
Programming Techniques iii

Quick Contents

Chapter 1. iRMX® Application Development Environment

Chapter 2. Target Environment Development

Chapter 3. Designing an Application

Chapter 4. C Compiler-specific Information

Chapter 5. Debugging Applications

Chapter 6. Porting Applications

Chapter 7. Using Compact and Large Memory Models

Chapter 8. Using the Flat Memory Model

Chapter 9. Developing Applications for ROM

Chapter 10. Developing Applications for Multibus II

Chapter 11. Developing Applications in Assembly Language

Chapter 12. Developing Applications in PL/M

Appendix A. Resource and Stack Size Guidelines

Index

iv

Notational Conventions
Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). If you
are working in C, you must use the C header files, rmx_c.h, udi_c.h, and rmx_err.h.
If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

• Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH). Binary numbers include the B radix
character (for example, 11011000B).

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

• Data structures and syntax strings appear in this font.

• System call names and command names appear in this font.

• PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

• The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader
BIOS Basic I/O System
EIOS Extended I/O System
HI Human Interface
UDI Universal Development Interface

• Whenever this manual describes I/O operations, it assumes that tasks use BIOS
calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read,
rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the
same operations.

Programming Techniques Contents 5

Contents

1 iRMX® Application Development Environment
Examples Provided with the Operating System... 2
Application Development Tools .. 2

Assemblers ... 3
Intel Compilers ... 3

Optimizing Code ... 4
Non-Intel Compilers.. 5

Application Building Utilities... 5
Debugging Tools .. 6

Application Development Process... 7

2 Target Environment Development
Generating Target Files ... 9
Generating a Target File Example ... 9

3 Designing an Application
Application Categories .. 14

Measurement .. 14
Process Control... 14
Data Acquisition... 14

Design Concepts .. 15
C Multitasking Demo Program.. 15

Demo Code Location.. 15
Running the Multitasking Demo... 17

Using the Makefile .. 18
Programming Concepts .. 21

Creating and Cataloging Objects ... 21
Operations on Objects .. 22
Creating Tasks.. 22

Task Creation Code Example.. 24
Creating and Cataloging Objects Code Example............................... 25

Processing Input/Output Result Segments (IORS) .. 26
Processing an IORS Code Example.. 27

Using a Response Pointer During Inter-task Communication.......................... 28

vi Contents

Task Synchronization/Data Passing Code Example 29
Using Buffer Pools .. 32

Creating Buffer Pools Code Example... 33
Using Buffer Pools Code Example... 36

Methods of Screen Input/Output.. 38
Screen Input/Output Code Example ... 38

In-line Exception Processing ... 40
Writing Your Own Exception Handler... 40
Exception Handler Control Flow.. 41
Exception Processing Code Example ... 42

Getting and Setting Terminal Attributes.. 44
Getting/Setting Terminal Attributes Code Example................................. 44

Interrupt Processing... 46
Interrupt Handlers .. 46
Interrupt Servicing.. 47
Interrupt Latency.. 51

4 C Compiler-specific Information53
Using the iC-386 Compiler to Develop iRMX Applications 53

Using the C Language Header Files ... 53
Binding Your Code to Interface Libraries .. 54
Condition and Error Codes ... 54

Using Non-Intel Tools to Develop iRMX Applications 55
Using Microsoft C /C++ Development Tools... 55

Microsoft Visual C++ Compiler Invocation...................................... 56
Using Header Files .. 57

Existing iC-386 Applications ... 58
Built-in functions.. 58
Calling Conventions ... 59
Structure Data Alignment... 59
Alignment with iC-386... 60
Supported Memory Models.. 60

Using Cstart Startup Code ... 61
Stack Size... 62

Using Interface Libraries... 62
Debugging with the Soft-Scope Debugger .. 62

Summary of Debug Switches ... 62

Programming Techniques Contents viiviiviivii

5 Debugging Applications
Example Application Program... 63

Include Files ... 65
Compiling and Running the Code... 65

Debugging the Program... 67
Debugging Approach #1... 67
Debugging Approach #2... 72

Viewing System Objects.. 75
Alternative Debugging Techniques ... 77

6 Porting Applications
Porting Code from 16-Bits to 32-Bits .. 79

Using Existing 16-Bit Code.. 80
Advantages of 32-Bit Application Code... 80
Porting Entire Applications to 32-Bits.. 81

Porting 16-Bit PL/M Code to 32 Bits .. 82
Differences Between PL/M-386 and Previous PL/M Code...................... 83

Porting 16-Bit C Code to 32 Bits ... 84
Using the rmx_c.h Header file.. 84
Using the NATIVE_WORD Type Definition .. 85

Porting 16-Bit ASM Code to 32 Bits ... 85
Example: Porting a Device Driver... 89

xtstdn.lit.. 94
Migrating Code to a PC-Bus Platform... 100

Using a Numeric Processor Extension (NPX) .. 100
Segmentation Considerations... 101

7 Using Compact and Large Memory Models
Choosing a Memory Model ... 103

32-Bit Applications .. 104
16-Bit Applications .. 104
Porting Applications ... 105
Using ROM and RAM Compiler Controls ... 105

Subsystems .. 105
Subsystem Advantages ... 106
Closed Subsystems ... 106
Open Subsystems.. 107
Subsystem Configurations .. 107
Creating a Closed Subsystem ... 107
Creating an Open Subsystem.. 109

viii Contents

8 Using the Flat Memory Model
Flat Model Overview... 111

Flat Model Advantages and Disadvantages.. 112
Executing Flat Model Applications on iRMX ... 112

Using Flat Model With Paging Support ... 113
Paging Subsystem.. 114

The Paging Job ... 114
Identity Mapping... 115

Flat Model Support Code .. 115
Conversion of Flat Model Pointers in System Calls 115
The Flat Model Job .. 116

Execution Model ... 116
System Calls .. 118

Existing System Calls... 118
Using the Flat Model System Calls ... 118

Virtual Memory.. 119
Porting Compact/Large to Flat ... 119

Debugging Support.. 120

9 Developing Applications for ROM
Testing a System ... 122

Loading an Application into ROM... 122
Preparing an Application to Reside in ROM ... 122
Methodology for Burning an Application into ROM....................................... 125
Developing a ROM-based Application System ... 125

Overview of the ROM-based Application Example................................. 126
Generating the ROM-based Application Example 126
Configuring the iRMX OS ... 127

Setting the System Debug Values ... 132
Setting the RAM and ROM Values... 135

Debugging the ROM Initialization Process .. 140
Testing the Application ... 145

10 Developing Applications for Multibus II
Code Examples.. 147
Examples Using Nucleus Communication System Calls................................. 148
Interconnect Space Example - iscan.c ... 149
Creating a Port for Message Passing - tranport.c... 150
Sending Data Using Send_rsvp ... 150
Sending and Receiving Messages.. 153

Programming Techniques Contents ixixixix

Receiving a Message .. 154
Sending a Message ... 154

Sending a Message in Fragments... 154
Receiving a Message in Fragment Form ... 155
The Name Server Example.. 155
The General Examples... 157

