before sending
the request block to iNA 960.

typedef struct data_block {

unsigned long address;

unsigned short length;

} DATA_BLOCK;

Network User's Guide and Reference Chapter 12 185

ISO Reason Codes
Table 12-3 lists the ISO reason codes that can be returned in a request block when a
transport connection is disconnected. The reasons are defined as constants in the
include files.

Table 12-3. ISO Reason Codes

Code (Decimal) Reason

0 NOT_SPECIFIED

1 CONGESTION_AT_TSAP

2 CLIENT_NOT_ATTACHED_TO_TSAP

3 ADDRESS_UNKNOWN

80H 128 CLIENT_DISCONNECT (Normal disconnect started by client)

81H 129 CONNECT_REQ_TRANSPORT_CONGESTION (Remote
transport service congestion at connect request time)

82H 130 CONNECT_NEGOT_FAILURE (Connection negotiation failed; for
example, the proposed classes are not supported)

83H 131 DUPLICATE_CONNECTION

84H 132 MISMATCHED_REFS (connection references)

85H 133 PROTOCOL_ERROR

87H 135 REFERENCE_OVERFLOW

88H 136 CONNECTION_REQ_REFUSED (On this network connection)

8AH 138 INVALID_LENGTH (of header or parameter)

Virtual Circuit Commands
Establishing and using a VC connection encompasses three different operational
phases:

1. Connection Establishment Phase

2. Data Transfer Phase

3. Connection Termination Phase

There are Transport commands for each phase that enable the Transport client to
establish a connection to a remote node, transfer data, and then terminate the
connection. The Transport service also provides a command to query the status of a
connection.

186 Chapter 12 Programming the Transport Layer

Commands to Establish a Connection
The connection establishment commands enable a Transport service client to open
and maintain a connection to a remote node. They are:

OPEN
SEND_CONNECT_REQUEST
AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT
ACCEPT_CONNECT_REQUEST

The OPEN command sets up an internal memory resource to manage a VC
connection between the Transport service client and the external process. A memory
segment called a connection database (CDB) is allocated by the OPEN command to
help manage the connection. The CDB contains information that reflects the current
state of an open connection.

Once the CDB is allocated, the Transport service client may attempt to establish an
active connection to the remote node using the SEND_CONNECT_REQUEST
command. Such a request is referred to as an active open.

To use the VC to passively listen for an incoming connection request (as the remote
node would have to), the application can permit the Transport service to
independently accept a connection request by using the
AWAIT_CONNECT_REQUEST_TRAN command.

To directly control whether the connection is accepted, the application can instead
use the AWAIT_CONNECT_REQUEST_CLIENT command. To accept the
connection request after completion of an
AWAIT_CONNECT_REQUEST_CLIENT command, the application uses an
ACCEPT_CONNECT_REQUEST command. This establishes an active connection.

Commands for the Data Transfer Phase
These data transfer commands enable a Transport service client and a remote process
to exchange expedited or normal data after the successful completion of the
Connection Establishment Phase.

SEND_DATA
SEND_EOM_DATA
RECEIVE_DATA
WITHDRAW_RECEIVE_BUFFER
SEND_EXPEDITED_DATA
RECEIVE_EXPEDITED_DATA
WITHDRAW_EXPEDITED_BUFFER
RECEIVE_ANY

Network User's Guide and Reference Chapter 12 187

Normal (nonexpedited) data is presented to the Transport service for transmission as
arbitrarily long messages called Transport Service Data Units (TSDUs). When the
data is received by the remote Transport service, it is passed to receive buffers posted
by the client, if buffers are available. If a buffer is filled before the end of the TSDU,
it is returned to the client. When the end of the TSDU is buffered, the buffer is
returned even if it is not filled. Such a return buffer is marked EOM (end of
message) to indicate the end of the TSDU to the client. Thus, the Transport service
guarantees no more than one TSDU is returned in a client's buffer.

Expedited data takes the form of short urgent messages that have a higher
transmission priority than normal data. The normal flow control mechanisms of the
Transport service are bypassed in order to transmit expedited data ahead of any
normal data. There is a configured limit of 16 bytes for the amount of expedited data
that may be transferred or received.

Posting Receive Buffers for Virtual Circuits

Some data transfer commands post receive buffers, which the Transport service uses
to store data received over a specific VC connection.

The Transport service relies on the application to post all receive buffers for data
received for a VC. Use these guidelines to manage receive buffers:

• Data received on one connection cannot use a buffer specifically posted for
another connection.

• Multiple buffers can be posted (except with the RECEIVE_ANY command) in a
single command using the num_blks argument, but they will all belong to the
same TSDU.

• The RECEIVE_ANY command can be used to post a buffer that is not
referenced to a specific connection, but is referenced to a list of up to 20
connections. If data is received on a connection for which there is no specific
buffer posted, and the connection is in the reference list for a buffer posted by
RECEIVE_ANY, the data is placed in that buffer.

• Only one buffer can be posted per RECEIVE_ANY command. Multiple buffers
must be posted with multiple RECEIVE_ANY commands.

The VC service supports both normal and expedited data services. Receive buffers
for normal data are posted and maintained separately from receive buffers for
expedited data.

188 Chapter 12 Programming the Transport Layer

Commands to Terminate a Connection
Connection termination commands enable a Transport service client to terminate an
open or active VC connection. Terminating an active VC also terminates any activity
on the connection during the data transfer phase. The commands are:

CLOSE
AWAIT_CLOSE

✏ Note
Connection termination is not graceful; data in transit may be lost.

The CLOSE command closes a connection or may serve as an indication that an
incoming connection request is being refused by the Transport service client, after an
AWAIT_CONNECT_REQUEST_CLIENT command.

The AWAIT_CLOSE command is used by a client to ensure that the client is notified
when a connection is terminated.

Datagram Commands
The datagram commands enable a local Transport service client and a remote user
process to exchange datagram messages. These are the datagram commands:

SEND_DATAGRAM
RECEIVE_DATAGRAM
WITHDRAW_DATAGRAM_BUFFER

Transmission of datagrams using these commands does not guarantee that the
datagram messages will arrive at their destination in the order that they were sent, nor
do they guarantee that the datagrams will arrive at all. The receiver of a datagram
transmission must post the necessary receive buffers.

Network User's Guide and Reference Chapter 12 189

Posting Receive Buffers for Datagrams
The Transport service relies on the application to post all receive buffers for data
received from a remote Transport service using the datagram service. The posted
buffer is available only to a specific TSAP. Only datagrams addressed to that TSAP
can use that buffer for passing data.

The data in each datagram sent by the Transport service is a self-contained entity. If
the total datagram buffer space available for a TSAP is less than the length of data
received in the datagram, the datagram is discarded with no data buffered.
Otherwise, the data is buffered. Data from one datagram can be buffered in one or
more posted receive buffers. The request block for the buffer containing the last byte
of data in the received datagram has a response code indicating that this buffer is the
end-of-message (EOM). The EOM buffer is returned when the last data of the
datagram is buffered, even if space remains in the buffer. Thus, a returned buffer can
contain data from no more than one received datagram.

Datagram receive buffers are posted and maintained separately from VC receive
buffers.

Transport Service Commands
The Transport service commands in this chapter are specified by the subsystem and
opcode fields in the request block header, rb_common. The commands use similar
argument structures following the common header fields. Each command description
lists which fields are input and output arguments. Initialize reserved fields and
unused fields to 0. The structures are provided as typedefs in the include files for the
Transport Layer.

See also: Include Files, Chapter 10,
Programming with Structures, Chapter 10

ACCEPT_CONNECT_REQUEST Transport Virtual Circuit

190 Chapter 12 Programming the Transport Layer

ACCEPT_CONNECT_REQUEST
ACCEPT_CONNECT_REQUEST indicates the application's acceptance of the
Transport connection specified by the reference. This is the positive response to a
previously returned AWAIT_CONNECT_REQUEST_CLIENT request block. The
application can return an optional buffer of client data with the connection
confirmation in a contiguous buffer. This command is only used by an application
that has received a response to an AWAIT_CONNECT_REQUEST_CLIENT
command. The AWAIT_CONNECT_REQUEST_TRAN command does not
provide the option of accepting or rejecting a connection.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of conn_req_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 4H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct conn_req_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[4];

unsigned short ack_delay_estimate; /* output */

unsigned long ta_buffer_addr; /* output */

unsigned short persistence_count; /* unused */

unsigned short abort_timeout; /* unused */

unsigned short reference; /* input */

unsigned char qos; /* unused */

unsigned short negot_options; /* output */

unsigned long client_data_buf_addr; /* in/out */

unsigned char client_data_len; /* in/out */

} CONN_REQ_RB;

Transport Virtual Circuit ACCEPT_CONNECT_REQUEST

Network User's Guide and Reference Chapter 12 191

Input Arguments
reference

Identifies the CDB this request applies to.

client_data_buf_addr
An address descriptor that identifies a contiguous 64-byte buffer. If the address is
zero, no buffer is allocated and there is no client data sent with the request. Also, no
data will be received. To send client data with the request, the buffer address and
length must be nonzero and the data (0 to 32 bytes) must be loaded in the buffer.

client_data_len
The number of bytes of data to send.

Responses

Output Arguments

iso_reason_code
The ISO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
this argument is 0.

See also: Table 12-3 on page 185

ack_delay_estimate
0 is always returned.

ta_buffer_addr
An address pointing to a TSAP address buffer that identifies the local and remote end
nodes of a VC connection.

See also: TSAP address buffer structure, page 180

negot_options
The agreed-upon negotiation options.

See also: negot_options, AWAIT_CONNECT_REQUEST_CLIENT and
AWAIT_CONNECT_REQUEST_TRAN commands

ACCEPT_CONNECT_REQUEST Transport Virtual Circuit

192 Chapter 12 Programming the Transport Layer

client_data_buf_addr
If the connection attempt was successful and a buffer was allocated, the request block
will return in the buffer any data (at most 32 bytes) contained in the connection
confirmation received from the remote Transport service. If the connection attempt
was rejected by the remote Transport service and the local Transport service gives
up, the request block will return in the buffer up to 64 bytes of any data contained in
the disconnect request from the remote Transport service. The received data
overwrites any data in the buffer that was sent in the request block.

client_data_len
The length of any data received.

Response Codes

OK_RESPONSE 1H The connection just became established on
completion of the three-way handshake.

UNKNOWN_REFERENCE 6H The CDB corresponding to this reference is not
allocated.

OK_CLOSED_RESP 7H The local client aborted the connection before
completion of the three-way handshake.

BUFFER_TOO_LONG 0AH More than 32 bytes of client data were sent. The
connection maintains its current state awaiting
another local client response.

REM_ABORT 0EH The remote Transport service aborted the
connection before completion of the three-way
handshake.

LOC_TIMEOUT 10H The local Transport service timed out before
completion of the three-way handshake. The
connection was aborted.

DUP_REQ 14H This is a duplicate connection response. The
connection is already established. This error can
occur if this call is made for a connection for
which a connection request has not previously
been returned to the client.

Transport Virtual Circuit AWAIT_CLOSE

Network User's Guide and Reference Chapter 12 193

AWAIT_CLOSE
AWAIT_CLOSE requests notification that a specified connection has terminated.
An ISO reason code is returned to indicate the cause of the disconnection.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 0DH*/

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* in/out */

unsigned short length; /* in/out */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[15];

unsigned short reference; /* in/out */

unsigned char qos; /* unused */

unsigned short buf_len; /* output */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1]; /* [num_blks] */

} VC_RB;

AWAIT_CLOSE Transport Virtual Circuit

194 Chapter 12 Programming the Transport Layer

Input Arguments
reference

Identifies the CDB this request applies to.

num_blks
The number of separate buffers to be received. Each buffer is a block of contiguous
memory defined by the data_blk_list[i].address and
data_blk_list[i].length arguments. Set to 0 if no buffer is allocated. In this
case, client data received in a disconnect request is ignored.

data_blk_list[i].address
The address descriptor for the start of the ith buffer.

data_blk_list[i].length
The length of the ith buffer. The total length of data in all blocks cannot exceed 64
bytes.

Responses

Output Arguments

iso_reason_code
The ISO reason code received in the disconnect request.

See also: Table 12-3 on page 185

reference
The reference for the connection that was deleted.

buf_len
The total length of the data received in the buffers posted by this command.

data_blk_list[i].address
The address for the start of the ith buffer.

data_blk_list[i].length
This value is the length of the data in the last posted buffer to receive data. It is only
meaningful for that buffer.

Response Codes

UNKNOWN_REFERENCE 6H The reference does not correspond to an allocated
CDB.

OK_CLOSED_RESP 7H The local client aborted the connection or the
connection was already closed when this
command was requested.

REM_ABORT 0EH A disconnect request was received from the
remote Transport service on the specified
connection.

Transport Virtual Circuit AWAIT_CLOSE

Network User's Guide and Reference Chapter 12 195

LOC_TIMEOUT 10H The local Transport service timed out.

DUP_REQ 14H Another AWAIT_CLOSE command was posted
previously on this connection.

Additional Information

If a buffer is allocated in this command, the remote application that sends the
disconnect request can send data that may explain the cause of the disconnection.
The longest disconnect message permitted by the ISO standard is 64 bytes. If the
allocated buffer is smaller than the received data length, only the data that fits in the
buffer is returned. The remainder is lost. If no buffer is allocated, any received
disconnect data is discarded.

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit

AWAIT_CONNECT_REQUEST_CLIENT

196 Chapter 12 Programming the Transport Layer

AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

There are two versions of the AWAIT_CONNECT_REQUEST_ command, with
different opcode values. Both commands wait for an incoming connection request to
the local TSAP address. The application specifies criteria for the type of request,
including addresses to listen for, negotiation options, and whether data sent with the
connection request will be received. The differences between the commands are:

• With the AWAIT_CONNECT_REQUEST_TRAN command, the transport
service determines whether to make the connection without further input from
the application. This is called a passive open.

• With the AWAIT_CONNECT_REQUEST_CLIENT command, the transport
service passes the connection request to the application for further consideration.
Transport then waits for a reply as to whether the connection is accepted or
rejected. This is called an active open. The application accepts the request with
an ACCEPT_CONNECT_REQUEST command or rejects it with a CLOSE
command.

✏ Note
The description of these commands refers to the application as a
client, meaning the client of the Transport service. The application
that calls these commands is actually a server in the context of a
client/server network relationship, because it is the server
application that waits for connection requests.

The AWAIT_CONNECT_REQUEST_CLIENT command is useful for a server
application that restricts access to itself based on criteria that can be passed in a
connection request. For example, the server might inspect a user login name against
a password list or restricted user list before accepting the connection.

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

Network User's Guide and Reference Chapter 12 197

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of conn_req_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 2H for _TRAN

3H for _CLIENT */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct conn_req_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[4];

unsigned short ack_delay_estimate; /* output */

unsigned long ta_buffer_addr; /* in/out */

unsigned short persistence_count; /* input */

unsigned short abort_timeout; /* input */

unsigned short reference; /* input */

unsigned char qos; /* input */

unsigned short negot_options; /* in/out */

unsigned long client_data_buf_addr; /* in/out */

unsigned char client_data_len; /* in/out */

} CONN_REQ_RB;

Input Arguments
ta_buffer_addr

An address pointing to a TSAP address buffer that specifies the local and remote end
nodes of a VC connection. For the AWAIT_CONNECT_REQUEST_CLIENT
command, the TSAP address must be fully specified. For the
AWAIT_CONNECT_REQUEST_TRAN command, the remote TSAP address may
be fully specified, partially specified, or unspecified. Specified TSAP selectors and
NSAP addresses must have a nonzero length.

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit

AWAIT_CONNECT_REQUEST_CLIENT

198 Chapter 12 Programming the Transport Layer

The contents field is filled with zeros for unspecified TSAP selectors or NSAP
address. The lengths of the remote net address and local or remote TSAP selectors
must not exceed the limits specified in the system configuration, otherwise an
addressing error will occur. The local TSAP selector must either be null or specified
(nonzero). The local NSAP selector may be specified (nonzero), unspecified (zero),
or null (zero length). Multiple connections to or from a single TSAP address can be
requested.

See also: TSAP address buffer structure, page 180

persistence_count
The number of times to retry an active connection attempt upon connection refusal,
before giving up. Connection refusal means that the remote system refuses the
connection, not that it failed to respond to the connection attempt. A connection
refusal typically occurs when the remote system is not listening (it hasn't executed a
passive open). Values may be:

Value Meaning
0 The configured value will be used
0FFFFH Retry forever
1 to 0FFFEH This value will be used as the persistence count

abort_timeout
The retransmission timeout period before aborting the connection, in 51-millisecond
units. Possible values are:

Value Meaning
0 Use abort_timeout configuration value (not 0)
0FFFFH Never time out
1-0FFFEH Use this number of 51-millisecond time units

This is how long the Transport service will continue to transmit without receiving a
response. This applies to both the connection establishment and data transfer phases.
During the connection establishment phase, this value controls how long a connection
request will be retransmitted when there is no response. During the data transfer
phase, this value controls how long data is retransmitted when there is no ACK. The
timeout period does not apply to the connection termination phase; the timeout for
connection termination is a Transport service configuration parameter.

reference
Identifies the CDB this request applies to.

qos Quality of service: the only possible parameter is the transmit priority for underlying
subnetworks that support it. This is a value in the range 0 to 15; 0 is the highest
priority. For iNA 960 802.3 subnets, set qos to 0; priority is not supported.

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

Network User's Guide and Reference Chapter 12 199

negot_options
Specifies various classes of service and additional options requested for negotiation
on this connection. If negot_options is zero, default options are used, as specified
by the def_negot_options configuration parameter. Otherwise, break the value
into four nibbles and specify options, where nibble 1 is least significant:

Nibble Value Meaning
1 0 use 7-bit sequence numbers

2 use 31-bit sequence numbers
2 4 class four service
3 0 no expedited service, do checksums

1 expedited service, do checksums
2 no expedited service, no checksums
3 expedited service, no checksums

4 8 client specified (nondefault) negotiation options

These are valid values for this argument:

Value Meaning
8342H Expedited data; no checksum; transport class 4; 31-bit sequence numbers
8340H Expedited data; no checksum; transport class 4; 7-bit sequence numbers
8242H No expedited data; no checksum; transport class 4; 31-bit sequence

numbers
8240H No expedited data; no checksum; transport class 4; 7-bit sequence

numbers
8142H Expedited data; checksum; transport class 4; 31-bit sequence numbers
8140H Expedited data; checksum; transport class 4; 7-bit sequence numbers
8042H No expedited data; checksum; transport class 4; 31-bit sequence numbers
8040H No expedited data; checksum; transport class 4; 7-bit sequence numbers

client_data_buf_addr
An address descriptor that identifies a contiguous 64-byte buffer. If the address is
zero, no buffer is allocated and there is no client data sent with the request. Also, no
data will be received. To receive any data that may be returned with the request, but
not send any data, specify a nonzero address and set client_data_len to zero. If
the address is nonzero, the Transport service assumes that a 64-byte buffer is
allocated. To send client data with the request, the buffer address and length must be
nonzero and the data (1 to 32 bytes) must be loaded in the buffer.

client_data_len
The number of bytes of data to send with this request.

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit

AWAIT_CONNECT_REQUEST_CLIENT

200 Chapter 12 Programming the Transport Layer

Responses

Output Arguments

iso_reason_code
The ISO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
this argument is 0.

See also: Table 12-3 on page 185

ack_delay_estimate
0 is always returned.

ta_buffer_addr
The buffer contains returned values that identify the local and remote end nodes of
the VC connection. The returned remote address is fully specified.

negot_options
The agreed-upon negotiation options using the encoding defined in the input
argument description.

client_data_buf_addr
If a buffer was allocated, the request block returns in the buffer any data (at most 32
bytes) received from the connection request. The received data overwrites any data
in the buffer that was sent in the original request block.

client_data_len
The length of any data received in the buffer.

Response Codes

OK_RESPONSE 1H This is only returned for the
AWAIT_CONNECT_REQUEST_TRAN
command. The request was accepted. The
connection is now established and in the data
transfer phase.

OK_DECIDE_REQ_RESP 5H Returned only for the
AWAIT_CONNECT_REQUEST_CLIENT
command. The request is acceptable based on
addressing, negotiation options and data buffer
availability. The request block is returned so that
the application can decide whether to accept the
connection. The Transport service awaits the
application's response.

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

Network User's Guide and Reference Chapter 12 201

UNKNOWN_REFERENCE 6H The CDB corresponding to this reference is not
allocated.

OK_CLOSED_RESP 7H The local client withdrew its willingness to listen
for remote connection requests.

ILLEGAL_REQ 0CH The client specified invalid negotiation options.
The connection attempt was aborted.

OK_CONN_REQ_RESP 0DH The local client withdrew its willingness to listen
for remote connection requests. Instead, it is
actively requesting a connection with a remote
Transport service using this connection.

REM_ABORT 0EH The connection request was accepted by
Transport but the remote Transport service
aborted the connection during the connection
establishment phase.

LOC_TIMEOUT 10H This is only returned for the
AWAIT_CONNECT_REQUEST_TRAN
command. The request was accepted but
Transport timed out before completion of the
three-way handshake. The connection is aborted.

DUP_REQ 14H This is a duplicate connection request: Transport
is already awaiting a remote request or the
connection is already established.

ILLEGAL_ADDRESS 1AH The client specified invalid TSAP address
options or the local TSAP selector or remote
TSAP address length exceeds the configuration
limits.

NETWORK_ERROR 1CH A Network layer error was reported at the
transport/network interface.

Additional Information

These commands indicate that the Transport service client is willing to consider
incoming connection requests from a remote transport service. It is assumed that a
local CDB was allocated and a reference was returned to the client as a result of a
previous OPEN command. The client specifies that reference in the current
command.

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit

AWAIT_CONNECT_REQUEST_CLIENT

202 Chapter 12 Programming the Transport Layer

A SEND_CONNECT_REQUEST command for a connection will override an
existing AWAIT_CONNECT_REQUEST_ command for the same connection, as
long as the connection handshake has not begun under the
AWAIT_CONNECT_REQUEST_. When this occurs, the
AWAIT_CONNECT_REQUEST_ command request block is returned with 0DH
(OK_CONN_REQ_RESP) in the response field.

Using a series of these commands, a client can await connection requests. For an
incoming connection request, the Transport service scans the CDBs listening for
requests using these commands. A request is considered matched to a CDB if the
request passes these tests:

• Address match tests

• Negotiation option tests

• Client data buffer availability test

Address Match Test

For the address match test, the remote address specified in
AWAIT_CONNECT_REQUEST_ commands may be fully specified, partially
specified, or unspecified, with these results:

Fully Specified Only incoming connection requests from the exact remote
TSAP address will be considered. This application is waiting
for a request from a specific type of application on a specific
node.

Partially Specified A connection request from only one specific TSAP selector at
any remote NSAP address, with an address length not
exceeding that specified in the command, will be considered.
This application is waiting for a request from a specific type of
application on any node.

Unspecified A connection request from any remote TSAP address will be
considered. However, the lengths of the TSAP selector and
NSAP address from the remote node cannot exceed the lengths
specified in this command. This application is waiting for a
request from any application anywhere that knows of the
existence of this application.

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

Network User's Guide and Reference Chapter 12 203

For each CDB listening for connection requests, the address matching is done with
this precedence:

1. A fully specified remote TSAP address

2. A partially specified remote TSAP address

3. An unspecified remote TSAP address

If all three address match attempts fail for one CDB, then that CDB is skipped and
the incoming connection request is checked against other CDBs.

A connection request passes the address match test only if all of these conditions are
true:

• The AWAIT_CONNECT_REQUEST_ command is issued prior to receipt of a
connection request whose TSAP address satisfies the remaining requirements.

• The lengths of the source NSAP address and TSAP selector in the incoming
request do not exceed the corresponding lengths for the remote address in this
command's address buffer. If fully specified, the lengths must be equal.

• The source TSAP address in the incoming request matches the remote TSAP
address specified in this command's address buffer. If this command's remote
TSAP address is unspecified, any incoming NSAP address and TSAP selector
pair will match. If this command's remote TSAP address is partially specified,
any incoming NSAP address will match, but the incoming source TSAP selector
must be an exact match. If this command's remote TSAP address is fully
specified, the incoming NSAP address and TSAP selector must be exact
matches.

• The length of the destination TSAP selector in the incoming request equals the
length of the local TSAP selector in this command's TSAP address buffer.

• The destination TSAP selector in the incoming request matches the local TSAP
selector defined in this command's TSAP address buffer.

Negotiation Options Test

For the first CDB that passes the address match test, a check is made for compatible
negotiation options as defined by the ISO standard. For incompatible options, the
connection request is checked against other CDBs awaiting requests, starting again
with the address match test.

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit

AWAIT_CONNECT_REQUEST_CLIENT

204 Chapter 12 Programming the Transport Layer

Client Data Buffer Availability Test

For compatible addresses and negotiation options, a check is made to see if the
incoming request contains client data. If so, the CDB must be expecting data,
defined by a nonzero address descriptor pointing to the data buffer. If the CDB is not
expecting data, the connection request with data is not matched to the CDB specified
in this command and the incoming connection request with data is checked against
other CDBs. If the CDB is expecting data, the incoming request is matched to it.

If the incoming request has no data, it is matched to the first CDB that passes the
address match and negotiation options tests.

Differences Between the _CLIENT and _TRAN Commands

If no awaiting CDB is found that matches the incoming connection request, the
Transport service rejects the connection request. No request blocks are returned to
ACCEPT_CONNECT_REQUEST_ commands. This permits the Transport service
to await further connection requests that may be valid.

Both versions of the AWAIT_CONNECT_REQUEST_ command operate identically
up to the point where a connection request is matched to a CDB.

For a CDB specified by the AWAIT_CONNECT_REQUEST_TRAN command, the
Transport service itself accepts the request, based only on addressing, negotiation
options, and client data buffer availability. The client thus pre-establishes its
connection-acceptance criteria with this command. If the incoming request matches
a CDB, the connection is immediately accepted for the request. The request block is
not returned until completion of the three-way handshake that establishes the
connection. Thus, the return of this request block serves as a confirmation of
connection establishment. Any client data received with the request is returned in the
request block. Delivery of client data is a best-effort attempt and is not guaranteed.

For a CDB specified by the AWAIT_CONNECT_REQUEST_CLIENT command,
when a connection request matches the CDB, the Transport service returns the
request block for further consideration by the application. The request block contains
the remote address, negotiation options, and any client data. The Transport service
waits for a reply from the application, which is either:

• An ACCEPT_CONNECT_REQUEST command to accept the connection

• A CLOSE command to reject the connection

Figure 12-2 summarizes the process used by the Transport service to accept
connection requests.

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

Network User's Guide and Reference Chapter 12 205

For either version of the command, the application may rescind its willingness to
listen for connection requests by issuing a CLOSE command, with a reference
specifying the connection. This deletes the CDB and ends the use of the reference.

Yes

Yes

Yes

No

No

Yes

AWAIT_CONNECT_REQUEST_TRAN AWAIT_CONNECT_REQUEST_CLIENT

No

No

Yes

No

No

Yes

W-2956

Enter

Point to
next connection

Is
connection
listening for

requests
?

Address
match

?

Compatible
negotiation

options
?

Data
sent in connect

request
?

Data buffer
in await connect

request
?

Last
connection
scanned

?

Reject
connection

Pass request
to client

Return

Accept
connection

Figure 12-2. Connection Request Consideration Policy

CLOSE Transport Virtual Circuit

206 Chapter 12 Programming the Transport Layer

CLOSE
CLOSE requests termination of an existing connection or rejects an incoming
connection request.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 0CH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* input */

unsigned short length; /* input */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* input */

unsigned char reserved[15];

unsigned short reference; /* input */

unsigned char qos; /* unused */

unsigned short buf_len; /* unused */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1]; /* [num_blks] */

} VC_RB;

Input Arguments
iso_reason_code

The encoded ISO standard reason for the close operation. To reject a connect request
received from AWAIT_CONNNECT_REQUEST_CLIENT, set to 88H.

See also: Table 12-3 on page 185

Transport Virtual Circuit CLOSE

Network User's Guide and Reference Chapter 12 207

reference
Identifies the CDB this request applies to.

num_blks
The number of separate buffers that contain optional data to send with the disconnect
request. Set to 0 if there is no data to transmit. Each buffer is a block of contiguous
memory that is defined by the data_blk_list[i].address and
data_blk_list[i].length arguments.

data_blk_list[i].address
The address descriptor for the start of the ith buffer.

data_blk_list[i].length
The length of the ith buffer. The total length of data in all blocks cannot exceed 64K
bytes

See also: Table 12-4 on page 231

Responses

Output Arguments

None

Response Codes

UNKNOWN_REFERENCE 6H The reference does not correspond to an allocated
CDB.

OK_CLOSED_RESP 7H Confirms disconnection, disconnect collision, or
already closing or closed.

BUFFER_TOO_LONG 0AH A client data length greater than 64 bytes was
specified.

OK_REJECT_CONN_RESP 0BH Successful rejection of a connection request.

LOC_TIMEOUT 10H Transport service timed out without receiving a
confirmation of its disconnect request.

CLOSE Transport Virtual Circuit

208 Chapter 12 Programming the Transport Layer

Additional Information

If the connection is already established, this call initiates the ISO transport connection
termination procedure. Any normal or expedited data queued for sending will not be
sent. The application may send up to 64 bytes of data with the disconnect request.

If the receiver has previously issued an AWAIT_CLOSE command, the ISO reason
code and any data received with the disconnect request (along with the ISO reason
code) will be passed to the buffer allocated with the command. Otherwise, the
disconnect request data may be discarded.

The CLOSE command is also used to reject a connection request received from an
AWAIT_CONNNECT_REQUEST_CLIENT command. Data passed with the
CLOSE can be sent to the remote Transport service to explain the reason for the
rejection.

A CLOSE issued in response to a connection request or issued to abort an already
established connection deletes the CDB. Any posted receive buffers (normal or
expedited) or queued send requests (normal or expedited) will be returned to the
application. An AWAIT_CLOSE command will also be returned. The CLOSE
request block is always the final request block returned.

If the connection is aborted by a remote Transport service, any posted receive
buffers, queued send requests, or AWAIT_CLOSE request blocks are returned to the
local application and the CDB is deleted. If there are no queued request blocks to
report the remote abort, the CDB is not deleted, but is marked closed. The next time
the application tries to issue a request block to that CDB, the request block is returned
with a REM_ABORT response (code 0EH) and the CDB is deleted. Any further
requests on that connection generate an UNKNOWN_REFERENCE response.

Transport Virtual Circuit OPEN

Network User's Guide and Reference Chapter 12 209

OPEN
OPEN allocates a connection database (CDB) as the first step in establishing a VC.
The returned value identifies the VC in subsequent commands.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of open_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 0H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct open_rb {

RB_COMMON header;

unsigned short reference; /* output */

} OPEN_RB;

Input Arguments

None

Responses

Output Arguments

reference
A value identifying the CDB allocated by this command. Store this value for use in
other Transport service commands.

Response Codes

OK_RESPONSE 1H The CDB was allocated and the reference
returned.

NO_RESOURCES 4H Could not allocate any more CDBs. The
reference is returned as 0.

OPEN Transport Virtual Circuit

210 Chapter 12 Programming the Transport Layer

Additional Information

This is the first command to issue whenever you open a new VC (connection); the
VC requires memory for the connection database (CDB). All CDBs reside in
memory on the same board that contains the communications software. There is a
preconfigured maximum number of CDBs, and therefore a maximum number of
VCs.

A CDB maintains the state of the connection. By means of entries in the CDB, the
Transport service can keep track of the sequencing of send and receive data, maintain
flow control status, and recover from unacknowledged data packets.

The Transport service client uses the connection by referencing the CDB through a
16-bit number called a connection reference. The reference is returned to the
Transport service client when the CDB is allocated by this command. The Transport
service returns the reference to the client in the reference field of the open request
block. The application then refers to the connection in other Transport service
commands (e.g., data transfers) by supplying the connection reference number as an
input argument.

The very first reference returned by the Transport service after system initialization is
selected using a 16-bit random number generation scheme. Thereafter new
references returned are incremented by 1. When the 16-bit reference numbers
overflow, the value zero is skipped.

Transport Virtual Circuit RECEIVE_ANY

Network User's Guide and Reference Chapter 12 211

RECEIVE_ANY
RECEIVE_ANY is similar to the RECEIVE_DATA command; this command posts
a buffer to store data received using the transport normal delivery service. Unlike the
RECEIVE_DATA command, this command posts a receive buffer that can be used
by any CDB in a list of connection references. A RECEIVE_ANY buffer stores
received data for which there is no normal RECEIVE_DATA buffer posted. This
service is governed by the regular transport flow control mechanisms.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_ext_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 16H*/

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* input */

unsigned short length; /* input */

} DATA_BLOCK;

typedef struct vc_ext_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[15];

unsigned short reference; /* output */

unsigned char qos; /* input */

unsigned short buf_len; /* output */

unsigned char num_blks; /* input */

DATA_BLOCK block[1];

unsigned short ref_list_count; /* input */

unsigned long ref_list_ptr; /* input */

}; VC_RB

Input Arguments

qos Set to zero.

RECEIVE_ANY Transport Virtual Circuit

212 Chapter 12 Programming the Transport Layer

num_blks
Only one buffer is posted with this command, so the value of this argument must
be 1.

block[0].address
The address for the start of the buffer.

block[0].length
The length of the buffer, which cannot exceed 64K bytes.

ref_list_count
The number of connection references in the reference list, up to 20. If the local
Transport service receives data in a CDB for which no specific normal
RECEIVE_DATA buffer has been posted, the reference list for the first available
RECEIVE_ANY buffer is checked for a reference matching the reference for the
received data. If a matching reference is found, the received data is placed in that
RECEIVE_ANY buffer. If no matching reference is found, the reference list for the
next RECEIVE_ANY buffer in the queue is checked.

ref_list_ptr
The address for the start of the reference list, which is an array of unsigned short
values.

Responses

Output Arguments

iso_reason_code
The ISO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
this argument is 0.

See also: Table 12-3 on page 185

reference
A value identifying the CDB that used the buffer.

buf_len
The total length of the data received in the buffer posted by this command.

block[0].address
The address descriptor for the start of the buffer.

block[0].length
The length of the data in the buffer.

Response Codes

OK_RESPONSE 1H All the buffers pointed to by the request block are
filled with data and no EOM was signaled.

Transport Virtual Circuit RECEIVE_ANY

Network User's Guide and Reference Chapter 12 213

OK_EOM_RESP 3H Transport signaled an EOM. The data in the
buffer constitutes the end of a TSDU.

NO_RESOURCES 4H The CDB normal receive queue is full. No more
normal receive buffers can be posted until some
already posted are returned.

UNKNOWN_REFERENCE 6H The reference does not correspond to any
allocated CDB.

OK_CLOSED_RESP 7H The local client aborted the connection or the
connection was closing at the client's request
when the buffer was posted.

REM_ABORT 0EH The remote Transport service aborted the
connection.

LOC_TIMEOUT 10H The buffer was returned due to a connection
timeout abort.

BAD_REF_COUNT 24H Zero was specified for the ref_list_count field.

Additional Information

The maximum length of a RECEIVE_ANY buffer is 64K bytes. Depending on
Transport Layer configuration, buffers may be posted prior to establishment of the
connection.

RECEIVE_DATA Transport Virtual Circuit

214 Chapter 12 Programming the Transport Layer

RECEIVE_DATA
RECEIVE_DATA posts one or more receive buffers for a specific connection. The
buffers store data received from the Transport normal delivery service. This service
is governed by the regular transport flow control mechanisms.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 7H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* in/out */

unsigned short length; /* in/out */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[15];

unsigned short reference; /* in/out */

unsigned char qos; /* unused */

unsigned short buf_len; /* output */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1]; /* [num_blks] */

} VC_RB;

Transport Virtual Circuit RECEIVE_DATA

Network User's Guide and Reference Chapter 12 215

Input Arguments
reference

Identifies the CDB for which the receive buffer is being posted.

num_blks
The number of separate buffers to receive data. Each buffer is a block of contiguous
memory that is defined by the data_blk_list[i].address and
data_blk_list[i].length arguments.

data_blk_list[i].address
The address pointing to the start of the ith buffer.

data_blk_list[i].length
The length of the ith buffer. The total length of data in all blocks cannot exceed 64K
bytes.

Responses

Output Arguments

iso_reason_code
The ISO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
this argument is 0.

See also: Table 12-3 on page 185

reference
Identifies the CDB that used the buffer.

buf_len
The total length of the data received in the buffer(s) posted by this command.

data_blk_list[i].address
The address for the start of the ith buffer.

data_blk_list[i].length
This is meaningful only for the last posted buffer that received data. This value is the
length of the data in that buffer.

RECEIVE_DATA Transport Virtual Circuit

216 Chapter 12 Programming the Transport Layer

Response Codes

OK_RESPONSE 1H All the buffers pointed to by the request block are
filled with data and no EOM was signaled.

OK_EOM_RESP 3H Transport signaled an EOM. The data in the
buffers constitutes the end of a TSDU.

NO_RESOURCES 4H The CDB normal receive queue is full. No more
normal receive buffers can be posted until some
already posted are returned.