Example 1: Sending and Receiving Unsolicited Messages...................... 158
Execution of Client and Server Programs ... 158
Running Example 1 ... 159

Example 2: Sending Asynchronous Solicited Messages.......................... 160
Execution of Client and Server Programs ... 160
Running Example 2 ... 161

11 Developing Applications in Assembly Language
Invoking System Calls from Assembly Language... 163
Interrupt Handler Example .. 167

Generating the Interrupt Handler Example... 167
OS Extension Example .. 167

12 Developing Applications in PL/M
Invoking System Calls from PL/M.. 171
Including External Declaration Files ... 172
Binding Your Code to Interface Libraries ... 173
PL/M Multitasking Example ... 174

Example Overview... 174
Location of Multitasking Example Code.. 175
Compiling and Binding the Multitasking Example Code 175
Running the Multitasking Example .. 176

Programming Concepts Illustrated by the Multitasking Demo........................ 178
In-line Exception Processing .. 179
Use of Literal Files ... 180

A Resource and Stack Size Guidelines
Resource Requirements ... 183
RAM Requirements... 184

Attaching a Logical Device .. 184
Creating an I/O Job... 185
Opening a Connection .. 185
Other RAM Requirements.. 185

Object Counts .. 186

x Contents

Stack Size Limitations... 186
Stack Size Limitation for Interrupt Handlers.. 186
Stack Guidelines for Creating Tasks and Jobs.. 187
Stack Guidelines for Tasks to be Loaded or Invoked 187
Arithmetic Technique for Estimating Stack Size 187

Computing Stack Size ... 188
Empirical Technique .. 189

Index 191

Tables
Table 1-1. Code Examples in this Manual.. 2
Table 3-1. Demo.c Functions and System Calls ... 16
Table 3-2. Servicing Interrupts with an Interrupt Handler.. 48
Table 3-3. Servicing Interrupts with an Interrupt Task... 49
Table 3-4. Servicing Interrupts with an Interrupt Handler, an Interrupt Task, and

Multiple Buffering ... 50
Table 4-1. Build Settings for Microsoft Developer Studio ... 56
Table 10-1. Flow of Program Execution for Example 1 ... 158
Table 10-2. Flow of Program Execution for Example 2 ... 160
Table 11-1. Registers Containing Returned System Call Values.................................. 164
Table 12-1. PL/M Literal Files for Use with iRMX System Calls............................... 181
Table A-3. Stack Requirements for Interrupts and System Calls.................................. 188

Figures
Figure 1-1. The 32-bit Application Development Process (Intel Tools)....................... 7
Figure 1-2. The 32-bit Application Development Process (Non-Intel Tools)............... 8
Figure 6-1. Device Driver Example Using r_32 Conditional Statements 91
Figure 6-2. Literal File Using r_32 Conditional Statements ... 94
Figure 7-1. Basic Large/Compact Model Program... 103
Figure 8-1. Basic Flat Model Program .. 111
Figure 8-2. Flat Application Program on iRMX with Paging 113
Figure 8-3. Execution of a Flat Model Program on iRMX ... 117
Figure 9-1. Example Segment Map .. 131
Figure 10-1. Board Scanning Algorithm... 149
Figure 10-3. Algorithm for the Client Board .. 152
Figure 10-4. Algorithm for the Server Board ... 152
Figure 11-1. OS Extension Code in Assembly Language ... 168

Programming Techniques Chapter 1 1

iRMX® Application
Development Environment

This manual describes techniques for developing applications on the iRMX®

Operating System (OS). You can also use this manual as a porting guide for your
iRMX applications.

This manual assumes you are familiar with these concepts:

• Programming in the iRMX environment using either C, PL/M, or Assembler

• Using iRMX jobs, tasks, mailboxes, files, and segments

• Using object module linking

• Using object libraries

See also: iRMX objects, Introducing the iRMX Operating Systems
and System Concepts

1

2 Chapter 1 Application Development Environment

Examples Provided with the Operating System
The iRMX OS provides code examples to help you learn about the iRMX application
development environment. These examples are in various subdirectories of the
/rmx386/demo directory. This manual gives instructions on compiling and running
the examples, which are summarized in Table 1-1.

Table 1-1. Code Examples in this Manual

Example Description Chapter

C language: Multitasking demo, basic concepts, compiling, binding Ch. 3

Debug Session (PL/M) Ch. 5

Porting code: PL/M language differences
Porting code: assembly language differences
Device Driver Porting (8274)

Ch. 6
Ch. 6
Ch. 6

Using Compact and Large Memory Models Ch. 7

Using Flat Memory Model Ch. 8

C language: Multibus II, board scanning
C language: Multibus II, creating a data transport protocol port
C language: Multibus II, send/receive RSVP
C language: Multibus II, send/receive a data chain message
C language: Multibus II, sending a message in fragments
C language: Multibus II, receiving a message in fragments

Ch. 10
Ch. 10
Ch. 10
Ch. 10
Ch. 10
Ch. 10

Assembly language: Macro definitions for common source code
Assembly language: Invoking system calls
Assembly language: Interrupt handler
Assembly language: OS Extension

Ch. 11
Ch. 11
Ch. 11
Ch. 11

PL/M: External declarations, interface libraries, and binding
PL/M: Multitasking, basic concepts, compiling, binding
PL/M: <Ctrl-C> handler

Ch. 12
Ch. 12
Ch. 12

Application Development Tools
Intel provides tools for developing iRMX applications for your system, including:

• Assemblers

• Compilers

• Application building utilities

• Debuggers

• Non-Intel tool support

See also: C Library Reference

Programming Techniques Chapter 1 3

Assemblers
Use the ASM386 assembler to produce code for your application. ASM386 supports
Intel386 , Intel486 , and Pentium® microprocessors.

See also: Developing Applications in Assembly Language, Chapter 11,
ASM386 Assembly Language Reference

Intel Compilers
Use these compilers to develop iRMX applications:

• iC-386

• PL/M-386

• Non-Intel C compilers

The iC-386 compiler supports the ANSI standard for the C programming language
with some extensions.

The iC-386 and PL/M-386 compilers produce 32-bit code. Depending on the
compiler, non-Intel C compilers produce either 16-bit or 32-bit code.

✏ Note
Many non-Intel compilers can produce C or C++ code. The iRMX
OS supports only C code produced with such compilers, not C++
code.

See also: iC-386 Compiler User's Guide,
C Library Reference,
PL/M-386 Programmer's Guide

4 Chapter 1 Application Development Environment

Intel compilers offer these features:

• Separate compilation of source code files

• Libraries containing external declaration calls and literal files

• Inter-language programming in C, PL/M, or Assembler

• Support for ROM-based applications

• Code optimization for optimizing code performance or size

• In-line functions and macros to access microprocessors and numeric
coprocessors

• Run-time libraries to access floating-point support or the OS interfaces

See also: Your compiler's programmer's manual

Optimizing Code

Use these iC-386 compiler controls to optimize your code:

• The noalign control produces compact nonaligned data structures. Data
structures used for iRMX system calls require the noalign control. Non-Intel C
compilers provide data packing features to perform the same function.

• The optimize control specifies the optimization level the compiler uses to
generate object code. Optimized object code is compact and runs faster but takes
longer to compile.

• The nodebug control requests that the compiler not produce debug information.
This optimizes the code the compiler generates.

• The segmentation controls specify the memory model for an application.
Segmentation controls include: compact, large, and flat.

See also: C Compiler-specific Information, Chapter 4,
iC-386 Compiler User’s Guide

Programming Techniques Chapter 1 5

Non-Intel Compilers

This table lists the non-Intel compilers supported in the iRMX OS.

Supported in MSVC to version 6
32-bit compiler yes (flat model)
32-bit linker yes
librarian yes
make utility yes
assembler yes (in-line)

Application Building Utilities
Application building utilities aid in developing iRMX applications. These utilities
include:

• The LIB386 librarian utility organizes object modules into libraries.

• The BND386 binding utility binds object modules to produce an executable
module or a module for incremental binding.

• The MAP386 map utility creates cross-reference maps of object modules.

• The BLD386 system builder utility builds a working system. You can configure
the Interactive Configuration Utility (ICU) to automatically invoke the BLD386
when generating an application system for the iRMX OS.

See also: Overlays, System Concepts,
LIB386, BND386, MAP386, Intel386 Family Utilities

6 Chapter 1 Application Development Environment

Debugging Tools
You can use several tools to debug your iRMX application programs, such as:

Soft-Scope debugger
For most debugging tasks, use the Soft-Scope debugger. It provides all
the tools you need for debugging iRMX applications, including source-
level and symbolic debugging capabilities.

SDM System Debug Monitor (SDM)
A debug monitor for debugging systems, disassembling code, executing
breakpoints, displaying memory, and downloading programs.

iRMX System Debugger (SDB)
A symbolic debugging tool for debugging iRMX applications and
system programs. This tool extends the SDM’s disassembly functions
for interpreting iRMX calls, data structures, and stacks.

See also: Debugging an Application, Chapter 4,
Soft-Scope Debugger User’s Guide,
System Debugger Reference

Programming Techniques Chapter 1 7

Application Development Process
The iRMX development environment provides the programming tools needed to
develop 32-bit applications. Figure 1-1 shows the development process for 32-bit
applications using Intel tools. Figure 1-2 shows the development process if you are
using non-Intel tools.

AEDIT Source Files

Object Files

Library

FILETOOLACTIVITY PROGRAM

Create
Source

Files

Translate
Source

Code

Run-Time
Libraries

Load

Fortran-386

ASM386

PL/M-386

Application
Loader

LIB386

BND386

Soft-Scope
III

RCONFIGURE

Bind
Object

Files

Execute/Debug
Application

Software

W-2503

Executable
iRMX 32 Bit

Program

iRMX
Development/

Target
System

iRMX
iSDM III/SDB

iRMX 32 Bit
Interface
Libraries

iC-386

iRMX is a registered trademark of Intel Corporation

Figure 1-1. The 32-bit Application Development Process (Intel Tools)

You can use the 32-bit compiler and utilities from iRMX using the RUN86 utility.
This is user-transparent through aliases provided by the iRMX OS.

8 Chapter 1 Application Development Environment

OS
independent

C library

Cstart
module

Intel
header files

OMF-386
converter

iRMX
executable

Intel Support

Non-Intel
C/C++ compiler

Non-Intel
OMF

Non-Intel
linker

16 bit .EXE or
32 bit .EXP

Non-Intel
librarian

Non-Intel
LIB format

Non-Intel Tools

OM02627-2

iRMX C++
class library

C App
source code

Figure 1-2. The 32-bit Application Development Process (Non-Intel Tools)

■■ ■■ ■■

Programming Techniques Chapter 2 9

Target Environment Development 2
This chapter describes the Multibus (MB) target file modification and generation on a
PC development environment.

Generating Target Files
The Interactive Configuration Utility (ICU) enables you to modify the definition files
(:icu:*.bck) to create Multibus (MB) target files in a PC-hosted system.

See also: ICU User's Guide and Quick Reference

For example, you can generate files on a PC (using DOSRMX or iRMX for PCs),
and then copy these files to your target MB system.

Generating a Target File Example
You can use the ICU to generate new target files or modify existing files. In this
example, create a new target file by modifying an existing definition file for the SBC
486133SE board. You can create the file on a PC and then copy the file to a Multibus
system.

1. Create a working directory called "icutest", attach to this directory, and then
copy the definition file to this directory.

- crdir icutest <CR>

- af :icutest: <CR>

- copy :icu:486133.bck to $ <CR>

2. Invoke the ICU under the DOSRMX or iRMX for PCs OS and select the 486133
definition file.

- icu386 486133.bck <CR>

3. The ICU outputs this query. Answer with a y.

Do you want to restore from the file ? [y]/n: y <CR>

10 Chapter 2 Target Environment Development

4. Answer the next query with a n.

Do you want to overwrite input file [y]/n: n <CR>

5. At the next query, enter an output name different than that of the definition file.

Enter new output file name: icutest.def <CR>

6. The ICU acknowledges and processes the command and outputs:

The Definition File has been restored to the file:

ICUTEST.DEF

To see the RESTORE messages, inspect the log file:

ICUTEST.LOG

✏ Note
A message may appear that the definition file has been modified.
Ignore this message.

The ICU queries:

Continue to the ICU Main Menu? [y]/n: y <CR>

The ICU command appears with the list of available ICU commands.

7. For this example, we will change the target directory of the generation files.
First, view the main screen to list all changeable options in the definition file.

ENTER COMMANDS: c gen <CR>

8. The Generation (GEN) screen appears.

9. To change the target directory, type:

:raf=/msa32/boot/icutest <CR>

10. Press <CR> twice. The GEN screen re-appears with the modified settings.

11. Return to commands screen by quitting the GEN screen.

:q <CR>

12. Save the file before generating the new files.

:s <CR>

Programming Techniques Chapter 2 11

13. Generate the new definition file at the commands screen.

ENTER COMMANDS: g <CR>

14. You are queried for a prefix.

Enter a letter to be used as prefix: r <CR>

15. The ICU generates the files used by the definition file. When the ICU finishes,
the ENTER COMMAND: prompt appears. Now exit from the ICU.

ENTER COMMAND: e <CR>

16. On exiting, the ICU creates the definition file, icutest.def. It also creates the
submit file, icutest.csd. This file generates the target environment files. In this
example, the target environment is a Multibus system using a SBC 486133SE
board.

17. Run the submit file.

- submit icutest over icutest.out echo <CR>

18. Use AEDIT to access icutest.out to check for any generation errors. If there are
no errors, then copy the target environment file to the target system. If there are
errors, invoke the ICU using icutest.def.

- icu386 icutest.def <CR>

Correct the errors, save the changes and regenerate the target environment file.

19. To copy files to a target system, use either iRMX-Net or TCP/IP.

A. Use iRMX-Net by:

1) Attaching to the Multibus system:

- ad remote_system as rem r <CR>

2) Copying icutest to the Multibus system.