UNKNOWN_REFERENCE 6H The reference does not correspond to any
allocated CDB.

OK_CLOSED_RESP 7H The local client aborted the connection or the
connection was closing on client request when
the buffer was posted.

OK_WITHDRAW_RESP 9H Zero or more normal receive buffers were
withdrawn from Transport service.

REM_ABORT 0EH The remote Transport service aborted the
connection.

LOC_TIMEOUT 10H The buffer was returned due to a connection
timeout abort.

Additional Information

The total length of all receive buffers pointed to by a single RECEIVE_DATA
request block must not exceed 64K bytes. Depending on Transport Layer
configuration, buffers may be posted prior to establishment of the connection.

Transport Datagram RECEIVE_DATAGRAM

Network User's Guide and Reference Chapter 12 217

RECEIVE_DATAGRAM
RECEIVE_DATAGRAM posts a receive buffer on behalf of a TSAP to receive data
from a transport datagram. The datagram buffer queues are maintained separately
from the VC buffer queues.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of datagram_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 41H */

unsigned char opcode; /* 12H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* in/out */

unsigned short length; /* in/out */

} DATA_BLOCK;

typedef struct datagram_rb {

RB_COMMON header;

unsigned char reserved[4];

unsigned long ta_buffer_addr; /* in/out */

unsigned char qos; /* input */

unsigned short buf_len; /* output */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1]; /* [num_blks] */

} DATAGRAM_RB;

RECEIVE_DATAGRAM Transport Datagram

218 Chapter 12 Programming the Transport Layer

Input Arguments
ta_buffer_addr

An address pointing to a TSAP address buffer that specifies the local and remote end
nodes for a datagram transfer. The local TSAP selector must be loaded into the
buffer. The length of the local TSAP selector and NSAP selector must not exceed
the limit specified in the system configuration, otherwise an addressing error occurs.
The local TSAP selector value (which must be nonzero) specifies the TSAP that
posts the buffer. The buffer is placed in a queue reserved only for that TSAP
selector. Any datagrams received with a destination TSAP selector matching the
TSAP selector of the queue can pass its data to the buffer.

The remote TSAP is irrelevant and is ignored. The remote address of the data link
entity associated with the remote Transport service, and the remote NSAP selector
and TSAP selector fields are not input parameters. However, the fields must be
reserved to the proper length to buffer the source TSAP address of a received
datagram.

See also: TSAP address buffer structure, page 180

qos If the low order bit of the high order nibble is set, the Transport service verifies the
checksum (if present) of the incoming datagram.

num_blks
The number of separate buffers to be received. Each buffer is a block of contiguous
memory defined by the data_blk_list[i].address and
data_blk_list[i].length arguments.

data_blk_list[i].address
The address pointing to the start of the ith buffer.

data_blk_list[i].length
The length of the ith buffer, which must be nonzero. The total length of data in all
blocks cannot exceed the maximum NSDU size minus a small overhead for the
transport datagram header.

Transport Datagram RECEIVE_DATAGRAM

Network User's Guide and Reference Chapter 12 219

Responses

Output Arguments

ta_buffer_addr
An address pointing to the returned buffer containing the remote NSAP address and
TSAP selector that specify the remote address of the received datagram.

See also: TSAP address buffer structure, page 180

buf_len
The total length of the data received in the buffers posted by this command.

data_blk_list[i].address
The address descriptor for the start of the ith buffer.

data_blk_list[i].length
The length of the data in the last posted buffer to receive data. This value is only
meaningful for that buffer.

Response Codes

OK_RESPONSE 1H The buffers pointed to by the request block are
completely filled with data.

OK_EOM_RESP 3H The buffer contains data to the end of the
datagram. A request block can return data from
no more than one transport datagram.

NO_RESOURCES 4H There are no more resources to manage the
buffers posted for the TSAP.

ILLEGAL_ADDRESS 1AH An addressing error was detected.

RECEIVE_EXPEDITED_DATA Transport Virtual Circuit

220 Chapter 12 Programming the Transport Layer

RECEIVE_EXPEDITED_DATA
RECEIVE_EXPEDITED_DATA posts expedited receive buffers for a specific
connection. The buffers store data received from the transport expedited data
delivery service. Expedited data bypasses the normal transport flow control
mechanisms.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 0AH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* in/out */

unsigned short length; /* in/out */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[15];

unsigned short reference; /* in/out */

unsigned char qos; /* unused */

unsigned short buf_len; /* unused */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1];

} VC_RB;

Transport Virtual Circuit RECEIVE_EXPEDITED_DATA

Network User's Guide and Reference Chapter 12 221

Input Arguments
reference

Identifies the CDB for which the expedited receive buffer is being posted.

num_blks
Must be set to 1 because the expedited data will be sent in a single TPDU.

data_blk_list[0].address
The address descriptor for the start of the buffer.

data_blk_list[0].length
Set to 16: the maximum amount of expedited data that can be sent is 16 bytes.

Responses

Output Arguments

iso_reason_code
Set to 14 if the request block was returned due to a remote abort; otherwise set to 0.

reference
Identifies the CDB that used the buffer.

data_blk_list[0].address
The address for the start of the buffer containing the received expedited data.

data_blk_list[0].length
The length of the received data.

Response Codes

OK_EOM_RESP 3H The buffer is returned with data from a single
expedited TPDU.

NO_RESOURCES 4H The CDB expedited receive queue is full. No
more expedited receiver buffers can be posted
until some that are posted are returned.

UNKNOWN_REFERENCE 6H The reference does not correspond to an allocated
CDB.

OK_CLOSED_RESP 7H The local client aborted the connection.

BUFFER_TOO_SHORT 8H The length of the first buffer block posted with
the request is less than 16.

OK_WITHDRAW_RESP 9H Zero or more expedited receive buffers were
withdrawn from Transport service.

ILLEGAL_REQ 0CH Expedited service not available.

RECEIVE_EXPEDITED_DATA Transport Virtual Circuit

222 Chapter 12 Programming the Transport Layer

REM_ABORT 0EH The remote Transport service aborted the
connection.

LOC_TIMEOUT 10H The connection terminated on a timeout.

Additional Information

Each receive buffer can hold data from only one expedited TPDU. Data from two or
more such TPDUs are not combined into one buffer even if the data would fit. The
buffers for each request must be at least 16 bytes long to accommodate the longest
expedited data TPDU that can be received.

Depending on Transport Layer configuration, expedited receive buffers may be
posted prior to establishment of the connection.

The queues of expedited receive buffers are maintained separately from the queues of
normal receive buffers. More than one expedited data buffer may be posted at a
time, but only one may be sent or received at a time.

Transport Virtual Circuit SEND_CONNECT_REQUEST

Network User's Guide and Reference Chapter 12 223

SEND_CONNECT_REQUEST
SEND_CONNECT_REQUEST requests a connection to a fully specified remote
TSAP address. This performs an active open of the VC. The CDB must already be
allocated with an OPEN command. Data may be sent and received in the client data
buffer.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of conn_req_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 1H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct conn_req_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[4];

unsigned short ack_delay_estimate; /* output */

unsigned long ta_buffer_addr; /* input */

unsigned short persistence_count; /* input */

unsigned short abort_timeout; /* input */

unsigned short reference; /* input */

unsigned char qos; /* input */

unsigned short negot_options; /* input */

unsigned long client_data_buf_addr; /* in/out */

unsigned char client_data_len; /* in/out */

} CONN_REQ_RB;

SEND_CONNECT_REQUEST Transport Virtual Circuit

224 Chapter 12 Programming the Transport Layer

Input Arguments
ta_buffer_addr

An address pointing to a TSAP address buffer that specifies the local and remote end
nodes of a VC connection. The local TSAP selector must be fully specified, i.e.,
must have either zero length or nonzero length and nonzero value. The remote NSAP
address must be fully specified. The remote TSAP selector must be fully specified.
The length of the remote net address and local or remote TSAP selectors must not
exceed the limits specified in the system configuration, otherwise an addressing error
will occur. Multiple connections to, or from, a single TSAP address can be
requested.

See also: TSAP address buffer structure, page 180

persistence_count
The number of times to retry an active connection attempt upon connection refusal,
before giving up. Connection refusal means that the remote system refuses the
connection, not that it failed to respond to the connection attempt. A connection
refusal typically occurs when the remote system is not listening (it hasn't executed a
passive open). Values may be:

Value Meaning
0 The configured value will be used
0FFFFH Retry forever
1 to 0FFFEH This value will be used as the persistence count

abort_timeout
The retransmission timeout before aborting the connection, in 51-millisecond time
units. Values may be the same as for persistence_count.

This specifies how long the Transport service will continue to transmit without
receiving a response. This applies to both the connection establishment and data
transfer phases. During the connection establishment phase, this controls how long a
connection request will be retransmitted when there is no response. During the data
transfer phase, this controls how long data is retransmitted when there is no ACK.
This does not apply to the connection termination phase; the timeout for connection
termination is a Transport service configuration parameter.

reference
Identifies the CDB this request applies to.

qos Quality of service: the only possible parameter is the transmit priority, for underlying
subnetworks that support it. This is a value in the range 0 to 15, where 0 is the
highest priority. For iNA 960 Data Link 802.3 subnets, set qos to zero; transmit
priority is not supported.

Transport Virtual Circuit SEND_CONNECT_REQUEST

Network User's Guide and Reference Chapter 12 225

negot_options
Specifies various classes of service and additional options requested for negotiation
on this connection. If negot_options is zero, default options are used, as specified
by the def_negot_options configuration parameter. Otherwise, break the value
into four nibbles and specify options, where nibble 1 is the least significant:

Nibble Value Meaning
1 0 use 7-bit sequence numbers

2 use 31-bit sequence numbers
2 4 class four service
3 0 no expedited service, do checksums

1 expedited service, do checksums
2 no expedited service, no checksums
3 expedited service, no checksums

4 8 client specified (nondefault) negotiation options

These are valid values for this argument:

Value Meaning
8342H Expedited data; no checksum; transport class 4; 31-bit sequence numbers
8340H Expedited data; no checksum; transport class 4; 7-bit sequence numbers
8242H No expedited data; no checksum; transport class 4; 31-bit sequence

numbers
8240H No expedited data; no checksum; transport class 4; 7-bit sequence

numbers
8142H Expedited data; checksum; transport class 4; 31-bit sequence numbers
8140H Expedited data; checksum; transport class 4; 7-bit sequence numbers
8042H No expedited data; checksum; transport class 4; 31-bit sequence numbers
8040H No expedited data; checksum; transport class 4; 7-bit sequence numbers

client_data_buf_addr
An address descriptor that identifies a contiguous 64-byte buffer. If this value is
zero, no buffer is allocated and there is no client data sent with the request. Also, no
data will be received. To receive any data that may be returned with the response but
not send any data, specify an address and set client_data_len to zero. If the
address is not 0, a 64-byte buffer is assumed to be allocated. To send client data with
the request, the data (0 to 32 bytes) must be loaded in the buffer.

client_data_len
The length of the client data in the client data buffer. The range of valid values is 0
to 32. If the length is 0, no data will be sent.

SEND_CONNECT_REQUEST Transport Virtual Circuit

226 Chapter 12 Programming the Transport Layer

Responses

Output Arguments

iso_reason_code
82H if the connection negotiation failed. This indicates the request was accepted by
the remote Transport service, but the local Transport service aborted the connection
because the options the remote Transport service negotiated were unacceptable.

If the connection was rejected by the remote Transport service, iso_reason_code
indicates the reason for the rejection. Otherwise, iso_reason_code is 0.

See also: Table 12-3 on page 185

ack_delay_estimate
0 is always returned.

client_data_buf_addr
If the connection attempt was successful and a buffer was allocated, the request block
will return in the referenced buffer any data (at most 32 bytes) contained in the
connection confirmation received from the remote Transport service. If the
connection attempt was rejected by the remote Transport service and the local
Transport service gives up, the request block returns up to 64 bytes of any data
contained in the disconnect request from the remote Transport service. The received
data overwrites any data in the buffer that was sent in the original connection request.

client_data_len
The length of any data received in response to the connection request.

Response Codes

OK_RESPONSE 1H The request was accepted by the remote
Transport service and the connection is now
established in the data transfer phase.

UNKNOWN_REFERENCE 6H The client-specified reference does not
correspond to an allocated CDB.

OK_CLOSED_RESP 7H The local client aborted the connection while the
connection request was outstanding.

BUFFER_TOO_LONG 0AH The client_data_len field was greater than 32
bytes. The connection attempt was aborted.

Transport Virtual Circuit SEND_CONNECT_REQUEST

Network User's Guide and Reference Chapter 12 227

ILLEGAL_REQ 0CH Invalid negotiation options were specified. The
connection attempt was aborted.

LOC_TIMEOUT 10H The request was unanswered and the
retransmission timer timed out which aborted the
connection attempt.

DUP_REQ 14H This is a duplicate connection request; a request
was already in progress for this reference or the
connection was already established.

CONN_REJECT 16H The connection attempt was rejected by the
remote Transport service and the local Transport
service gave up after the persistence count
expired.

NEGOT_FAILED 18H The request was accepted by the remote
Transport service but the local Transport service
aborted the connection because of a negotiation
failure at the local end.

ILLEGAL_ADDRESS 1AH Invalid local or remote TSAP address specified,
or the NSAP address length exceeds
max_net_addr_len, or the local or remote TSAP
selector exceeds the max_tsap_id_len parameter
that was specified at system configuration.

NETWORK_ERROR 1CH A Network layer error at the transport/network
interface. This usually means that the specified
NSAP address is unreachable.

Additional Information

The SEND_CONNECT_REQUEST command actively requests a connection to a
fully specified remote TSAP address using specified ISO connection negotiation
options. It is assumed that a local CDB was allocated and a reference was returned to
the application as a result of a previous OPEN command. The reference returned
previously is specified in the current command to request the connection using the
corresponding allocated CDB.

SEND_CONNECT_REQUEST Transport Virtual Circuit

228 Chapter 12 Programming the Transport Layer

The SEND_CONNECT_REQUEST command can actively request a connection
either immediately after a previous OPEN was issued, or after one of the connection
listening commands, AWAIT_CONNECT_REQUEST_TRAN or
AWAIT_CONNECT_REQUEST_CLIENT, is issued. In the latter case, the current
command is valid only if the connection is still listening for a connection request and
has not started the connection handshake with the remote Transport service. When a
SEND_CONNECT_REQUEST command overrides one of the
AWAIT_CONNECT_REQUEST_ commands, the request block for the overridden
command is returned to the client with a response code of 0DH.

The client may ask that the Transport service request the connection a specified
number of times in spite of a rejection by the remote transport service. This retry
count is the persistence_count specified in the request block by the client.
When the number of retries exceeds the count, the local Transport service gives up
and indicates connection rejection to the client. Persistence is invoked only if the
ISO reason code returned in the remote Transport service's rejection TPDU is one of
these:

Value Meaning
0 Unspecified
2 No one listening at remote TSAP selector
81H TSAP congestion
88H Connection refused

Persistence is not applied in the case where the local client decides to close the
connection while transport is requesting the connection.

Abort_timeout is used if there is no reply at all to the connection request.

This request block is returned to the client either upon detection of an error, upon
connection establishment, or upon rejection when local Transport service gives up.
Thus, the receipt of this request block by the client serves as a connection
confirmation or failure indication to the client.

Transport Virtual Circuit SEND_DATA / SEND_EOM_DATA

Network User's Guide and Reference Chapter 12 229

SEND_DATA/SEND_EOM_DATA
SEND_DATA and SEND_EOM_DATA request transmission of the data in the
buffers using the normal delivery service of the specified VC connection. The
normal delivery service uses the regular flow control mechanisms. The
SEND_EOM_DATA command specifies that the end of data in the buffers marks the
end of the transport service data unit (TSDU).

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 5H SEND_DATA

6H SEND_EOM_DATA */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* input */

unsigned short length; /* input */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[15];

unsigned short reference; /* input */

unsigned char qos; /* unused */

unsigned short buf_len; /* unused */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1]; /* [num_blks] */

} VC_RB;

SEND_DATA / SEND_EOM_DATA Transport Virtual Circuit

230 Chapter 12 Programming the Transport Layer

Input Arguments
reference

Identifies the CDB this request applies to.

num_blks
The number of separate buffers, where each buffer is a block of contiguous memory
containing data to send. Each buffer is defined by the
data_blk_list[i].address and data_blk_list[i].length arguments.

data_blk_list[i].address
The address pointing to the start of the ith buffer.

data_blk_list[i].length
The length of the data in the ith buffer. The total length of data in all blocks cannot
exceed 64K bytes.

See also: Table 12-4 on page 231

Responses

Output Arguments

iso_reason_code
The ISO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
this argument is 0.

See also: Table 12-3 on page 185

Response Codes

OK_RESPONSE 1H All the buffers in the request have been
successfully transmitted and acknowledged by
the remote Transport service.

NO_RESOURCES 4H The CDB send queue is full. No more request
blocks can be queued until some already queued
SEND request blocks are returned.

UNKNOWN_REFERENCE 6H The CDB corresponding to this reference is not
allocated.

OK_CLOSED_RESP 7H The local client aborted the connection and the
queued request block is returned without
transmitting its data.

ILLEGAL_REQ 0CH The connection was closing or was already
closed.

Transport Virtual Circuit SEND_DATA / SEND_EOM_DATA

Network User's Guide and Reference Chapter 12 231

REM_ABORT 0EH The remote Transport service aborted the
connection.

LOC_TIMEOUT 10H The local Transport service timed out waiting for
a PDU acknowledgement. If this error occurs,
the local Transport service disconnects the
connection.

Additional Information

Any number of the blocks may have zero length; there may also be zero blocks. A
send request with zero bytes of data is allowed. If it is a SEND_EOM_DATA, then
an end-of-message (in ISO called EOT) signal will be sent. If it is a SEND_DATA,
it is a null message, and no data will be sent. The request block will be returned an
indeterminate amount of time later, but always after the previous send request is
returned and before any subsequent send requests are returned.

The sum of the lengths of all buffers pointed to by a single SEND_DATA or
SEND_EOM_DATA request block is limited to a maximum value that depends on
the sequence number format, maximum TPDU size, and maximum NSDU size. The
maximum NSDU size is determined only at run time. Table 12-4 shows the
maximum total buffer length for various maximum TPDU sizes that can be
negotiated. The max_tpdu_size value is a power of 2 (27 = 128 bytes).

Table 12-4. Maximum Total Buffer Lengths

Negotiated Sequence Number Format

max_tpdu_size 7-Bit 31-Bit

7 (128 bytes) 15K* 64K

8 (256 bytes) 62K* 64K

9 (512 bytes) 64K* 64K

10 (1024 bytes) 64K 64K

11 (2048 bytes) 64K 64K

* For maximum TPDU size values of 7, 8, or 9 with 7-bit sequence
numbering, the values shown in Table 12-4 are approximate. The
actual values depend on the maximum NSDU size determined by the
Transport Layer at run time.

SEND_DATA / SEND_EOM_DATA Transport Virtual Circuit

232 Chapter 12 Programming the Transport Layer

An application can make a SEND_DATA request (depending on the Transport Layer
configuration) anytime after the initial OPEN command is issued. The Transport
service accepts SEND_DATA requests even if the connection has not yet entered the
established state. When a connection is established, the Transport service transmits
the corresponding transmit buffers in the order in which they are queued. Since the
Transport service always attempts to send full TPDUs, it copies information from
transmit buffers into the TPDU without concern for the buffer or block boundaries. It
never copies information from more than one request block into the same TPDU. In
addition, the Transport service guarantees that an EOM not only indicates the end of
a message, but also the end of a TPDU.

The remote receive buffer sizes need not match the transmit buffer sizes; data is
delivered as long as there is any receive buffer space at the remote node.

Transport Datagram SEND_DATAGRAM

Network User's Guide and Reference Chapter 12 233

SEND_DATAGRAM
SEND_DATAGRAM requests transmission of the data in the buffers using the
transport datagram service. This service is connectionless and gives no assurance of
delivery of the data. Data can be lost or misordered.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of datagram_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 41H */

unsigned char opcode; /* 11H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* input */

unsigned short length; /* input */

} DATA_BLOCK;

typedef struct datagram_rb {

RB_COMMON header;

unsigned char reserved[4];

unsigned long ta_buffer_addr; /* input */

unsigned char qos; /* input */

unsigned short buf_len; /* unused */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1]; /* [num_blks] */

} DATAGRAM_RB;

SEND_DATAGRAM Transport Datagram

234 Chapter 12 Programming the Transport Layer

Input Arguments
ta_buffer_addr

An address pointing to a TSAP address buffer that specifies the local and remote end
nodes for a datagram transfer. This buffer must be loaded with addressing
information specifying the local (source) TSAP selector, the remote NSAP address,
and remote (destination) TSAP selector of the datagram. The TSAP address must be
fully specified. The lengths of the remote net address and local or remote TSAP
selectors must not exceed the limits specified in the system configuration, otherwise
an addressing error occurs.

See also: TSAP address buffer structure, page 180

qos The low order nibble specifies the priority class used by underlying subnets that
support it., IEEE 802.4 token bus). The range is 0-15, with 0 being the
highest priority. For iNA 960 Data Link 802.3 subnets, set this nibble to zero;
transmit priority is not supported.

The low order bit of the high order nibble specifies whether to do a checksum on the
datagram (1 = do checksum). The next higher bit of the high order nibble specifies
whether to query the Network service for the maximum NSDU size or to use the
default value (1 = query).

num_blks
The number of separate buffers to send. Each buffer is a block of contiguous
memory that is defined by the data_blk_list[i].address and
data_blk_list[i].length arguments.

data_blk_list[i].address
The address descriptor for the start of the ith buffer.

data_blk_list[i].length
The length of the ith buffer. The length must be nonzero. The total length of data in
all blocks cannot exceed the maximum NSDU size minus a small overhead for the
transport datagram header.

Responses

Output Arguments

None

Transport Datagram SEND_DATAGRAM

Network User's Guide and Reference Chapter 12 235

Response Codes

OK_RESPONSE 1H The data has been queued for transmission by the
Network Layer.

BUFFER_TOO_SHORT 8H The buffer length (data_blk_list[i].length)
was set to 0.

BUFFER_TOO_LONG 0AH The data length exceeds the maximum NSDU
size.

ILLEGAL_ADDRESS 1AH The local TSAP selector or remote TSAP address
exceeds the configuration limits, or an address
error was detected by the underlying Network
Layer.

Additional Information

Transport datagram service does not provide a fragmentation/reassembly capability.
Therefore, the length of the data cannot exceed the maximum network service data
unit (NSDU) size provided by the underlying service. If the Network Layer does not
provide a segmentation/reassembly service, the NSDU size is bounded by subnet data
length restrictions. If the Network Layer does provide segmentation/reassembly
capabilities, the NSDU size may be larger than the size imposed by subnet data
length restrictions. In any implementation, the maximum NSDU size is determined
by the Network Layer configuration.

The destination TSAP address can be either a single station, multicast, or broadcast
NSAP address. The multicast or broadcast NSAP address conventions are
transparent to the Transport Layer. They are dependent on the underlying network
service used.

SEND_EXPEDITED_DATA Transport Virtual Circuit

236 Chapter 12 Programming the Transport Layer

SEND_EXPEDITED_DATA
SEND_EXPEDITED_DATA requests transmission of up to 16 bytes of data in the
buffer using the expedited delivery service of the specified connection. More than
one expedited data buffer may be posted at a time, but only one may be sent at a
time.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 9H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* input */

unsigned short length; /* input */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[15];

unsigned short reference; /* input */

unsigned char qos; /* unused */

unsigned short buf_len; /* unused */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1]; /* [num_blks] */

} VC_RB;

Transport Virtual Circuit SEND_EXPEDITED_DATA

Network User's Guide and Reference Chapter 12 237

Input Arguments
reference

Identifies the CDB this request applies to.

num_blks
Set to 1; only one buffer can be sent with this command.

data_blk_list[0].address
The address descriptor for the start of the buffer.

data_blk_list[0].length
The length of the data in the buffer. The length must be greater than 0 and less than
or equal to 16.

Responses

Output Arguments

iso_reason_code
14 if the request block was returned due to a remote abort; otherwise set to 0.

Response Codes

OK_RESPONSE 1H The expedited data in the buffer was
acknowledged.

NO_RESOURCES 4H The CDB expedited send queue is full. No more
expedited send request blocks can be queued at
this time until some already queued expedited
send request blocks are returned.

UNKNOWN_REFERENCE 6H The specified reference does not correspond to an
allocated CDB.

OK_CLOSED_RESP 7H The local client aborted the connection.

BUFFER_TOO_SHORT 8H The buffer is empty. Either num_blks is 0 or the
block length is 0.

BUFFER_TOO_LONG 0AH A data length greater than 16 bytes was specified,
or num_blks is greater than 1. The transmission
was aborted.

ILLEGAL_REQ 0CH Either the service to transmit the expedited data
is not available for this connection, or the
connection was closing or was already closed.

SEND_EXPEDITED_DATA Transport Virtual Circuit

238 Chapter 12 Programming the Transport Layer

REM_ABORT 0EH The remote Transport service aborted the
connection.

LOC_TIMEOUT 10H Transport timed out without receiving expedited
acknowledgement of the data.

Additional Information

With this service, the expedited data is transmitted immediately and is guaranteed to
arrive before any data currently in the process of being transmitted. Expedited data
transmission is not subject to flow control; it jumps the flow control queue.

In preconfigured versions of iNA 960, buffers may be posted prior to establishment
of the connection. This is dependent on Transport Layer configuration.

Transport Virtual Circuit STATUS

Network User's Guide and Reference Chapter 12 239

STATUS
STATUS queries for information about the VC services provided by the Transport
Layer, and if requested, for information pertaining to a specific VC connection. The
status information is returned immediately.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 0EH*/

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* in/out */

unsigned short length; /* in/out */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* output */

unsigned char reserved[15];

unsigned short reference; /* input */

unsigned char qos; /* unused */

unsigned short buf_len; /* output */

unsigned char num_blks; /* input */

DATA_BLOCK data_blk_list[1];

} VC_RB;

STATUS Transport Virtual Circuit

240 Chapter 12 Programming the Transport Layer

Input Arguments
reference

Identifies the CDB for which status is being requested. If this value is zero, only
connection-independent status information is returned. If this value is nonzero, both
connection-independent status and information pertaining to the specified connection
is returned.

num_blks
Set to 1; only one buffer is posted with this command.

data_blk_list[0].address
The address descriptor for the start of the status buffer.

data_blk_list[0].length
The length of the buffer, which must be enough to hold all the returned information.

For connection-independent status (reference = 0), the length is 48 bytes plus the
configured size of a transport address (ta_buffer_size is a Transport Layer
configuration parameter).

For complete status (reference is nonzero), the length is 144 bytes plus the value of
ta_buffer_size.

Responses

Output Arguments

iso_reason_code
The ISO reason code received in the disconnect request.

See also: Table 12-3 on page 185

buf_len
The length of the status data being returned.

data_blk_list[0].address
The address descriptor for the start of the status buffer. The buffer contains
connection-independent parameters at the start of the buffer. If connection-
dependent status was requested, the connection-dependent fields follow the
connection-independent ones. In multi-byte fields, the least significant byte appears
first in the buffer. The parameter fields are defined later in this description.

data_blk_list[0].length
The length of data returned in the buffer.

Transport Virtual Circuit STATUS

Network User's Guide and Reference Chapter 12 241

Response Codes

OK_RESPONSE 1H The buffer contains the requested status
information or no buffer was posted.

UNKNOWN_REFERENCE 6H The specified (nonzero) reference does not
correspond to an allocated CDB.

OK_CLOSED_RESP 7H The referenced connection was closed.

BUFFER_TOO_SHORT 8H The allocated buffer was too short for the
requested status information.

REM_ABORT 0EH The connection was terminated by a remote
disconnect request.

LOC_TIMEOUT 10H The connection terminated on a timeout.

Additional Information

If no buffer is posted to receive the status information (num_blks = 0,
data_blk_list[0].address = 0, or data_blk_list[0].length = 0) and the
referenced connection (if any) is not closed, the command request block is returned
with an OK_RESPONSE. If the referenced connection is closed, the command
request block is returned with an OK_CLOSED_RESP and the disconnect reason
code.

The information returned by the command is shown below, divided into structures of
connection-independent and connection-dependent fields. Some of the returned
values are the same as Transport Layer objects that can be read or set with NMF
commands.

See also: READ_OBJECT and SET_OBJECT commands, Chapter 14,
Object definitions, Appendix C

STATUS Transport Virtual Circuit

242 Chapter 12 Programming the Transport Layer

Connection-Independent Status Parameters

struct con_independent_status {

unsigned short cur_max_cdbs;

unsigned short num_cdbs;

unsigned short def_persist;

unsigned short def_abort_to;

unsigned short def_negot_options;

unsigned char max_tpdu_size;

unsigned char reserved;

unsigned short closing_abort_to;

unsigned long def_retran_to;

unsigned long min_retrans_time;

unsigned short max_window_size_n;

unsigned short max_window_size_e;

unsigned short min_credit;

unsigned char reserved[20];

};

cur_max_cdbs
The total number of connection databases (CDBs) configured into the iNA 960
Transport Layer (same as object 4003H).

num_cdbs
The number of CDBs currently allocated (same as object 4006H).

def_persist
Default persistence_count used if the application specifies a persistence value of
0 in a SEND_CONNECT_REQUEST request block.

def_abort_to
Default abort timeout value in 51-millisecond units, used if the application specifies
an abort_timeout value of 0 in a SEND_CONNECT_REQUEST or
AWAIT_CONNECT_REQUEST_TRAN or
AWAIT_CONNECT_REQUEST_CLIENT request block.

Transport Virtual Circuit STATUS

Network User's Guide and Reference Chapter 12 243

def_negot_options
Default negotiation options requested if the application specifies a negot_options
value of 0 in the request block of a SEND_CONNECT_REQUEST,
AWAIT_CONNECT_REQUEST_TRAN, or
AWAIT_CONNECT_REQUEST_CLIENT command. These values are valid:

Value Meaning
8342H Expedited data; no checksum; transport class 4; 31-bit sequence
8340H Expedited data; no checksum; transport class 4; 7-bit sequence
8242H No expedited data; no checksum; transport class 4; 31-bit sequence
8240H No expedited data; no checksum; transport class 4; 7-bit sequence
8142H Expedited data; checksum; transport class 4; 31-bit sequence
8140H Expedited data; checksum; transport class 4; 7-bit sequence
8042H No expedited data; checksum; transport class 4; 31-bit sequence
8040H No expedited data; checksum; transport class 4; 7-bit sequence

max_tpdu_size
Maximum TPDU size requested at the local node, specified as the exponent in a
power of 2 (range of 2 to 13).

closing_abort_to
The abort timeout in 51-millisecond units, used when closing a connection.

def_retran_to
The initial value of the default retransmit timeout in 51-millisecond units, used during
the connection establishment phase.

min_retrans_time
The minimum retransmission timeout in 51-millisecond units. This is a lower bound
on the retransmission timeout used during the data transfer and connection
termination phases.

max_window_size_n
The maximum flow control window size that can be reported to a remote node if
normal (7-bit) sequence numbers are used for a connection.

max_window_size_e
The maximum flow control window size that can be reported to a remote node if
extended (31-bit) sequence numbers are used for a connection.

min_credit
The minimum flow control credit that can be reported to a remote node. If 0, the
window may be closed. If nonzero, the window cannot close.

STATUS Transport Virtual Circuit

244 Chapter 12 Programming the Transport Layer

Connection-Dependent Status Parameters

struct con_dependent_status {

unsigned char state;

unsigned char reserved;

unsigned short loc_ref;

unsigned short rem_ref;

unsigned short persist;

unsigned short abort_to_hi;

unsigned long retran_to_dw;

unsigned short reserved;

unsigned short pending_rec_data;

unsigned short rcv_buf_rej_cnt;

unsigned char cbtq_buf_cnt;

unsigned char pcbq_buf_cnt;

unsigned char exp_cbtq_buf_cnt;

unsigned char exp_pcbq_buf_cnt;

unsigned char close_buf_cnt;

unsigned char reserved;

unsigned short loc_credit;

unsigned short rem_credit;

unsigned long loc_ack_no;

unsigned long rem_ack_no;

unsigned long next_transmit;

unsigned long highest_sent;

unsigned long loc_exp_ack_no;

unsigned long rem_exp_ack_no;

unsigned short loc_subseq_no;

unsigned short rem_subseq_no;

unsigned short client_options;

unsigned char class_options;

unsigned char options;

unsigned char conn_max_tpdu_size;

unsigned char qos;

unsigned short max_tpdu_data_len;

unsigned short reserved;

unsigned short max_nsdu_size;

unsigned char reserved[26];

unsigned char cdb_ta_buffer[ta_buffer_len];

};

Transport Virtual Circuit STATUS

Network User's Guide and Reference Chapter 12 245

state
The current state of the connection. Only the low order nibble is significant, with
these possible values:

Value State Description
0 Listen The local node is waiting for an incoming connection request

from a remote node.

1 CrSent The local node transmitted a connection request and is
waiting for connection confirmation from the remote node.

2 AckWait A listening node received a connection request, sent its
confirmation, and is now awaiting the completion of the 3-
way handshake.

3 Estab The connection is established and in the data transfer phase.

4 Closing The application initiated a disconnect of the VC; the node is
awaiting confirmation of the disconnect request from the
remote node.

5 Closed The CDB is closed to communication, but has not been
released, pending an application request block to give
notification of the format status of the connection.

6 Open The CDB was allocated using an OPEN command, but no
subsequent requests have been made on this connection.

7 Calling A transient internal state that should be ignored.

8 CrRcvd A listening node received a connection request and sent an
indication to the client by returning an
AWAIT_CONNECT_REQUEST_CLIENT request block;
the connection is awaiting the response.

9 RefWait The connection is closed, but the reference is being timed out
before the CDB is deleted.

loc_ref
The connection reference maintained by the local station. This is the value specified
in the reference field of request blocks associated with the connection.

rem_ref
The connection reference maintained by the remote station. During the lifetime of
the connection, the two connected nodes identify the connection for each other using
this and the loc_ref value.

persist
The connection refusal persistence_count used by the connection.

abort_to_hi
The high-order word of the 32-bit abort timeout value used by the connection.

retran_to_dw
The current retransmission timeout value, in 100 millisecond units.

STATUS Transport Virtual Circuit

246 Chapter 12 Programming the Transport Layer

pending_rec_data
The number of undelivered bytes in the last received TPDU.

rcv_buf_rej_cnt
The number of times a TPDU was discarded due to a lack of receive buffers.

cbtq_buf_cnt
The number of SEND_EOM_DATA request blocks currently posted to this
connection.

pcbq_buf_cnt
The number of RECEIVE_DATA request blocks currently posted to this connection.

exp_cbtq_buf_cnt
The number of SEND_EXPEDITED_DATA request blocks currently posted to this
connection.

exp_pcbq_buf_cnt
The number of RECEIVE_EXPEDITED_DATA request blocks currently posted to
this connection.

close_buf_cnt
The number of CLOSE or AWAIT_CLOSE request blocks currently posted to this
connection.

loc_credit
The current flow control credit the local station can report to the remote station. If
min_credit = 0 and loc_credit = 0, there are no normal receive buffers locally
posted and the local station's window is closed. If min_credit <> 0 and
loc_credit = 0, there are no normal receive buffers locally posted and the local
station's window cannot be closed, so received packets are lost.

rem_credit
The current flow control credit the remote node has reported to the local node. If it is
0, the remote node has closed the window and no normal data can be transmitted at
this time.

loc_ack_no
The next normal-data TPDU sequence number the local node expects from the
remote node.

rem_ack_no
The (highest sequence number + 1) of a TPDU the local node transmitted that was
acknowledged by the remote node.

next_transmit
The sequence number of the next TPDU to be sent.

highest_sent
The (highest sequence number + 1) of a transmitted TPDU. The TPDU may not yet
be acknowledged.

Transport Virtual Circuit STATUS

Network User's Guide and Reference Chapter 12 247

loc_exp_ack_no
The sequence number of the last expedited TPDU the local node received that it
acknowledged.

rem_exp_ack_no
The sequence number of the next expedited data TPDU that can be transmitted by the
local node.

loc_subseq_no
The next sub-sequence number the local node will transmit in an acknowledgement
TPDU.

rem_subseq_no
The last sub-sequence number received in an acknowledgement from the remote
node.

client_options
The negotiation options requested by the client, with the same values described
earlier for the def_negot_options field.

class_options
The class of services (should be 4) and sequence number format negotiated for the
connection. These are nibbles 1 and 2 of the options in the
SEND_CONNECT_REQUEST command:

Nibble Value Meaning
1 0 Use 7-bit sequence numbers

2 Use 31-bit sequence numbers
2 4 Class four service

options
The ISO expedited services and checksum options negotiated on the connection:

Value Meaning
0 No expedited service, do checksums
1 Expedited service, do checksums
2 No expedited service, no checksums
3 Expedited service, no checksums

conn_max_tpdu_size
The maximum TPDU size finally negotiated for the connection. This is an exponent
of a power of 2 (range 7 to 13).

qos The low order nibble defines the network-transparent priority class that may be used
by the underlying subnet. The range is 0-15, with 0 being the highest priority. For
iNA 960 Data Link 802.3 subnets, transmit priority is not supported.

max_tpdu_data_len
The maximum length of application data that can be in a data TPDU of the maximum
negotiated TPDU size and maximum configured NSDU size.