- copy icutest to :rem:msa32/boot <CR>

See also: iRMX-Net, Network User's Guide and Reference,
FTP, TCP/IP and NFS for the iRMX Operating System

12 Chapter 2 Target Environment Development

✏ Note
The boot directory, msa32/boot, is for definition files on Multibus
II systems. For Multibus I systems, substitute /boot32 for
msa32/boot.

B. If both the development system and the target environment system have
TCP/IP running, use FTP to upload the files.

20. Test the files on the new target system.

21. Test and re-generate the files if required.

■■ ■■ ■■

Programming Techniques Chapter 3 13

Designing an Application 3
This chapter presents concepts for designing and creating an iRMX application. This
includes application code demonstrating the concepts. Details about the location and
running of the example application code, demo.c, are located at the end of the
chapter. This code is written in C using the iC-386 compiler. You should be familiar
with C syntax and structures to understand the examples.

See also: Introducing the iRMX Operating Systems,
System Concepts,
iC-386 Compiler User's Guide,
C Library Reference
C Compiler-specific Information, Chapter 4

14 Chapter 3 Designing an Application

Application Categories
Most iRMX applications are written for one of three categories: measurement,
process control, or data acquisition. There is no distinct differentiation between
categories and an application can overlap one or more categories.

Measurement
A point of sale terminal for a gas station is an example of an iRMX application
focusing on measurement. As the fuel tank on a car fills, the application tracks the
quantity pumped by interacting with a flow meter. When the fuel tank is filled and
flow stops, the flow meter signals the application to calculate the cost based on the
amount of fuel pumped.

Process Control
An assembly line conveyor belt is an example of an iRMX application focusing on
process control. Component parts are removed from the conveyor belt by human
operators and placed in certain devices. Electronic eyes monitor the number of
component parts passing at given points. If the human operators require more time to
remove a part from the belt, an electronic eye recognizes that fewer parts are being
removed from the belt. The electronic eye then triggers the application to slow the
speed of the belt.

Data Acquisition
A telephone communications network is an example of an iRMX application
focusing on data acquisition. The network is partitioned into specific sectors. The
application monitors the amount of telephone traffic that occurs in each sector.
Subsequent analysis identifies those sectors that have large amounts of telephone
traffic. Routing schemes could then be developed to handle the large amount of
traffic. Additionally, connection times could be recorded before and after to check
the efficiency of the routing schemes.

Programming Techniques Chapter 3 15

Design Concepts
All iRMX applications, regardless of category, use some or all of these functions:

• Handling I/O

• Interprocess communication

• Intertask synchronization

• Creating and cataloging objects

• Controlling devices

• Allocating memory

• Processing exceptions

• Prioritizing tasks

• Computing

• Handling interrupts

• File sharing

C Multitasking Demo Program
The demonstration program, demo.c, presents programming concepts which use some
or all of the functions listed above. Use this program as an aid in developing your
own application code. This program is described later in greater detail.

Demo Code Location
The /rmx386/demo/c/intro directory contains this source code and related files. It is
easier to understand the examples if you produce hard copies of the source code or
view them from a console screen using an ASCII text editor.

make file to generate example
demo.c main program code containing the initial task
task2.c second task code
crbpool.c buffer pool code
except.c exception handler

Demo Example Generation Environment Command

iC-386 demo iRMX make

Watcom C demo DOS make -f makefile.w

Microsoft C demo DOS make -f makefile.w

Borland C demo DOS make -f makefile.w

16 Chapter 3 Designing an Application

The C versions of the demo are generated from the same demo.c source. All versions
of the demo are functionally equivalent, and all run under the iRMX OS.

See also:C Compiler-specific Information, Chapter 4

Table 3-1 lists the functions and associated system calls used in demo.c.

Table 3-1. Demo.c Functions and System Calls

Procedure Functions Demonstrated System Calls Used

main() IORS mailbox creation rq_create_mailbox

Getting terminal attributes rq_a_special

Receiving an IORS rq_receive_message

Deleting an IORS rq_delete_segment

Setting terminal attributes rq_s_special

Getting iRMX version dq_get_system_id

Building the job's object directory rq_create_mailbox
rq_catalog_object
rq_create_semaphore
rq_catalog_object
rq_create_buffer_pool
rq_catalog_object
rq_get_priority
rq_create_task
rq_catalog_object

Getting buffer pool memory rq_request_buffer

Using semaphores rq_send_message
rq_receive_units

Displaying data to the console rq_s_write_move

write_read Console I/O rq_a_write
rq_wait_io
rq_wait_iors
rq_a_read

prompt_and_wait Console I/O rq_a_write
rq_wait_io
rq_wait_iors

Job termination from console rq_exit_io_job

Programming Techniques Chapter 3 17

Running the Multitasking Demo

✏ Note
Before running any C examples, load the clib.job or configure it
into the OS with the ICU. You can manually load it by entering
this command at the HI prompt:

- sysload /rmx386/jobs/clib.job

See also: clib.job, System Configuration and Administration

The makefile file first compiles and binds the source files using iC-386 and BND386
and then creates an executable program named demo. Enter these commands to first
attach to the directory where the demo files reside and then use the make command
to run the makefile:

- af /rmx386/demo/c/intro <CR>

- make <CR>

To execute demo, enter:

- demo <CR>

After typing the filename, the program prompts you with this message:

iRMX III C Multitasking Demo, VX.Y

Welcome to the C Multitasking Demo!

At the prompt you will be given 60 seconds to hit any key.

If you do not hit a key the demo will continue anyway.

You may hit an "E" if you wish to exit the program.

You now have <xx> seconds left to hit a key.

After you press a key, the program clears the screen and prompts you with this
message:

Please hit a key which will be forwarded to task2 for processing.

Assuming you enter the letter X for the first keystroke, the main program, containing
the initial task, reads the X from the terminal and passes it on to Task2. Task2 wakes
up and prints out this message to the screen:

TASK2 PROCESSING X

Please hit a key which will be forwarded to task2 for

processing

XX

18 Chapter 3 Designing an Application

The X continues to appear at the rate of one per second and will repeat indefinitely
until you enter another keystroke. Also, notice that the prompt to enter another
keystroke is buried in the middle of Task2's processing message and the string of
letters that it displays.

Entering the next two keystrokes concludes the program. This output assumes you
enter the characters Y and Z:

TASK2 PROCESSING Y <CR>

Please hit a key which will be forwarded to task2 for

processing

YY

TASK2 PROCESSING Z <CR>

This concludes the C Demo Program.

This would be a good time to examine the program code

to see how these features work.

We will now exit by generating an error.

INTERNAL ERROR IN MODULE demo.c at line #450

STATUS = 0023: E_SUPPORT

After you enter the final keystroke, the initial task recognizes that you have entered
three characters, signaling the code to end the program. The initial task ends the
program before Task2 begins to repeatedly print the third character to the console
screen.

Using the Makefile

Each of the demonstration programs has its own unique makefile for compiling and
binding the programs.

A listing of the makefile for generating demo follows:

--* makefile *-*-*

#

This makefile generates the iC-386 multitasking demo

for iRMX III.