STATUS Transport Virtual Circuit

248 Chapter 12 Programming the Transport Layer

max_nsdu_size
The maximum size of an NSDU that the connection can pass to the underlying local
Network Layer.

cdb_ta_buffer[ta_buffer_len]
A copy of the transport address (TA) buffer maintained by the connection. The
length is variable and depends on the address field length defined in the buffer.

See also: TSAP address buffer structure, page 180

Transport Datagram WITHDRAW_DATAGRAM_RECEIVE_BUFFER

Network User's Guide and Reference Chapter 12 249

WITHDRAW_DATAGRAM_RECEIVE_BUFFER
WITHDRAW_DATAGRAM_RECEIVE_BUFFER requests that datagram receive
buffers posted for a local TSAP selector be withdrawn and returned to the client.
Only buffers that have not yet received data are withdrawn. Buffers with data
received by Transport service are returned with the data intact, as described for the
RECEIVE_DATAGRAM command.

This command may be used to withdraw datagram receive buffers at any time. The
request block is returned after the receive buffers are returned.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of datagram_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 41H */

unsigned char opcode; /* 13H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* unused */

unsigned short length; /* unused */

} DATA_BLOCK;

typedef struct datagram_rb {

RB_COMMON header;

unsigned char reserved[4];

unsigned long ta_buffer_addr; /* input */

unsigned char qos; /* input */

unsigned short buf_len; /* in/out */

unsigned char num_blks; /* unused */

DATA_BLOCK data_blk_list[1]; /* unused */

} DATAGRAM_RB;

WITHDRAW_DATAGRAM_RECEIVE_BUFFER Transport Datagram

250 Chapter 12 Programming the Transport Layer

Input Arguments
ta_buffer_addr

An address pointing to a TSAP address buffer. The local TSAP selector must be
loaded into the buffer. This command withdraws one or more receive datagram
buffers (if any) posted for that local TSAP selector. If no buffers are posted for the
local TSAP selector, the request block is returned indicating that no buffers were
withdrawn (buf_len = 0). The remote NSAP address and TSAP selectors are not
input parameters.

See also: TSAP address buffer structure, page 180

qos Set to 0.

buf_len
The total number of bytes to withdraw. Enough posted receive datagram buffers for
the TSAP are withdrawn to satisfy the byte specification. If the last buffer withdrawn
has more bytes than required to satisfy the specification, the entire buffer is
withdrawn. Thus, the original buffers posted are returned intact and more bytes may
be returned than specified. Any buffers posted after the byte specification is satisfied
will remain posted.

If buf_len = 0, or there are no buffers posted, this command is a null operation; zero
bytes are returned. If there are fewer bytes posted than specified, all posted buffers
are returned. If buf_len = 0FFFFH, all buffers for the connection will be
withdrawn.

Responses

Output Arguments

buf_len
The exact number of bytes in all withdrawn buffers returned to the application. If the
value of this argument is 0FFFFH, all buffers for the connection were returned.

Response Codes

OK_WITHDRAW_RESP 9H Zero or more datagram receive buffers were
withdrawn from Transport service.

ILLEGAL_ADDRESS 1AH An addressing error was detected.

Transport Virtual Circuit WITHDRAW_EXPEDITED_BUFFER

Network User's Guide and Reference Chapter 12 251

WITHDRAW_EXPEDITED_BUFFER
WITHDRAW_EXPEDITED_BUFFER requests that expedited receive buffers
posted for a specific connection be withdrawn and returned to the client. Only
buffers that have not yet received data are withdrawn. Buffers with data received by
the Transport service are returned to the client with the data intact as described for
the RECEIVE_EXPEDITED_DATA command.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 0BH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* unused */

unsigned short length; /* unused */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* unused */

unsigned char reserved[15];

unsigned short reference; /* input */

unsigned char qos; /* unused */

unsigned short buf_len; /* in/out */

unsigned char num_blks; /* unused */

DATA_BLOCK data_blk_list[1]; /* unused */

} VC_RB;

WITHDRAW_EXPEDITED_BUFFER Transport Virtual Circuit

252 Chapter 12 Programming the Transport Layer

Input Arguments
reference

Identifies the CDB for which the expedited data buffer is being withdrawn. If no
buffers are posted for the connection, the request block is returned indicating that no
buffers were withdrawn (buf_len = 0).

buf_len
Specifies the total number of bytes to withdraw. Enough buffers posted for the
connection are withdrawn to satisfy the byte specification. If the last buffer
withdrawn has more bytes posted than required to satisfy the specification, the entire
buffer is withdrawn. Thus, the original buffers are returned intact, and more bytes
may be returned than specified. Any buffers posted after the byte specification is
satisfied will remain posted. If buf_len = 0, or there are no buffers posted, this
command is a null operation. If there are fewer bytes in posted buffers than specified
here, all posted buffers are returned.

If buf_len = 0FFFFH, all expedited buffers for the connection will be withdrawn.

Responses

Output Arguments

buf_len
The sum of the lengths of all buffers that were withdrawn and returned to the client.
The value 0FFFFH indicates that all buffers for the connection were withdrawn.

Response Codes

UNKNOWN_REFERENCE 6H The reference does not correspond to any
allocated CDB.

OK_WITHDRAW_RESP 9H Zero or more expedited receive buffers were
withdrawn from Transport service.

Additional Information

This command may be used to withdraw expedited receive buffers at any time. It is
especially useful to reclaim resources that are no longer needed. This request block
is returned following the return of all expedited receive buffers to the client.

Transport Virtual Circuit WITHDRAW_RECEIVE_BUFFER

Network User's Guide and Reference Chapter 12 253

WITHDRAW_RECEIVE_BUFFER
WITHDRAW_RECEIVE_BUFFER requests that normal receive buffers previously
posted for a specific connection be withdrawn and returned to the client. Only
buffers that have not yet received data are withdrawn. Buffers with data received by
the Transport service are returned to the client with the data intact as described for
the RECEIVE_DATA command.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of vc_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 40H */

unsigned char opcode; /* 8H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct data_block {

unsigned long address; /* input */

unsigned short length; /* input */

} DATA_BLOCK;

typedef struct vc_rb {

RB_COMMON header;

unsigned char iso_reason_code; /* unused */

unsigned char reserved[15];

unsigned short reference; /* input */

unsigned char qos; /* unused */

unsigned short buf_len; /* in/out */

unsigned char num_blks; /* unused */

DATA_BLOCK data_blk_list[1]; /* unused */

} VC_RB;

WITHDRAW_RECEIVE_BUFFER Transport Virtual Circuit

254 Chapter 12 Programming the Transport Layer

Input Arguments
reference

Identifies the CDB for which the normal receive buffers are being withdrawn. If no
buffers are posted for the connection, the request block is returned indicating that no
buffers were withdrawn (buf_len = 0).

buf_len
Specifies the total number of bytes to withdraw. Enough posted buffers are
withdrawn to satisfy the byte specification. If the last buffer withdrawn has more
bytes posted than required to satisfy the specification, the entire buffer is withdrawn.
Thus, the original buffers posted are returned intact, and more bytes may be returned
than specified. Any buffers posted after the byte specification is satisfied will remain
posted. If buf_len = 0, or there are no buffers posted, this command is a null
operation. If there are fewer bytes posted than specified, all posted buffers are
returned. If the value of this argument is 0FFFFH, all buffers for the connection will
be withdrawn.

Responses

Output Arguments

buf_len
The sum of the lengths of all buffers that were withdrawn and returned. The value
0FFFFH indicates that all buffers for the connection were withdrawn.

Response Codes

UNKNOWN_REFERENCE 6H The reference does not correspond to any
allocated CDB.

OK_WITHDRAW_RESP 9H Zero or more normal receive buffers were
withdrawn from Transport service.

Additional Information

This command may be used to withdraw normal buffers at any time. It is especially
useful when the client wishes to reclaim resources that are no longer needed.

Depending on the size and availability of posted buffers for this connection, this
command may withdraw fewer, more, or the same number of bytes specified in the
buf_len input parameter. Buffers are withdrawn until either no more buffers
remain posted, or until the length specification is met.

■■ ■■ ■■

Network User's Guide and Reference Chapter 13 255

Programming the Data Link Layer13
This chapter describes the facilities of the iNA 960 Data Link Layer and the subnets
supported by it.

Overview of the Data Link Layer
The Data Link Layer includes two application interfaces: the External Data Link
(EDL) directly accesses the ISO data link Control Layer, and the RawEDL is a non-
ISO interface for lower-level functions.

The Data Link Layer transforms the raw transmission and reception facility of the
subnet-dependent Physical Layer into a communications channel that appears error-
free to the Network Layer. The Data Link Layer accomplishes this by assembling
raw data packets taken from the Physical Layer into frames that are transmitted
sequentially to the Network Layer. Conversely, the Data Link Layer takes frames
from the Network Layer and disassembles them into raw data packets for
transmission to the destination node. In addition, the Data Link Layer performs CRC
checks on packets received from the Physical Layer.

The Data Link Layer provides a datagram service that does not ensure accurate
reception of data. Reliable communications over the network is provided by the
Transport Layer VC service.

A subnet is a collection of equipment and physical media comprising a homogeneous
environment where end systems (nodes) are interconnected for communications
purposes. A subnet usually has a common physical interconnection technology, data
link protocol, and data link address mechanisms. This is especially true for Local
Area Networks (LANs) where the nodes have these characteristics in common:

• The physical medium and methodology to access the medium

• The addressing format

• A well-understood data link message (or frame) format

Subnets may be individually interconnected by internetwork routers designed to
resolve the incompatibilities between networks so that messages can be exchanged
between nodes residing on separate subnets.

256 Chapter 13 Programming the Data Link Layer

Individual subnets interconnected by one or more routers collectively define what is
referred to as a Network. The Data Link Layer and the protocol used to control its
functionality reside at the lowest level of the Network end node addressing hierarchy.

See also: Addressing and network topology, Chapter 8

The Data Link Layer maintains statistics that monitor the performance of a network
node and record data error rates. The information is stored as objects that can be
manipulated by the iNA 960 Network Management Facility.

See also: NMF commands, Chapter 14

The External Data Link (EDL) Interface
The Data Link Layer control software implements Class 1 of the Logical Link
Control (LLC) sublayer described in the IEEE 802.2 standard, and the Media Access
Control sublayer described in the IEEE 802.3 standard. The IEEE 802.3 standard
supports the Carrier-Sense Multiple Access with Collision Detection (CSMA/CD)
media access method.

The EDL commands are an interface to the Data Link control software. EDL
commands circumvent the Transport and Network Layers and access the services of
the Data Link Layer directly. The application that uses EDL commands must
sufficiently duplicate the routing and data integrity functions of the Transport and
Network Layers to ensure successful transmission and reception of data using the
Data Link Layer.

The RawEDL Interface
In addition to the EDL commands, iNA 960 provides an extended set of EDL
routines called RawEDL. This non-ISO interface enables an application to send and
receive Ethernet packets directly to the network, bypassing the normal 802.3
interface provided by iNA 960. The interface is co-resident with the normal EDL
routines and enables full use of iNA 960's EDL, Network, and Transport interfaces.

The RawEDL interface addresses two classes of applications. The first is an
application that implements a non-ISO protocol stack, such as TCP/IP, XNS, Novell
or DECnet, while retaining the functionality of iNA 960's ISO Transport. Examples
of this are a multiple-protocol gateway, or an application that lets Intel OpenNET
networking software co-exist with a TCP/IP stack.

Network User's Guide and Reference Chapter 13 257

The second use is for an application that needs low-level access to traffic on the
Ethernet without having to program a low-level driver for the 82586 chip. Examples
of this are a network monitor or bridge application. Such an application needs to
work in promiscuous mode, receiving all network traffic regardless of destination
address. The standard iNA 960 EDL interface would not allow such access.

An application that does protocol analysis also could use RawEDL commands. Such
an application is normally interested in frames from only a few stations. RawEDL
can filter out all unwanted frames, so the host CPU need not be bothered with
unwanted traffic. Applications that want to receive all traffic can still do so.

Standard EDL commands return receive buffers as soon as a frame is received.
RawEDL can accumulate received frames in the buffers and return them only when
full. This further minimizes interaction with the main CPU, particularly when large
buffers are used. A header is inserted in front of each received frame to allow the
host to separate them again.

For protocol analysis purposes, it may not be necessary to record the entire frame
since only the protocol header will suffice. The RawEDL receive function can
automatically truncate frames longer than a specified maximum length.

iNA 960-Supported Hardware Subnets and Protocols
The iNA 960 software supports the IEEE 802.3 (Ethernet) specification.
Preconfigured LAN subnets of this type are available for this Intel hardware:

• 82586/82596 LAN Coprocessor (LP 486, SBC 486/133SE, SBC 486/166SE)
• 82595TX (SBC P5090 for Multibus II, EtherExpress PRO/10 card)
• DEC 211A3 (SBCP5200 for Multibus II, various PC1 cards)
• SBC 186/530 Multibus II module
• MIX 386/560 Multibus II module
• SBC 552A module
• SBX 586 module
• MIX 560 Multibus II Ethernet COMMputer
• PCL2 and PCL2A Ethernet cards
• EtherExpress 16 Ethernet card
• EWENET module
• Multibus II subnet

The subsystem code in Data Link request blocks specifies the subnet type.

258 Chapter 13 Programming the Data Link Layer

LSAP Identifiers
EDL applications communicate using link service access points (LSAPs). An LSAP
selector identifies the LSAP at which a specific task or client process requests or
receives Data Link services. Each receiving client is identified by a destination
LSAP (DLSAP) selector, and each sending client is identified by a source LSAP
(SLSAP) selector.

When a packet is sent, the destination process is identified by the DLSAP selector
field in the first data buffer. Before a destination process can receive a packet, its
DLSAP selector must be included in a list of the active LSAP selectors for the
destination data link. The Data Link Layer only receives packets targeted for LSAP
selectors on its active list.

The EDL CONNECT command adds an LSAP selector to the active list. Any
incoming packet containing that LSAP selector is routed to that process. The
DISCONNECT command removes an LSAP selector from the active list when it is
no longer needed. The maximum number of LSAP selectors that may be active at
one time is specified in the subnet configuration.

EDL applications arbitrarily choose LSAP selectors that are a multiple of 4, in the
range 4 through 0FCH. Applications cannot use LSAP selector 8; it is reserved for
the NMF. LSAP selector 0FEH is used by the iNA 960 Network Layer.

The RawEDL interface uses LSAP selector 63H; an application uses this selector to
specify a RawEDL command.

Network User's Guide and Reference Chapter 13 259

Figure 13-1 illustrates how LSAPs identify applications (user tasks) and iNA 960
subsystems to the Data Link Layer.

LSAP = 4H

NMF

Ethernet
W-2957

LSAP = 0FEH LSAP = 08H

LSAP = 63H

RawEDL

LSAP = 12H

EDL

LSAP = 0FCH

User
task

User
task

User
task

User
task

Network
layer

Transport
layer

Data Link
user

interface

Data Link interface

Data Link
controller

Figure 13-1. Data Link Interface

260 Chapter 13 Programming the Data Link Layer

Data Link Commands
Table 13-1 lists the EDL and RawEDL commands. The commands in this chapter
are specified by the subsystem and opcode fields in the request block header,
rb_common. Where the commands have the same name, the opcode is the same for
both interfaces; specify the RawEDL interface with LSAP selector 63H. Detailed
descriptions of each command follow this section. Each command description lists
which fields are input and output arguments. Initialize reserved fields and unused
fields to 0. The structures are provided as typedefs in the Data Link layer's include
files.

See also: Using the cq_ System Calls, Chapter 10;
Include Files, Chapter 10;
Programming with Structures, Chapter 10

Use EDL commands to perform these functions in your application:

• To establish and terminate the connection between the application and an LSAP,
use CONNECT and DISCONNECT.

• To send and receive data packets through the Data Link and over the network,
use TRANSMIT and POST_RPD.

• To dynamically change some configuration of the Data Link and the 82586
controller, use CONFIGURE, IA_SETUP, MC_ADD, and MC_REMOVE.

Use RawEDL commands to perform these functions:

• To establish and terminate the connection between the application and RawEDL,
use CONNECT and DISCONNECT.

• To send and receive data packets, use RAW_TRANSMIT,
RAW_POST_RECEIVE, and FLUSH.

• To dynamically change some configuration of the Data Link and the 82586
controller, use CONFIGURE, MC_ADD, and MC_REMOVE.

• To get timing information, use READ_CLOCK.

Network User's Guide and Reference Chapter 13 261

Table 13-1. Data Link Commands

EDL RawEDL Opcode Description

CONFIGURE CONFIGURE 88H Sends configuration information to the
data link controller

CONNECT CONNECT 82H Establishes a connection between a
process and an LSAP, assigning a
specific LSAP selector

DISCONNECT DISCONNECT 83H Terminates the connection for a
specified LSAP selector

FLUSH 81H Returns RawEDL receive buffers that
have collected any data

IA_SETUP 89H Sets the Ethernet address of the local
node

MC_ADD MC_ADD 87H Adds a multicast address to the list of
addresses the controller listens to

MC_REMOVE MC_REMOVE 8AH Removes a multicast address from the
controller's list

POST_RPD 85H Posts one or more receive buffers to
collect incoming data

RAW_POST_RECEIVE 7FH Posts a receive buffer to collect
incoming data

RAW_TRANSMIT 7EH Transmits data

READ_CLOCK 80H Returns the current value of the local
network timer

TRANSMIT 84H Transmits a data packet

262 Chapter 13 Programming the Data Link Layer

Table 13-2 lists the subsystem IDs you can use at the Data Link layer. Specify the
appropriate value in the susbsystem field of Data Link request blocks.

Table 13-2. Data Link Subsystem IDs

Table Subsystem

20H
Data Link for:

Boards with 82586 component, including first MIX560 board in the system
21H SBX 586 board, EWENET module, or EtherExpress 16
22H Second MIX560 board in the system
23H Third MIX560 board in the system
24H 82595TX component, EtherExpress PRO/10, SBC P5090 PC-compatible board
25H DEC 21143 component, SBC P5200 PC-compatible boards, all versions

2FH Multibus II subnet

Table 13-3 lists all response codes that can be returned from Data Link commands in
an iEEE 802.3 subnet. The command descriptions list response codes appropriate to
the individual command.

Table 13-3. IEEE 802.3 Response Codes

Literal Code Description

E_ERROR 00H Failure: reason not specified or unknown

OK_RESPONSE 01H Execution with no errors; also implies that the end of the
packet has not been returned

E_CONFIG_COUNT 02H Number of configuration information bytes exceeds the
maximum for the subnet

OK_EOP_RESPONSE 03H OK end_of_packet response, implies error free execution
and the return of the end of the packet

E_INSUFF_RCV_BUF 04H Insufficient receive buffers

E_TX_SIZE_EXCEEDED 06H Size of the transmit packet exceeds the configured
maximum

E_OPCODE 08H Invalid opcode value for Data Link commands

E_LSAP_NOT_EXIST 0AH Connect/Disconnect error: LSAP does not exist

E_SUBSYSTEM 0CH Incorrect subsystem code

E_ADDR_COUNT 0EH Number of address bytes exceeds the maximum of six

E_NOT_OK 10H The 82586 reports that command execution is not OK

E_MC_NOT_EXIST 12H The multicast address to be removed does not exist

E_BUFFER_COUNT 14H Buffer count exceeds the maximum of 4

E_NO_RESOURCES 16H Out of resources

Network User's Guide and Reference Chapter 13 263

E_ZERO_LSAP 18H LSAPS with value zero are not allowed

CONFIGURE EDL and RawEDL

264 Chapter 13 Programming the Data Link Layer

CONFIGURE
The CONFIGURE command configures the 82586 data link controller. The
configuration information is contained in a segment of memory that may be up to 12
bytes long. The actual configuration data is part of the request block.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of configure_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 88H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct configure_rb {

RB_COMMON header;

unsigned short reserved;

unsigned short count; /* input */

unsigned char configure[12]; /* input */

} CONFIGURE_RB;

Input Arguments

count The size in bytes of the configuration information. This can be up to 12 bytes for the
IEEE 802.3 subnet.

configure
An array of configuration data. These 12 bytes are defined by the argument field of
the 82586 LAN coprocessor CONFIGURE command. The first byte of this array is
the one that contains the Byte Count field.

See also: 82586 and 82596, Intel Microcommunications data book

EDL and RawEDL CONFIGURE

Network User's Guide and Reference Chapter 13 265

Responses

Output Arguments

None

Response Codes

OK_RESPONSE 01H Successful execution of the command.

E_CONFIG_COUNT 02H The count argument value exceeds the maximum
of 12 for IEEE 802.3 or 30 for IEEE 802.4.

E_SUBSYSTEM 0CH Incorrect subsystem code.

Additional Information

These restrictions on the configuration data applies to boards based on the 82586
(including the SBX 586):

• The address allocation bit is always reset.

• The save bad packet option is always OFF. If turned ON in a command, it will
be reset.

• The Ethernet address or data link address length must always be 6 bytes long.

• The Data Link performs packet padding operations. The application must not
alter the minimum packet length parameter.

CONNECT EDL and RawEDL

266 Chapter 13 Programming the Data Link Layer

CONNECT
As an EDL command, CONNECT provides a connection between an application and
the LSAP identified by the specified LSAP selector.

To specify the RawEDL command, use LSAP selector 63H. This does not conflict
with concurrent use of EDL by other iNA 960 processes since 63H is not a multiple
of 4. Although the RawEDL receive process does not filter on LSAP selectors, the
CONNECT command is still required for house-keeping purposes.

For either version of the command, a connection must be made before any receive
request blocks are posted for the LSAP.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of connect_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 82H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct connect_rb {

RB_COMMON header;

unsigned char lsap_sel; /* input */

unsigned char reserved; /* input for RawEDL */

unsigned char port; /* input */

} CONNECT_RB;

Input Arguments
lsap_sel

For EDL, this is an arbitrary LSAP selector for the connection. Use a multiple of 4;
0 is invalid. Do not use an LSAP selector value bound in the subnet configuration to
one of the other iNA 960 layers: LSAPs 0FEH or 08H. For RawEDL, set lsap_sel
to 63H.

EDL and RawEDL CONNECT

Network User's Guide and Reference Chapter 13 267

reserved
This field is meaningful only in the RawEDL CONNECT command. In that context
it specifies the filter option to use. The RawEDL receive process uses these values to
determine which data to receive, rather than filtering on an LSAP selector:

Value Meaning
0 Filter on source address: the source address must match one of the

specified multicast addresses

1 Filter on destination address: the destination address must match one of the
specified addresses or it must be an Ethernet multicast or broadcast
address

2 Logical AND of 0 and 1: both source and destination must match

3 Logical OR of 0 and 1: either source or destination must match

4 No special filtering other than the 82586 hardware: this would be used in
a non-monitor application such as a bridge or application-implemented
protocol stack

port Firmware-dependent. For Intel hardware this value must always be 0FFH.

Responses

Output Arguments

None

Response Codes

OK_RESPONSE 01H Successful execution of the command.

E_LSAP_NOT_EXIST 0AH The specified LSAP does not exist.

E_SUBSYSTEM 0CH Incorrect subsystem code.

E_ZERO_LSAP 18H A null LSAP selector was specified.

E_NO_RESOURCES 16H The Data Link is out of resources.

CONNECT EDL and RawEDL

268 Chapter 13 Programming the Data Link Layer

Additional Information

If an LSAP has been established with the CONNECT command and there are receive
buffers posted for the LSAP (using the POST_RPD command), any received packet
that identifies this LSAP is placed in the buffers and the buffers are returned to their
owners. Only nonzero LSAP selectors are accepted for processing. If the LSAP
specified in this command is already active, a new association replaces the old one.

Only a configurable maximum number of LSAPs may be active at one time. The
CONNECT command is ignored if the maximum number of connections are
currently established.

EDL and RawEDL DISCONNECT

Network User's Guide and Reference Chapter 13 269

DISCONNECT
DISCONNECT terminates the specified connection. If the connection does not exist,
the command is ignored and an error is returned.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of disconnect_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 83H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct disconnect_rb {

RB_COMMON header;

unsigned char lsap_sel; /* input */

unsigned char reserved;

} DISCONNECT_RB;

Input Arguments
lsap_sel

The LSAP selector identifying the connection to terminate. Use a multiple of 4; 0 is
invalid. Do not use an LSAP selector value bound in the subnet configuration to one
of the other iNA 960 layers: LSAP 0FEH or 08H. To specify the RawEDL
DISCONNECT command, set lsap_sel to 63H.

Responses

Output Arguments

None

DISCONNECT EDL and RawEDL

270 Chapter 13 Programming the Data Link Layer

Response Codes

OK_RESPONSE 01H Successful execution of the command.

E_SUBSYSTEM 0CH Incorrect subsystem code.

E_ZERO_LSAP 18H A null LSAP selector was specified.

E_LSAP_NOT_EXIST 0AH The specified LSAP selector identifies a
nonexistent LSAP.

Additional Information

Once a connection is disconnected, all receive buffers and receive request blocks
posted with the LSAP being disconnected are returned to the application owning
them. The application must ensure that the number of buffers posted does not exceed
four times the number of receive request blocks.

The RawEDL application should issue a DISCONNECT before terminating. The
RAWEDL command operates the same as the EDL command; it returns empty and
partially filled receive buffers. The response code on these request blocks will be
indeterminate.

RawEDL FLUSH

Network User's Guide and Reference Chapter 13 271

FLUSH
The FLUSH command returns the current receive request block (issued with a
RAW_POST_RECEIVE) if it has captured any data. This enables the application to
examine data by polling for partially-filled buffers. Only the opcode and
subsystem fields are relevant; all other request block fields are ignored.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of flush_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 81H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct flush_rb {

RB_COMMON header;

} FLUSH_RB;

Responses

Output Arguments

None

Response Code

OK_RESPONSE 01H Successful execution of the command.

IA_SETUP EDL

272 Chapter 13 Programming the Data Link Layer

IA_SETUP
The IA_SETUP (Individual Address Setup) command sets the Ethernet address for a
node, overriding the Ethernet address set up by the hardware at system initialization.

✏ Note

IA_SETUP is not supported by all subnets. For instance, the 595 Subnet driver
returns an E_OPCODE error in response to an IA_SETUP command.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of ia_setup_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 89H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct ia_setup_rb {

RB_COMMON header;

unsigned short reserved;

unsigned short count; /* input */

unsigned char address[6]; /* input */

} IA_SETUP_RB;

Input Arguments

count The size in bytes of the Ethernet address; this value must be 6.

address
The new six-byte Ethernet address.

EDL IA_SETUP

Network User's Guide and Reference Chapter 13 273

Responses

Output Arguments

None

Response Codes

OK_RESPONSE 01H Successful execution of the command.

E_SUBSYSTEM 0CH Incorrect subsystem code.

E_ADDR_COUNT 0EH The number of bytes in the Ethernet address
exceeds the maximum of 6.

MC_ADD EDL and RawEDL

274 Chapter 13 Programming the Data Link Layer

MC_ADD
The MC_ADD command adds a multicast address to the data link multicast address
list. These are addresses for which the controller will receive incoming data packets,
in addition to broadcast packets and packets addressed to the address of this node. In
a network-monitor or bridge application, this command can be used to specify a
station to listen to.

An address of FFFFFFFFFFFFH puts this node in promiscuous mode (receiving all
network data packets) at the RawEDL level. The 82586 controller must also be
programmed as promiscuous, using the CONFIGURE command.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of mc_add_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 87H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct mc_add_rb {

RB_COMMON header;

unsigned short reserved;

unsigned short count; /* input */

unsigned char mc_address[6]; /* input */

} MC_ADD_RB;

Input Arguments
count

The size in bytes of the multicast address; this number must be 6.

mc_address
The six-byte multicast address. The least significant bit of the first (most significant)
byte must be 1, to specify the address is multicast.

EDL and RawEDL MC_ADD

Network User's Guide and Reference Chapter 13 275

Responses

Output Arguments

None

Response Codes

OK_RESPONSE 01H The address is successfully added to the multicast
address list.

E_SUBSYSTEM 0CH Incorrect subsystem code.

E_ADDR_COUNT 0EH The number of bytes in the Ethernet address
exceeds the maximum of 6.

E_NO_RESOURCES 16H The Data Link is out of resources.

Additional Information

Each address must be added with a separate command. The iNA 960 Data Link
performs perfect multicast filtering, whereas the 82586 controller performs imperfect
multicast filtering. The maximum number of multicast addresses that can be active at
one time is determined by the subnet configuration.

See also: Broadcast and multicast addresses, 82596 User's Manual or
32-Bit LAN Component User's Manual

MC_REMOVE EDL and RawEDL

276 Chapter 13 Programming the Data Link Layer

MC_REMOVE
The MC_REMOVE command removes a single multicast address from the list of
active multicast addresses for a given data link. Each address must be 6 bytes long.
Removing the address FFFFFFFFFFFFH results in the station being non-
promiscuous (not listening to all messages) at the RawEDL level. An address of all
zeroes clears the multicast list.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of mc_remove_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 8AH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct mc_remove_rb {

RB_COMMON header;

unsigned short reserved;

unsigned short count; /* input */

unsigned char mc_address[6]; /* input */

} MC_REMOVE_RB;

Input Arguments
count

The size in bytes of a multicast address; this number must be 6.

mc_address
The six-byte multicast address. If the address is all zeroes, the multicast list is
cleared.

EDL and RawEDL MC_REMOVE

Network User's Guide and Reference Chapter 13 277

Responses

Output Arguments

None

Response Codes

OK_RESPONSE 01H The address is successfully removed from the
active multicast address list.

E_SUBSYSTEM 0CH Incorrect subsystem code.

E_ADDR_COUNT 0EH The number of bytes in the Ethernet address
exceeds the maximum of 6.

E_MC_NOT_EXIST 12H The specified multicast address was never added.

POST_RPD EDL

278 Chapter 13 Programming the Data Link Layer

POST_RPD
POST_RPD posts a single receive request block together with up to four buffers.
This receive request block and any associated buffers are kept by the data link
software until the request block buffers are filled with incoming packets intended for
the process that posted the buffers. An LSAP must be established with the
CONNECT command before receive request blocks and their associated buffers may
be posted for that LSAP.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of post_rpd_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 85H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct post_rpd_rb {

RB_COMMON header;

unsigned char lsap_selector; /* input */

unsigned char reserved;

unsigned short buf_count; /* input */

unsigned short return_count; /* output */

unsigned short byte_count[4]; /* in/out */

unsigned long buf_loc[4]; /* in/out */

} POST_RPD_RB;

Input Arguments
lsap_selector

The LSAP selector used to identify the connection. This parameter must match a
value returned in a previous CONNECT command. Only data packets destined for
this LSAP selector will be passed to the buffers posted for it by an application. Once
the buffers are full, the receive request block and the associated buffers are returned
to the application owning them.

EDL POST_RPD

Network User's Guide and Reference Chapter 13 279

buf_count
The number of buffers associated with the receive request block. The value may
range from 0 to 4.

byte_count
An array of four values where byte_count[i] is the size in bytes of the buffer
specified by buf_loc[i]. For the first buffer, byte_count must be at least 17

See also: The returned output below

buf_loc
An array of four addresses where buf_loc[i] points to the start of buffer i.

Responses

Output Arguments

return_count
The size in bytes of the information returned in this request block (up to four buffers),
less the length of header information. If the returned packet fits in the buffers of this
request block, or if this request block contains the beginning of a packet split between
multiple request blocks, then return_count is 14 less than the total number of
bytes returned in this request block. The byte_count values contain the actual
length. The 14 bytes is the Media Access Control (MAC) header at the beginning of
the first buffer.

When an incoming packet is split between more than one request block,
return_count in the second and subsequent request blocks is the accurate number
of bytes of data returned in the buffers of that request block.

byte_count
An array of four values where byte_count[i] is the size in bytes of information
returned in the buffer specified by buf_loc[i]. In the first request block returned,
this contains the full size of the first returned buffer, including the 14 bytes of the
MAC header (destination and source addresses, ISO control information, and
application data). This argument field is not updated for subsequent buffers if any
were posted by this command; the return_count accurately specifies the size of
subsequent receive buffers.

buf_loc
The addresses of the returned data buffers.

POST_RPD EDL

280 Chapter 13 Programming the Data Link Layer

Response Codes

OK_RESPONSE 01H Successful execution of the command; end of
packet not returned.

OK_EOP_RESPONSE 03H Successful execution and the end of packet is
returned.

E_SUBSYSTEM 0CH Incorrect subsystem code.

E_LSAP_NOT_EXIST 0AH The specified LSAP selector identifies a
nonexistent LSAP.

E_BUFFER_COUNT 14H The buf_count field exceeds the maximum of 4.

Additional Information

Whenever a packet is received by EDL, its LSAP selector associates it with a receive
request block and any buffers that were posted by an application for the LSAP
identified by that destination LSAP selector.

A maximum of one IEEE 802 receive packet may be passed to an application for
every receive request block (and application buffers) posted. If the received packet is
larger than the buffer space available in one receive request block, more than one
request block must be posted. If the packet is larger than the total space available for
all receive request blocks currently posted, the packet is discarded. There must be
sufficient buffer space available (through one or more request blocks) to hold at least
one packet of the size expected.

If a returned packet is split between more than one request block, the packet header
information is only added to the beginning of the first buffer in the first request block.
The first buffer of subsequent request blocks for that packet contain only application
data.

EDL POST_RPD

Network User's Guide and Reference Chapter 13 281

Application Data Buffers

The first buffer returned with a receive request block contains destination and source
addresses, ISO control information, and data. It must be at least 17 bytes long, plus
the length of received data. The second and all subsequent buffers (to a maximum of
4) contain only data. The last buffer returned may contain fewer data bytes than the
buffer is capable of holding. The format of the buffers is shown below:

typedef struct first_receive_buffer {
unsigned char destination_addr[6];
unsigned char source_addr[6];
unsigned short information_len;
unsigned char destination_lsap_selector;
unsigned char source_lsap_selector;
unsigned char iso_cmd;
unsigned char data[1];

} FIRST_RECEIVE_BUFFER ;

typedef struct next_receive_buffer {
unsigned char data[1];

} NEXT_RECEIVE_BUFFER ;

Where:

destination_addr
The Ethernet address of the node that received the packet.

source_addr
The Ethernet address of the node that sent the packet.

information_len
The length in bytes of the information in the packet (excluding header)
received from the data link. The value is identical to the
return_count field specified in the request block, if the packet's data
fits into the buffers of a single request block. This value is the number
of bytes received following the information_len field.

destination_lsap_selector
The LSAP selector for the Data Link entity that received the packet.

source_lsap_selector
The LSAP selector for the Data Link entity that sent the packet.

iso_cmd 03H for the 82586 component and 82586-based boards.

data An array of bytes that contains the actual data.

RAW_POST_RECEIVE RawEDL

282 Chapter 13 Programming the Data Link Layer

RAW_POST_RECEIVE
The RAW_POST_RECEIVE command acts as a garbage collector at the Data Link
level. All packets not otherwise claimed by the OSI Network Layer or other EDL
applications are sent to this interface.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* raw_post_receive_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 7FH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct raw_post_receive_rb {

RB_COMMON header;

unsigned char lsap_selector; /* input */

unsigned char reserved;

unsigned short num_blks; /* input */

unsigned short filled_length; /* output */

unsigned short buffer_length; /* input */

unsigned short max_copy_len; /* input */

unsigned short max_frames; /* input */

unsigned short actual_frames; /* output */

unsigned long buffer_ptr; /* input */

} RAW_POST_RECEIVE_RB;

RawEDL RAW_POST_RECEIVE

Network User's Guide and Reference Chapter 13 283

Input Arguments
lsap_selector

Set to 63H.

num_blks
The number of buffers; set to 1.

buffer_length
The length of the buffer specified by the buffer_ptr field. For an application such
as a network monitor, it may be best to use a very long buffer.

max_copy_len
The length at which to truncate received frames. This length includes the header
inserted before each frame. The minimum value of 22 accommodates the frame
header plus the 802.3 header. Specify FFFFH to record the full length of each frame.
Values smaller than 22 default to FFFFH.

max_frames
The maximum number of frames to receive. If 0, the request block is not returned
until the buffer is full. If not 0, the request block is returned when the buffer is full or
when the specified number of frames has been received. A monitor application could
put a 0 value here (receive only full buffers). More interactive applications may
specify 1 to have frames returned immediately.

buffer_ptr
The address pointing to the buffer where frames are received.

Responses

Output Arguments

filled_length
The actual number of bytes received in the buffer.

actual_frames
The total number of frames contained in the buffer. If the last frame in the buffer is
incomplete (to be continued in the next buffer), it is not included in this count. If the
first frame in the buffer is a continuation, it is not included in this count.

RAW_POST_RECEIVE RawEDL

284 Chapter 13 Programming the Data Link Layer

buffer_ptr
The indicated buffer contains returned frames. A 22-byte header is inserted before
each frame:

typedef struct frame_header {

unsigned short record_length;

unsigned long time_stamp;

unsigned short lost_count;

unsigned char dest_address[6];

unsigned char src_address[6];

unsigned short len_or_type;

unsigned char frame_data[1];

} FRAME_HEADER;

record_length
The length of the frame plus header, including this field. If the frame
has been truncated, this is the truncated length.

time_stamp
The time this frame was received, in clock ticks since iNA 960 began
execution. The granularity of the time stamp depends on the configured
clock rate. For standard iNA 960 configurations, the clock is
configured as 2000; for 8 Mhz boards this gives a granularity of
approximately 25 milliseconds. To find the true granularity, use the
READ_CLOCK command.

lost_count
Number of frames lost since the last frame due to lack of buffer space.

dest_addr Destination Ethernet address of the packet.

src_addr Source Ethernet address of the packet.

len_or_type
Unlike the 802.3 header, the Ethernet header contains a Type field
instead of a Length field. The application can determine if it is a Type,
since all currently used Types are illegal lengths for 802.3 networks. If
this is a Length field, it specifies the number of bytes in the
frame_data field.

frame_data
The received data.

RawEDL RAW_POST_RECEIVE

Network User's Guide and Reference Chapter 13 285

Response Codes

OK_RESPONSE 01H Successful execution of the command. If the last
frame in the buffer is incomplete; the frame will
be continued in the next buffer. The first 22 bytes
are never split across buffers.

OK_EOP_RESPONSE 03H The last frame in the buffer is complete.

Additional Information

A frame is eligible for reception by RAW_POST_RECEIVE if it is a non-ISO
packet, has a destination address other than the currently configured 82586 address,
or is an ISO packet for which no other process is waiting (for example, when an ISO
packet with a DLSAP not currently connected is received by the hardware). It is the
responsibility of the application to do any demultiplexing that may be required, such
as separating TCP/IP packets from XNS packets.

RAW_TRANSMIT RawEDL

286 Chapter 13 Programming the Data Link Layer

RAW_TRANSMIT
RAW_TRANSMIT transmits a packet of data. Unlike the EDL TRANSMIT
command, RawEDL does not fragment data; this command only takes a single data
buffer.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* raw_transmit_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 7EH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct raw_transmit_rb {

RB_COMMON header;

unsigned short reserved;

unsigned short len_or_type; /* input */

unsigned char src_addr[6]; /* input */

unsigned short buf_cnt; /* input */

unsigned long buffer_ptr; /* input */

unsigned long dst_addr_ptr; /* input */

} RAW_TRANSMIT_RB;

Input Arguments
len_or_type

The first word to send after the source and destination addresses in an Ethernet
packet; typically used as a type field in non-ISO networks.

src_addr
Currently, this array must be set to 0.

▲▲! CAUTION
If this field contains any value other than 0, the 82586 is
programmed to that value as a source address. No further packets
sent to this node at the former (true) address will be received.

RawEDL RAW_TRANSMIT

Network User's Guide and Reference Chapter 13 287

buf_cnt
The number of bytes of data in the buffer to send.

buffer_ptr
The address pointing to the data buffer.

dest_addr_ptr
The address pointing to a six-byte destination Ethernet address.

Responses

Output Arguments

None

Response Codes

OK_RESPONSE 01H Successful execution of the command.

E_TX_SIZE_EXCEEDED 06H The size of the transmit packet exceeds the
maximum configured for the Data Link Layer.

E_SUBSYSTEM 0CH Incorrect subsystem code.

E_NO_RESOURCES 16H The Data Link is out of resources.

READ_CLOCK RawEDL

288 Chapter 13 Programming the Data Link Layer

READ_CLOCK
The READ_CLOCK command returns the value of the internal network job timer as
a 32-bit value. With this command, the application can calibrate the time stamps
received from the RAW_POST_RECEIVE command. For example, the application
could issue the command twice at a one-second interval and derive the number of
network clock ticks per second. For the typical preconfigured iNA file, a clock tick
is approximately 20 milliseconds (iTP4) to 25 milliseconds (iNA 960). With the
READ_CLOCK command, the application can determine the value accurately.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of read_clock_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 80H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct read_clock_rb {

RB_COMMON header;

unsigned long timer_val; /* output */

} READ_CLOCK_RB;

Responses

Output Arguments

timer_val
The number of internal clock ticks since the network job started. The length of the
network clock tick is determined by a configuration parameter.

Response Code

OK_RESPONSE 01H Successful execution of the command.

EDL TRANSMIT

Network User's Guide and Reference Chapter 13 289

TRANSMIT
TRANSMIT transmits a packet consisting of from 1 to 4 buffers. This command can
be used without there being an established connection to the destination LSAP.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of transmit_rb /

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* Table 13-2 */

unsigned char opcode; /* 84H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct transmit_rb {

RB_COMMON header;

unsigned short reserved;

unsigned short buf_count; /* input */

unsigned short byte_count[4]; /* input */

unsigned long buf_loc[4]; /* input */

unsigned long dest_addr_ptr; /* input */

} TRANSMIT_RB;

Input Arguments
buf_count

The number of buffers specified by the TRANSMIT command, ranging from 0 to 4.

byte_count
An array of four values where byte_count[i] is the size in bytes of the buffer
specified by buf_loc[i]. For the first buffer, the value of byte_count includes
destination_lsap_selector, source_lsap_selector, and iso_cmd, in
addition to data (see the buf_loc parameter).

TRANSMIT EDL

290 Chapter 13 Programming the Data Link Layer

buf_loc
An array of four addresses where buf_loc[i] points to the start of buffer i. The
first buffer contains ISO control information in addition to data. Any subsequent
buffers contain only data. The buffers have the format shown below:

typedef struct first_transmit_buffer {

unsigned char destination_lsap_selector;

unsigned char source_lsap_selector;

unsigned char iso_cmd;

unsigned char data[1];

} FIRST_TRANSMIT_BUFFER ;

typedef struct next_transmit_buffer {

unsigned char data[1];

} NEXT_TRANSMIT_BUFFER;

Where:

destination_lsap_selector
The LSAP identifying the destination entity to which the packet is
forwarded.

source_lsap_selector
The LSAP for the source entity that sends the packet.

iso_cmd 03H for the 82586 component and 82586-based boards.

data An array of bytes that contains the actual data to transmit.

dest_addr_ptr
An address pointing to an array of 6 bytes where the destination Ethernet address is
stored.

Responses

Output Arguments

None

EDL TRANSMIT

Network User's Guide and Reference Chapter 13 291

Response Codes

OK_RESPONSE 01H Successful execution of the command.

E_TX_SIZE_EXCEEDED 06H The size of the transmit packet exceeds the
maximum configured for the Data Link Layer.

E_SUBSYSTEM 0CH Incorrect subsystem code.

E_BUFFER_COUNT 14H The buf_count field exceeds the maximum of 4.

E_NO_RESOURCES 16H The Data Link is out of resources.

Additional Information

If the total number of bytes transmitted is less than the minimum packet size, the
Data Link pads the packet to the minimum size. The padding is transparent to the
requesting application.

■■ ■■ ■■

TRANSMIT EDL

292 Chapter 13 Programming the Data Link Layer

Network User's Guide and Reference Chapter 14 293

Using the Network
Management Facility

In addition to the three layer services, iNA 960 provides a set of tools called the
Network Management Facility (NMF). Using NMF commands, an application
(typically for a network administrator) can gather information from the layer
databases. The application uses this information to monitor, debug, and tune network
performance.

Similar to the iNA 960 layer services, the NMF commands are based on a request
block interface. The application sends and receives request blocks using the
cq_comm_rb call to access NMF services. This chapter describes request blocks for
the NMF commands.

See also: Using the cq_ System Calls, Chapter 10;
Chapter 16 for the structure of buffers used in NMF commands to
perform network routing

Each of the iNA 960 layer services maintains a database of objects that may be
accessed by the NMF. These objects are layer-dependent parameters and variables
that control and log layer activity.

The NMF provides commands for accessing host memory at a node. The NMF also
provides remote download capability that makes it possible for one or more nodes to
provide boot service to other nodes on the network.

The inamon (iNA Monitor) utility provides an interactive human interface to NMF
commands.

See also inamon, Command Reference

NMF Services
The NMF provides these services:

• Attach Operations

• Layer Management

• Event Notification Operation

• Debugging Operations

• Maintenance Operations

• Remote Load Operations

14

294 Chapter 14 Using the Network Management Facility

The Attach Operations service can establish communications with all nodes on a
network. This service requires the services of the iNA 960 Transport Layer to
establish a connection, and will operate through internet routers.

The Layer Management service provides the capability to examine and modify iNA
960 database objects. The iNA 960 database objects are layer-dependent parameters
and variables that control and log layer activity. This service requires the services of
the iNA 960 Transport Layer to operate remotely, and will operate through internet
routers. The Transport Layer is not needed for local functions.

The Event Notification service monitors event objects in the iNA 960 database.
Event notifications are unsolicited messages typically associated with abnormal
occurrences in the Transport and Network layers. Because event notification is
unsolicited, a specific AWAIT_EVENT command is provided for an application to
receive those messages.

The Debugging Operations service provides the capability to read or alter memory at
a node. This requires the services of the iNA 960 Transport Layer, and will operate
through internet routers.

The Maintenance Operations service provides two functions, Dumping and Echo
Testing.

• Dumping is initiated by a requesting node and directed towards a target node.
The target receives the dump command and responds by transmitting the dump
data to the requester. This function is essentially a read-memory operation that
uses the iNA 960 Data Link services of both nodes to send the dump data to the
requester.

• Echo Testing enables one node to determine if another node is present on the
network by testing the lowest-level communication path to that node. The
testing node uses the iNA 960 Data Link services to transmit data to the target
node and then listen for the target to return the transmitted data.

The Remote Load Operations service provides the capability to download software
from one node to another. This service is typically used to download OS and
network communications software and to initiate their execution. Nodes providing
this service are referred to as boot servers and nodes receiving the service are
referred to as boot clients.

Data transmitted between nodes during Dumping, Echo Testing, and Remote Loading
uses the lowest-level services of the network. Those services are provided by the
iNA 960 Data Link Control Layer and will not operate through internet routers.

Network User's Guide and Reference Chapter 14 295

NMF Operation
The services of the Network Management Facility are provided by specific NMF
commands. Where (on what nodes) the NMF commands can be executed depends on
how iNA 960 is configured for each NMF node.

Specific configurations provide nodes with the ability to issue and/or execute
different types of NMF operations. A node configured as a net manager can issue
NMF commands, while a node configured as a net agent can only execute and
respond to NMF commands. You may configure a node as both a net manager and a
net agent. These nodes may be anywhere on the network as long as they are
configured appropriately.

Managers and Agents
NMF interactions within a network are between one net manager and one net agent.
The net manager node typically contains high-level human interface software, not
provided by iNA 960, that permits an application (like the Network Administrator) to
perform various network management functions. The human interface software
converts the application requests into NMF requests. The NMF requests are then sent
to the iNA 960 NMF that is configured as a net manager. The net manager controls
all NMF interactions with the target net agent.

The net agent contains NMF services that are configured to receive net manager
requests, execute the requested operations, and pass responses back to the requesting
net manager.

The iNA 960 NMF may be configured as one of these:

• For local operations only

• As a net agent

• As a net manager

• As both a net manager and a net agent

✏ Note
Except in extreme memory-restricted situations, all iNA 960 nodes
should at least be configured as net agents. That makes all iNA
960 layer databases available to all net manager nodes.

A node configured for local operations has only the Layer Management and
Debugging Operations services available. The node's iNA 960 layer databases are
not accessible (except through the Dump and Echo Test functions) by iNA 960 net
manager nodes on the network.

296 Chapter 14 Using the Network Management Facility

An example of the type of interactions that occur between a net manager and a net
agent is where an application requests a net manager to read or set the value of an
iNA 960 layer object in one of the layer databases at a net agent. Figure 14-1 shows
the steps taken to execute such an operation.

User request

NMF command

Net agent
(passive)

Net manager
(active)

iNA NMF
iNA NMF

Execute
command

Result

W-2958

Network
administration

software

➀

➁

➂

➃

Figure 14-1. A Typical Net Manager/Net Agent Interaction

The interaction steps shown in the figure are:

1. The application sends an NMF request to the iNA 960 NMF, which must be
configured as a net manager.

2. The NMF net manager opens a connection to the net agent and passes the
application request to the net agent as an NMF command.

3. The net agent executes the command by reading or setting the object in the
specified iNA 960 layer database.

4. The net agent passes the result of the operation back to the requesting net
manager.

5. The net manager closes the connection to the net agent.

Local Versus Remote NMF Operation
This section briefly reviews the overall structure of a simple network as viewed by an
iNA 960 NMF node. Figure 14-2 illustrates this network; to simplify the discussion,
the network structure shown does not contain any internet routers.

Network User's Guide and Reference Chapter 14 297

End system 1

NMF
net manager

Network
administration

software

NMF
net manager

NMF
net agent

End system 2

Network
administration

software

End system 3

NMF
net agent

End system 4

NMF
net agent

W-2959

Figure 14-2. A Typical iNA 960 Network

Local Operation

Interactions between a net manager and a net agent that occur at the same node
illustrate the local operation of NMF services (see Node 2 in Figure 14-2). In the
example shown in the figure, no special data communications protocol is required
beyond the internal communications capabilities of the node.

The net management requests are sent by the Network Administration Software such
as iRMX-NET, (not part of iNA 960) to the iNA 960 NMF to be processed. The
results are returned to the Network Administration Software. For example, requests
may be made to query the local iNA 960 databases to monitor the communications
performance of the local system.

298 Chapter 14 Using the Network Management Facility

Remote Operation

Remote NMF operations, on the other hand, require the network communication
services provided by the iNA 960 layer services to transmit the net manager requests
and net agent responses over the network.

A net manager and a net agent on physically separate network nodes may interact
using the remote operation of NMF services. An example of a remote NMF
operation would be to use a single net manager to monitor the functions and
performance of all other nodes on the global network. In Figure 14-2, Nodes 2, 3,
and 4 can be accessed and monitored remotely by Node 1. This is possible because
the NMF on Node 1 is configured as a net manager and the NMFs on Nodes 2, 3, and
4 are configured as net agents. Node 2 can also access and monitor Nodes 3 and 4,
but cannot access Node 1 because its NMF is not configured as a net agent, only as a
net manager.

Excluding net agency from a node's NMF configuration protects that node's iNA 960
databases from remote access by other net managers.

The NMF commands that rely on Transport Layer services will operate through
internet routers. NMF commands that rely on Data Link Control Layer services will
not operate through internet routers.

NMF Communications Services
The iNA 960 NMF accesses remote nodes using the communications services
provided by the iNA 960 layers. Most of the NMF services use the iNA 960
Transport Layer to provide reliable communications between a net manager and a
remote net agent. Some of the NMF services use the lower-level services of the iNA
960 Data Link Control Layer for communications between a net manager and a
remote net agent.

The address used by the NMF to locate the remote net agent is specified either as a
Transport Layer address buffer (if the Transport Layer is used) or as a Data Link
address buffer (if the Data Link Control Layer is used).

If the Transport Layer communications services are needed for a remote command, a
connection must be explicitly established before the command is issued.

For example, assume that a net manager wants to issue certain net management
requests to a remote node. The net manager must first make an explicit connection to
the target net agent node using the NMF command ATTACH_AGENT. The
established connection defines the path to the remote net agent node.

Once the net manager has completed the desired remote commands, it must explicitly
remove the connection between itself and the remote net agent using the NMF
command DETACH_AGENT.

Network User's Guide and Reference Chapter 14 299

The NMF supports only one open connection at a time. Multiple simultaneous open
connections are not supported. Only net managers can establish connections and a
single net manager can open only one connection at a time. A net agent can have
only one connection from one net manager. Another net manager wanting to connect
to that net agent must wait until the current connection is closed.

If the Data Link Control Layer communications services are used for a remote
command, an explicit connection between a net manager and a net agent is not
necessary.

300 Chapter 14 Using the Network Management Facility

Using NMF Commands
These sections describe how to use the NMF commands.

Net Agent Connection Commands
The ATTACH_AGENT and DETACH_AGENT commands are issued by a net
manager that wants to establish or remove a connection to a local or remote net
agent.

For local connections, the ATTACH_AGENT and DETACH_AGENT commands
are optional. A DETACH_AGENT at the end of a communications exchange will
return all unused AWAIT_EVENT buffers posted that were not returned through
event reporting.

For remote connections, the ATTACH_AGENT command must be used to establish
a connection to the target net agent. The connection must be established before the
net manager is permitted to issue any commands that require the services of the iNA
960 Transport Layer. The DETACH_AGENT command ends an established
connection and returns all unused AWAIT_EVENT buffers.

A number of the NMF commands must be preceded by an ATTACH_AGENT
command before they are issued to a remote net agent. They are:

• READ_OBJECT and SET_OBJECT commands

• READ_AND_CLEAR_OBJECT command

• READ_MEMORY and SET_MEMORY commands

A typical sequence of NMF commands requested by a network administration
application might be:

1. ATTACH_AGENT Open a connection to a net agent.

2. READ_OBJECT Read the value of layer objects at a target net agent.

3. SET_OBJECT Change the value of layer objects at target net agent.

4. (Any other NMF commands)

5. DETACH_AGENT Remove the connection to the target net agent.

For remote connections, the structure of the Transport Address Buffer is important
because it contains the address used to locate the remote net agent. The structure is
described in the ATTACH_AGENT command.

Network User's Guide and Reference Chapter 14 301

Layer Management Commands
The Layer Management service provided by NMF enables a network administration
application to examine or modify the internal layer databases maintained by each
iNA 960 subsystem.

Each iNA 960 layer (Transport, Network, Data Link) maintains a database of
network management data structures called objects that represent various layer
parameters. The objects contain configuration parameters or counters that indicate
how the network is performing.

See also: iNA Network Objects, Appendix C

NMF Object IDs

NMF objects are identified by a two-byte ID code. The ID code appears in the form
wxyz.

Where:

wx The w specifies the OSI layer that the object belongs to and the x
specifies the layer or subsystem that the object belongs to.

yz Identifies the object.

The iNA 960 layers and subsystems have these wx values:

20yzH 82586 Data Link, including first MIX560 board in a Multibus II system
21yzH Data Link for SBX 586, EWENET, or EtherExpress 16
22yzH Data Link for second MIX560 board in a Multibus II system
23yzH Data Link for third MIX560 board in a Multibus II system
24yzH Data Link for 82595TX, EtherExpress PRO/10, or SBC P5090
2FyzH Message passing Data Link for Multibus II subnet
31yzH Network Layer
38yzH Static Routing IP Network
39yzH ES-IS Routing IP Network
40yzH Transport Virtual Circuit

4000H - 4020H Connection independent
4040H - 405AH MAP 2.1
4081H - 4093H Connection dependent

41yzH Transport Datagram
80yzH iNA 960 NMF
81yzH iNA 960 NMF Boot Server

Values 38 and 39 are not valid in Null2 configurations.

302 Chapter 14 Using the Network Management Facility

Using Layer Management Commands

These three Layer Management commands enable a network manager to read or set
the value of layer objects:

READ_OBJECT
Returns the value of the specified object or event.

SET_OBJECT
Sets the selected object with a specified value.

READ_AND_CLEAR_OBJECT
Returns the value of the specified object, then sets the value to 0.

Except for the local-only configuration of the NMF, the Layer Management
commands rely on the Transport Layer to provide communication services between
the net manager and a net agent. Therefore, an application that uses these commands
must issue an ATTACH_AGENT command before issuing a Layer Management
command and a DETACH_AGENT command after receiving the command
response.

The connection reference number returned from the ATTACH_AGENT command is
a required field in Layer Management command request blocks. If the command is
only for the local net agent, an ATTACH_AGENT command is not needed; set the
connection reference number to 0 in the request block.

The Layer Management commands can access one or more iNA 960 objects in a
single command; however, all of the objects must be in the same layer. For example,
a Transport Layer object and a Network Layer object cannot be read by a single
invocation of the READ_OBJECT command.

Event Notification
An NMF net manager can receive notification of the occurrence of some layer event.
Event notification is possible only from local net agents. The net manager uses the
AWAIT_EVENT command to post a buffer that will record an event. When an event
occurs, it is recorded in the buffer and the buffer is returned to the net manager that
posted it.

Since event notification is a local-only function, the ATTACH_AGENT command is
not necessary and the connection reference is always 0. The DETACH_AGENT
command returns all unused AWAIT_EVENT buffers to the net manager.

See also: Layer Events, Appendix C

Network User's Guide and Reference Chapter 14 303

NMF Events

Only Network and Transport Layer events are managed by the iNA 960 NMF.

NMF events are identified by a two-byte ID code scheme similar to the one used for
the NMF objects. These high byte (wx) values are used in event ID codes:

Value Meaning
31yzH Network Layer event
40yzH Transport Layer event

Debugging Commands
As an aid to debugging operations, the NMF provides commands to read or set the
host memory of any net agent on the network. The commands are
READ_MEMORY and SET_MEMORY. These commands rely on the Transport
Layer to provide communication services between the net manager and a net agent.
Therefore, an application that uses these commands must issue an
ATTACH_AGENT command before issuing a command and a DETACH_AGENT
command after receiving the command response.

The READ_MEMORY and SET_MEMORY commands utilize the connection
reference number returned by the ATTACH_AGENT command to identify the target
net agent for the command.

Maintenance Commands
NMF Maintenance commands enable the net manager to dump the host memory of a
local or remote net agent, or to determine if a remote net agent is present on the
network. The DUMP command obtains a snapshot of the host memory of a net
agent. The ECHO command verifies the existence of a net agent on the network.

The Maintenance commands use the Data Link Control Layer for communication
between net managers and net agents. Since these commands do not use the
Transport Layer for communication between nodes, they will not operate through an
internet router.

For these commands, do not first use an ATTACH_AGENT command. Instead,
specify a subnet address to locate the target local or remote net agent.

304 Chapter 14 Using the Network Management Facility

Remote Load Operations
The NMF provides a service for downloading OS and network communication
software to remote network nodes. This service can be used to download software to
and boot diskless remote nodes on the network. Alternately, the service can be used
to download software to and boot a set of network nodes with the same version of
software.

A remote loading operation requires the cooperation of two nodes. The node to be
loaded is called the Boot Client. The node that does the downloading is called the
Boot Server. The Boot Server is supplied as a separate job that uses the iNA 960
NMF; the Boot Client service is not. These are discussed together in another chapter.
Two commands used for remote loading, SUPPLY_BUFFER and
TAKEBACK_BUFFER, appear among the NMF commands at the end of this
chapter.

See also: Remote Booting, Chapter 15

The NMF Commands
The NMF commands in this chapter are specified by the subsystem and opcode

fields in the request block header, rb_common. The subsystem field must have one
of these values:

• 80H for all NMF services except Remote Load Operations

• 81H for the Remote Load Operations

The commands use similar argument structures, following the common header fields.
Each command description lists which fields are input and output arguments.
Initialize reserved fields and unused fields to 0. The structures are provided as
typedefs in the NMF include files.

See also: Include Files, Chapter 10;
Programming with Structures, Chapter 10

Network User's Guide and Reference Chapter 14 305

Table 14-1 briefly describes each NMF command. Detailed descriptions of each
command follow.

Table 14-1. Network Management Facility Commands

NMF COMMAND Opcode Layer Location Description

Connection Operations

ATTACH_AGENT 0BH Transport Remote/Local Establish connection to net
agent

DETACH_AGENT 0CH Transport Remote/Local Break connection to net agent

Layer Management

READ_OBJECT
SET_OBJECT
READ_AND_

CLEAR_OBJECT

0H
2H

1H

Transport Remote/Local Query or change layer
database objects

Event Notification

AWAIT_EVENT 0AH None Local Supply buffer to receive event
notification

Debugging Operations

READ_MEMORY
SET_MEMORY

03H
04H

Transport Remote/Local Read or Set memory of target
agent host

Maintenance Operations

ECHO 06H Data Link Remote Test network path to target
agent

DUMP 05H Data Link Remote Read memory of target agent
host

Remote Boot Loading

SUPPLY_BUFFER
TAKEBACK_BUFFER

8H
9H

Data Link Local Supply or take back buffer to
receive load data

ATTACH_AGENT NMF

306 Chapter 14 Using the Network Management Facility

ATTACH_AGENT
The ATTACH_AGENT command is used by a network manager to establish a
connection to a local or remote network agent. This command is optional for setting
up a local connection, but is mandatory for setting up a remote connection.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* attach_agent_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 80H */

unsigned char opcode; /* 0BH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct attach_agent_rb {

RB_COMMON header;

unsigned short reference; /* output */

unsigned long address_buf_ptr; /* input */

} ATTACH_AGENT_RB ;

Input Arguments
address_buf_ptr

A pointer to (absolute address of) the buffer where the transport address of the
remote net agent is stored. For connections to a local net agent, this value must be 0.

See also: Chapter 10 for information concerning the use of pointers and absolute
addresses in iNA 960 request blocks

NMF ATTACH_AGENT

Network User's Guide and Reference Chapter 14 307

The format of a remote transport address is shown below.

struct address_buffer

unsigned char local_nsap_sel_len;

unsigned char local_nsap_sel [local_nsap_sel_len];

unsigned char local_tsap_sel_len;

unsigned char local_tsap_sel [local_tsap_sel_len];

unsigned char remote_nsap_addr_len;

unsigned char remote_nsap_addr [remote_net_addr_len];

unsigned char remote_tsap_sel_len;

unsigned char remote_tsap_sel [remote_tsap_sel_len];

};

Where:

local_nsap_sel_len
The length of the local NSAP selector. The value for iNA 960
configurations is 1.

local_nsap_sel
The local NSAP selector. The value for iNA 960 configurations is 0.

local_tsap_sel_len
The length of the local TSAP selector. The value for iNA 960
configurations is 2.

local_tsap_sel
The configured value for the local NMF TSAP selector. The value for
iNA 960 configurations is 0300H.

remote_nsap_addr_len
The length of the remote target agent's NSAP address (including an
NSAP selector of 0, which is the last byte of the address).

remote_nsap_addr
The target agent's NSAP address.

See also: NSAP addresses, Chapter 8

remote_tsap_sel_len
Must be set to 2.

remote_tsap_sel
The configured value for the remote NMF TSAP selector. The value
for iNA 960 configurations is 0300H.

The addressing conventions presented here are valid even in cases where the target
net agent node is reached through a network router.

ATTACH_AGENT NMF

308 Chapter 14 Using the Network Management Facility

Output Arguments
reference

A unique 16-bit number returned by the ATTACH_AGENT command that identifies
the connection to the net agent. If address_buf_ptr was specified as 0 (local
operation only), a 0 is returned in this field.

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E_NO_RESPONSE 2H No response from remote net agent.

E_CONNECTION 8H An error occurred while attempting to establish a
connection with a remote net agent.

NOT_CONFIGURED 0AH The requested command is not configured for the
net manager.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

E_MAX_CONN 16H The maximum number of connections permitted
for the net manager are currently open. Currently,
only one open connection is permitted for each net
manager.

E_NO_NMF 0FFEH No NMF available.

NMF AWAIT_EVENT

Network User's Guide and Reference Chapter 14 309

AWAIT_EVENT
The AWAIT_EVENT command posts a buffer that is filled and returned by iNA 960
when a layer event occurs. This command only records events from local net agents.
Only one event is recorded for each AWAIT_EVENT buffer posted. Post multiple
buffers to record multiple events.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of await_event_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 80H */

unsigned char opcode; /* 0AH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct await_event_rb {

RB_COMMON header;

unsigned short reference; /* input */

unsigned short filled_length; /* output */

unsigned long event_buf_ptr; /* in/out */

unsigned short event_buf_length; /* input */

} AWAIT_EVENT_RB;

Input Arguments
reference

Specify 0, because event notification does not use a VC connection.

event_buf_ptr
A pointer to (absolute address of) the AWAIT_EVENT buffer.

event_buf_length
The length, in bytes, of the AWAIT_EVENT buffer.

AWAIT_EVENT NMF

310 Chapter 14 Using the Network Management Facility

Output Arguments
filled_length

The length, in bytes, of the data recorded in the AWAIT_EVENT buffer. The NMF
updates the field once the AWAIT_EVENT command is executed.

event_buf_ptr
The event information is returned in the buffer, with this structure:

typedef struct await_event_buffer {

unsigned short event_len;

unsigned short event_id;

unsigned char event_time[17];

unsigned short reset_time_ctr;

} AWAIT_EVENT_BUFFER;

Where:

event_len The length, in bytes, of the data recorded in the buffer.

event_id The ID number of the NMF event, specifying the iNA 960 layer and the
event number.

See also: Event IDs, Appendix C

event_time
The time the event occurred, specified as an ASCII string that shows
Greenwich Mean Time (GMT). The format of the string is:

YYMMDDhhmmss[+/-]hhmm

Where YY = year (0-99), MM = month, DD = day, hh = hours, mm =
minutes, and ss = seconds. The [+/-] hhmm is an offset, in hours and
minutes, from GMT to local time.

reset_time_ctr
A counter that indicates how many times the net agent's system time has
been set.

NMF AWAIT_EVENT

Network User's Guide and Reference Chapter 14 311

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E_OK_COMMAND 5H Command completed. The request block was
returned without a posted event.

E_CONNECTION 8H Connection error.

NOT_CONFIGURED 0AH No local net manager.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

E_REFERENCE 14H Incorrect reference number.

E_NO_NMF 0FFEH No local NMF.

DETACH_AGENT NMF

312 Chapter 14 Using the Network Management Facility

DETACH_AGENT
The DETACH_AGENT command is used by a net manager to remove an established
connection to a remote or local net agent. If the connection is to a remote agent, the
DETACH_AGENT command ends the connection and returns all unused
AWAIT_EVENT buffers to the Network Administration application software. If the
connection is to a local agent, the DETACH_AGENT command simply returns
unused AWAIT_EVENT buffers to the local net manager.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* detach_agent_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 80H */

unsigned char opcode; /* 0CH */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct detach_agent_rb {

RB_COMMON header;

unsigned short reference; /* input */

} DETACH_AGENT_RB;

Input Arguments
reference

The connection reference code returned by the ATTACH_AGENT command.

Response Codes
OK_RESPONSE 1H Operation completed successfully.

NOT_CONFIGURED 0AH The requested command is not configured for the
net manager.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

E_REFERENCE 14H Unrecognized reference number.

E_NO_NMF 0FFEH No local NMF.

NMF DUMP

Network User's Guide and Reference Chapter 14 313

DUMP
The DUMP command requests a snapshot of host memory from a remote net agent,
beginning at a specified address. If the net agent does not respond, the net manager
tries twice again before assuming that the net agent is not responding. The maximum
size of the memory image that can be returned by the command is limited by the
maximum packet size of the subnet linking the net manager to the net agent. Before
using the DUMP command, the application must set aside a buffer to receive the host
memory image. The buffer must be at least as large as the largest requested memory
image.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of dump_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 80H */

unsigned char opcode; /* 05H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct dump_rb {

RB_COMMON header;

unsigned long subnet_addr_ptr; /* input */

unsigned short filled_length; /* output */

unsigned long buffer_ptr; /* input */

unsigned short buffer_length; /* input */

unsigned long start_address; /* input */

} DUMP_RB;

DUMP NMF

314 Chapter 14 Using the Network Management Facility

Input Arguments
subnet_addr_ptr

A pointer to a buffer containing the subnet address of the target remote net agent.
The structure of the subnet address is:

typedef struct subnet_address {

unsigned char host_id[6];

unsigned char nmf_lsap;

} SUBNET_ADDRESS;

Where:

host_id The Ethernet address of the target net agent.

nmf_lsap The link service access point (LSAP) of the target net agent's NMF.
This parameter specifies the address of the target net agent's Data Link
Layer. The LSAP for the iNA 960 NMF is 08H.

buffer_ptr
A pointer to a buffer that will be used by the net manager to store the memory image
dumped from the target net agent.

buffer_length
The length, in bytes, of the buffer indicated by the buffer_ptr parameter.

start_address
The starting address in the host memory of the target net agent where the DUMP
operation will be performed. The NMF expects a 32-bit value that is meaningful on
the host system.

Output Arguments
filled_length

The size, in bytes, of the data supplied by the net agent. This field is updated by the
NMF after the net agent executes the DUMP command.

NMF DUMP

Network User's Guide and Reference Chapter 14 315

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E_NO_RESPONSE 2H No response from remote net agent.

E_PACKET_LENGTH 4H The packet of data received from the net agent has
an incorrect packet length field.

NOT_CONFIGURED 0AH No local net manager.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

E_NO_NMF 0FFEH No local NMF.

Additional Information

The DUMP command is similar to the READ_MEMORY command. The main
difference between them is the mechanism they use to establish connections to net
agents. The READ_MEMORY command uses the Transport Layer, which requires a
prior ATTACH_AGENT command to establish a connection and a
DETACH_AGENT command to remove the connection. The DUMP command uses
the Data Link Layer. This does not require the ATTACH_AGENT command, but
does require a subnet address.

ECHO NMF

316 Chapter 14 Using the Network Management Facility

ECHO
The ECHO command determines whether a given remote net agent is present on the
network and, if it is present, tests the communications path to the agent. The
application specifies a count of random data bytes to transmit. If the net agent does
not respond, the net manager tries twice again before assuming that the net agent is
not responding. If the net agent responds, the net manager checks that the returned
block of data exactly matches the transmitted block.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of echo_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 80H */

unsigned char opcode; /* 06H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct echo_rb {

RB_COMMON header;

unsigned long subnet_addr_ptr; /* input */

unsigned short transmit_data_cnt; /* input */

unsigned short received_data_cnt; /* output */

} ECHO_RB;

subnet_addr_ptr
A pointer to a buffer containing the subnet address of the target remote net agent.
The structure of the subnet address is:

typedef struct subnet_address {

unsigned char host_id[6];

unsigned char nmf_lsap;

} SUBNET_ADDRESS;

NMF ECHO

Network User's Guide and Reference Chapter 14 317

Where:

host_id The Ethernet address of the target net agent.

nmf_lsap The link service access point (LSAP) of the target net agent's NMF.
This parameter specifies the address of the target net agent's Data Link
Layer. The LSAP for the iNA 960 NMF is 08H.

transmit_data_cnt
The number of random bytes to transmit.

Output Argument
received_data_cnt

The number of bytes present in the request block returned by the target net agent.

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E_NO_RESPONSE 2H No response from remote net agent.

E_DATA_MATCH 6H Transmitted data and received data do not match.

NOT_CONFIGURED 0AH No local net manager.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

E_NO_NMF 0FFEH No local NMF.

Additional Information

The ECHO command uses the Data Link Layer rather than the Transport Layer. This
means the command does not require a previous ATTACH_AGENT command, but
does require a subnet address.

READ_AND_CLEAR_OBJECT NMF

318 Chapter 14 Using the Network Management Facility

READ_AND_CLEAR_OBJECT
The READ_AND_CLEAR_OBJECT command returns the value of one or more
iNA 960 objects. The request block and buffers for this command are the same as
those for the READ_OBJECT command.

See also: READ_OBJECT, in this chapter

NMF READ_MEMORY / SET_MEMORY

Network User's Guide and Reference Chapter 14 319

READ_MEMORY/SET_MEMORY
This command description applies to both the READ_MEMORY and
SET_MEMORY commands. The READ_MEMORY command reads host memory
from the net agent specified by the reference parameter. The SET_MEMORY
command writes to the host memory.

The application must set aside a buffer in host memory before this command can be
issued. For the READ_MEMORY command, the NMF writes the memory image to
the buffer. For the SET_MEMORY command, the application writes the memory
image to the buffer.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of read_or_set_mem_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 80H */

unsigned char opcode; /* 3H = READ_MEMORY

4H = SET_MEMORY */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct read_or_set_mem_rb {

RB_COMMON header;

unsigned short reference; /* input */

unsigned short filled_length; /* output */

unsigned long buffer_ptr; /* in/out */

unsigned short num_bytes; /* input */

unsigned long start_addr; /* input */

} READ_OR_SET_MEM_RB;

READ_MEMORY / SET_MEMORY NMF

320 Chapter 14 Using the Network Management Facility

Input Arguments
reference

The connection reference number returned by the ATTACH_AGENT command. For
a local agent, the ATTACH_AGENT command is not necessary; specify 0.

buffer_ptr
A pointer to the buffer holding the memory image to write (for SET_MEMORY) or
where the NMF writes the memory image (for READ_MEMORY).

num_bytes
The number of data bytes to read or write. The buffer pointed to by the buffer_ptr
parameter must be at least as long as the num_bytes value.

start_addr
The starting address in the host memory of the target net agent where the operation
will be performed. The NMF expects a 32-bit value meaningful to the host's message
delivery mechanism (e.g., MIP).

Output Arguments
filled_length

For the READ_MEMORY command, this is the number of bytes of data stored in the
response buffer, filled in by the NMF after executing the command.

buffer_ptr
For the READ_MEMORY command, the buffer holds returned data.

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E_NO_RESPONSE 2H No response from remote net agent.

E_CONNECTION 8H Connection error.

NOT_CONFIGURED 0AH No local net manager.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

E_INSUFF_RESP_BUF 0EH Response buffer is too small.

E_REFERENCE 14H Unknown reference.

E_PROTOCOL_ERR 18H Protocol error in the reply from the target net
agent.