#

Invocation: make

#

##

Compile and Bind switches

##

Programming Techniques Chapter 3 19

DEBUG = nodb

TYPE = noty

##

Tool and library definitions

##

LANG = :lang:

CLIBDIR = :sd:intel/lib

RMXLIBDIR = :sd:rmx386/lib

RUN86 = :utils:run86

##

Binder definitions

##

BND3 = :sd:intel/bin/bnd386.exe

BND = $(RUN86) $(BND3)

BNDFLAGS = $(DEBUG) $(TYPE) rn(code to code32)

##

Compiler definitions

##

CC3 = $(LANG)ic386

CC = $(RUN86) $(CC3)

CFLAGS = cp dn(0) extend ot(3) si(:include:) nosrclines $(DEBUG)

##

Libraries

##

CLIB = $(CLIBDIR)/cifc32.lib

CSTART = $(CLIBDIR)/cstart32.obj

RMXLIB = $(RMXLIBDIR)/rmxifc32.lib

UDILIB = $(RMXLIBDIR)/udiifc32.lib

##

Implicit rules

##

.SUFFIXES: .obj .c

.c.obj:

$(CC) $*.c oj($@) pr($*.lst) $(CFLAGS)

20 Chapter 3 Designing an Application

##

Targets and explicit rules

##

default: demo

demo: crbpool.obj demo.obj except.obj task2.obj $(BND3) $(CSTART) $(CLIB) \

$(RMXLIB) $(UDILIB) makefile

$(BND) &

$(CSTART), & C startup module

demo.obj, & C Demo modules

task2.obj, &

except.obj, &

crbpool.obj, &

$(CLIB), & iRMX III Shared C Interface library

$(UDILIB), & iRMX III UDI Interface library

$(RMXLIB) & iRMX III System Call Interface library

$(DEBUG) oj($@) pr($@.mp1) &

rn(code32 to code) ss(stack(2400H)) rc(dm(4000h,0FFFFFh))

##

Dependency information

##

CMNCINCS = :include:i186.h :include:i286.h :include:i386.h \

:include:i86.h :include:locale.h :include:reent.h \

:include:rmxc.h :include:rmxtypes.h :include:time.h \

:include:rmx_err.h :include:stdio.h :include:stdlib.h \

:include:rmx_c.h :include:yvals.h :include:_align.h \

:include:_noalign.h :include:_restore.h :include:udi.h \

:include:udi_c.h demo.h makefile

crbpool.obj : $(CMNCINCS) crbpool.c

demo.obj : $(CMNCINCS) demo.c :include:ctype.h :include:rmx_def.h \

:include:string.h

except.obj : $(CMNCINCS) except.c :include:rmx_def.h

task2.obj : $(CMNCINCS) task2.c :include:rmx_def.h :include:string.h

Programming Techniques Chapter 3 21

Programming Concepts
The specific programming concepts conveyed in demo.c are:

• Creating objects using iRMX system calls

• Cataloging objects so tasks can share them

• Processing an Input/Output Result Segment (IORS) data structure to check the
status of an I/O operation

• Using response pointers during inter-task communication

• Simultaneous task processing and data sharing

• Using buffer pools to create memory resources for a job

• Processing in-line exceptions resulting from iRMX system calls in application
code

• Getting and setting terminal attributes

• Performing screen input/output to read and write data using the physical terminal
screen

• Performing simultaneous input/output so tasks perform I/O operations
independent of one another

• Accessing the IORS

• Processing interrupt tasks

Creating and Cataloging Objects
Every iRMX object has attributes. These attributes enable you to customize the
object's use in an application. You specify these attributes when you create an object.

Listed below are iRMX objects used in the demo.c program.

Objects in demo.c Description of use

Task An initial task does input and a subtask does output

Semaphore One semaphore synchronizes the initial task and subtask

Mailbox Two local mailboxes exchange input/output and a global
mailbox transfers between the initial task and subtask

Buffer pool One buffer pool passes messages and objects between
mailboxes

22 Chapter 3 Designing an Application

Operations on Objects
The OS has an object-based architecture. There are three main advantages to
working in an object-based OS. These advantages are: design consistency, type
checking protection, and customization.

Design Consistency. The Nucleus provides objects and functionality found in most
normal OSs.

See also: Objects, Introducing the iRMX Operating Systems,
Nucleus, System Concepts

Type Checking Protection. Because each object has a type attribute, the OS can
check for incorrect parameters (object token) in a system call, thereby avoiding
system call errors.

Customization. You can define additional object types and system calls (known as
operating system extensions). Use these features to customize the OS. However,
limit the OS extensions to one application for easy maintenance.

Creating Tasks
If you have tasks that need to share resources (such as data or code), consolidate
those tasks in the same job. If you have tasks that perform dissimilar functions,
separate those tasks into different jobs. This maximizes modularity and adds
protection because of separate memory spaces.

For simple applications that involve only one programmer and that have no
maintenance or expansion plans, it is simpler to put all the tasks in one job which lets
the tasks:

• Share the same processor

• Use one ready queue

• Are removed from the task queue when waiting for a resource

• Share the same memory space

• Pass data by reference

• Communicate using mailboxes and semaphores

Programming Techniques Chapter 3 23

Tasks in different jobs on the same processor can:

• Pass data by reference through global segments

• Use one ready queue

• Have different memory spaces but all in the processor's memory space

• Share the same priority scheme

Dividing an application into jobs provides:

Functional partitioning Each job is a group of tasks that perform similar
functions. This enables easier management and
understanding of large projects. Programmers only need
to understand how their code interfaces with the code
produced by other members of the project team. As long
as the interfaces between code modules are controlled,
the project itself can respond to significant design
changes without adverse schedule impact.

Memory separation Each job has its own memory pool. This provides
protection from segmentation overflow. Tasks from
different jobs have a minimal impact on an application if
one becomes a runaway task.

Privilege To isolate an environment in which privileged
operations occur, group those tasks with high priorities
into one job.

See also: Jobs, System Concepts

24 Chapter 3 Designing an Application

Task Creation Code Example

In this example, only two tasks exist: the initial task (in the file demo.c) and the
subtask Task2 (in the file task2.c). Regardless of the number of tasks in your
particular job, the principles for task creation remain the same.

The following code, from demo.c, shows how the initial task creates, assigns a
priority to, and catalogs Task2.

priority = rq_get_priority(CALLER,&status);
Get the priority of the calling task, which is the initial
task.

task = rq_create_task (-- priority,
Create the subtask and give it a lower priority than the
initial task.

&task2,
Set the start address by pointing to the first instruction
of Task2.

_get_ds(),
Set the data segment parameter to create its own data
segment.

(UINT_16 far *) NULL,
Set the stack pointer for automatic stack allocation.

(NATIVE_WORD) 0x2400,
Set the stack size to 2400H bytes. Set stack sizes to at
least 300H bytes for Nucleus system calls and 700H
bytes for C library calls.

(UINT_16) 0,
Set task flags to zero, indicating no floating point
instructions.