E_NO_NMF 0FFEH No local NMF.

NMF READ_OBJECT / SET_OBJECT
READ_AND_CLEAR_OBJECT

Network User's Guide and Reference Chapter 14 321

READ_OBJECT/SET_OBJECT
READ_AND_CLEAR_OBJECT

The READ_OBJECT command returns the value of one or more iNA 960 objects or
events. Since the request block and buffers for this command are the same as those
for the READ_AND_CLEAR_OBJECT and SET_OBJECT commands, this
description applies to all three commands. READ_AND_CLEAR_OBJECT returns
the current object value and sets the value to 0. SET_OBJECT changes the value of
the specified objects. The command buffer referenced in the request block describes
which object to act upon. iNA 960 fills in the response buffer with values read from
the objects. For the SET_OBJECT command, the response buffer contains the new
value of the object.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of nmf_object_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 80H */

unsigned char opcode; /* 0H = READ_OBJECT

1H = READ_AND_CLEAR

2H = SET_OBJECT */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct nmf_object_rb {

RB_COMMON header;

unsigned short reference; /* input */

unsigned short filled_length; /* output */

unsigned long resp_buf_ptr; /* in/out */

unsigned short resp_buf_length; /* input */

unsigned long cmd_buf_ptr; /* input */

unsigned short cmd_buf_length; /* input */

} NMF_OBJECT_RB;

READ_OBJECT / SET_OBJECT NMF

READ_AND_CLEAR_OBJECT

322 Chapter 14 Using the Network Management Facility

Input Arguments
reference

The connection reference number returned by the ATTACH_AGENT command. For
a local agent, specify 0.

resp_buf_ptr
A pointer or an absolute address to the response buffer.

resp_buf_length
The length of the response buffer.

cmd_buf_ptr
A pointer or an absolute address to the command buffer.

See also: Buffer format, later in this description

cmd_buf_length
The length of the command buffer.

Output Arguments
filled_length

The number of bytes of data stored in the response buffer. This value is filled in by
the NMF after it executes the command.

resp_buf_ptr
The buffer contains the value returned by this command. For a SET_OBJECT
command, the new value is returned.

See also: Buffer format, later in this description

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E_CONNECTION 8H Connection error. This usually means that the
remote address was incorrect.

NOT_CONFIGURED 0AH No local net manager.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

E_INSUFF_RESP_BUF 0EH Response buffer is too small.

E_LAYER_NOT_SUPP 10H Layer not supported.

E_OBJ_MIX 12H Bad mix of objects. Each request block can
contain objects from only one layer.

NMF READ_OBJECT / SET_OBJECT
READ_AND_CLEAR_OBJECT

Network User's Guide and Reference Chapter 14 323

E_REFERENCE 14H Unknown connection reference in the reference
parameter.

E_PROTOCOL_ERR 18H Protocol error in the reply from the target net
agent.

E_INTERNAL_BUF 1AH Fatal Error, connection removed. The application
must reattach the target agent.

E_NO_NMF 0FFEH No local NMF.

Additional Information

The application must set aside a command buffer and a response buffer in host
memory before invoking one of these commands. The command buffer specifies the
list of objects that are subject to the command and, in the case of the SET_OBJECT
command, contains the new object values. Create and fill in the command buffer
before issuing the command.

The response buffer is used by the NMF to return object values and command
execution status. For each object in the response buffer, there is a status code field.
If the status code is 0 (successful completion), the value of the object is returned in
the value field of the structure. If the status code is not 0, the value may or may not
have been returned, depending upon the status code. The length field of the
structure indicates whether or not a value was returned.

If the response code returned in the request block is equal to 1, the command was
successfully executed for each object specified in the command buffer.

Usually, if the response code is not equal to 1, the net agent could not execute the
command and nothing is returned in the response buffer. For example, if the net
agent does not respond to a command, the net manager times out, a connection error
occurs, and the response code will not be equal to 1.

If multiple objects specified in the command buffer are not in the same layer, the
NMF returns the response code 12H. This error indicates that the net agent could not
execute the command on all of the objects requested, but has executed the command
up to the point where a different layer's object was encountered. The response buffer
will contain the objects that were acted on prior to the error.

READ_OBJECT / SET_OBJECT NMF

READ_AND_CLEAR_OBJECT

324 Chapter 14 Using the Network Management Facility

Command Buffer Format

typedef struct obj_cmd_info {

unsigned short object;

unsigned short modifier;

unsigned short length;

unsigned char value[1]; /* set to length */

} OBJ_CMD_INFO;

typedef struct command_buffer {

unsigned char num_obj;

OBJ_CMD_INFO obj_info[1]; /* set to num_obj */

} COMMAND_BUFFER;

Where:

num_obj The number of objects included in the buffer.

object The ID code for an object. All objects in the command buffer must be
in the same layer.

See also: ID codes for iNA 960 objects, Appendix C

modifier For virtual circuit connection-dependent objects, specify the connection
reference or router table entry whose values are to be accessed. For any
other object, specify 0. Virtual circuit connection IDs can be found by
reading Transport Layer object 4001H, which returns an array
containing the connection references for all established VCs.

length The length of the value field, in bytes. For the READ_OBJECT and
READ_AND_CLEAR_OBJECT commands, set length to 0.

value For a SET_OBJECT command, specify the new value of the object.
This field is ignored for the READ_OBJECT and
READ_AND_CLEAR_OBJECT commands.

See also: Object values, Appendix C

NMF READ_OBJECT / SET_OBJECT
READ_AND_CLEAR_OBJECT

Network User's Guide and Reference Chapter 14 325

Response Buffer Format

typedef struct obj_resp_info {

unsigned short object;

unsigned short modifier;

unsigned char status;

unsigned short length;

unsigned char value[1]; /* set to length */

} OBJ_RESP_INFO;

struct response_buffer {

unsigned char num_obj;

OBJ_RESP_INFO obj_info[1]; /* set to num_obj */

} RESPONSE_BUFFER;

num_obj The number of objects included in the buffer.

object The ID code for an object.

modifier For virtual circuit connection-dependent objects, this is the connection
reference or router table entry whose values are to be accessed. For any
other object, this field has no meaning.

status One of these status codes that indicates the success or failure of the
requested operation:

Status Description
0 Successful completion.
1H - 5H Reserved.
6H The object ID does not exist or is not supported.
7H Incorrect access operation (e.g., an attempt was made to

set a read-only object). See also: Appendix C for a
listing of the access permissions for each object.

8H Reserved.
9H Incorrect parameter value. The object value specified is

out of range.
0AH - 0DH Reserved.
80H Incorrect modifier.
81H The response buffer is too small.
82H End of routing table. The specified table index (modifier

field) is past the end of the table.
83H Routing table entry empty. The specified table index

(modifier field) corresponds to an empty table entry.
84H No free routing table entry. The requested table entry

cannot be created because the table is full.

READ_OBJECT / SET_OBJECT NMF

READ_AND_CLEAR_OBJECT

326 Chapter 14 Using the Network Management Facility

length The length of the value field, in bytes. If the operation was not
successful (status not equal to 0), length may or may not be 0.

value The value of an object. For the READ_AND_CLEAR_OBJECT
command, this is the value before the object is cleared. For the
READ_OBJECT and SET_OBJECT commands this is the value after
the object is read or set.

See also: Object values, Appendix C

NMF SET_MEMORY

Network User's Guide and Reference Chapter 14 327

SET_MEMORY
The SET_MEMORY command writes to the host memory on the net agent specified
in the request block. This command uses the same structure as the
READ_MEMORY command.

See also: READ_MEMORY, in this chapter

SET_OBJECT NMF

328 Chapter 14 Using the Network Management Facility

SET_OBJECT
The SET_OBJECT command changes the value of one or more iNA 960 objects.
The request block and buffers for this command are the same as those for the
READ_OBJECT commands.

See also: READ_OBJECT, in this chapter

NMF SUPPLY_BUFFER

Network User's Guide and Reference Chapter 14 329

SUPPLY_BUFFER
The SUPPLY_BUFFER command supplies a buffer to the NMF to receive a data
packet destined for the application rather than the NMF. When the NMF receives a
Data Link packet with the NMF LSAP, the NMF checks the command field. If the
NMF does not recognize the command and a buffer has been supplied, the NMF
places the packet in the buffer and returns the SUPPLY_BUFFER request block. A
remote-load application can use this mechanism to communicate.

See also: Remote Load Operations, in this chapter,
Remote Booting, Chapter 15

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* of supply_buf_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 81H */

unsigned char opcode; /* 8H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct supply_buf_rb {

RB_COMMON header;

unsigned short filled_length; /* output */

unsigned long buffer_ptr; /* in/out */

unsigned short buffer_length; /* input */

} SUPPLY_BUF_RB;

Input Arguments
buffer_ptr

A pointer to (absolute address of) the supplied buffer.

buffer_length
The length, in bytes, of the supplied buffer.

Output Arguments
filled_length

The amount, in bytes, of the supplied buffer actually taken up by the message packet.

SUPPLY_BUFFER NMF

330 Chapter 14 Using the Network Management Facility

buffer_ptr
The buffer contains a packet of information, with the format shown below. The
packet header is put in the buffer so that the application will know the source of the
message. The header is in the same format as an IEEE 802.2 Type 1 subnet packet
header, regardless of what type of Data Link service delivers the message.

typedef struct supply_buff {

unsigned char destination_addr[6];

unsigned char source_addr[6];

unsigned short length;

unsigned char dest_lsap_sel;

unsigned char src_lsap_sel;

unsigned char control;

unsigned char data[1];

} SUPPLY_BUFF;

Where:

destination_addr
The Ethernet address of the message destination.

source_addr
The Ethernet address of the message source.

length The total length of the remaining fields in the buffer (dest_lsap_sel
through data).

dest_lsap_sel
The NMF LSAP selector at the destination, which is 8H.

src_lsap_sel
The NMF LSAP selector at the source, which is 8H.

control This field is set to 3H.

data The data sent in the message packet.

NMF SUPPLY_BUFFER

Network User's Guide and Reference Chapter 14 331

Response Codes

OK_RESPONSE 1H Command completed successfully; this buffer
contains a returned packet.

E_OK_BUFF_RELEASE 3H Rather than being used, the buffer has been
released with a TAKEBACK_BUFFER
command.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

E_INSUFF_RESP_BUF 0EH The buffer is too small. This occurs when the
buffer is too small to even hold the packet header.
The buffer must be at least 18 bytes long.

Additional Information

The supplied buffer must be as least the length of the largest packet expected. If the
buffer is shorter than the length of a received packet, one of two things can happen:

• If the buffer is too short to hold the packet header, the entire packet is discarded;
no error is returned to the source.

• If the buffer is long enough to hold the packet header but too short to hold the
data, the header is put in the buffer and the rest of the packet is discarded; no
error is returned to the source.

TAKEBACK_BUFFER NMF

332 Chapter 14 Using the Network Management Facility

TAKEBACK_BUFFER
The TAKEBACK_BUFFER command releases a buffer previously supplied to the
NMF with the SUPPLY_BUFFER command.

Request Block

typedef struct rb_common {

unsigned short reserved[2];

unsigned char length; /* takeback_buf_rb */

selector user_id; /* cq_create_comm_user */

unsigned char resp_port; /* 0FFH */

selector resp_mbox; /* mailbox token */

selector rb_seg_tok; /* segment token */

unsigned char subsystem; /* 81H */

unsigned char opcode; /* 9H */

unsigned short response; /* initialize to 0 */

} RB_COMMON;

typedef struct takeback_buf_rb {

RB_COMMON header;

} TAKEBACK_BUF_RB;

Response Codes

OK_RESPONSE 1H Command completed successfully.

E_NMF_OPCODE 0CH The specified opcode field is not a valid NMF
command.

■■ ■■ ■■

Network User's Guide and Reference Chapter 15 333

Remote Booting 15
This chapter explains the process of remote booting and how to configure the
computers involved in the process. The discussion also covers how to configure and
use software for diskless nodes, which have no local mass storage devices.
Computers that are booted remotely do not have to be diskless nodes, but they often
are.

The bootstrap loading process (or booting) loads software into a computer's RAM
using a program called the Bootstrap Loader. Remote booting loads a software image
obtained across the network from a remote mass storage device, rather than one
stored on a local disk. Remote booting is the standard way to boot diskless nodes, but
you can boot any iRMX computer this way. This makes it possible to control
common application software on a number of computers, by loading all the software
from one boot server. The boot server is a computer that provides software to other
nodes requesting a remote boot. A computer whose memory is loaded during remote
booting is called the boot client. If the boot client is a diskless node, it also needs a
file server. A file server is a computer that provides remote access to the files on its
local hard disk to other nodes on the network.

Hardware and Software Requirements
Boot server This can be any computer running the iRMX OS, iNA 960 software,

and the Boot Server software, which is supplied with the OS as a
loadable job (rbootsrv.job). Note that this is the Remote Boot Server,
not the MSA Boot Server (which is bootserv.job, used for booting
within a Multibus II chassis).

See also: Creating Custom Server Applications, in this chapter

File server This can be any computer running the iRMX OS, iNA 960 software,
and the iRMX-NET server (rnetserv.job). The File Server software is
one of the basic modules of iRMX-NET. The file server and boot
server can be a single node that provides both file and boot services.

Boot client This is often a diskless node, but it does not have to be. Table 15-1 lists
the CPU boards and NICs that can be used for a boot client.

Chapter 15 Remote Booting334

Table 15-1. Boot Client Systems

System Bus* CPU NIC Operating System**

PC 386 or higher EtherExpress 16 RPC or RFW

MB2 SBC 486DX33
SBC 486DX66
SBC 486SX25

EWENET module RPC

MB1 SBC 386/2X
SBC 386/3X
SBC 386/12
SBC 486/12

SBC 552A III

* MB1 specifies Multibus I; MB2 specifies Multibus II; PC specifies PC Bus
** III specifies iRMX III OS; RPC specifies iRMX for PCs; RFW specifies DOSRMX.

For simplicity, this chapter often refers to the three remote boot client configurations
as the Multibus I, Multibus II, and PC Bus systems. Remember, however, that
remote booting also requires one of the supported CPU boards and NICs listed in
Table 15-1 and that each hardware configuration runs only one or two versions of the
iRMX OS. The following requirements also apply:

As a general rule, the boot client must contain, in PROM, an iRMX remote first stage
bootstrap loader. However, this is not necessarily true for PCs.

PC Bus and Multibus II systems; there are two possible methods:

• The boot client NIC contains, in ROM, an iRMX remote first stage bootstrap
loader. You create the ROM using software supplied with the iRMX OS and the
instructions later in this chapter.

• To remotely boot DOSRMX on a PC or PC-compatible Multibus II board, you
can boot DOS from a local disk or diskette. Then you can use the loadrmx
command to remotely boot DOSRMX.

See also: loadrmx, Command Reference

Multibus I systems
The CPU boards that support remote booting come with the iRMX remote first
stage bootstrap loader in PROM. The first stage includes the remote device
driver for the 552A board.

See also: Bootstrap Loader Reference for more about remote booting
Multibus I systems

Network User's Guide and Reference Chapter 15 335

Overview of Remote Booting
Figure 15-1 shows a boot client and boot server before remote booting and again
afterwards. The client is a Multibus I system, with the networking software running
on a separate NIC.

Host CPU
board

iRMX
OS iNA

iNA boot
server

System B
boot serverSystem A boot client

iRMX is a registered trademark of Intel Corporation.

Hard disk

W-0918

Host CPU
board

Bootstrap
Loader

NIC

Firmware
iNA boot
server

System B
boot serverSystem A boot client

Hard disk

iRMX
boot file

iNA
load file

Ethernet

NIC

Ethernet

Figure 15-1. Remote Booting the iRMX III OS, Start and Finish

The top diagram includes all the pieces required for remote booting the iRMX III OS:

• A boot client (System A) with a first stage Bootstrap Loader and other remote
boot firmware in PROM

• A boot server (System B) running the iNA Remote Boot Server software, which
stores the files to be loaded onto the boot client: the iRMX III OS boot file, a
remote third stage Bootstrap Loader, and an iNA 960 file

In the bottom diagram of Figure 15-1, booting is finished, and the iRMX OS and iNA
960 are running on the boot client.

If the boot client is a diskless node, during remote booting it attaches a file server and
assigns it the logical name :sd:. Any references to :sd: on the diskless node use the
remote disk provided by the file server.

Figure 15-2 shows the finish of remote booting when the boot client (System A) is a
diskless node. During the process it has attached a file server (System C) across the

Chapter 15 Remote Booting336

network. Here the file server (System C) and boot server (System B) are two
separate nodes, but the same node could serve as both.

Host CPU
board

iRMX
OS

NIC

iNA

iRMX-NET
file server

boot server

System B
boot server

System C
file server

System A boot client

iRMX is a registered trademark of Intel Corporation.

Hard disk

Hard disk

OM04346
:sd:

Ethernet

Figure 15-2. Remote Booting a Diskless Node

Network User's Guide and Reference Chapter 15 337

In brief, the process of remote booting is:

1. You start by resetting the boot client.

2. The boot client sends a remote load request across the subnet. The request is a
multicast message, so it does not go through routers into other subnets.

3. Each boot server that receives the message checks to see if it can service the
request. If it can provide the service, it returns an accept message to the boot
client; if it cannot, it does not respond.

4. Once it receives an accept message, the boot client notes the source address and
sends a series of data request messages to that boot server.

5. The boot server responds with messages containing the requested data.

6. As it receives the data messages from the boot server, the boot client places the
data into memory.

7. When the last of the data is loaded, the boot client software knows that loading is
complete.

See also: Creating Custom Server Applications, in this chapter, for more detail on
the remote booting process

Configuring the Load Files
The software loaded onto the boot client varies with the version of the OS to be
booted, as shown in Table 15-2. For booting, the files must be on the boot server. If
you need new versions of the files, however, you can generate them on another host
and copy them to the boot server. You might need to do this if the server does not
have an ICU.

Table 15-2. Load Files for Remote Booting

File iRMX III OS iRMX for PCs DOSRMX

iRMX OS boot file *rsd.bck required required required

load-time configuration file
rmx.ini

none - ICU configurable optional optional

remote 3rd stage bootstrap
loader *.rem32

required required none - loaded from
DOS

iNA 960 load file ina*.32r optional none - uses
COMMputer

none - uses
COMMputer

Chapter 15 Remote Booting338

Operating System Boot File
The only file that is always required for remote booting is the OS boot file.

Generating an OS Boot File

To generate an OS boot file, configure a definition file using the ICU. Table 15-3
shows the remote boot definition files provided with the OS in the /rmx386/icu
directory. The ICU restores the backup version of the file to a definition file with the
extension .def instead of .bck. The rsd in the filenames means they are intended for
use with a remote system device, which is the standard configuration for remote boot
clients. The files contain all of the iRMX subsystems and the iRMX-NET File
Consumer module, but not the iRMX-NET File Server software.

Table 15-3. ICU Definition Files for Remote Booting

File CPU

38620rsd.bck SBC 386/2X,3X

38612rsd.bck SBC 386/12

48612rsd.bck SBC 486/12

pccprsd.bck PC with EtherExpress 16

✏ Note
The pccprsd.bck file can run the DOSRMX OS (with DOS present)
or iRMX for PCs (without DOS). You can also use this file on an
SBC 486SX/DX board with an EWENET module. To do so, you
need to make only one change.

Use the ICU to configure pccprsd.bck. Change the iNA 960 file
configured into the OS with the OFN parameter on the ICMPJ
screen. For the EWENET module, specify either the iewexpn
(NULL2) job or iewexpe (ES-IS) job, instead of the iethxpn(e) job
used with the EtherExpress 16.

See also: i*.job, System Configuration and Administration

Network User's Guide and Reference Chapter 15 339

ICU Configuration

To create a diskless configuration of the iRMX III OS, generate the iRMX OS with
the ICU in the usual way. You must change several ICU screens to replace the
default file server name, FILESRV, with the name of the node you will use as the file
server. Use its server name, which is registered with the Name Server.

See also: listname command, Command Reference

Invoke the ICU, using the definition file in Table 15-3 that matches the boot client's
hardware, and make these changes:

1. For Multibus I boot clients only, on the Logical Names (LOGN) screen add this
entry, where=server_name is the name of the file server:

SD, server_name, REMOTE, 0H

✏ Note
Only perform this step if ABR (automatic boot device
recognition) is set to NO in the EIOS screen (this step applies
only for remote booting a Multibus I client). If ABR=YES in the
EIOS screen and you perform this step, the OS initialization will
fail with EIOS initialization error 0005H.

2. On the User Definition File (UDF) screen, specify this parameter:

(MD) Master UDF Device server_name

3. On the Client Definition File (CDF) screen, specify this parameter:

(CDD) CDF Device server_name

You can also use the CDF screen to set a unique client name and password for
the boot client board. Both parameters are case-sensitive. The default entries
are rmx and 1234567. You can use the defaults, but every diskless client using
this configuration will have the same client name and password.

4. The definition file assumes that the file server is running the same version of the
iRMX OS as the boot client. If it is a different version, specify the correct
pathname for the configuration directory on the EIOS screen.

(CD) Configuration Directory path_name

The ICU generates an OS file in the local directory. The file has the same name
as the definition file, but with a .rem extension.

Chapter 15 Remote Booting340

5. Verify on the following screens that these parameters are set:
Screen Parameter
EIOS ABR=Yes for a PC or Multibus II, ABR=No for Multibus I
ABDR DPN = <server name> (only applies when ABR=Yes)
ABDR DFD = Remote (only applies when ABR=Yes)
MIP1 LD = No (only applies when ABR=No)
GEN RMB = Yes

6. Invoke the generation submit file created by the ICU, *.csd. This creates a boot
file in the /rboot32 directory. The typical filename extensions are .rem or .386,
as shown in Table 15-4.

The boot file is now ready for the default remote booting process. If you intend to
boot it without an iNA 960 load file, instructions are provided later in this chapter.

See also: Creating the ccinfo File, in this chapter;
User Definition File and Client Definition File, Chapter 2;
ICU User's Guide and Quick Reference

Load-time Configuration File
For iRMX for PCs and DOSRMX only, use the load-time configuration file, rmx.ini,
to override default parameters. You need a separate file if you are using different
nodes for the boot server and the file server. By default, the OS looks for its system
files on the boot server. You can also make any other optional changes in this file,
like resetting the default client name and password.

To prepare a configuration file for remote booting:

1. Copy the default rmx.ini file to the /rboot32 directory. This file will be used by
the boot client; be sure it is not a version that has been configured for the local
node.

2. Edit the file server name:

DN ='SD' ; Device Name

where SD is the name of the file server, as registered with the Name Server.

3. You can also specify a unique client name and password for the boot client.
Both parameters are case-sensitive:

CNN ='client_name' ; Consumer Name

CNP ='password' ; Consumer Password

The default Consumer Name is ‘rmx’ and the default Consumer Password is
‘1234567’. You can use the defaults, but every diskless client using this
configuration would have the same client name and password.

Network User's Guide and Reference Chapter 15 341

4. In the EIOS block, add these parameters, where server_name is the name of
the file server:

ADV ='server_name'

AFD =05H

5. In the HI block, add this parameter, where init_file is a file in the :config:
directory to use as a replacement for r?init:

SCF ='init_file'

6. Translate the file into iNA load file format, using the remini command:

remini rmx.ini to rini_at.rem

This creates a configuration file for a PC Bus system. For Multibus II, use the
filename rini_mb2.rem

See also: Load-time configuration, System Configuration and Administration;
remini command, Command Reference

Remote Third Stage Bootstrap Loader
The remote third stage is provided with the iRMX Bootstrap Loader in the /bsl
directory. It is used for booting remote clients with iRMX for PCs or iRMX III OS.
On DOSRMX systems, DOS loads the iRMX OS.

Third stage file names have a .rem32 extension. Table 15-4 shows all the files and
the OS boot files they are used with.

Table 15-4. Remote Third Stage Bootstrap Loader Files

Third Stage File Default OS Boot File

exp.rem32 pccprsd.rem

38620.rem32 38620rsd.386

38612.rem32 38612rsd.386

48612.rem32 48612rsd.386

✏ Note
When installed on a DOS file system, the third-stage filename
extensions are truncated to .rem from .rem32.

On the iRMX III OS you can configure and generate a new third stage. Use the
/bsl/br38.csd submit file to create a Multibus I third stage, or /bsl/br3expgen.csd for a
Multibus II or PC Bus third stage.

Chapter 15 Remote Booting342

To remote boot, the remote third stage that matches the OS boot file must be in the
/rboot32 directory. Copy the appropriate file from the /bsl directory. For example:

copy /bsl/exp.rem32 to /rboot32/exp.rem32

The remote third stage is different from other iRMX third stages in that it does not
really load the OS into memory. The first stage and the firmware on the boot client,
working with the iNA Remote Boot Server software, actually load both the OS and
the remote third stage. The remote third stage receives control directly from the first
stage and puts the processor into protected mode before starting execution of the OS.
(Remote booting does not use a second stage, unlike booting from a local disk.)

See also: Bootstrap Loader Reference for more on the third stage for Multibus I

iNA 960 Load File
Preconfigured iNA 960 remote load files are provided with the OS for boot clients.
Use the /net/ina*.32r files, which are iNA 960 load file format. The ina*.32l files are
for local use. You can boot the iRMX III OS without loading iNA 960, but this
requires changes to the ccinfo and OS files.

Remotely booted iRMX for PCs and DOSRMX systems use a COMMputer
configuration. They do not have a separate NIC to be downloaded.

See also: Creating the ccinfo File, in this chapter

Generating a First Stage EPROM for the Boot Client
The boot client has no software to configure, but it must contain, in EPROM, an
iRMX remote first stage bootstrap loader.

The hardware configuration required to remote boot the iRMX III OS includes
Multibus I, the SBC 552A NIC, and CPUs that come with the first stage in ROM.
The first stage includes the remote device driver R0 for the SBC 552A NIC. You can
replace the first stage with one that you have configured.

See also: Configuring the first stage, Bootstrap Loader Reference, for Multibus I

Network User's Guide and Reference Chapter 15 343

Creating a First Stage for EtherExpress 16 or EWENET
For booting iRMX for PCs and DOSRMX, the first stage must be on the NIC. You
create an EPROM for the EtherExpress 16 NIC (PC Bus) or EWENET module
(Multibus II), using software supplied with the iRMX OS. This involves editing the
configuration file, generating the first stage files, and burning a new EPROM.

On an iRMX III computer with an EPROM burner attached, complete these steps:

1. Move to the /bsl directory to generate the EPROM.

2. Configure the bexp.a86 file, if necessary. If you intend to boot iRMX for PCs on
a Multibus II system and you want the bootstrap loader menu to be displayed,
you can use the default configuration. If you need to edit the file, make a backup
copy. Be sure you are not changing comment lines that begin with a semicolon
(;) instead of the command lines.

• To change the class code, replace the value 4001 in following line with one
of the entries in the :sd:net/ccinfo file.

default_class_code DB '4001',00H

See also: Creating the ccinfo File, in this chapter

• To change the default menu display or check for a display adapter, replace
the value OFFH in following line with the one appropriate to your system.

cmos_check_byte DB 0FFH ; Display Menu

Use 000H to suppress the menu, 01FH to indicate a Phoenix BIOS
keyboard, or 014H for Standard BIOS equipment. If you use
cmos_check_byte value 01FH or 014H to check for a display adapter,
you also need to set the cmos_check_mask to specify whether the menu is
displayed.

cmos_check_mask DB 001H ; Phoenix BIOS keyboard

A logical and is performed on the cmos_check_byte value 01FH or
014H and the cmos_check_mask value. If the result is not 0, the menu is
displayed.

• If you change the default_class_code, cmos_check_byte, or
cmos_check_mask parameters, also change the value in this line so that the
file produces a checksum ending in 00 when you program the EPROM.

checksum_fix DB 0B8H

Chapter 15 Remote Booting344

3. Invoke the submit file bexp.csd.

submit bexp

This step generates a located object file bexprb.loc for use with the iPPS PROM
Programmer and a HEX file bexprb.hex for use with third party PROM
programmers. This warning appears; this is normal.

WARNING 66: START ADDRESS NOT SPECIFIED IN OUTPUT MODULE

4. Program the EPROM.

• If you are using a third party PROM programmer, move the bexprb.hex file
to the proper location and follow the vendor's instructions to create the
EPROM.

• If you are using the iPPS PROM Programmer, follow the instructions in the
next section.

5. If the process of programming the EPROM produces a checksum that does not
end in 00, adjust the value of checksum_fix in the bexp.a86 file and repeat the
process.

Network User's Guide and Reference Chapter 15 345

Using the iPPS PROM Programmer
To place the first stage into an EPROM device, stay in the /bsl directory and
complete these steps:

1. Attach the physical device as ipps.

ad terminal_device as ipps p

Where terminal_device is the terminal device name for your system, for
example, t82530_0.

2. Set the baud rate of the terminal to 2400 baud.

term :ipps: in=2400

3. Invoke the iPPS PROM Programmer:

ipps

4. At the iPPS prompt, enter:

i 86

t 2764

format bexprb.loc (92000)

3

1

1

0 to bexprb.rom

y

copy bexprb.rom to b

copy b to bexprb.rom

y

copy bexprb.rom to p

exit

The commands above are for programming a 2764 EPROM, using the bexprb.loc file
prepared with the instructions in previous sections. This command (from the list
above) copies the buffer back to a file.

copy b to bexprb.rom

The checksum reported in this step must end in 00, or the ROM BIOS will not
execute the code. If necessary, adjust the checksum_fix variable in the bexp.a86
configuration file and try again.

Chapter 15 Remote Booting346

Installing the EPROM
To install the remote first stage in the boot client, complete these steps:

1. Plug the EPROM into an EtherExpress™ 16 or EWENET board.

2. Place the board in the boot client or, if it is diskless, in a computer with a disk
drive.

3. Run the SOFTSET program from the DOS prompt to configure the board. Use
the Manual Setup option to configure the board for the boot client. Set the boot
ROM address parameter to any available address range.

4. Move the board to the boot client, if you configured it somewhere else.

See also: Manual configuration and installation in diskless workstations, The
Complete Guide to installing and configuring the Intel EtherExpress 16
and 16TP Network Adapters for ISA computers

Configuring the Remote Boot Server
The boot server downloads OS and network communication software to remote
nodes. It can handle simultaneous requests from multiple boot clients. The
maximum number is an iNA 960 configuration option.

These are the basic steps for setting up a boot server:

1. Create the :sd:net/ccinfo file.

2. Sysload the boot server job rbootsrv.job using the proper command line
parameters.

See also: rbootsrv.job, System Configuration and Administration

3. Place the load files in the directories specified in the ccinfo file.

Creating the ccinfo File
Every boot server must have a Class Code Information (ccinfo) file. This tells the
server which files to send in response to a boot client's request, and in what order.
The boot server reads the ccinfo file during initialization.

The :sd:net/ccinfo file is a binary file generated by the bcl utility from a template file,
:sd:net/ccinfo.bdf. Each line of this file is a predefined entry for a different class
code.

Network User's Guide and Reference Chapter 15 347

Class Codes

A class code is a 16-bit number that determines which files the boot server sends to a
boot client, and in what order. Table 15-5 shows the default codes predefined in the
ccinfo.bdf file. You can define your own class codes within the specified ranges.

Table 15-5. Class Code Ranges and Defaults

Host/Comm Images Class Code Default Value

Available for applications 0000H - 0FFFH 0000H
iNA 960 1000H - 1FFFH 1000H
DOS 2000H - 2FFFH 2000H
iRMX OS 3000H - 4FFFH

III* MB1**/386 3000H
III MB1/486 4000H
RPC* MB2** 4001H
RPC PC** 4002H
RFW* PC 4003H

* III specifies iRMX III OS; RPC is iRMX for PCs; RFW is DOSRMX
** MB1 specifies Multibus I; MB2 is Multibus II; PC is PC Bus

Every boot request includes a class code. When the boot client sends a boot request,
the boot server checks whether it has a definition for the class code. If it does, the
server sends all the files associated with that code to the boot client.

For example, the load files for booting a Multibus I boot client consist of a remote
third stage, the OS, and usually an iNA 960 file. As you can see in the ccinfo.bdf file
in Figure 15-3, by default all three files are matched to codes 3000H and 4000H.
You could define a code 4004H to match only the first two files. A client
broadcasting the code 4004H would receive only the third stage and OS files from the
boot server.

4000 IS /rboot32/48612rsd.rem32, /rboot32/48612rsd.386,

/net/ina552an.32r;

4001 IS /rboot32/exp.rem32, /rboot32/rini_mb2.rem, /rboot32/pccprsd.rem;

4002 IS /rboot32/exp.rem32, /rboot32/rini_at.rem, /rboot32/pccprsd.rem;

4003 IS /rboot32/pcexprsd.rem;

3000 IS /rboot32/38620rsd.rem32, /rboot32/38620rsd.386,

/net/ina552an.32r;

1032 IS /net/ina552an.32R;

1033 IS /net/ina552ae.32R;

Figure 15-3. The :sd:net/ccinfo.bdf File

Chapter 15 Remote Booting348

The files are sent in the order they are listed in the class code entry. This is
important, because most of the files are translated with the N flag set on the xlate
command, which tells the boot client to look for the next file. When a file translated
without the flag arrives, the boot client stops sending data messages to the server, and
loading stops.

Both predefined and custom-generated files are translated to fit the order of the
default ccinfo.bdf entries, as shown in Table 15-6.

Table 15-6. Remote Load File Translation

File Xlate N Flag Order of Loading

*.rem32 remote third stage yes first

rini_*.rem load-time configuration file yes before the OS

iRMX OS boot file

*rsd.386 III** yes before iNA 960

pc*rsd.rem RPC** or RFW** no last

ina*.32r iNA 960 files no last

** III specifies iRMX III OS; RPC is iRMX for PCs; RFW is DOSRMX

However, two class codes in the ccinfo.bdf file, 1032H and 1033H, load iNA 960
separately. If you do this, you need to create a class code that loads the iRMX III OS
without iNA 960. Add a line like this to the ccinfo.bdf file:

4004 IS /rboot32/myrsd.rem32, /rboot32/myrsd.386;

Then you must generate a new version of the iRMX III OS that is translated without
the N flag. The ICU places the proper xlate translation command line into the
generation submit file it creates.

If you are not sure about the state of a particular file, the unxlate command displays
translation information about it.

See also: xlate and unxlate commands, Command Reference

Generating the ccinfo File

You can use the default entries in the ccinfo.bdf file or edit the file to change them.

1. Make a copy of the :sd:net/ccinfo.bdf file to use as a backup example.

2. Edit the file. Be sure not to change the order of the files in an entry.

If you are booting iRMX for PCs or DOSRMX without an rini_at.rem or
rini_mb2.rem file, take the files out of the definitions for class codes 4001H and
4002H, or create a new code without it.

Network User's Guide and Reference Chapter 15 349

For example, you might have an DOSRMX system where you boot DOS locally
but boot the iRMX OS remotely. In this case, you could include an rmx.ini file
on the local DOS disk, and would not need a separate rini_at.rem file on the
server.

3. Create the ccinfo file, using the bcl command:

attachfile :sd:net

bcl ccinfo.bdf ccinfo

See also: bcl and inamon commands, Command Reference

Make sure the ccinfo file is small enough to fit into the boot server's buffer in
memory. The boot server is configured for a maximum file size of 1024 bytes.

See also: rbootsrv.job, System Configuration and Administration, to increase the
default file size on the sysload command line

✏ Note
If the ccinfo file is too large, no error message appears. Instead,
only the bytes that fit into the buffer are loaded and any entries that
do not fit are not supported by the boot server.

If the file is too large, use multiple boot servers, each supporting certain boot clients.
Split the entries in the ccinfo file among the ccinfo files on different servers. Make
sure they do not have different definitions of the same class codes. The boot client
boots off the server that responds first, so the results would be unpredictable.

See also: iNA configuration values, Appendix A

Loading the Boot Server
After creating the ccinfo file, you must load the boot server. This reads the ccinfo file
and tests the iNA Remote Boot Server software. If the boot server job is already
running, first reboot the system. Then load rbootsrv.job with a sysload command.

See also: rbootsrv.job, System Configuration and Administration, for loading
syntax and switches you can set on the command line

Chapter 15 Remote Booting350

Installing the Load Files
Make sure the load files are on the boot server system, in the directories specified in
the boot server's ccinfo file. Table 15-7 shows the defaults. The server uses the path
names in the ccinfo file to find the load files.

Table 15-7. Default Directories for Load Files

File Directory

iRMX OS boot file :sd:rboot32

load-time configuration file :sd:rboot32

remote third stage bootstrap loader :sd:rboot32

iNA 960 file :sd:net

At this point the boot server is ready to respond to requests from boot clients on the
network.

Configuring the File Server
The file server is a node with a local hard disk that is used as a system device for a
diskless node or a diskless host CPU. The server must provide remote access to all of
the files that the iRMX OS and iRMX-NET assume are available during
initialization. This means offering, as public directories, any root-level directories
that are required. These public directories are listed in the file server configuration
information later in this chapter.