&status);
A pointer to where the condition code returns.

error_check (__LINE__, __FILE__, status);
Each time a system call is made, a subsequent call is
made to error_check, which checks the error of status
of the previous system call.

udistr((char *) &rmx_str,"TASK2");
Call iRMX procedure udistr to convert Task2 from a
null-terminated C string to a counted iRMX string.

rq_catalog_object(CALLER, task, &rmx_str, &status);
Catalog the subtask, Task2, in the object directory of
the initial task (in demo.c).

Programming Techniques Chapter 3 25

Creating and Cataloging Objects Code Example

The following code, from demo.c, catalogs and creates a mailbox, a semaphore and a
buffer pool.

See also: System Concepts, for information about creating these objects.

✏ Note
If debugging with Soft-Scope debugger or the iRMX System
Debugger (SDB), catalog objects so TOKEN values correlate with
their respective names in the program. Although the $ character is
valid in a variable name, it should be omitted from variable names
used as input to the debugger.

mail_box = rq_create_mailbox (FIFO_QUEUING, &status);
Create a mailbox.

error_check (__LINE__, __FILE__, status);
udistr((char *) &rmx_str, (const char *) "MBX");

Convert MBX from a C string to an iRMX string.

rq_catalog_object (CALLER,
CALLER is null so the object is cataloged in the initial
task's object directory.

mail_box,
Catalog the mailbox object.

&rmx_str,
Give the object the catalog name of MBX.

&status);
A pointer to where the condition code returns.

error_check (__LINE__, __FILE__, status);
semaphore = rq_create_semaphore ((UINT_16) 0,

Create a semaphore and set the initial number of units
to zero.

(UINT_16) 3,
Set the maximum number of units to three.

FIFO_QUEUING, &status);
Use zero to indicate a FIFO queuing scheme.

error_check (__LINE__, __FILE__, status);
udistr((char *) &rmx_str,"SEMAPHORE");

Convert the C string to an iRMX string.

26 Chapter 3 Designing an Application

rq_catalog_object (CALLER, semaphore, &rmx_str, &status);
Catalog the semaphore in the initial task's job directory.

error_check(__LINE__, __FILE__,status);
pool_tkn = create_buf_pool((UINT_16) 18, (UINT_16) 18, (UINT_16) 0,
(NATIVE_WORD) POOL_SEG_SIZE, &status);

Create a buffer pool through procedure
create_buf_pool in external file crbpool.c.

error_check (__LINE__, __FILE__, status);
udistr((char *) &rmx_str,"BUFFER");

Convert the C string to an iRMX string.

rq_catalog_object (CALLER, pool_tkn, &rmx_str, &status);
Catalog the buffer pool in the initial task's job directory.

error_check(__LINE__, __FILE__,status);

Processing Input/Output Result Segments (IORS)
IORS data structures are processed to check the status of an I/O operation. The I/O
system creates an IORS when a task requests an I/O operation, such as through the
a_special system call. The resulting IORS contains information about the request
and the device on which the I/O was performed.

The resulting IORS contains information such as error conditions, the type of
operation, the device, and pointers to where the data is stored. The status is checked
by accessing specific fields in the IORS data structure. For example, fields, such as
status and unit_status, would contain status (including error) codes after the
I/O operation.

An IORS is also an integral part of writing a device driver. Since a device driver
interacts between the I/O system and the related device, an IORS provides
information about the operation performed on the device as well as about the device
itself.

See also: DUIB and IORS: Device driver Interfaces, Driver Programming
Concepts and System Call Reference

Programming Techniques Chapter 3 27

Processing an IORS Code Example
The initial task, in demo.c, performs the I/O operation of getting the attribute of the
input device. The iRMX OS creates the IORS and then checks it to verify that the
attributes were successfully obtained.

rq_a_special (input_conn_t, SPECIAL_GET_TERM_DATA, (void far *)
&term_atts, read_mbx, &status);

This I/O operation gets terminal attributes of the input
device. The IORS will be placed in the read_mbx
mailbox when it arrives.

error_check(__LINE__, __FILE__,status);

The initial task then waits until the IORS arrives. This code illustrates how it waits:

#ifdef _FLAT_
If flat model is used, you must use the following call to
access the IORS.

rq_wait_iors (input_conn_t,
Return the IORS specified in the previous connection.

read_mbx,
Set iors_token to receive the terminal attributes.

INFINITE_WAIT,
Wait infinitely for the terminal attributes to arrive.

&iors, &status);
Point to a buffer where the IORS is placed.

error_check (__LINE__, __FILE__, status);

error_check (__LINE__, __FILE__, iors.status);

#else

iors_tkn = rq_receive_message (read_mbx,
Set iors_token to receive the terminal attributes.

INFINITE_WAIT,
Wait infinitely for the terminal attributes to arrive.

(SELECTOR far *) 0, &status);
Specify the mailbox which receives a status response.

error_check(__LINE__, __FILE__,status);
iors = (A_IORS_STRUCTURE *) buildptr(iors_tkn, (void near *) 0);

Build a pointer to the IORS.

28 Chapter 3 Designing an Application

error_check (__LINE__, __FILE__, a_iors->status);
Check the status of the IORS.

rq_delete_segment (iors_tkn, &status);
Manually delete the IORS because a_special does not
recycle it.

Using a Response Pointer During Inter-task
Communication

Tasks usually need to communicate with one another. Examples of this are:

• A serving task informing a requesting task that a process is done

• One task informing another that it has received some information

• A requesting task passing information to several serving tasks

• One task passing data to another

• Two or more tasks synchronizing their processing

Mailboxes in demo output messages, get user input, and transfer data. A semaphore
synchronizes tasks.

The application uses two local mailboxes to pass messages and capture data.
Messages to the terminal (output) are also sent to a mailbox. A task checks the
mailbox for a message and sends the message to the terminal. User response to the
message is captured in a data buffer and placed in another mailbox (in the same task)
and returned to the main program.

A mailbox is also used to pass a data buffer among tasks. The initial task places a
data buffer in the mailbox and catalogs the mailbox in its object directory. Demo
imposes a restriction by explicitly cataloging the subtask. The restriction means only
demo and its subtask (Task2) can access the mailbox. Depending on your
application, cataloging a subtask is optional. The subtask accesses the mailbox and
processes the data buffer it contains.

The semaphore synchronizes activities between the initial task and the subtask. The
initial task creates a semaphore which tracks units sent to it by the subtask. The
semaphore is assigned a maximum number of units which serves as a trigger. As the
subtask processes each data input from the initial task, it sends one unit to the
semaphore. The semaphore accumulates these units. The initial task stops and
checks the semaphore to see if it contains its maximum number of units. If it does,
the initial task knows that the subtask has completed all of its processing.

Programming Techniques Chapter 3 29

Task Synchronization/Data Passing Code Example
The initial task synchronizes its processing with Task2, the subtask. The initial task
waits for, receives, and processes keystrokes at the same time that Task2 is writing
the previous keystroke to the terminal and waiting for the next one. This
synchronization enables input from and output to the terminal to be in separate tasks.

After the initial task obtains user input of a keystroke, it passes the data to Task2
through a mailbox. Task2 prints the keystroke to the screen and acknowledges the
input by incrementing the count in the semaphore. It continues printing while waiting
for another input from the initial task.

These are the functions and associated system calls used in the file task2.c (Task2).

Task Name Functions Demonstrated System Calls Used

task2 Getting object directory elements
Character and Semaphore I/O

rq_lookup_object
rq_receive_message
rq_create_mailbox
rq_a_write
rq_wait_io
rq_release_buffer
rq_send_units

This code from the initial task, in demo.c, shows data passing between tasks and the
synchronization of tasks among each other.

for (i = 1; i <= 3; i++)
{

Start a loop which will execute three times.

:

(code)
:
rq_send_message (mail_box,

Send a message to the mailbox signaling Task2 to
execute.

buff_tkn,
Send the data buffer, containing the user keystroke, in
the mailbox.

semaphore, &status);
Identify the semaphore as the object notified by Task2
when it finishes a process.

30 Chapter 3 Designing an Application

:

(code)
:
rq_receive_units (semaphore,

Monitor the semaphore to see if it has received three
units from Task2.

(UINT_16) 3,
Set the trigger number to three units.

INFINITE_WAIT, &status);
The semaphore waits infinitely to get three units. Task2
sends one unit to the local variable semaphore, which
points to and increments semaphore in the initial task.
After the initial task sends the third and final keystroke to
Task2, the initial task examines the number of units in
the object semaphore and, since it matches the trigger
number of three, continues processing.

}
End the loop.

The initial task and Task2 communicate and synchronize through mailboxes and
semaphores. This code listing is for Task2, located in the file task2.c:

dummy = udistr ((char *) &rmx_str,"MBX");
mail_box = rq_lookup_object (CALLER, &rmx_str, INFINITE_WAIT,

&status);
Look up MBX as the mailbox defined in the object
directory of the initial task.

error_check (__LINE__, __FILE__,status);
dummy = udistr ((char *) &rmx_str,"BUFFER");
pool_tkn = rq_lookup_object (CALLER, &rmx_str,INFINITE_WAIT,

&status);
Use the buffer defined in the object directory of the initial
task.

error_check (__LINE__, __FILE__, status);
buff_tkn = NULL_TOKEN;

Set this buffer so Task2 does not release it back to the
buffer pool.

buff2_tkn = rq_receive_message (mail_box, INFINITE_WAIT,
(SELECTOR far *) &semaphore, &status);

Retrieve the buffer containing the keystroke from the
mailbox. If the mailbox is empty then wait until it is filled.

Programming Techniques Chapter 3 31

write_mbx = rq_create_mailbox (FIFO_QUEUING, &status);
Create a local mailbox to output messages to the
terminal.

while (TRUE)
Start an infinite loop.

{
if (status == E_OK)
{
rq_a_write (output_conn_t, (UINT_8 far *) message,

(NATIVE_WORD) strlen (message), write_mbx, &status);
Output the message that Task2 is processing.

error_check (__LINE__, __FILE__,status);
#ifdef_FLAT_

If a flat model is used, use the following call.

rq_wait_iors (output_conn_t, write_mbx, INFINITE_WAIT, &iors,
&status);

Waits for an IORS and copies it to a user-provided
buffer.

#else
actual = rq_wait_io (output_conn_t, write_mbx, INFINITE_WAIT,

&status);
Returns the concurrent condition code for the prior call
to the calling task.

#endif
error_check (__LINE__, __FILE__,status);
if (buff_tkn != (selector) NULL)

{rq_release_buffer (pool_tkn, buff_tkn, (UINT_16) 0,
&status);

Release the buffer back to the buffer pool. However,
skip this the first time through since the buffer has not
been retrieved from the buff_tkn variable.

error_check (__LINE__, __FILE__,status);
}

buff_tkn = buff2_tkn;
Transfer the buffer from buff2_tkn to buff_tkn. This
enables buff2_tkn to monitor the mailbox and accept a
new buffer (keystroke) when it arrives.

32 Chapter 3 Designing an Application

rq_send_units (semaphore, (UINT_16) 1, &status);
Every time Task2 receives a keystroke from the initial
task, Task2 sends a unit to the object semaphore.
Task2 knows where to send the unit because the initial
task passed the token for semaphore to the mailbox.
This token for semaphore is kept in Task2's version of
the variable semaphore (semaphore is a local variable).

error_check (__LINE__, __FILE__,status);
}

:
(code)
:

rq_a_write (output_conn_t, (UINT_8 far *) dummy,
(NATIVE_WORD) 1, write_mbx, &status);

Output the buffer (keystroke) to the terminal.

error_check (__LINE__, __FILE__, status);
#ifdef _FLAT_

rq_wait_iors (output_conn_t, write_mbx, INFINITE_WAIT,
&status);

#else
actual = rq_wait_io (output_conn_t, write_mbx, INFINITE_WAIT,

&status);
#endif

error_check (__LINE__, __FILE__, status);
buff2_tkn = rq_receive_message (mail_box, (UINT_16) 100,

(selector far *) &semaphore, &status);
Check the mailbox to see if a buffer has been sent by
the initial task. If a buffer does not arrive after one
second, return to the top of the loop and repeat
processing.

}

Using Buffer Pools
Buffer pools provide a shared resource of buffers, which are fixed-length segments of
memory. Any tasks can use these segments, eliminating the need to repeatedly create
or delete memory segments. Use this sequence when creating a buffer pool:

1. Create the buffer pool using the create_buffer_pool system call. One of the
pool's attributes is having its memory segments defined as contiguous or daisy-
chained. Select the contiguous attribute for applications where few data objects
are passed or few object transfers are made. Select the daisy-chain attribute if
the application transfers a large number of data objects or has a large number of
transfers.

Programming Techniques Chapter 3 33

2. Once the buffer pool is created, initialize the pool by allocating a set of memory
segments (buffers), for the pool. Use the create_segment system call to define
segments. The size of the segment must accommodate the size of any objects
being passed. For example, demo uses one byte buffers. This size
accommodates the user-input keystroke captured in the buffer.

3. Release the buffer into the buffer pool using the release_buffer system call.
This call initially populates the buffer pool, as well as recycles buffers when they
are no longer needed. The most efficient way to create buffers and release them
to the buffer pool is with a loop. Set the loop control variable to the initial
number of buffers in the pool.

See also: Buffer ports, System Concepts

✏ Note
Create and fill buffer pools at the beginning of your job since
creating iRMX memory segments is a slow process relative to
other system calls.

Creating Buffer Pools Code Example
The initial task in demo.c creates and catalogs a buffer pool. Once the buffer pool
has been established, the calling task must request a buffer, assign data to it, and pass
the buffer to the subtask (Task2). After receiving the buffer, the serving task must
secure the data and release the buffer back to the buffer pool for possible use by other
tasks.

The file crbpool.c contains a procedure, called by demo.c, that creates a buffer pool.
This file also creates an initial number of memory segments, and releases them to the
buffer pool. A token for the buffer pool is returned to the caller. These are the
functions and associated system calls used in crbpool.c.