Any iRMX OS generated using a default iRMX-NET configuration is ready to act as
a file server. You do not need to make any special configuration changes, and the
steps for setup are the same as for any other iRMX computer. If you are using a
custom configuration of iRMX-NET, however, then these parameters must be set
appropriately for the diskless boot client to initialize and function properly.

See also: Network jobs, System Configuration and Administration

This information outlines which iRMX-NET file server system parameters are
important when the iRMX OS and iRMX-NET run in a diskless environment.

On the file server:

1. Make sure the server names of the file server and the boot client are in the Name
Server object table.

2. Add the boot clients to the Client Definition File (CDF).

3. Enter the names of the boot clients and their terminal types into the
:config:terminals file.

Network User's Guide and Reference Chapter 15 351

Loading Server Names into the Name Server Database
The server name of the file server must be available to the OS being booted, so the
boot client can attach to the file server. This name should already be in the Name
Server object table; use the listname command to check. If necessary, add this line
to the :sd:net/data file:

fsname/nfs: TYPE=rmx: ADDRESS:;

where fsname is the server name of the file server.

See also: listname command, Command Reference

The boot client must also have a server name available, so the HI of the OS being
booted can find its own name. It needs the name when it reads the :config:terminals
file, which lists terminal types for diskless nodes by name.

To make this server a spokesman for the boot client, add a line like one of these to
the :sd:net/data file:

mb1sys: TYPE=pt0005: ADDRESS=ssss############00;

mb2slot2: TYPE=pt0005: ADDRESS=ssss############02;

pcsys: TYPE=pt0005: ADDRESS=ssss############00;

Where:

mb1sys

mb2slot2

pcsys

The server names for boot clients, as defined in the ICU or the
rmx.ini file during load file configuration.

ssss The subnet ID configured into the iNA 960 job. The default
number is 0001 (assuming the first subnet in multiple-subnet
jobs). However, you can override the default by reconfiguring
the job with the ICU or with an SNID parameter on the sysload
command line when you load the job.

See also: i*.job, System Configuration and Administration

############ The Ethernet address of the boot client where the OS will run.
PC Bus and Multibus II systems display the Ethernet address on
the initial screen. On Multibus I systems, display the Ethernet
address by attempting a remote boot.

The example lines above show a two-digit number following the
Ethernet address. On a Multibus II system, specify the slot
number of the boot client board. On a PC or Multibus I system,
specify 00 after the Ethernet address.

Each boot client must have its own line in the file.

Chapter 15 Remote Booting352

Reboot the file server or invoke the loadname command after you edit the
:sd:net/data file.

See also: Adding a Server to the Name Server Object Table, Chapter 3;
Editing the :sd:net/data.ex File, Chapter 11, for more about the format
of the entries

Adding Client Names to the CDF
Add the boot clients to the Client Definition File (CDF). The CDF on the file server
must contain the client name and password for any boot clients. You defined the
client name and password during configuration of the OS boot file on the boot server.
The client name can be the same as the server name specified earlier, but it does not
have to be. The client name and password are both case-sensitive.

See also: modcdf example, Chapter 5

Adding Server Names to the :config:terminals File
Enter the server name of the boot client and its terminal type into the
:config:terminals file. The name must match the boot client's server name registered
with the Name Server in the :sd:net/data file. For example:

//

1,<pcsys>

com1,,,any

//

1,<mb1sys>

t0,,,any

//

1,<mb2slot2>

t279_0,,,any

See also: Diskless workstations, System Configuration and Administration, for
information about the format of the :config:terminals file

Network User's Guide and Reference Chapter 15 353

Remote Boot Start
When the software is in place on all of the nodes, and the file server and boot server
are running, the remote booting can begin. Table 15-5 shows the predefined class
codes you can use.

Booting Multibus I Systems
To boot the iRMX III OS on Multibus I clients, enter the SDM monitor by resetting
the system. At the monitor prompt, specify a boot command line with a remote
device name and a class code. For example:

b :r0: 4000H

Where:

:r0: The remote device name.

4000H The 16-bit class code. Make sure to add an H on the end for a hex value.

Leave a space between the remote device and the class code. If you omit the class
code, the Bootstrap Loader uses the default value configured in the first stage.

See also: First stage configuration, Bootstrap Loader Reference

Booting Multibus II or PC Bus Systems
On PC Bus and Multibus II clients, a screen with a default class code appears when
you reset the computer. Enter a different class code, if necessary, or allow the
computer to reboot automatically using the default. A remote device name is not
used.

System Initialization on a Diskless Node
During the initialization of the iRMX OS on the boot client, any file accesses go to
the file server through iRMX-NET. The EIOS performs a logical attachdevice on
the system device, but the first file access does not actually occur until the HI does an
attachfile on that device. This happens when the HI creates the logical names
specified in the ICU on the boot server when you configured the OS boot file. The
HI also accesses the file server's :config:terminals file. If the user logs on as a
dynamic user, the CLI accesses the file server to obtain the UDF file and any user
files, such as :prog:r?logon.

Chapter 15 Remote Booting354

During HI initialization, the system configuration file is invoked. On a diskfull node,
the default system configuration file is :config:r?init, which submits the
:config:loadinfo file. The loadinfo file contains sysload commands to load the
system jobs.

Diskless nodes cannot use the r?init file or the loadinfo file; these typically apply to
the server system. By default, the *msd.bck and *rsd.bck definition files (which
apply to diskless nodes) are configured to use file :config:initrsd as the system
configuration file, instead of r?init. If you want to use a different file than
:config:initrsd, specify your file in the SCF parameter on the HI screen of the ICU or
in the SCF parameter of the rmx.ini file (or your rmx.ini replacement for remote
booting).

In the :config:initrsd file (or your alternate SCF file), submit a file like
:config:loadinfo that contains sysload commands appropriate for the diskless node.
For example, you might submit a file named loadinfo.rsd.

Regardless of what file is specified as the SCF, the HI initialization also submits a
file of the same name with “2” appended, if such a file exists in the :config:
directory. For example, the HI submits :config:r?init2 on a diskfull node. With the
default configuration of the *msd.bck and *rsd.bck definition files, the HI submits a
file named initrsd2 if it exists. If you change the system configuration file with the
SCF parameter, the HI will submit your new SCF file as well as the same filename
with “2” appended, if it exists.

✏ Note
If you use the SCF mechanism on a DOS-controlled hard disk ,
specify an SCF filename with a maximum of 7 characters or with a
maximum filename extension of 2 characters. This allows the HI
to append a “2” and form a filename that fits the DOS 8.3 filename
limits.

The r?init2 file on a diskfull node typically submits these TCP/IP-related files with
esubmit commands:

/etc/tcpstart.csd
/etc/nfsstart.csd
/etc/tcpd.csd

To run TCP/IP on diskless nodes, use your SCF file with “2” appended (for example,
initrsd2) to submit similar files that properly set up TCP/IP for those nodes.

See also: TCP/IP and NFS for the iRMX Operating System

Network User's Guide and Reference Chapter 15 355

If Remote Booting Fails
If it gets no response to its boot request message, the boot client waits one second and
retransmits the message. After transmitting three times, the boot client gives up and
returns an error.

Many other problems on the boot client, boot server, file server, or network can
prevent remote booting. If it fails, correct the problem and try again.

Troubleshooting
These messages could appear on the boot client.

REMOTE BOOTING NOT SUPPORTED ON NIC
The NIC is incorrect; replace it with a supported one.

:R0: DEVICE DOES NOT EXIST
Incorrect version of the First Stage Bootstrap Loader is in PROM, or the remote
device, :R0:, was not configured into the Bootstrap Loader. Replace PROMS on the
CPU board with the Bootstrap Loader from the iRMX III OS. (Multibus I only)

See also: Configuring the first stage, Bootstrap Loader Reference, for details on
burning new PROMs that include the remote device, :R0:.

Error 02H
No boot server responded to the remote boot requests of the boot client. Several
problems can cause this.

The boot server could not find the :sd:net/ccinfo file during initialization. Check
these items on the boot server:

1. The rbootsrv.job is loaded.

2. The ccinfo file exists.

3. The :sd:net/ccinfo.bdf file was translated into the ccinfo file, using bcl.

4. The :sd:net directory is a public directory.

See also: Setting Up Public Directories, Chapter 4

The boot server could not find the files listed in the ccinfo file for the specified class
code. Make sure the first directory in the path for each file is a public directory. The
default is /rboot32.

Chapter 15 Remote Booting356

The boot server did not honor the boot request for a particular class code. Check
these items on the boot server:

1. The ccinfo.bdf file contains an entry for that class code. The class code specified
in the ccinfo.bdf file is assumed to be a hexadecimal value.

2. All of the ccinfo file fits into the boot server's buffer in memory.

3. Entries in the ccinfo file for other class codes do not specify the boot client's
Ethernet address.

See also: bcl command, Command Reference

The physical connection between the boot client and the boot server has been broken.
Reconnect the systems to the network.

06 Undefined Operation
The wrong third stage Bootstrap Loader was used. Use the remote third stage
shipped with the iRMX OS. If the boot client is a Multibus I host, make sure that the
remote third stage contains a module located at 1060H. Use unxlate to check.

See also:unxlate command, Command Reference

If the boot client is a diskless node, these messages could also appear.

HI INITIALIZATION ERROR: 0021H
Several problems can cause this.

The boot client did not attach to the file server. Make sure the file server name has
been entered into a Name Server database.

See also:Adding a Server to the Name Server Object Table, Chapter 3

The boot client could not find the file to be assigned a logical name. Make sure that
the file server has offered as public those directories needed for the logical names.
The logical names are defined in the :config:loadinfo file or the Public Directory
screen of the ICU. The default directories needed are listed in this chapter.

See also:Making Local Files Accessible to Other Nodes, Chapter 4

The boot client is executing a different OS than the file server and the path name of
the configuration directory on the ICU's EIOS screen was not changed to reflect the
different OS. Reconfigure the OS boot file to use :sd:rmx386/config for the correct
file server OS.

A Multibus I boot client is trying to use :R0: as the system device. Turn off
automatic device recognition in the EIOS screen of the ICU, and add an entry for a
remote SD in the logical names screen of the ICU. Regenerate the OS boot file.

Network User's Guide and Reference Chapter 15 357

HI INITIALIZATION ERROR: 004BH

The file server cannot find a client name and password for the boot client in the
Client Definition File (CDF). Use modcdf on the file server to add the information.

See also:Adding a Client to the CDF, Chapter 3

The system boots, but the recovery user comes up, not the login prompt. Check for
these two problems:

The name of the boot client is not in the file server's :config:terminals file.

See also::config:terminals file, System Configuration and Administration

The name of the boot client is not in the Name Server object table on the file server.
Enter a type 0005H object in the /net/data file and invoke the loadname command on
the file server to load the name.

See also:Adding an Object to the Name Server Object Table, Chapter 11

Chapter 15 Remote Booting358

Creating Custom Server Applications
This section provides additional information about the Boot Service provided by the
iNA NMF, for those who are implementing custom servers. This includes the boot
service message fields recognized by the NMF and the iNA boot file format. A more
detailed discussion of the NMF Boot Service architecture and protocol is beyond the
scope of this manual.

Boot Request and Response
The boot request and boot response messages have this format.

Boot Request Message Fields

char destination_address[6] = "01AA00FFFFFF"

char source_address[6]

unsigned short LLC_PDU_length = 7h

char destination_LSAP_selector = 8h

char source_LSAP_selector = 8h

char control = 3h

char reserved = 0h

char command = 4h

unsigned short class_code

The fields destination_address and LLC_PDU_length through command must
have the values indicated following the equal signs.

Boot Response Message Fields

char destination_address[6]

char source_address[6]

unsigned short LLC_PDU_length = 5H

char destination_LSAP_selector = 8H

char source_LSAP_selector = 8H

char control = 3H

char reserved = 0H

char command = 5H

The fields LLC_PDU_length through command must have the values indicated
following the equal signs.

Network User's Guide and Reference Chapter 15 359

Loading Operation
Once the boot request and response is completed, the actual loading operation begins.

From the class code specified in the boot request, the boot server knows exactly
which modules the boot client needs. The boot server breaks the modules into an
arbitrary number of blocks of unspecified size. The size of each block must be small
enough to fit into a boot response packet, which can contain up to 1496 bytes of data.
The protocol enables any number of modules to be loaded.

The boot client begins transmitting requests for blocks of data. Block numbers start
at 0 and increase by 1 for each successive request. The algorithm for transmitting
these requests is the same as described earlier for the initial boot request. Upon
receiving a response from the boot server, the boot client processes the response and
transmits a request for the next block of data.

When the boot client has received all blocks of data, it simply stops transmitting
requests for more. The boot server then times out waiting for the next request from
the client and releases resources that were reserved for the timed-out client.

When the iRMX first stage Bootstrap Loader receives the indication that the remote
load is done, it jumps to location 1060H in memory.

The data request and data response messages have this format.

Data Request Message Fields

char destination_address[6]

char source_address[6]

unsigned short LLC_PDU_length = 7h

char destination_LSAP_selector = 8H

char source_LSAP_selector = 8H

char control = 3H

char reserved = 0H

char command = 6H

unsigned short block

The fields LLC_PDU_length through command must have the values indicated
following the equal signs. The block field is the data block number. Block numbers
start at 0 and increase by 1 for each successive request.

Chapter 15 Remote Booting360

Data Response Message Fields

char destination_address[6]

char source_address[6]

unsigned short LLC_PDU_length = 7h + n

char destination_LSAP_selector = 8H

char source_LSAP_selector = 8H

char control = 3H

char reserved = 0H

char command = 7H

unsigned short block

char data[n]

The fields LLC_PDU_length through command must have the values indicated
following the equal signs. The LLC_PDU_length value must be 7H plus the length
of the data field, including padding. The block field is the number of the data
block in the data field.

On Multibus I systems a portion of the remote third stage has been loaded into
memory, starting at 1060H. The code at this location jumps to the configurable start
of the rest of the remote third stage. The default location of this remote third stage is
6000H. The remote third stage then sets up the GDT, IDT, and TSS. The
information for the GDT, IDT, TSS and start of the OS is located in 14 bytes starting
at 1050H. The 14 bytes are added by the xlate utility and are always part of the
iRMX OS. The third stage places the processor into protected mode and starts the
execution of the OS. On PC Bus and Multibus II systems the process is similar.

See also: xlate and unxlate commands, Command Reference, for information
about how the firmware determines where to place the data;
GDT slots, System Configuration and Administration;
IDT and task states, System Concepts

Network User's Guide and Reference Chapter 15 361

Boot Module Format
This load file (or boot module) format is the one recognized by the boot client
firmware on Intel network communication boards. This is the format of the iNA load
file.

typedef struct boot_module {

unsigned char command;

unsigned long load_addr;

unsigned short length;

unsigned long execution_addr;

unsigned char memory_image[1];

} BOOT_MODULE;

command Indicates whether to execute the module and whether to load more
modules. Only the four low-order bits are meaningful, as shown below.
Bits 4 through 7 must be 0.

Bit Value Meaning
0 0 This is the last load module.

1 Other modules follow this one.

1 0 Save the execution address to jump to when a
GO command is received.

1 Jump to the execution address immediately after
loading the module.

2 0 The load and execution addresses are in pointer
format, typically used for a module to load onto a
communication controller.

1 The load and execution addresses are absolute
addresses, typically used for a module to load
onto the boot client host.

3 0 Load this module onto a communication
controller.

1 Load this module into host memory.

Bits 0 and 1 act together and have this meaning:

Bit 0 Bit 1

0 1

0 Load complete Load complete

Wait for GO Execute now

1 More to load More to load

Save execute address But jump to execute address now

Chapter 15 Remote Booting362

d_addr The address to begin writing the memory image. This must be a 32-bit
value that is meaningful to the firmware on the target being loaded.

length The number of bytes in memory_image, from 0 to 64K.

execution_addr
The execution address of the loaded memory image. This must be a 32-
bit value that is meaningful to the firmware on the target being loaded.

memory_image
The data to load.

Using SUPPLY_BUFFER and TAKEBACK_BUFFER
Two NMF commands support remote load applications. The SUPPLY_BUFFER
and TAKEBACK_BUFFER commands provide a mechanism for the NMF to pass
remote load requests and responses that it does not support between applications (for
example, between custom boot clients and boot servers).

The application is free to define a protocol for remote load request and response
messages. There is, however, a constraint on the reserved and command fields of
the messages; they must be set to 0.

For a custom remote load application, the NMF boot server is not required in the iNA
NMF configuration used by the application. However, the
NMF_SUBNET_FUNCTIONS macro call must be included in the iNA NMF
configuration used by the application. All preconfigured iNA modules supplied with
iRMX-NET include this macro except for those specifically for the SBX 552 board.

For the NMF to pass messages between the applications, buffers are needed to store
the incoming and outgoing message packets. If packets are received by the NMF that
contain commands NMF doesn't recognize and no buffers have been supplied to
handle them, the message packets are dropped; no acknowledgment is sent to the
source.

When the NMF receives a Data Link packet with the NMF LSAP, the command field
is checked to determine if the NMF recognizes the command. If it does, the NMF
executes the command.

If the NMF does not recognize the command and a buffer has been supplied, the
packet is placed in the buffer and a request block pointing to it is forwarded to the
application.

The application responds to the command by writing the response data to another
buffer and then responding to the source of the Data Link packet in an agreed-upon
manner (e.g., using EDL or datagram services). The response to the command
contains a pointer to the buffer containing the response data.

Network User's Guide and Reference Chapter 15 363

This capability makes it possible for the application to implement custom NMF-level
commands that the application executes, rather than the iNA NMF.

The SUPPLY_BUFFER command supplies buffers for the purpose described above
and the TAKEBACK_BUFFER command releases them.

See also: SUPPLY_BUFFER and TAKEBACK_BUFFER commands,
Chapter 14

■■ ■■ ■■

Chapter 15 Remote Booting364

Network User's Guide and Reference Chapter 16 365

Internetwork Routing 16
Network addressing and internetwork routing concepts are introduced in Chapters 8
and 9 of this manual; read those chapters before this one.

Internetwork Routing Protocols
The iNA 960 ES-IS software supports two internetwork routing methods:

• Static, which uses the MAP 2.1 routing scheme for mapping NSAP addresses to
subnet addresses.

• End system to intermediate system (ES-IS), which implements the protocol
described in IS 9542.

The main difference between static and ES-IS routing is the way routing information
is initially defined and subsequently maintained in end systems and intermediate
systems. In both static and ES-IS routing, routing information is defined by tables
located in end systems and intermediate systems.

Static Routing
In the Static routing scheme, you build routing tables on each end system and
intermediate system in the network when you initially configure them. If the network
configuration and/or membership changes, you must update the routing tables
explicitly, using some mechanism such as the iNA 960 Network Management
Facility (NMF).

ES-IS Routing
In the ES-IS routing protocol, iNA 960 builds routing tables on each end system and
intermediate system dynamically as it starts up and comes onto the network. Part of
the startup process of an end system is to notify the intermediate systems in the
subnet of its existence. Similarly, intermediate systems notify end systems of their
existence when they start up. If the subnet configuration and/or membership
changes, (whether temporary or permanent), the protocol provides a mechanism for
automatic periodic updates to the routing tables. This ensures that routing
information for inactive systems is removed where necessary throughout the subnet.

366 Chapter 16 Internetwork Routing

If an end system needs to send a message to some destination, it sends the message to
an intermediate system which forwards the message. If the destination is directly
reachable from the end system that sent the message, the intermediate system sends
the end system the information necessary to send future messages directly to that
destination.

An intermediate system does not have to be present in a subnet. In the absence of an
intermediate system, end systems can determine each other's existence and correctly
exchange messages.

Using Static and ES-IS Routing Together
ES-IS routing does not dynamically define or update the information necessary to
deliver messages between intermediate systems in different subnets. You must set up
the table containing this information when you configure the intermediate systems.
Thus, when you configure systems to perform internetwork routing, you must use a
combination of Static and ES-IS routing. On the ISs (intermediate systems, or
routers), you set up static routing tables to point to each IS attached to the same
subnet, and also to indicate which IS to use to get to any subnets that could possibly
be accessed (including subnets anywhere that you might want to send or receive
messages from).

Once you have set up the static routing on all ISs, iNA 960 automatically performs
ES-IS routing to locate ESs (end systems). You do not have to set up static routing
tables on ESs, nor do you have to indicate ESs in the static routing tables you set up
on ISs.

See also: Chapter 9 for examples of setting up static routing with the Multibus II
subnet

Routing Tables
iNA 960 makes internetwork routing decisions based on information defined in a set
of tables maintained at all end systems and intermediate systems. The tables are
objects that are part of the internal database maintained by the iNA 960 software.

See also: Static and ES-IS router objects, Appendix C

The routing tables at end systems define mappings of NSAP address to subnet
address for the local subnet. The routing tables at intermediate systems define the
same information as end systems, plus information on remote subnets and other
intermediate systems. The Network Layer uses the routing tables to determine how
to deliver a message.

Network User's Guide and Reference Chapter 16 367

Application Access to Routing Tables
You can access the routing tables as iNA 960 routing objects. To perform network
routing, the application uses the NMF commands READ_OBJECT and
SET_OBJECT.

See also: READ_OBJECT, Chapter 14

The remainder of this chapter describes the command buffer and response buffer
structures that are unique to the Static and ES-IS routing objects. The Static routing
objects are different than the ES-IS routing objects and they have different command
and response buffer structures. The application references these buffers in the
READ_OBJECT and SET_OBJECT request blocks.

368 Chapter 16 Internetwork Routing

Reading and Setting Static Routing Objects
The Static routing objects are four routing tables:

• The Local Subnet Table, specifying all of the subnets to which the system is
physically connected.

• The Specific Router Table, specifying all of the intermediate systems that can be
reached directly from the system.

• The Destination Subnet Table, specifying all of the subnets that can be reached
through the intermediate systems listed in the Specific Router Table. This table
associates a remote subnet with the specific intermediate system through which it
can be reached.

• The Default Router Table, specifying a single intermediate system to use if none
of the systems in the Specific Router Table works. Only end systems use this
table.

All of the parameter values associated with the Static routing objects can be read and
most of them can be set. The objects that cannot be set are all in the Local Subnet
Table: the subnet name, the subnet address, and the transmit packet size. These are
set when the system containing the table is configured.

Command and Response Buffers for Static Routing
Use these structures for command and response buffers when reading and setting
Static routing objects. Most of the fields in the two structures are the same; the field
descriptions follow the structure definitions. The structures are provided as typedefs
in the include files for routing structures.

See also: Include Files, Chapter 10;
Programming with Structures, Chapter 10

✏ Note
The application must supply a filled-in command buffer for both
the SET_OBJECT and READ_OBJECT commands.

Network User's Guide and Reference Chapter 16 369

Command Buffer

The command buffer pointer in the READ_OBJECT and SET_OBJECT commands
references an array of one or more objects to read or set. Set the command buffer
pointer to reference the stat_routing_cmd structure below.

In the SET_OBJECT command, each object in the array specifies this
stat_rout_info structure of data. In READ_OBJECT command buffers, the
stat_rout_info structure need not be present; fill in the obj_cmd_struc
structure and set cmd_len to 0.

typedef struct stat_rout_info {

unsigned char router_name_len;

unsigned char router_name[12];

unsigned char subnet_name_len;

unsigned char subnet_name[12];

unsigned char lifetime;

unsigned char afi;

unsigned char subnet_no_len;

unsigned char subnet_no[6];

unsigned char addr_len;

unsigned char addr[12];

unsigned short tx_pkt_size;

} STAT_ROUT_INFO;

typedef struct obj_cmd_struc {

unsigned short object;

unsigned short modifier;

unsigned short cmd_len;

STAT_ROUT_INFO cmd_info;

} OBJ_CMD_STRUC;

typedef struct stat_routing_cmd {

unsigned char num_obj;

OBJ_CMD_STRUC obj_info[1]; /* set to num_obj */

} STAT_ROUTING_CMD;

370 Chapter 16 Internetwork Routing

Response Buffer

The response buffer pointer in the READ_OBJECT and SET_OBJECT commands
references an array of one or more objects for which information is returned. In the
SET_OBJECT command, the application need not read the data returned in the
response buffer, but the buffer must be large enough to hold the entire structure. Set
the response buffer pointer to reference the stat_routing_resp structure below.

typedef struct stat_rout_info {

unsigned char router_name_len;

unsigned char router_name[12];

unsigned char subnet_name_len;

unsigned char subnet_name[12];

unsigned char lifetime;

unsigned char afi;

unsigned char subnet_no_len;

unsigned char subnet_no[6];

unsigned char addr_len;

unsigned char addr[12];

unsigned short tx_pkt_size;

} STAT_ROUT_INFO;

typedef struct obj_resp_info {

unsigned short object;

unsigned short modifier;

unsigned char status;

unsigned short resp_len;

STAT_ROUT_INFO resp_info;

} OBJ_RESP_INFO;

typedef struct stat_routing_resp {

unsigned char num_obj;

OBJ_RESP_INFO obj_info[1]; /* set to num_obj */

} STAT_ROUTING_RESP;

Network User's Guide and Reference Chapter 16 371

Field Descriptions for Command and Response Buffers
num_obj

The number of objects being read or set by the command.

obj_info
An array of structures where each structure contains the information pertaining to the
object being read or set.

object
The object ID of the routing table to act upon.

See also: Appendix C for the Static routing table ID numbers

modifier
For the READ_OBJECT command buffer, this is an index number specifying the
table entry to read. The first entry in a table has index number 1. This field is not
used in a READ_OBJECT response buffer or in a SET_OBJECT command.

status
Present only in the response buffer; it contains a status code indicating the result of
the requested NMF operation.

See also: READ_OBJECT command, Chapter 14, for codes

cmd_len
In the command buffer this field must be set to 50 bytes.

cmd_info
In the command buffer of a SET_OBJECT command this is a structure specifying
values to set. The structure is unused in READ_OBJECT command buffers.

resp_len
In the response buffer this value is set to 50 bytes.

resp_info
In the response buffer this is a structure containing returned parameter values for the
table entry.

router_name_len
The actual length in bytes of the router name specified in the router_name field
(not the length of the array containing the name). This field is not use when reading
or setting Local Subnet Table objects.

372 Chapter 16 Internetwork Routing

router_name
An application-specified alias. Router names are ASCII character strings up to 12
characters long, stored as an array of bytes. A SET_OBJECT command buffer for
the Specific Router or Default Router Tables that specifies a router name already in
the table causes the object values for that router name to be overwritten with the
values specified in the remaining fields of the structure. This field is not used when
reading or setting entries in the Local Subnet Table.

subnet_name_len
The actual length in bytes of the subnet name specified in the subnet_name field
(not the length of the array containing the name). For the Local Subnet Table, the
value of this parameter can be changed only by reconfiguring the system, not by
using the SET_OBJECT command.

In SET_OBJECT commands for the other tables, specifying a subnet name length of
0 causes the existing table entry for the specified router name, or subnet number in
the case of the Destination Subnet Table, to be deleted from the table.

subnet_name
The name of the local subnet that is chosen when the system is configured. This field
is not used when setting Destination Subnet Table entries; the association of a subnet
with a router in this table uses the router name and the subnet number.

lifetime
The maximum time a message can remain in the network if it cannot be delivered to
its destination end system. This value is specified in units of 0.5 seconds up to a
maximum of 255 units (127.5 seconds). If the message lifetime expires before
delivery of the message to the destination end system, the message is discarded.
Notification may be sent to the message originator, but message reception is not
guaranteed. This field is not used when reading or setting entries in the Specific
Router table.

afi The authority and format identifier (AFI) portion of the Initial Domain Part (IDP) of
the NSAP address for the subnet. By definition, the AFI for Static routing NSAP
addresses is fixed at 49H. This field is not used when setting entries in the Specific
Router or Default Router tables.

subnet_no_len
The actual length in bytes of the subnet ID specified in the subnet_no field (not the
length of the array containing the number). This field is not used when setting entries
in the Specific Router or Default Router tables.

Network User's Guide and Reference Chapter 16 373

subnet_no
The 2-byte subnet ID. This field is not used when setting entries in the Specific
Router or Default Router tables. For the Destination Subnet Table, this is the ID
number of a subnet that is reachable through the router specified in the
router_name field.

addr_len
The actual length in bytes of the subnet address specified in the addr field (not the
length of the array containing the address). This field is not used when setting entries
in the Local Subnet or Destination Subnet tables, and not used when reading entries
in the Destination Subnet Table.

addr The subnet address. This field is not used when setting entries in the Local Subnet or
Destination Subnet tables and when reading entries in the Destination Subnet table.
When reading or setting entries in the Specific Router and Default Router tables, this
field specifies the subnet address of the router. When reading entries in the Local
Subnet Table, this field contains the local subnet address.

See also: Subnet Address, Chapter 8

tx_pkt_size
The maximum size of a data link transmit packet. This field is only used in the
response buffer for a READ_OBJECT command on the Local Subnet table.

374 Chapter 16 Internetwork Routing

Reading and Setting ES-IS Routing Objects
Part of the ES-IS routing objects are these six routing tables. In addition to these six
routing tables, there are several objects relating to routing operations and the size of
the routing tables.

See also: ES-IS routing objects, Appendix C

The ES-IS tables are:

• Local End System Table

• Intermediate System Hello Table

• Static Intermediate System Table

• Reachable NSAP Address Table

• Subnet Table

• Local NSAP Address Table

Local End System
Table

Contains information about the end systems physically
attached to the same subnet as the system containing the table
(that is, all of the end systems reachable in one hop). This
table is typically present in all end systems and intermediate
systems. This table is the first one searched to map an NSAP
address to a subnet address.

Intermediate System
Hello Table

Contains routing information derived from received
intermediate system Hello PDUs. When an end system
searches the Local End System Table for an NSAP address and
does not find it there and there is no Static Intermediate System
Table present on the system, it chooses a router from this table
and maps the NSAP address to the subnet address of that
router. This table is present only in end systems.

Static Intermediate
System Table

Is primarily an intermediate system table; however, it may also
be present in end systems. This table is not updated
dynamically. Instead, it is built when the system is configured
and can later be modified using iNA 960 NMF commands.
The information in this table identifies the intermediate
systems that are available on local subnets. This table and the
Reachable NSAP Address Table are used by an intermediate
system when it determines that the destination end system is
not available on the local subnet. In this case, the NPDU is
forwarded to an intermediate system chosen from this table.

Network User's Guide and Reference Chapter 16 375

Reachable NSAP
Address Table

Is always present in intermediate systems. Like the Static
Intermediate System Table, it may also be present in end
systems and is also built when the system is configured and can
be modified with NMF commands. Each entry in this table
corresponds to an entry in the Static Intermediate System
Table. Entries in this table contain an NSAP address prefix.
All NSAP addresses beginning with that prefix are considered
to be reachable through the intermediate system identified by
the Static Intermediate System Table entry corresponding to
the entry in this table.

Subnet Table Contains information about each of the local subnets to which
the system is physically connected. This table is present in
both end systems and intermediate systems. For each subnet,
the table identifies:

• The name of the subnet.

• The lifetime value to use when sending a PDU on the
subnet.

• The local SNPA-ID of the subnet.

• A flag indicating whether or not to use the ES-IS routing
protocol over the subnet. This flag is useful when the
subnet described by the table entry is of a type that does
not support multicast addresses (e.g., X.25).

Local NSAP
Address Table

Specifies the NSAP addresses available on the local system. In
the case of intermediate systems, the first entry in this table is
used as the Network Entity Title (NET). The NSAP addresses
in this table do not specify the NSAP selector portion of the
NSAP address; this is specified at initialization time by the
network service user. This table is present in both end systems
and intermediate systems.

376 Chapter 16 Internetwork Routing

Command and Response Buffers for ES-IS Routing
Use these structures for command and response buffers when reading and setting ES-
IS routing objects. Most of the fields in the two structures are the same; the field
descriptions follow the structure definitions. The structures are provided as typedefs
in the include files for routing structures for your use.

See also: Include Files, Chapter 10;
Programming with Structures, Chapter 10

In READ_OBJECT request blocks, both command and response buffers are used.
The command buffer specifies the objects to read; the response buffer is filled with
the values read.

In SET_OBJECT request blocks, the command buffer specifies the objects to set and
the data to write to the objects. The application need not read the data returned in the
response buffer, but the buffer must be large enough to hold the entire structure.

Command Buffer

The command buffer pointer in the READ_OBJECT and SET_OBJECT commands
references an array of one or more objects to read or set. Set the command buffer
pointer to reference the es_is_nmf_cmd_buf structure below. In the
SET_OBJECT command, each object in the command buffer array specifies a
structure of data in the cmd_info field. In READ_OBJECT command buffers, the
cmd_info field need not be present; fill in the es_is_cmd structure and set
cmd_len to 0.

The data in the cmd_info field varies depending on which routing table is being
accessed. The structures for the various tables are described after the response buffer
section.

typedef struct es_is_cmd {

unsigned short object;

unsigned short modifier;

unsigned short cmd_len;

OBJ_CMD_STRUC cmd_info; /* object-specific */

} ES_IS_CMD;

typedef struct es_is_nmf_cmd_buf {

unsigned char num_obj

ES_IS_CMD obj_info[1]; /* set to num_obj */

} ES_IS_NMF_CMD_BUF;

Network User's Guide and Reference Chapter 16 377

Response Buffer

The response buffer pointer in the READ_OBJECT and SET_OBJECT commands
references an array of one or more objects for which information is returned. In the
SET_OBJECT command, the application need not read the data returned in the
response buffer, but the buffer must be large enough to hold the entire structure. Set
the response buffer pointer to reference the es_is_nmf_resp_buf structure below.

The data returned in the resp_info field varies depending on which routing table is
being accessed. The structures for the various tables are described in following
sections.

typedef struct es_is_resp {

unsigned short object;

unsigned short modifier;

unsigned char status;

unsigned short resp_len;

OBJ_RESP_INFO resp_info; /* object-specific */

} ES_IS_RESP;

typedef struct es_is_nmf_resp_buf {

unsigned char num_obj

ES_IS_RESP obj_info[1]; /* set to num_obj */

} ES_IS_NMF_RESP_BUF;

Field Descriptions for Command and Response Buffers
num_obj

The number of objects being read or set by the command.

obj_info
An array of structures where each structure contains the information pertaining to the
object being read or set.

object
The object ID of the routing table to act upon.

See also: ES-IS routing objects, Appendix C, for ID numbers

378 Chapter 16 Internetwork Routing

modifier
For the SET_OBJECT command, this field is not used for most objects. The objects
for which the modifier has meaning are the Local NSAP Address and the Reachable
NSAP Address tables.

For the READ_OBJECT command buffer, this is an index number specifying the
table entry to read. The first entry in a table has index number 1. An index beyond
the end of the table results in an end-of-table status (82H) in the response buffer.
Table entries are not maintained in any particular order; a table must be read
sequentially to find the desired value.

status
Present only in the response buffer; it contains a status code indicating the result of
the requested NMF operation.

See also: READ_OBJECT command, Chapter 14, for codes

cmd_len
The length in bytes of data in the cmd_info field.

cmd_info
In the command buffer of a SET_OBJECT command this is an object-specific
structure containing values to set. The structure is unused in READ_OBJECT
command buffers.

resp_len
The length in bytes of data in the resp_info field.

resp_info
In the response buffer of a READ_OBJECT command this is an object-specific
structure containing the values read from the object.

Data in the cmd_info and resp_info fields may be any of these structures
described in these sections:

• local_es_table_cmd_struc

• ish_table_cmd_struc

• static_is_table_cmd_struc

• nsap_addr_reachable_cmd_buf

• subnet_table_cmd_struc

• local_nsap_table_cmd_struc

Network User's Guide and Reference Chapter 16 379

The Local End System Table Structure

typedef struct local_es_table_cmd_struc {

unsigned char nsap_addr_len;

unsigned char nsap_addr[20];

unsigned char subnet_addr_len;

unsigned char subnet_addr[12];

unsigned char subnet_name_len;

unsigned char subnet_name[12];

unsigned short holding_time;

} LOCAL_ES_TABLE_CMD_STRUC;

nsap_addr_len
The actual length of the NSAP address being read or entered into the table (not the
length of the 20-byte array that contains the address). The NSAP address may be
fewer than twenty bytes long, but a full 20-byte array must be used to hold the
address.

nsap_addr
The NSAP address being read or entered, including an NSAP selector (encoded as an
array of bytes with the selector as the last byte). The address can be at most twenty
bytes long. This NSAP address is entered into the table and mapped to the subnet
address specified in this field. If this NSAP address is already present in the routing
table, the parameter values for it are replaced by the values specified in this
command.

subnet_addr_len
The actual length of the subnet address (not the length of the array).

subnet_addr
The subnet address to which the preceding NSAP address maps.

subnet_name_len
The actual length of the subnet name (not the length of the array).

subnet_name
An ASCII string, encoded as an array of bytes, identifying the subnet where the
subnet address is located. The subnet names are defined by the system builder when
the system is configured. A null subnet name (a length of 0) indicates that the
preceding NSAP address and its associated subnet address are to be deleted from the
table.

holding_time
The number of seconds this information is valid. The value 0FFFFH indicates
infinite time. After the specified time expires, if the information specified in this
command has not been somehow refreshed, it is removed from the table.

380 Chapter 16 Internetwork Routing

The Intermediate System Table Structure

typedef struct ish_table_cmd_struc {

unsigned char net_entity_title_len;

unsigned char net_entity_title[20];

unsigned char subnet_address_len;

unsigned char subnet_address[12];

unsigned char subnet_name_len;

unsigned char subnet_name[12];

unsigned short holding_time;

} ISH_TABLE_CMD_STRUC;

net_entity_title_len
The actual length in bytes of the Network Entity Title (not the length of the array that
contains the NET).

net_entity_title
The Network Entity Title (NET) of the intermediate system (IS) that is reached by
the subnet address. A NET has the same syntax as an NSAP address, but is distinct
from any NSAP address. NETs should have an NSAP selector (the last byte) of 0.

subnet_address_len
The actual length in bytes of the subnet address (not the length of the array).

subnet_address
The subnet address where the intermediate system identified by the preceding NET
can be reached.

subnet_name_len
The actual length of the subnet name (not the length of the array).

subnet_name
An ASCII string, encoded as an array of bytes, identifying the subnet where the
subnet address is located. The subnet names are defined by the system builder when
the system is configured. A null subnet name (a length of 0) indicates that the
preceding NET and its associated subnet address are to be deleted from the table.

holding_time
The number of seconds this information is valid. The value 0FFFFH indicates
infinite time. After the specified time expires, if the information specified in this
command has not been refreshed by receipt of an Intermediate System Hello, the
information is removed from the table.

Network User's Guide and Reference Chapter 16 381

The Static Intermediate System Table Structure

typedef struct static_is_table_cmd_struc {

unsigned char net_entity_title_len;

unsigned char net_entity_title[20];

unsigned char subnet_address_len;

unsigned char subnet_address[12];

unsigned char subnet_name_len;

unsigned char subnet_name[12];

unsigned char router_name_len;

unsigned char router_name[12];

unsigned short num_prefixes;

} STATIC_IS_TABLE_CMD_STRUC;

net_entity_title_len
The actual length in bytes of the Network Entity Title (NET). This is not the length
of the array that contains the NET.

net_entity_title
The Network Entity Title (NET) of the intermediate system (IS) that is reached by
the subnet address. A NET has the same syntax as an NSAP address, but is distinct
from any NSAP address. NETs should have an NSAP selector (the last byte) of 0.

subnet_address_len
The actual length in bytes of the subnet address (not the length of the array).

subnet_address
The subnet address where the intermediate system identified by the preceding NET
can be reached.

subnet_name_len
The actual length of the subnet name (not the length of the array).

subnet_name
An ASCII string, encoded as an array of bytes, identifying the subnet where the
subnet address is located. The subnet names are defined by the system builder when
the system is configured. A null subnet name (a length of 0) indicates that the
preceding NET and its associated subnet address are to be deleted from the table.

router_name_len
The actual length in bytes of the router name (not the length of the array).

router_name
An application-defined name for the router; any string of up to 12 characters. A
SET_OBJECT command specifying a router name for which an entry already exists
in the table causes the parameter values for that router to be overwritten with the new
values specified in the command. Specifying a router name that does not exist in the
table creates a new entry in the table.

382 Chapter 16 Internetwork Routing

num_prefixes
A read-only parameter (it cannot be set) whose value is the number of NSAP prefixes
registered in the Reachable NSAP Address Table that corresponds to this Static
Intermediate System Table entry.

The Reachable NSAP Address Table Structure

A SET_OBJECT command on the Reachable NSAP Address table uses the
modifier field of the command buffer. If the modifier field is set to 0, a table
entry for the specified router is created. If the modifier field is set to a not 0 value,
the table entry for the specified router is deleted.

typedef struct nsap_addr_reachable_cmd_buf {

unsigned char router_name_len;

unsigned char router_name[12];

unsigned char nsap_prefix_len;

unsigned char nsap_prefix[20];

} NSAP_ADDR_REACHABLE_CMD_BUF;

router_name_len
The actual length in bytes of the router name (not the length of the array).

router_name
An application-defined name for the router; any string of up to twelve characters. All
NSAP addresses starting with the prefix specified in the fields are considered
reachable through the router specified by this name. The router name must be
specified in the Static Intermediate System Table before this command can be used.

nsap_prefix_len
The actual length in bytes of the NSAP prefix (not the length of the array).

nsap_prefix
Specifies which NSAP addresses may be reachable through the router specified in the
preceding Router Name field. All NSAP addresses beginning with the prefix are
reachable through the specified router. For example, suppose all of the NSAP
addresses reachable by a router named HF1 began with 49 0001. The prefix
490001H would be registered in this table with the router name HF1. If all the NSAP
addresses reachable by a router named HF2 began with 49 0002, the prefix 490002H
would be registered in this table with the router name HF2. The length of the NSAP
prefix array is twenty bytes so that full NSAP addresses can be mapped.

Network User's Guide and Reference Chapter 16 383

The Subnet Table Structure

typedef struct subnet_table_cmd_struc {

unsigned char subnet_name_len;

unsigned char subnet_name[12];

unsigned char lifetime;

unsigned char use_protocol;

unsigned char nsap_prefix_len;

unsigned char nsap_prefix[10];

unsigned long snpa_id;

} SUBNET_TABLE_CMD_STRUC;

subnet_name_len
The actual length of the subnet name (not the length of the array).

subnet_name
An ASCII string identifying the subnet to which the rest of the information in the
structure pertains. The subnet names are defined when the system is configured.
Subnet names cannot be deleted from the table; only the values for the parameters
can be changed.

lifetime
The maximum time a message originating on this subnet can remain in the network if
it cannot be delivered to its destination end system. This value is specified in units of
0.5 seconds up to a maximum of 255 units (127.5 seconds). If the message lifetime
expires before delivery of the message to the destination end system, the message is
discarded. Notification may be sent to the message originator, but reception is not
guaranteed.

use_protocol
A flag indicating whether to send and receive ES-IS Hello and Redirect function
PDUs over the subnet defined by this structure. This flag is false (Hello and Redirect
PDUs will not be sent or received) when its value is 0 and true (Hello and Redirect
PDUs will be sent and received) when its value is not 0.

This flag serves as a mask for the send and receive hello flags. If the send hello flag
is true and this flag is false, End System Hellos will not be sent. If the send hello flag
is false and this flag is true, End System Hellos will still not be sent.

This flag is useful to intermediate systems that are attached to multiple subnets, that
use the ES-IS routing protocol, and where one of the attached subnets does not
support multicast addressing. For example, if one of the attached subnets is an X.25
subnet and the others are all 802.3 subnets, the flag can be set false for the X.25
subnet, and true for all of the others.

nsap_prefix_len
The actual length in bytes of the NSAP prefix (not the length of the array).

384 Chapter 16 Internetwork Routing

nsap_prefix
Used for compatibility with the Null2 (inactive subset) and Static ES-IS Network
Layer configurations. The prefix is added to the source subnet address of a received
Null2 network PDU (NPDU) in order to form the source NSAP address. This is
necessary because the Null2 subnet address does not contain the source NSAP
address.

This field also indicates which NSAP addresses exist on the local subnet. If the local
addressing flag is true, all destination NSAP addresses are matched against the NSAP
prefixes in the Local Subnet Table entries. If a match is found, the destination is
directly reachable on the local subnet and the portion of the NSAP address
immediately following the matching prefix is used as the subnet address of the
destination.

This parameter is known as the AFI and subnet number combination in Null2
addressing. For example, a value for this parameter for use with Null2 addressing is
490003H.

snpa_id
A read-only parameter whose value is the source LSAP selector for outgoing subnet
PDUs (SNPDUs). The value of this parameter is defined when the system is
configured.

The Local NSAP Address Table Structure

A SET_OBJECT command on the Local NSAP Address table uses the modifier
field of the command buffer. If the modifier field is set to 0, a table entry for the
specified NSAP address is created. If the modifier field is set to a not 0 value, the
table entry for the specified NSAP address is deleted.

typedef struct local_nsap_table_cmd_struc {

unsigned char nsap_address[1];

} LOCAL_NSAP_TABLE_CMD_STRUC;

nsap_address
The NSAP address to enter, delete, or read from the table. This NSAP address is a
string of bytes; the length of which is specified by the cmd_len field in the
SET_OBJECT or READ_OBJECT command buffer structure. The NSAP address
must not include the NSAP selector; the selector is dynamically determined by the
Network Layer at run time.

■■ ■■ ■■

Network User's Guide and Reference Appendix A 385

iRMX-NET and iNA 960
Transport Configuration Values

This appendix describes the values preconfigured into these network files:

iNA 960
download files

These are files loaded onto the NIC by MIP jobs. The MIP
jobs are ipcl2.job for a PC, i552a.job in a Multibus I system,
or icemb2.job in a Multibus II system. Table A-1 lists the
download files.

MIP jobs Jobs that interface to iNA 960 download files or to iNA 960
COMMputer jobs running on another board

iRMX-NET jobs The file server rnetserv.job and client, remotefd.job

See also: Network Software Implementation, Chapter 7;
i*.job, System Configuration and Administration

Files Containing iNA 960 Transport Software
The iNA 960 transport software exists in one of two places. It is either an iNA 960
file downloaded to a NIC, or an iNA 960 COMMputer job running on the same board
as the OS. This section describes the files and their preconfigured values.

iNA 960 Download Files
MIP jobs in a COMMengine environment load iNA transport software from disk to
the NIC. The iNA 960 download filenames have the form:

INA<board><a>.32<l>

Where:

<board> An encoded board name.

<a> An N or E specifying the type of transport address: N stands for Null2
and E stands for ES-IS format. If your application programs the
network addresses or uses a network with multiple subnets, you could
use an ES-IS network, which is routable.

<l> An L specifying a local load file or an R specifying remote load.

To find the iNA release version to which the file applies, use the version command.

Table A-1 lists the iNA 960 files available for downloading, depending on your
system type and NIC. As shown in the table, most files are specific to certain
versions of the OS.

A

386 Appendix A iRMX-NET and iNA 960 Transport Configuration Values

Table A-1. iNA 960 Download Files

Filename Board Configuration System* OS**

inapcl2n.32l PCL2 Null2 local load PC RPC, RFW

inapl2an.32l PCL2A Null2 local load PC RPC, RFW

ina552an.32l SBC 552A Null2 local load MB1 III

ina552an.32r SBC 552A Null2 remote load MB1 III

ina552ae.32l SBC 552A ES-IS local load MB1 III

ina552ae.32r SBC 552A ES-IS remote load MB1 III

ina530n.32l SBC 186/530 Null2 local load MB2 all

ina530e.32l SBC 186/530 ES-IS local load MB2 III

ina560n.32l MIX 386/560 Null2 local load MB2 all

ina560e.32l MIX 386/560 ES-IS local load MB2 III

* MB1 indicates Multibus I, MB2 indicates Multibus II
** III indicates the iRMX III OS, RPC indicates iRMX for PCs, RFW indicates DOSRMX

For ICU-configurable systems, you can specify the download file in the appropriate
MIP job screen: MIP1 for Multibus I, CEBI for Multibus II, or MIPAT for PCs. On
a Multibus II system you can override the configuration in the rq_mip_xx parameter
of the BPS file. In the DOSRMX or iRMX for PCs OS, you can specify the
download file in the rmx.ini file.

See also: rq_mip_xx , MSA for the iRMX Operating System;
rmx.ini file, System Configuration and Administration

Network User's Guide and Reference Appendix A 387

Table A-2 lists values configured into the iNA 960 download files, according to the
NIC. For values configured into iNA 960 COMMputer jobs, see the default values
on screens in the ICU. ICU.

Table A-2. iNA 960 Download File Configuration

Parameter PCL2 PCL2A 552A 186/530 386/560

Name Server
Maximum number of objects Null2 25 80 40 50 80

ES-IS 20 25 25 80 80
Maximum length of value (Null2/ES-IS) 90 90/32 90 40/90 90
TSAP ID - initiator 4200 4200 4200 4200 4200
TSAP ID - responder 4300 4300 4300 4300 4300
Retry timeout (msec.) 614 614 614 820 820
TSAP ID - file server 1000 1000 1000 1000 1000
TSAP ID - file consumer 1100 1100 1100 1100 1100

Transport Layer
Maximum TSAP length (bytes) 32 32 32 32 32
Maximum network address length (bytes) 20 20 20 20 20
Number of virtual circuits Null2 101 160 92 201 201

ES-IS 25 101 87 201 201
Number of datagram TSAPs Null2 30 30 30 30 30

ES-IS 19 30 30 30 30
Retransmission timeout - dynamic Null2

(sec.) ES-IS
0.1 - 1.0
0.2 - 1.0

0.1 - 1.0
0.2 - 1.0

0.1 - 1.0
0.1 - 1.0

0.1 - 1.0
0.2 - 1.0

0.1 - 1.0
0.2 - 1.0

Inactivity timeout (sec.) 30 30 30 30 30
Closing abort timeout (sec.) 6 6 6 6 6
Open window timeout (sec.) 1 1 1 1 1
Maximum window size 15 15 15 15 15

Data Link Layer
Number of Rx buffers (*bytes) Null2 17*1510 40*1510 230*256 40*1600 20*1510

ES-IS 14*1510 32*1510 200*256 40*1600 20*1510
Number of Tx buffers (*bytes) Null2 5*1500 20*1500 4*1500 20*1500 4*1500

ES-IS 2*1500 5*1500 4*1500 4*1500 4*1500
Number of EDL LSAPs 16 16 16 16 16

388 Appendix A iRMX-NET and iNA 960 Transport Configuration Values

iNA 960 COMMputer Jobs
The iNA 960 COMMputer jobs are available either as first-level jobs that you include
with the ICU or as loadable jobs that you install with the sysload command. For
values configured into iNA 960 COMMputer jobs, see the default values on screens
in the ICU.

See also: i*.job, System Configuration and Administration

Configuration of iNA 960 MIP Jobs
Table A-3 lists values configured into the MIP jobs.

Table A-3. MIP Job Configuration

Parameter ipcl2.job i552a.job icemb2.job
NIC (see Note 1) not applicable SBC 552A 186/530
Multibus II port ID not applicable not applicable 505H
Number of external mailboxes 10 10 10
Number of internal ports 10 10 10
Default wakeup port (see Note 2) 360H 8B4H not applicable
Default interrupt level (see Note 2) 21H 48H not applicable
Default download file (see Note 1) /net/inapcl2n.32l /net/ina552an.36l /net/ina530n.32

l
Boot address 0CC000H 1040H not applicable
Off-board layers (on the NIC) Name Server

External Data Link
Transport Virtual Circuit
Transport Datagram
Network Management Facility

Note 1: Change these values in the rmx.ini file or the ICU, or with a BPS parameter for the iRMX III OS.
Note 2: This is specified in the sysload invocation for DOSRMX.

See also: MIP configuration values on the IMIPJ, MIP1, MIP2, and MIPAT
screens of the ICU

Configuration of iRMX-NET Jobs
Table A-4 lists values configured into the iRMX-NET jobs. You can change some of
these values in the rmx.ini file or in the ICU.

Network User's Guide and Reference Appendix A 389

Table A-4. iRMX-NET Configuration

Parameter Value
User Administration
User Definition File :sd:rmx386/config/udf
Client Definition File :sd:rmx386/config/cdf
Loadname File /net/data
Default client node name rmx
Default client password 1234567
File Server
Max virtual circuits (VCs, 1 per client) 20
Max users per client VC 5
Max client jobs per VC 30
Max file attachments per VC 100
Max open files per VC 40
Max open files per client job 30
Max outstanding client requests 35
Number of small read/write buffers (* size in bytes) 37*1488
Number of large read/write buffers (* size in bytes) 3*10240
File Consumer
Max remote file driver requests 21
Max server connections 20
Data Link packet size (bytes, + 12 for header) 1488
Wait for server connection (sec.) 45
Wait for server response to request (sec.) 60
Apex File Access (AFA)
Max public devices 5
Max public directories 30
Max concurrent I/O requests (AFA tasks) 15
Support DOS and UNIX file attributes yes
Support DOS wildcard file delete yes
Max concurrent file searches (wildcard) 32
Hold file connection after wildcard search (sec.) 3
Remote boot server yes
Public devices sd: and :bb:
Public directories (display with the publicdir command)

■■ ■■ ■■

390 Appendix A iRMX-NET and iNA 960 Transport Configuration Values

Network User's Guide and Reference Appendix B 391

Data Flow in MIP and
COMMputer Jobs

Your application requests iNA 960 network services through special data structures
called request blocks. As far as the application is concerned, the interchange of
request blocks is the same whether you use a COMMputer job or a MIP job. This
appendix describes how the interchange actually occurs for the different kinds of job.

Data Interchange with the MIP
A MIP job provides a way to exchange request blocks between the application,
which runs with the OS, and iNA 960 software that runs on a separate NIC. What we
call a MIP job runs on the board with the OS. However, the MIP actually includes
not only the MIP job, but also a MIP interface to iNA 960 on the NIC itself. As
shown in the diagram below, the MIP interface on the NIC is called an iNA 960
environment interface.

Figure B-1. MIP Protocol Model

The particular system environment determines how the MIP actually exchanges the
iNA 960 request blocks. The exchange may occur over a system bus, or a host board

B

Appendix B Data Flow in MIP and COMMputer Jobs392

and NIC may share memory. This is why each MIP job and iNA 960 download file
are configured for a specific system environment.

To the application job, the MIP is completely transparent because a single high-level
call, cq_comm_rb, exchanges request blocks. The MIP handles the lower-level
primitive functions that perform the exchange for a specific physical environment.

To the iNA 960 transport service, the MIP is completely transparent, because access
to it and other environmental resources occur through an environment interface. The
iNA 960 transport service requests logical functions, which the environment interface
converts to physical resource functions.

The iNA 960 software includes three MIP jobs for specific bus types:

• i552a.job for Multibus I

• ipcl2.job for PCs

• icemb2.job for the Multibus II MIP, also called the LAN Controller Interface
(LCI)

The following sections describe these MIPs in more detail.

See also: Network Software Implementation, Chapter 7, for COMMengine and
COMMputer environments

Network User's Guide and Reference Appendix B 393

Multibus I and PC Bus MIP
In the Multibus I and PC Bus system architectures, the application runs on an iRMX
host single-board computer and the iNA 960 software runs on a separate NIC. The
iNA 960 request blocks, transport address buffers, and user data are not physically
exchanged over the bus. Because host memory is dual ported, only the buffer
addresses in host memory are exchanged over the bus.

Access to the shared host memory (using the system bus) by the iNA 960 transport
service occurs through a logical window. This logical window is managed by the
iNA 960 environment interface on the NIC and maps a portion of the NIC's local
address space to the part of the host memory address space that contains the buffers
pertaining to the user's iNA 960 service requests. To the iNA 960 transport service,
the shared memory is part of its local address space.

The MIP model for the Multibus I and PC Bus system architecture is shown in Figure
B-2. The MIP consists basically of two drivers, one for the iRMX host and one for
the NIC.

Environment interface

MIP

iRMX host SBC

MIP call
interface

W2049

iNA 960
transport
service

MIP driver MIP driver

NIC

Multibus I or PC system bus

RB, TA, &
data buffers

User
application

job

Figure B-2. Multibus I and PC Bus MIP Model

Appendix B Data Flow in MIP and COMMputer Jobs394

Multibus II MIP
The MIP for the Multibus II system architecture is also known as the LAN Controller
Interface (LCI). In the Multibus II system architecture, there may be multiple user
applications running on multiple iRMX host single-board computers and a single
instance of the iNA 960 software running on a single NIC. The iNA 960 request
blocks, transport address buffers, and user data are physically exchanged over the bus
using the Multibus II message passing service. The MIP puts all three data structures
into a message, transmits the message over the bus, and on the other end parses the
message into the three data structures. The request block goes on to its destination,
and the transport address and user data buffers are copied to local memory.

In addition to the Multibus II transport service, the MIP for this environment provides
server functions for the iNA 960 environment interface. The Multibus II MIP shown
in Figure B-3 consists of MIP jobs for each iRMX host and a MIP server for the NIC,
which is part of the iNA 960 download file.

Environment interface

MIP

iNA 960
transport
service

W2052

MIP driverMIP driver MIP server

RB,TA, &
Data Buffers

MIP call
interface

NICiRMX host SBC iRMX host SBC

RB,TA, &
Data Buffers

MIP call
interface

User
application

job

User
application

job

Multibus II system bus

Figure B-3. Multibus II MIP Model

Network User's Guide and Reference Appendix B 395

Data Interchange in a COMMputer Job
In the COMMputer architecture shown in Figure B-4, the application and the
iNA 960 software are jobs running under the iRMX OS. In this environment,
iNA 960 request blocks and referenced user data are stored in local memory and
there is no MIP.

Figure B-4. COMMputer MIP Model

■■ ■■ ■■

Appendix B Data Flow in MIP and COMMputer Jobs396

Network User's Guide and Reference Appendix C 397

iNA 960 Network Objects C
This appendix lists and describes the iNA 960 network objects and events that can be
accessed through the Network Management Facility. The list includes the object ID
number, object type, access permissions, the size of the object, and a brief
description. The objects are listed according to which iNA subsystem they belong to.

The object types are:

Counter A 16- or 32-bit counter that records the number of times a particular
action occurs. It is an unsigned integer and may be either of two types:

Wrap-around, which resets to 0 on overflow. This type is indicated by
WCounter in the table.

Sticky, which sticks at its highest value on overflow. This type is
indicated by SCounter in the table.

Threshold A 16-bit threshold value for the number of events that may occur before
the net agent notifies the net manager. Threshold objects are used in
event notification.

Timerval A 32-bit timer value specified in milliseconds.

Time An ASCII string which shows the time in a year, month, day, hour,
minutes, and seconds format.

Parameter Adjusts the actual operation of a layer (Intel private objects only).

Value Anything that is not one of the types listed above.

Each object is assigned access permissions that are enforced by the NMF functions.
The access permissions are:

R READ_OBJECT is allowed
S SET_OBJECT is allowed
C READ_AND_CLEAR_OBJECT is allowed

Appendix C iNA 960 Network Objects398

In Table C-1, the first two characters of the object ID represent the Data Link
subsystem. Substitute the characters 2x in the ID column with:

Value Subsystem
20H Data Link for boards with the 82586 component, including the first

MIX560 board in the system
21H Data Link for SBX 586 board
22H Data Link for the second MIX560 board in the system
23H Data Link for the third MIX560 board in the system
24H Data Link for boards with the 825595TX component, including the

EtherExpress PRO/10 and SBC P5090 (See also Table C-2)
25H DEC 21143 component, SBC P5200 PC-compatible boards, all versions

Table C-1. 802.3 Data Link Objects

ID Type Access Size Description

2x00H Value R BYTE Data Link type: returned value is 2xH

2x01H Value R WORD_32 Line speed: physical transmission rate in
bits/second

2x02H Value R 6 BYTES Host ID: hardware MAC (Ethernet) address

2x03H WCounter RC WORD_32 Total number of packets sent

2x04H SCounter RC WORD_16 Primary collisions: number of packets
transmitted that had at least 1 collision

2x05H SCounter RC WORD_16 Secondary collisions: total of collisions
encountered after a primary collision

2x06H SCounter RC WORD_16 Number of packets discarded because the
maximum number of collisions was exceeded

2x07H WCounter RC WORD_32 Total of packets received from the network

2x08H WCounter RC WORD_16 Total of packets dropped due to CRC errors

2x09H WCounter RC WORD_16 Packets dropped due to alignment errors

2x0AH WCounter RC WORD_16 Resource errors: number of times the Data
Link service ran out of resources

2x0BH WCounter RC WORD_16 DMA overruns: number of times a received
packet was dropped because of an 82586
DMA overrun error (the 82586 does not
provide statistics on transmit DMA
underruns)

2x0CH WCounter RC WORD_16 Number of restarts: total of times software
has reset the 82586 due to a lockup failure

continued

Network User's Guide and Reference Appendix C399

Table C-1. 802.3 Data Link Objects (continued)

2x0DH Value R Variable Multicast address list: List of 48-bit multicast
addresses for which the subnet is listening

2x0EH WCounter RC WORD_32 RawEDL: number of frames lost due to lack
of posted EDL buffers

ID Type Access Size Description

2x0FH WCounter RC WORD_32 RawEDL: total frames delivered to EDL user

2x10H WCounter RC WORD_32 Bytes received by Data Link for RawEDL

Table C-2 lists objects that are specific to the Data Link subsystem for iNA 960
software on boards that use the 825595TX component, including the EtherExpress
PRO/10 and SBC P5090.

Table C-2. 802.3 Data Link Objects With the 825595TX Component

ID Type Access Size Description

2411H Value RC WORD_32 Total transmission errors

2412H Value RC WORD_32 Number of late collision errors

2413H Value RC WORD_32 Number of lost carrier errors

2414H Value RC WORD_32 Number of underrun errors

2415H Value RC WORD_16 Number of short frames received

2416H Value RC WORD_16 Number of received packets with collisions

2417H Value R WORD_16 Number of packets to be transmitted onchip

2418H Value R BYTE Flag indicates if EarlyTx is on

2419H Value R BYTE Flag indicates if EarlyRx is on

241AH Value R BYTE I/O speed

Appendix C iNA 960 Network Objects400

Table C-3 lists objects that are specific to the Data Link subsystem for iNA 960
software on boards that use the DEC21143 component, including various PCI-based
NICs and SBC P5200.

Table C-3. 802.3 Data Link Objects With the DEC21143 Component

ID Type Access Size Description

2511H Value RC WORD_32 Total transmission errors

2512H Value RC WORD_32 Number of late collision errors

2513H Value RC WORD_32 Number of lost carrier errors

2514H Value RC WORD_32 Number of underrun errors

2515H Value RC WORD_16 Number of short frames received

2516H Value RC WORD_16 Number of received packets with collisions

2517H Value R WORD_16 Number of packets to be transmitted onchip

2518H Value R BYTE Flag indicates if EarlyTx is on

2519H Value R BYTE Flag indicates if EarlyRx is on

251AH Value R BYTE I/O speed

Network User's Guide and Reference Appendix C401

Table C-4 lists objects that are specific to the Data Link subsystem for iNA 960
software that uses the Multibus II subnet.

Table C-4. 802.3 Data Link Objects for the Multibus II Subnet

ID Type Access Size Description

2F00H Value R BYTE Data Link type: returned value is 2FH

2F01H Value R WORD_32 Line speed: physical transmission rate in
bits/second

2F02H Value R 6 BYTES Host ID: the MAC (Ethernet) address

2F03H WCounter RC WORD_32 Total number of packets sent

2F04H WCounter RC WORD_32 Total number of packets received

2F05H WCounter RC WORD_16 Resource errors: number of times the Data
Link service ran out of resources

2F06H Value R Variable Multicast address list: List of 48-bit multicast
addresses for which the subnet is listening

2F07H WCounter RC WORD_32 RawEDL: number of frames lost due to lack
of posted EDL buffers

2F08H WCounter RC WORD_32 RawEDL: total frames delivered to EDL user

2F09H WCounter RC WORD_32 Bytes received by Data Link for RawEDL

2F0AH Value RC WORD_32 Number of rq_send errors

2F0BH Value R Variable Indicates which slots are using the Multibus II
subnet. If you access this value
programmatically, it is an array of 20 7-byte
fields. The first 7-byte field applies to slot 0,
on up to slot 19. The first 6 bytes of each
field contain the Ethernet address for that
slot. The last byte is either 0 (does not use
Multibus II subnet) or 0FFH (uses Multibus II
subnet).

If you access this value with inamon, the
slots that use the Multibus II subnet are
indicated with an asterisk; Ethernet
addresses are not displayed.

Appendix C iNA 960 Network Objects402

Table C-5. IP Network Layer Objects

ID Type Access Size Description

3140H WCounter RC WORD_32 Number of null header packets sent

3141H WCounter RC WORD_32 Number of null header packets received

3142H WCounter RC WORD_32 Number of non-null header packets sent

3143H WCounter RC WORD_32 Number of non-null header packets received

3144H WCounter RC WORD_32 Number of packets discarded due to lack of
Network Layer resources

3145H WCounter RC WORD_32 Number of error PDUs received

3147H WCounter RC WORD_16 Number of packets discarded due to
checksum failure

3148H WCounter RC WORD_16 Number of packets discarded due to lifetime
exceeded in transit

3149H WCounter RC WORD_16 Number of packets discarded due to ISO
protocol or procedure violations

314AH WCounter RC WORD_16 Number of packets with unrecognized
destination NSAP selector

314BH Threshold RSC WORD_16 Threshold for number of packets with lifetime
exceeded: an event is generated if this
threshold is exceeded

Table C-6. Router Objects - Static

ID Type Access Size Description

3801H Table RS struct* Local Subnet Table

3802H Table RS struct* Specific Router Table

3803H Table RS struct* Default Router Table

3804H Table RS struct* Destination Subnet Table

* See Chapter 16 for structure definitions

Network User's Guide and Reference Appendix C403

Table C-7. Router Objects - ES-IS

ID Type Access Size Description

3900H Value R WORD_16 Maximum number of entries allowed in the
Local End System Table

3901H WCounter R WORD_16 Number of Local End System Table entries
currently used

3902H Value R WORD_16 Maximum number of entries allowed in the
Intermediate System Hello Table

3903H WCounter R WORD_16 Number of Intermediate System Table
entries currently used

3904H Value R WORD_16 Maximum number of entries allowed in the
Static Intermediate System Table

3905H WCounter R WORD_16 Number of Static Intermediate System Table
entries currently used

3906H Value R WORD_16 Maximum number of entries allowed in the
Reachable NSAP Address Table

3907H WCounter R WORD_16 Number of Reachable NSAP Address Table
entries currently used

3908H Value R WORD_16 Maximum number of entries allowed in the
Local NSAP Address Table

3909H WCounter R WORD_16 Number of Local NSAP Address Table
entries currently used

390AH Value R WORD_16 Maximum number of entries allowed in the
Subnet Table

390BH WCounter R WORD_16 Number of Subnet Table entries currently
used

390CH Flag RS BYTE Indicates whether to use Refresh Redirect
function; true if not 0

390DH Flag RS BYTE Indicates whether to use Configuration
Notification function; true if not 0

390EH Value RS WORD_16 Specifies how frequently to send End System
Hellos, in 500 ms. units

390FH Value RS WORD_16 Specifies how frequently to send
Intermediate System Hellos, in 500 ms. units

3910H Value RS WORD_16 Specifies a holding time to send with End
System Hellos, in 500 ms. units

continued

Appendix C iNA 960 Network Objects404

Table C-7. Router Objects - ES-IS (continued)

ID Type Access Size Description

3911H Value RS WORD_16 Specifies a holding time to send with
Intermediate System Hellos, in 500 ms. units

3912H Flag RS BYTE Indicates whether to send End System
Hellos; true if not 0

3913H Flag RS BYTE Indicates whether to send Intermediate
System Hellos; true if not 0

3914H Flag RS BYTE Indicates if Redirect PDUs should be
transmitted when necessary; true if not 0

3915H Flag RS BYTE Indicates if End System Hellos should be
received and processed; true if not 0

3916H Flag RS BYTE Indicates if Intermediate System Hellos
should be received and processed; true if not
0

3917H Flag RS BYTE Indicates if Redirect PDUs should be
received and processed; true if not 0

3918H Flag RS BYTE Indicates if checksums should be sent with
ES-IS PDUs; true if not 0

3919H Table RS struct * Local NSAP Address Table

391AH Table RS struct * Local End System Table

391BH Table RS struct * Intermediate System Hello Table

391CH Table RS struct * Static Intermediate System Table

391DH Table RS struct * Reachable NSAP Address Table

391EH Table RS struct * Subnet Table

391FH Value RS BYTE Array containing the subnet address for
multicast messages to all End Systems;
address length is the first byte of the array.

3920H Value RS BYTE Array containing the subnet address for
multicast messages to all Intermediate
Systems; address length is first byte of array.

continued

* See Chapter 16 for structure definitions

Network User's Guide and Reference Appendix C405

Table C-7. Router Objects - ES-IS (continued)

ID Type Access Size Description

3921H Flag RS BYTE MAP 2.1 compatibility; true if not 0. This
enables sending null header PDUs if there is
an entry for the destination NSAP address in
the Local End System Table or if the address
is recognized through local addressing (local
addressing flag is true and the NSAP
address matches a NSAP prefix in the
Subnet Table).

3922H Flag RS BYTE Local addressing; true if not 0. This enables
decomposition of the destination NSAP
address to attempt to match it to an NSAP
prefix in the Subnet Table.

3923H Flag RS BYTE iNA 960 Release 1 addressing; true if not 0.
This enables recognition of iNA 960 R1
format network addresses: R1 addresses
always contain the destination subnet
address.

3924H Flag R BYTE Automatically configure local NSAP address;
true if not 0. This causes iNA 960 to
determine its own NSAP address when it
initializes; this flag can only be set in the iNA
960 configuration file, not with the NMF
SET_OBJECT command.

3937H Value R WORD_16 Maximum number of entries allowed in the
Multicast NSAP Address Table.

3938H WCounter R WORD_16 Number of Multicast NSAP Address Table
entries currently used.

3939H Value R WORD_16 The unique multicast address used by the
Name Server.

Appendix C iNA 960 Network Objects406

Table C-8. Transport Layer Objects - Virtual Circuit Connection Independent

ID Type Access Size Description

4000H Value R BYTE Virtual circuit type: returned value is 0.

4001H Value R Connection ID vector: WORD_16 array
where each not 0 element is an allocated
connection ID. Size of this object is twice as
many bytes as the maximum number of
connections.

4002H Value R BYTE ISO transport number: version number of the
ISO VC subsystem.

4003H Value R WORD_16 Max VCs: maximum number of connections
supported by the VC subsystem.

4004H Value R WORD_16 Same as 4003H.

4005H Value R WORD_16 Same as 4003H.

4006H Value R WORD_16 Active CDB's: number of connection
databases currently open but not necessarily
established.

4007H Value R WORD_16 CDB size: size in bytes of a connection
database.

4008H Parameter RS WORD_16 Default persistence count: number of times
the local transport entity attempts to establish
a connection when the remote transport
entity explicitly rejects the connection
attempt. The default count is assigned to
new connections that request it.

4009H Parameter RS WORD_16 Default abort timeout: amount of time (in
units of 51 ms.) an unacknowledged segment
is transmitted before automatically aborting
the connection. The default timeout is
assigned to new connections that request it.
Value OFFFFH indicates that an automatic
abort is never to occur (this does not apply to
sending a disconnect request without a
response).

continued

Network User's Guide and Reference Appendix C407

Table C-8. Transport Layer Objects - VC Connection Independent (continued)

ID Type Access Size Description

400AH Parameter RS WORD_32 Default retransmit timeout: initial amount of
time (in 100 microsecond units) the Transport
Layer waits before retransmitting an
unacknowledged TPDU. This value is used
on all new connections. The retransmit
timeout may be subsequently altered by a
dynamic algorithm.

400BH Parameter RS WORD_32 Minimum retransmit timeout: minimum time
(in 100 microsecond units) the Transport
Layer will ever wait before transmitting an
unacknowledged TPDU. The initial value is
configurable.

400CH Parameter RS WORD_16 Closing abort timeout: amount of time (in 51
ms. units) for which the Transport Layer will
attempt to send a connection close request
without receiving a response before aborting
the connection.

400DH Parameter RS WORD_32 Flow control window timeout. Once a
connection is established, the local transport
entity sends flow control window
acknowledgement packets (AK TPDUs) to
the remote entity at regular intervals, to
signal to the remote entity that it is still
functioning when there is no other activity on
the connection. These packets also inform
the remote transport of the most current local
flow control window status. This object
specifies the time interval (in 100
microsecond units) between these packets.

400EH Parameter RS WORD_16 Inactivity maximum count: number of times
local transport transmits an unacknowledged
flow control window acknowledgement
packet (AK TPDU) before aborting the
connection.

400FH SCounter RC WORD_16 Total duplicate TPDUs rejected: total
number (over all connections) of received
TPDUs rejected due to duplicate sequence
numbers.

continued

Appendix C iNA 960 Network Objects408

Table C-8. Transport Layer Objects - VC Connection Independent (continued)

ID Type Access Size Description

4010H SCounter RC WORD_16 Total checksum errors: The total number
(over all connections) of received TPDUs that
were rejected because of checksum errors.

4011H SCounter RC WORD_16 Total retransmission: The total number of
times (over all connections) that
acknowledgeable TPDUs were retransmitted.

4012H SCounter RC WORD_16 Total resource errors: The total number
(over all connections) of data TPDUs
discarded because receive buffers were not
available.

4013H Value R BYTE Maximum NSAP address length: The
maximum length of a remote NSAP address.

4014H Value R BYTE Maximum TSAP selector length: The
maximum length of local or remote TSAP
selectors.

4015H Value R WORD_16 Local NSAP selector: The NSAP selector
bound to the local Network Layer.

4018H Parameter RS WORD_16 Default connection negotiation options.

4019H Parameter RS BYTE Maximum TPDU Size: The value (specified
as a power of 2) used for maximum TPDU
size in the negotiation phase of connection
establishment by the local transport entity.

401AH Parameter RS BYTE An additional option field (encoded as in ISO
8073) assumed to be requested by a remote
entity when no such option parameter is in
the received TPDU.

401BH Parameter RS BYTE The maximum TPDU size (specified as a
power of 2) assumed, when no size is
specified by a remote entity in the received
TPDU.

401CH Parameter RS WORD_16 Maximum normal window size: largest
receive buffer credit that can be reported on
a connection by the local transport entity to a
remote transport entity on a connection using
normal sequence number format.

continued

Network User's Guide and Reference Appendix C409

Table C-8. Transport Layer Objects - VC Connection Independent (continued)

ID Type Access Size Description

401DH Parameter RS WORD_16 Maximum extended window size: largest
receive buffer credit that can be reported on
a connection by the local transport entity to a
remote transport entity on a connection using
extended sequence number format.

401EH Parameter RS WORD_16 Minimum credit: smallest receive buffer
credit that can be reported on a connection
by the local transport entity to a remote
transport entity.

401FH Parameter RS WORD_32 Open window timeout: interval (in 100
microsecond units) between successive
acknowledgements (AK TPDU's) that
announce the opening of a previously closed
credit window to avoid flow control deadlock.

4020H Parameter RS WORD_16 Maximum open window count: maximum
number of open window AK TPDUs
transmitted before the sender assumes that
the remote transport entity has received the
open window credit information. When this
count is reached, the local transport entity
stops transmitting open window AK TPDUs.

Table C-9. Map 2.1 Transport Objects

ID Type Access Size Description

4040H WCounter RS WORD_32 Total number of bytes of application data
sent over Transport Layer VCs (does not
include datagrams).

4041H WCounter RS WORD_32 Total number of bytes of application data
received over Transport Layer VCs (does not
include datagrams).

4042H WCounter RS WORD_32 Total bytes of expedited data sent.

4043H WCounter RS WORD_32 Total bytes of expedited data received.

4044H WCounter RS WORD_32 Total number of TPDUs successfully
transmitted.

4045H WCounter RS WORD_32 Total number of TPDUs retransmitted
(overlaps object 4011H).

4046H WCounter RS WORD_32 Total number of TPDUs received.

continued

Appendix C iNA 960 Network Objects410

Table C-9. Map 2.1 Transport Objects (continued)

ID Type Access Size Description

4047H WCounter RS WORD_32 Total number of data TPDUs retransmitted.

4048H WCounter RS WORD_16 Total number of retransmitted AK TPDUs.

404AH WCounter RS WORD_16 Total number of application disconnect
requests.

404BH WCounter R WORD_16 Number of open connections (same as object
4006H, Active CDBs).

404CH WCounter RS WORD_16 Total number of Type 1 connection refusals:
connection exceeds node connection limit.

404DH WCounter RS WORD_16 Total number of Type 2 connection refusals:
all others.

404EH WCounter RS WORD_16 Total of successful inbound connections.

404FH WCounter RS WORD_16 Total of successful outbound connections.

4050H WCounter RS WORD_16 Total of unsuccessful inbound connections.

4051H WCounter RS WORD_16 Total of unsuccessful outbound connections.

4052H WCounter RS WORD_16 Total number of timed out connections.

4053H WCounter RS WORD_16 Total of connect request retransmissions.

4054H Timerval R WORD_32 Maximum local acknowledge time, between
receipt of TPDU and transmission of
acknowledgement. This object is set when
the system is configured.

4055H Timerval R WORD_32 Maximum local retransmission time; set when
the system is configured.

4056H Integer R WORD_16 Maximum number of retransmissions
allowed; set when the system is configured.

4057H Timerval R WORD_32 Default connection inactivity time: how long
a connection can be inactive before a
disconnect request is sent. This is set when
the system is configured.

4058H Integer R WORD_16 Maximum TPDU size in bytes; set when the
system is configured.

4059H WCounter RS WORD_16 Total number of protocol errors.

405AH WCounter RS WORD_16 Total number of invalid received TPDUs.

Network User's Guide and Reference Appendix C411

Table C-10. Map 2.1 Transport Objects - Virtual Circuit Connection Dependent

ID Type Access Size Description

4081H Value R Variable Local TSAP selector for the connection
(specified in the modifier field of the NMF
READ_OBJECT request block). The first
byte of the value is the length of the selector.

4082H Value R Variable Remote NSAP address: of the entity at the
remote end of the connection. If the
application performs a partially specified or
unspecified passive open, this object will be
0 until the connection is established. The
first byte of the value is the length of the
address.

4083H Value R Variable Remote TSAP selector for the specified
connection. The first byte of the value is the
length of the selector.

4084H Value R BYTE Connection State: For descriptions, see the
state parameter under connection dependent
status in the Transport STATUS command.

4085H Value R WORD_16 Remote connection ID: the reference of the
specified connection, set after the connection
is established.

4086H Parameter RS WORD_16 Persistence Count: number of times a
connection request is retransmitted when the
remote entity explicitly refuses it.

4087H Parameter RS WORD_16 Abort Timeout for this connection: amount of
time (in units of 51 ms.) an unacknowledged
segment is transmitted before automatically
aborting the connection.

4088H Parameter RS WORD_32 Retransmit Timeout for this connection:
amount of time (in 100 microsecond units)
the Transport Layer waits before
retransmitting an unacknowledged TPDU.
This is determined by a dynamic algorithm.

4089H Value R WORD_32 Next Transmit Sequence Number: to be
used with the next TPDU transmitted (not
always the highest number).

408AH SCounter RC WORD_16 Duplicate TPDUs Rejected: total of duplicate
received TPDUs discarded by the transport
entity for this connection.

continued

Appendix C iNA 960 Network Objects412

Table C-10. Map 2.1 Transport Objects - Virtual Circuit Connection Dependent
(continued)

ID Type Access Size Description

408BH SCounter RC WORD_16 Retransmitted TPDUs: total number of times
an unacknowledged TPDU has been
retransmitted for this connection.

408CH SCounter RC WORD_16 Resource Errors: total of times that TPDUs
received on this connection were rejected
because receive buffers were not available.

408DH Value R WORD_16 Client Options: specified by the client in the
connection request.

408EH Value R BYTE Class Options: the ISO class of services and
sequence number format negotiated on this
connection are:

40H - Class 4 and normal (7-bit) format

42H - Class 4 and extended (31-bit) format

408FH Value R BYTE Additional Options: negotiated on the
connection, where only bits 0 and 1 are
meaningful. The values are:

0 - no expedited service and checksum

1 - expedited service and checksum

2 - no expedited service and no checksum

3 - expedited service and no checksum

4090H Value R BYTE Maximum TPDU Size (as a power of 2),
negotiated for this connection.

4091H Value R WORD_16 Maximum TPDU Data Length: maximum
length in bytes of data that can be sent in
one TPDU. This is the smaller of the
Maximum TPDU Size or the configured
maximum NSDU size, minus the header
length.

4092H Value R WORD_16 Inactivity Count: number of times an
inactivity AK has been sent without response
from the remote entity.

4093H Value R Variable Local NSAP selector for this connection; the
first byte is the length of the selector.

Network User's Guide and Reference Appendix C413

Table C-11. Map 2.1 Transport Objects - Transport Datagram

ID Type Access Size Description

4100H Value R BYTE Datagram Type: returned value is 1.

4101H Value R BYTE Datagram receive queue size: maximum
number of TSAP selectors for which the
client can post buffers.

4103H SCounter RC WORD_16 Total number of datagrams transmitted.

4104H SCounter RC WORD_16 Total number of datagrams received.

4105H SCounter RC WORD_16 Total datagram resource errors: number of
datagrams discarded due to lack of buffers.

4106H SCounter RC WORD_16 Total datagram checksum errors: number of
datagrams discarded due to checksum
errors.

4107H SCounter RC WORD_16 Total datagram address errors: number of
datagrams discarded due to illegal address
fields in the header.

Table C-12. NMF Objects

ID Type Access Size Description

8049H Time RS 17 BYTES System time.

804AH WCounter R WORD_16 Time reset counter: This is incremented
every time the system time is set.

804BH Value R 2 BYTES iNA 960 version number.

Table C-13. Network Layer Events

ID Name Description

3100H PDU Lifetime Threshold Exceeded The number of packets discarded because
they were unclaimed longer than the PDU
lifetime threshold value.

Appendix C iNA 960 Network Objects414

Table C-14. Transport Layer Events

ID Name Description

4000H Abnormal Transport Layer
Connection Abort

The provider of an established transport
connection has terminated the connection.

4001H Transport Layer Bad Destination
Address

The destination TSAP address in a connection
request does not exist; there is no entity
waiting at the destination TSAP selector. This
applies to both incoming and outgoing PDUs.

4002H Transport Layer Protocol Violation Some violation of Transport Layer protocol
has occurred

■■ ■■ ■■

Network User's Guide and Reference Appendix D 415

Related Documentation D
The manuals listed here provide additional network information. Many are available
from your sales representative:

• iRMX Virtual Terminal Software User's Guide

• OpenNET PCL2 for DOS Installation Guide

• PCL2 LAN Controller User's Guide

• SV-OpenNET User's Manual

• SV-OpenNET Installation and Administration Manual

• SBC/SXM 552A IEEE, 802.3 Communications Controller User's Guide

• 32-Bit Local Area Network (LAN) Component User's Manual

■■ ■■ ■■

416 Appendix D Related Documentation

Network User's Guide and Reference Index 417

Index

/net/data file, 18, 135
:config/

terminals file, 352
:sd:net/data file, 38, 39, 42, 51, 58, 135
:sd:net/data.ex file, 18, 135
? (question mark) character, 52

A
abort timeout, 406, 407, 411
abort timeout value, 228
ACCEPT_CONNECT_REQUEST, Transport

command, 190
active open, 186
ADD_NAME, Name Server command, 150
ADD_SEARCH_DOMAIN, Name Server

command, 153
address format, 181
address match tests, 202
addressing authority, 72
addressing network buffers, 178
Administrative Unit, see AU
AFI, 72, 74
Apex File Access (AFA) module, 65
ATTACH_AGENT, NMF command, 306
attachdevice command, 27, 31, 46, 54
AU (administrative Unit), iRMX-NET

configuration example, 37
AU (Administrative Unit), iRMX-NET, 11

master node, 12, 20
Master UDF, 12, 20
security, 12

AWAIT_CLOSE, Transport command, 193
AWAIT_CONNECT_REQUEST_CLIENT,

Transport command, 196
AWAIT_CONNECT_REQUEST_TRAN,

Transport command, 196

AWAIT_EVENT, NMF command, 309

B
bcl command, 346
bexp.a86 file, 343
bexp.csd file, 344
BIOS, 65
boot client, 294, 304, 333, 335

adding name to CDF, 352
hardware and OS requirements, 333

boot file
configuration of, 339
format of, 361
generating, 338

boot requests, 358
boot response, 358
boot server, 294, 304, 333, 335

configuring, 346
load files for, 350

booting
diskless nodes, 333
remote, 333

bootstrap loader, 333
br38.csd file, 341
br3expgen.csd file, 341
broadcast subnet, 71
buffers

addressing network, 178
availability test, 202
contiguous, 184
maximum transport protocol length, 231
network data, 108
noncontiguous, 184

C
carrier errors, 399, 400
case sensitivity, 49, 55, 56

418 Index

ccinfo file, 343
creating, 346
generating, 348

ccinfo.bdf file, 347
CDB (connection database), 186

maximum number of, 210
CDF (Client Definition File), 352
CDF (Client Definition File), 11, 12, 13, 22
CHANGE_VALUE, Name Server command,

155
checksum errors, 408
chgid utility, UNIX, 55
circuit, virtual, 2
class codes, 347, 348
client, 2

iRMX-NET, 3
iRMX-NET, name, 11, 22
validation, 13
verified, 12, 22
verifying, 11

Client Definition File, see CDF
client-based protection, iRMX-NET, 12, 13
CLOSE, Transport command, 206
collision errors, 399, 400
collisions, 398, 399, 400
COMMengine, 60, 144
COMMputer, 40, 60, 144

data flow in, 395
Configuration Notification function, 403
CONFIGURE, Data Link command, 264
configuring

AU, 37
CONNECT, Data Link command, 266
connection database, 186
connectionless transport, 178
connections

establishing network, 184, 186
reference ID, 210
terminating, 184, 188

contiguous buffers, 184
copy command, 28, 29
cq*.ext files, 109
cq*.h files, 109
cq_comm_multi_status call, 114
cq_comm_ptr_to_dword call, 111, 116
cq_comm_rb call, 111, 117
cq_comm_status call, 121

cq_create_comm_user call, 111, 123
cq_create_multi_comm_user call, 124
cq_delete_comm_user call, 111, 126
cqtransp.h file, 179
cqtransp.lit file, 179
CSMA/CD, 256

D
data

buffers, 108
structures, 110
transferring, 186

Data
Link layer, 255
Link objects, 398

for 82595TX, 399
for DEC21143, 400
for Multibus II subnet, 401

data file (iRMX-NET), 18
Data Link

type, 401
data.ex file, 18, 135
datagram objects, 413
datagram service, 178, 189, 235, 255
DEC21143 component

Data Link objects for, 400
dedicated server, 2
Default Router Table, 368, 402
default TSAP selector, 180
delete request block data structure, 127
DELETE_NAME, Name Server command,

157
DELETE_PROPERTY, Name Server

command, 159
DELETE_SEARCH_DOMAIN, Name Server

command, 161
deletename command, 141
Destination Subnet Table, 368, 402
DETACH_AGENT, NMF command, 312
detachdevice command, 28, 46, 54
dir command, 28
directories

/bsl, 343
/net, 18
/rmx386/demo/network, 147
/rmx386/jobs, 27

Network User's Guide and Reference Index 419

disconnect
message, 195
request, 208

DISCONNECT, Data Link command, 269
diskless nodes, booting, 333
DLSAP (destination LSAP), 258
domain, 72
DOS, 4

client, 51
client, 49, 52
filenames, 51
interoperability, 47
pathname, 51
server, 49, 51
system, 49, 50
user, 49
wildcard characters, 52

DOSRMX
networking, 17

DUMP, NMF command, 313
dynamic name resolution, 8
dynamic routing, 74, 75

E
EarlyRx, 399, 400
EarlyTx, 399, 400
ECHO, NMF command, 316
EDL (External Data Link), 255, 256
end of message, 231
end system, 69
End System Hellos, 403, 404
enetinfo, UNIX command, 140
EOM, 231
EOT (end of transmission), 231
EPROM

programming first stage in, 343
error messages

remote boot, 355
ES-IS

address, 75
objects, 403
protocol, 75
routing, 74, 365

EtherExpress, 257, 334, 338
programming EPROM for, 343

Ethernet address, 73, 139, 140, 142, 144, 398,
401

changing, 272
in NSAP address, 74, 75
of spokesman, 168

events
Network Layer, 413
Transport Layer, 414

EWENET module, 257, 334, 338
programming EPROM for, 343

examples
applications, 147
applications, 178
AU configuration, 37
copying the CDF, 30
copying the UDF, 29
iRMX-NET setup, 37
modcdf command, 44

exp.rem32 file, 341
expedited data, 187, 222, 238

buffer, 236
External Data Link Interface, 256

F
FCTSAP, 143
File Consumer, 66
file server, 333

configuring, 350
specifying name of, 351

File Server, 66
files

access rights in UNIX, 57
access rights in UNIX, 57
access rights to, 32
accessing remote, 27
granting remote access to, 31
iNA 960 download files, 385
transparent access to, 2
with ? in name, 52

findname command, 141
flow control, 177, 238
flow control window timeout, 407
FLUSH, Data Link command, 271
FSTSAP, 143

420 Index

G
general topology subnet, 71
GET_NAME, Name Server command, 163
GET_SEARCH_DOMAIN, Name Server

command, 166
GET_SPOKESMAN, Name Server command,

168
GET_VALUE, Name Server command, 170
getaddr command, 141
getname command, 141
group ID, UNIX, 11

H
hardware requirements

boot client, 333
header files, 109
header packets, 402
home directory, UNIX, 11
host memory, 303

I
IA_SETUP, Data Link command, 272
ICU (Interactive Configuration Utility)

iRMX-NET configuration, 11, 15, 22
IEEE 802 LAN, 257
iNA 960, 59, 60

configuration values, 387
download files, 385
files, 385
Network Management Facility (NMF),

144
Null2, 140
subnet, 11
subnet number, 144
Transport Address, 144
Transport Software, 11, 60
Transport Software, 144

ina*.32l files, 342
ina*.32r files, 342
ina530n.32l file, 349
inactivity count, 412
inamon command, 23
INANLNUM, 143
INARDY object, 112

INARELNUM, 143
INASUBNETxx, 144
include files, 109
Intermediate System Hello Table, 403, 404
Intermediate System Hellos, 403, 404
intermediate systems, 69

hello table, 374
International Standards Organization, see ISO
internetwork routing, 69, 73

ES-IS, 365
protocol, 74
static, 365

interoperability
iRMX-NET, 4

IP
addressing, 74
routing objects, 402

iRMX, 51
and UNIX compatibility, 56
client, 56
files, 51
interoperability, 47
logon name, 11
root, 51
static user, 21
Super user, 20
symbols, 56
UDF (User Definition File), 11, 12, 13,

14, 20, 22
user directories, 20
World user, 21

iRMX III, 40
iRMX-NET

AU (Administrative Unit), 11, 12, 20, 22
CDF (Client Definition File), 11, 12, 13,

22
client, 3, 7
client name, 11, 22
client-based protection, 12, 13
configuration values, 388
default parameters, 38, 42
features, 3
ICU configuration, 11, 15, 22
interoperability, 4
loadable jobs, 388
load-time configuration, 11, 15, 22
Master UDF, 56

Network User's Guide and Reference Index 421

Name Server, 8, 9, 18, 51
network access, 15
nodes, 58
security, 12
server, 3
server name, 8, 18, 19
setup example, 37
software, 7
software, 47
spokesman node, 9

ISO (International Standards Organization), 59
OSI Model, 59
protocols, 61
reason codes, 185
services, 61

J
jobs

iRMX-NET, 388
MIP, 388
remotefd.job, 7

L
LAN (Local Area Network), 1, 2

Controller Interface (LCI), see LCI
lanstatus command, 23
LCI (LAN Controller Interface), 394
line speed, 401
line terminators, 56
LIST_TABLE, Name Server command, 173
listname command, 132, 141, 351
literal files, 109
LLC (logical link control), 61, 71, 256
load file

format of, 361
load files, 350
loadinfo file, 15
loadname command, 18
loadname command, 27, 50, 132, 134, 135,

136, 138
loadrmx command, 334
load-time configuration

iRMX-NET, 11, 15, 22
local

end system table, 374

node, 2
object table, 141

Local
NSAP Address Table, 375
Subnet Table, 368

Local End System Table, 403, 404
Local NSAP Address Table, 403, 404
Local Subnet Table, 402
Logical Link Control, see LLC
logicalnames command, 28
login shell, UNIX, 11
logon name, iRMX, 11
lookup_object call, 112
LP486, 257
LSAP (link service access point), 73, 74

identifiers, 258

M
MAC (media access control), 61, 71, 73, 74,

256
mailbox, 111
MAP 2.1, 405
MAP2.1 objects, 409
MC_ADD, Data Link command, 274
MC_REMOVE, Data Link command, 276
Media Access Control, see MAC
MIP, 60, 117, 119, 120, 128, 393

configuration values, 388
configuring, 67
errors, 119
jobs, 388
LAN Controller Interface (LCI), 392, 394
Multibus I, 393
Multibus II, 392, 394
PC Bus, 393

MIX 386/560, 257
MIX 560, 257
modcdf command, 11, 22, 43, 44, 53, 56
modself, UNIX command, 53
Multibus I, 40, 60, 139, 143, 144
Multibus II, 40, 41, 60, 139, 143, 144
Multibus II subnet, 401

Data Link objects for, 401
multicast address, 274, 399, 401

Name Server, 405
multicast messages, 404

422 Index

Multicast NSAP Address Table, 405
MYHOSTIDxx, 144
MYNAMExx, 145

N
name resolution, dynamic, 8
Name Server, 8, 18, 131

example, 10
multicast address, 405
operation, 9
using pointers, 108, 147

Name Server object table, 9, 18, 50, 58, 131,
139, 144, 174

adding objects, 134
deleting objects, 141
entries at initialization, 142
listing local information, 141

negotiation option tests, 202
net agent, 295
net manager, 295
net start, MS-Net command, 50
net use, MS-Net command, 50, 53
netadm, UNIX command, 56, 58
network

access, iRMX-NET, 15
address, 18
address, 8
management, 64
object, 9
peer-to-peer, 2
security, iRMX-NET, 12
topology, 69
user definition, 14
user definition, 11
user validation, 13, 14

Network
Management Facility, 293
Service Access Point, 72

Network File Access (NFA) protocols, 47
network files

preconfigured values, 385
Network Layer, 63

addressing, 71, 74
configuration, 76
events, 413

network objects, 397

networking
DOSRMX, 17
iRMX features, 1

NIC (Network Interface Card), 257
NMF, 293

and remote booting, 362
boot requests, 358
boot response, 358
objects, 413

nmfcfg.a86 file, 349
node, 2

client, 2
diskless, 333
server, 2

noncontiguous buffers, 184
ns_get_host_id procedure, 144
NSAP (Network Service Access Point), 71,

72, 74
address, 175, 179
selector, 72

NSAP address, 411
NSAP address length, 408
NSAP selector, 408
NSCOMMENGINE, 144
NSDONE, 145
NSDU (network service data unit), 177, 231
null TSAP selector, 180
Null2 addressing, 74

O
object table, iRMX-NET Name Server, 9, 18,

131, 139, 144
adding objects, 134
deleting objects, 141
entries at initialization, 142

objects
Data Link, 398, 399, 400, 401
ES-IS, 403
iNA 960, 293, 397
IP, 402
MAP2.1, 409
Name Server, 131
network, 9, 131
NMF, 413
static routing, 402
Transport Layer, 406

Network User's Guide and Reference Index 423

offer command, 33
OPEN, Transport command, 209
OpenNET, 3, 4, 47, 49, 53, 132

Local Area Network, 1
networking, 1
user definition, 11

options
iNA 960, 412

OSI Reference Model, 59

P
packets

discarded, 402, 413
received, 401
sent, 401

packets received, 398
padding

Data Link packet, 291
structures, 110

partially specified TSAP address, 183
passive open, 186
password command, 11, 20, 43, 49, 55
PC Bus, 53, 60, 139, 140, 143
pccprsd.bck file, 338
PCL2

PCL2 R3.0, 51
PCL2(A), 257

peer-to-peer network, 2
permit command, 34, 57
persistence count, 228, 406, 411
physical addresses, 108
Physical Layer, 255
pointers

Name Server, 108, 147
translating, 108

point-to-point subnet, 70
POST_RPD, Data Link command, 278
promiscuous mode, 274
publicdir command, 33

Q
question mark (?) character, 52

R
RAW_POST_RECEIVE, Data Link command,

282
RAW_TRANSMIT, Data Link command, 286
RawEDL, 399, 401
rb_common data structure, 118
rbootsrv.job, 333, 349
Reachable NSAP Address Table, 375, 403,

404
READ_AND_CLEAR_OBJECT, NMF

command, 321
READ_CLOCK, Data Link command, 288
READ_MEMORY, NMF command, 319
READ_OBJECT, NMF command, 321
reason codes, 185
receive buffers, 216
RECEIVE_ANY, iNA command, 211
RECEIVE_DATA, Transport command, 214
RECEIVE_DATAGRAM, Transport

command, 217
RECEIVE_EXPEDITED_DATA, Transport

command, 220
Redirect PDUs, 404
Refresh Redirect function, 403
remini command, 341
remote

booting, 333
node, 2

remote access
across AUs, 14, 21
iRMX-NET, 15
within an AU, 13

remote boot, 353
error messages, 355
failures, 355
troubleshooting, 355

remote booting, 337
Remote File Driver (RFD), 7
remote third stage, 341
remove command, 34
rename command, 57
request block, 107, 117

data structure, 118
MIP response codes, 119

resource management, 107
restarts, 398

424 Index

retransmit timeout, 407, 411
RFD (Remote File Driver), 65
rmx.ini file, 15, 22, 340
RNETSRV, 145
routing

network packets, 69
tables, 75, 366

rq_create_mailbox call, 111
rq_lookup_object call, 112
rq_receive_message call, 111

S
SBC 186/530, 257
SBC 386/12(S), 334
SBC 386/2X, 334
SBC 386/3X, 334
SBC 486/12(S), 334
SBC 486/133SE, 257
SBC 486/166SE, 257
SBC 486DX33, 334
SBC 486DX66, 334
SBC 486SX25, 334
SBC 552A, 257, 334
SBC P5090, 257
SBX 586 Multimodule, 257
SDM

booting from, 353
SEND_CONNECT_REQUEST, Transport

command, 223
SEND_DATA, Transport command, 229
SEND_DATAGRAM, Transport command,

233
SEND_EOM_DATA, Transport command,

229
SEND_EXPEDITED_DATA, Transport

command, 236
server, 2

dedicated, 2
iRMX-NET, 3
names, iRMX-NET, 8, 18, 19

server_name object, 145
server-based security, 14
service information, inside back cover
SET_MEMORY, NMF command, 319
SET_OBJECT, NMF command, 321

setname command, 19, 27, 43, 50, 132, 134,
144

SLSAP (source LSAP), 258
SNPA (subnet point of attachment), 73
Specific Router Table, 368, 402
specified TSAP address, 183
spokesman node, iRMX-NET, 9, 132
Static Intermediate System Table, 374, 403,

404
static routing, 74, 365

address, 75
objects, 368, 402

static user, 21
STATUS, Transport command, 239
structures

padding, 110
using, 110

Subnet Table, 375, 403, 404
subnetwork, 11, 54, 55, 69, 70

address, 73, 314
iNA 960, 11

Super user, iRMX, 20
SUPPLY_BUFFER, NMF command, 329,

362
supported architectures, 60
SV-OpenNET, 55, 58, 132

SV4-OpenNET, 132
SV4-OpenNET R2.0, 53
SV-OpenNET R3.2.3, 53

T
TAKEBACK_BUFFER, NMF command,

332, 362
TCP/IP, 1
third stage bootstrap loader, 341
TLCOMMENGINE, 144
TPDU (transport protocol data unit), 232
TPDU Size, 408, 412
transferring data, 186
translating pointers, 108
transmission errors, 399, 400
TRANSMIT, Data Link command, 289
transparent file access, 2
transport address, 18, 181
Transport Layer, 63, 175

events, 414

Network User's Guide and Reference Index 425

objects, 406
transport protocol, 177
TSAP (Transport Service Access Point), 71

address, 175
address buffer, 179
address format, 181
selector, 175, 179

TSAP address, 414
TSAP selector, 411
TSAP selector length, 408
TSDU (transport service data unit), 229
typedef, 110

U
UDF (User Definition File), 11, 12, 13, 14, 20,

22
underrun errors, 399, 400
UNIX, 4, 139

/net/data file, 58
and iRMX compatibility, 56
file access, 54
files, remote, 56
group ID, 11
home directory, 11
interoperability, 47
login shell, 11
pathnames, 56
server, 140
server, 53, 132
subnetwork, 11
symbols, 56
system, 53, 55, 58
tools, 56

unspecified TSAP address, 183
user

defining, OpenNET, 11
definition, 11, 14
groups, UNIX, 55, 57
static, 21
Super, 20
validation, 13, 14
verified, 11, 12, 22
World, 21

User Administration module, 66
User Definition File, see UDF

V
validating

client, 13
user, 13, 14

VC, see virtual circuit
verified client, 11, 12, 22
verified user, 11, 12, 22
virtual circuit, 406
virtual circuit (VC), 2, 177

maximum number of, 210
virtual root directory, 51

W
WITHDRAW_DATAGRAM_RECEIVE_BU

FFER, Transport command, 249
WITHDRAW_EXPEDITED_BUFFER,

Transport command, 251
WITHDRAW_RECEIVE_BUFFER,

Transport command, 253
work directory, 51
World user, 21, 53, 57

X
xlate command, 348

	iRMX® Network User’s Guide and Reference
	Quick Contents
	Contents
	Chapter 1: Introduction
	How to Use This Book
	Networking Concepts and Terminology
	Network Software Choices
	iNA 960 Programmatic Interfaces
	iRMX-NET
	TCP/IP and NFS

	Chapter 2: iRMX-NET Overview
	iRMX-NET Client and Server
	Network Operation
	The Name Server
	The User Definition File
	The Client Definition File

	Network Security
	Client-based Protection
	Server-based Protection

	Chapter 3: Network Access Using iRMX-NET
	Overview
	Adding a Server to the Name Server Object Table
	Choosing a Server Name
	Entering Information Into the Object Table

	Defining Network Users in the UDF
	Accessing Other AUs
	Backing Up the Master UDF File

	Adding a Client to the CDF
	Diagnostics
	What's Next?

	Chapter 4: Using the Network
	Accessing Remote Files
	Connecting to a File Server
	Using Remote Files
	Copying Files Across the Network

	Making Local Files Accessible to Other Nodes
	Setting Up Public Directories
	Protecting Files on a Server

	What's Next?

	Chapter 5: Example: Configuringan Administrative Unit
	Configuring the Systems
	Configuring the Master Node
	Configuring the Other Nodes

	Setting Up the Administrative Unit
	System 1
	Systems 2 through 5

	Chapter 6: Example: Configuring€Multiple Operating Systems
	The DOS System
	Connecting a DOS Client to an iRMX Server
	iRMX and DOS Interoperability

	The UNIX System
	Connecting a UNIX Client to an iRMX Server
	Connecting an iRMX Client to a UNIX Server
	Setting Up the Administrative Unit
	iRMX and UNIX Interoperability
	Connecting to Nodes on Older Versions of SV-OpenNET

	Chapter 7: Network Software Implementation
	Hardware Environments
	Software COMMputer and MIP Environments
	Overview of iNA 960 Software
	The iNA Layers
	The Programmatic Interface

	Overview of iRMX-NET Software
	Data Flow Through iRMX-NET and iNA 960 Software
	Configuring the MIP

	Chapter 8: iNA 960 Topology and Addressing
	The iNA 960 Network Topology
	General Subnetwork Types
	iNA 960 Subnetworks

	Network Addressing
	Network Service Access Point (NSAP) Address
	Subnet Address
	Internetwork Routing

	iNA 960 Network Layer Addressing Schemes
	Null2 Network Addressing
	Static Internetwork Addressing
	End System to Intermediate System (ES-IS) Network Addressing

	Choosing a Network Layer Configuration

	Chapter 9: The Multibus II Subnet and Routing Between Subnets
	Configuring Networks with the Multibus II Subnet
	Routing Between Subnets
	Definition of a Router
	ES-IS vs. Null2 Jobs
	ES-IS Routing

	Ethernet Addresses in the Multibus II Subnet
	Data Link Subsystem ID for the Multibus II Subnet
	Name Server Search Domain
	Overview of Setting up the Multibus II Subnet
	Step 1: Mapping the Network
	Using Only TCP/IP Outside the Multibus II Subnet

	Step 2: Choosing the iNA 960 Jobs
	Step 3: Configuring Jobs in the ICU
	Step 4: Creating a Loadable Network Job
	Step 5: Using Loadable Jobs
	Step 6: Changing Subnet IDs on Other Systems
	Step 7: Modifying the net/data File
	Step 8 - 10 Overview: Configuring iNA 960 Routing
	Using Inamon to Configure Routing

	Step 8: Establishing ES and IS Hellos
	Step 9: Getting the NET and Subnet Information
	Step 10: Setting Up the iNA 960 Static Routing Tables
	Step 11: TCP/IP Configuration
	Increasing Performance for Remotely-Booted Boards

	Chapter 10: The Programmatic Interface
	Referencing Data Buffers in Request Blocks
	Using Addresses in iNA 960 Request Blocks

	Interface Libraries and Link Sequences
	Include Files
	Programming with Structures
	Using the cq_ System Calls
	Exception Handling
	System Calls to iNA 960
	cq_comm_multi_status
	cq_comm_ptr_to_dword
	cq_comm_rb
	cq_comm_status
	cq_create_comm_user
	cq_create_multi_comm_user
	cq_delete_comm_user

	Chapter 11: Using and Programming the Name Server
	The Name Server Object Table
	Adding an Object to the Name Server Object Table
	Loading Objects from the :sd:net/data File

	Other Name Server Operations
	Deleting an Object from the Name Server Object Table
	Obtaining Local Name Server Information
	Obtaining Remote Name Server Information

	Object Table Entries at Initialization
	Location of the Name Server
	Request Block Arguments
	Example Software

	Name Server Commands
	ADD_NAME
	ADD_SEARCH_DOMAIN
	CHANGE_VALUE
	DELETE_NAME
	DELETE_PROPERTY
	DELETE_SEARCH_DOMAIN
	GET_NAME
	GET_SEARCH_DOMAIN
	GET_SPOKESMAN
	GET_VALUE
	LIST_TABLE

	Chapter 12: Programming the Transport Layer
	Transport Services
	Virtual Circuit Service
	Datagram Service

	Buffers
	Buffer Addressing
	TSAP Address Buffer
	Contiguous Buffers
	Noncontiguous Buffers

	ISO Reason Codes
	Virtual Circuit Commands
	Commands to Establish a Connection
	Commands for the Data Transfer Phase
	Commands to Terminate a Connection

	Datagram Commands
	Posting Receive Buffers for Datagrams

	Transport Service Commands
	ACCEPT_CONNECT_REQUEST
	AWAIT_CLOSE
	AWAIT_CONNECT_REQUEST_TRAN�AWAIT_CONNECT_REQUEST_CLIENT
	CLOSE
	OPEN
	RECEIVE_ANY
	RECEIVE_DATA
	RECEIVE_DATAGRAM
	RECEIVE_EXPEDITED_DATA
	SEND_CONNECT_REQUEST
	SEND_DATA/SEND_EOM_DATA
	SEND_DATAGRAM
	SEND_EXPEDITED_DATA
	STATUS
	WITHDRAW_DATAGRAM_RECEIVE_BUFFER
	WITHDRAW_EXPEDITED_BUFFER
	WITHDRAW_RECEIVE_BUFFER

	Chapter 13: Programming the Data Link Layer
	Overview of the Data Link Layer
	The External Data Link (EDL) Interface
	The RawEDL Interface

	iNA 960-Supported Hardware Subnets and Protocols
	LSAP Identifiers

	Data Link Commands
	CONFIGURE
	CONNECT
	DISCONNECT
	FLUSH
	IA_SETUP
	MC_ADD
	MC_REMOVE
	POST_RPD
	RAW_POST_RECEIVE
	RAW_TRANSMIT
	READ_CLOCK
	TRANSMIT

	Chapter 14: Using the Network Management Facility
	NMF Services
	NMF Operation
	Managers and Agents
	Local Versus Remote NMF Operation
	NMF Communications Services

	Using NMF Commands
	Net Agent Connection Commands
	Layer Management Commands
	Event Notification
	Debugging Commands
	Maintenance Commands
	Remote Load Operations

	The NMF Commands
	ATTACH_AGENT
	AWAIT_EVENT
	DETACH_AGENT
	DUMP
	ECHO
	READ_AND_CLEAR_OBJECT
	READ_MEMORY/SET_MEMORY
	READ_OBJECT/SET_OBJECT�READ_AND_CLEAR_OBJECT
	SET_MEMORY
	SET_OBJECT
	SUPPLY_BUFFER
	TAKEBACK_BUFFER

	Chapter 15: Remote Booting
	Hardware and Software Requirements
	Overview of Remote Booting
	Configuring the Load Files
	Operating System Boot File
	Load-time Configuration File
	Remote Third Stage Bootstrap Loader
	iNA 960 Load File

	Generating a First Stage EPROM for the Boot Client
	Creating a First Stage for EtherExpress 16 or EWENET
	Using the iPPS PROM Programmer
	Installing the EPROM

	Configuring the Remote Boot Server
	Creating the ccinfo File
	Loading the Boot Server
	Installing the Load Files

	Configuring the File Server
	Loading Server Names into the Name Server Database
	Adding Client Names to the CDF
	Adding Server Names to the :config:terminals File

	Remote Boot Start
	Booting Multibus I Systems
	Booting Multibus II or PC Bus Systems

	System Initialization on a Diskless Node
	If Remote Booting Fails
	Troubleshooting
	Creating Custom Server Applications
	Boot Request and Response
	Loading Operation
	Boot Module Format
	Using SUPPLY_BUFFER and TAKEBACK_BUFFER

	Chapter 16: Internetwork Routing
	Internetwork Routing Protocols
	Static Routing
	ES-IS Routing
	Using Static and ES-IS Routing Together

	Routing Tables
	Application Access to Routing Tables

	Reading and Setting Static Routing Objects
	Command and Response Buffers for Static Routing

	Reading and Setting ES-IS Routing Objects
	Command and Response Buffers for ES-IS Routing

	Appendix A: iRMX-NET and iNA 960 Transport Configuration Values
	Files Containing iNA 960 Transport Software
	iNA 960 Download Files

	iNA 960 COMMputer Jobs
	Configuration of iNA 960 MIP Jobs
	Configuration of iRMX-NET Jobs

	Appendix B: Data Flow in MIP and COMMputer Jobs
	Data Interchange with the MIP
	Multibus I and PC Bus MIP
	Multibus II MIP

	Data Interchange in a COMMputer Job

	Appendix C: iNA 960 Network Objects
	Appendix D: Related Documentation
	Index