Procedure Functions Demonstrated System Calls Used
create_buf_pool Buffer pool creation rq_create_buffer_pool

Buffer pool initialization rq_create_segment
rq_release_buffer

The initial task in demo.c calls procedure create_buf_pool (defined in crbpool.c)
as follows:

pool_tkn = create_buf_pool

This call passes parameters to an external procedure in
crbpool.c, which creates the buffer pool and the buffers
used in the pool.

34 Chapter 3 Designing an Application

((UINT_16) 18,

Create a maximum of 18 buffers.

(UINT_16) 18,

Create a minimum of 18 buffers.

(UINT_16) 0,

Set the flags attribute to zero to create contiguous
buffers.

(NATIVE_WORD) POOL_SEG_SIZE, &status);

Set the size of each buffer to one byte.

error_check (__LINE__, __FILE__, status);

udistr((char *) &rmx_str,"BUFFER");

rq_catalog_object (CALLER, pool_tkn, &rmx_str, &status);

Catalog the buffer pool in the object directory of the
initial task.

The following is code from procedure create_buf_pool in crbpool.c:

SELECTOR create_buf_pool (
Receive the attributes sent from the initial task.

UINT_16 max_bufs,
Parameter declaring the maximum number of buffers in
the buffer pool.

UINT_16 init_num_bufs,
Parameter declaring the initial number of buffers in the
buffer pool.

UINT_16 attrs,
Parameter declaring attributes for the buffer pool as
contiguous buffers.

NATIVE_WORD size,
Parameter declaring the size of each buffer as one byte.

UINT_16 *status_ptr)
Exception pointer.

{

SELECTOR buf_pool;
Variable declaration for the buffer pool.

SELECTOR buf_tok;
Variable declaration for the buffer.

int i;

Programming Techniques Chapter 3 35

Variable declaration for the loop control variable.

buf_pool = rq_create_buffer_pool (max_bufs, attrs, status_ptr);
Create the buffer pool.

error_check (__LINE__, __FILE__,*status_ptr);

for (i = 1; i <= init_num_bufs; i++)
Set the loop counter variable to the minimum number of
buffers so the buffers are created when the loop
finishes.

{ buf_tok = rq_create_segment (size, status_ptr);
Create the buffer (memory segments).

if (*status_ptr != E_OK)
return (NULL_TOKEN);

Check if the segments are created correctly.

rq_release_buffer (buf_pool, buf_tok, (UINT_16) 2,
status_ptr);

Make the buffer part of the buffer pool.

if (*status_ptr != E_OK)
return (NULL_TOKEN); }

return (buf_pool); }
Return the token for the complete buffer pool back to the
initial task.

36 Chapter 3 Designing an Application

Using Buffer Pools Code Example
In order to use buffers from the buffer pool, the initial task and Task2 must request
and release buffers. Recall that when the initial task was involved in its loop to send
user-supplied keystrokes to Task2, the object being sent was a buffer. This code,
from demo.c, shows how the main program requests a buffer from the buffer pool
and waits for data to come to it.

for (i = 1; i <= 3; i++)
Set the loop to capture three keystrokes.

{
buff_tkn = rq_request_buffer(pool_tkn, (UINT_32) 1, &status);

Request a token for a free buffer from the buffer pool.

error_check (__LINE__, __FILE__, status);
#ifdef _FLAT_

If the flat model is used, you must use a temporary
buffer.

*tmp_buff = write_read(message_2, INFINITE_WAIT, &status)
actual = rq_move_data(_get_ss(), tmp_buff, buff_tkn,

(void *) 0, (UINT_32) POOL_SEG_SIZE, &status);
error_check (__LINE__, __FILE__, status);

#else
buffer = (UINT_8) buildptr(buff_tkn, (void near *) 0);

Build a pointer to the buffer.

*buffer = write_read (message_2, INFINITE_WAIT, &status);
The program waits indefinitely for the user to enter a
keystroke. When a key is pressed, the character goes
into a buffer, which is a pointer constructed from
buff_tkn.

error_check (__LINE__, __FILE__, status);
#endif

rq_send_message (mail_box, buff_tkn, semaphore, &status);
A semaphore is passed as the exchange to which the
response should be sent.

error_check (__LINE__, __FILE__, status);
}

After Task2 receives the buffer in a mailbox, it processes it, and then releases the
buffer to the pool for recycling. This code is from task2.c.

Programming Techniques Chapter 3 37

{
rq_a_write (output_conn_t, (UINT_8 far *) message, (NATIVE_WORD)

strlen(message), write_mbx, &status);
Output a message to the terminal that Task2 is
processing.

error_check (__LINE__, __FILE__,status);
#ifdef _FLAT_

If the flat model is used, use the following call.

rq_wait_iors (output_conn_t, write_mbx, INFINITE_WAIT,
&iors, &status);

#else
actual = rq_wait_io (output_conn_t, write_mbx, INFINITE_WAIT,

&status);
Retrieve the status of the a_write and delete the
resulting IORS.

#endif
error_check (__LINE__, __FILE__,status);

if (buff_tkn != (selector) NULL)
{
rq_release_buffer (pool_tkn, buff_tkn, (UINT_16) 0, &status);
error_check (__LINE__, __FILE__,status);
}

The first time through the loop, the variable buff_tkn is
NULL, or zero, so Task2 skips the code that releases
the buffer back to the buffer pool. The second and third
times through, Task2 releases the buffer before
capturing the currently received keystroke. The
parameter buff_tkn contains the token that indicates
which buffer to release (the same buffer requested by
the initial task for the previous loop pass).

buff_tkn = buff2_tkn;
After releasing the buffer, buff_tkn can be set equal to
buff2_tkn, the token of the buffer containing newly
arrived keystroke. The buff2_tkn token is now free to
accept the next user keystroke when it arrives at the
mailbox.

rq_send_units (semaphore, (UINT_16) 1, &status);
Task2 sends a unit to the semaphore. Task2 will send a
total of three units to the semaphore.

error_check (__LINE__, __FILE__,status);
}

38 Chapter 3 Designing an Application

Methods of Screen Input/Output
Applications can write from a task buffer to a connected physical file. A connected
physical file can be any I/O device. This example obtains physical file connections
for the keyboard (input) and console screen (output). When dealing with I/O
connections, tokens must be used. This example shows two methods that you can use
to perform this type of I/O.

See also: a_write and wait_io system calls,
System Call Reference

Screen Input/Output Code Example
A very simple type of I/O is used for clearing the screen. This code, from demo.c,
shows the procedure:

void clear_screen
(void)
{int i;

Declare the loop control variable.

for (i = 1; i <= 25; i++)
printf ("\n");

This loop clears the console by sending it 25 newlines.

}

The second method of I/O first establishes the input and output devices in procedure
main in demo.c:

input_conn_t = _get_rmx_conn (fileno (stdin));
Get the token for the read operation connection. The
token received is for the standard input, i.e., the
keyboard.

output_conn_t = _get_rmx_conn (fileno (stdout));
Get the token for the write connection. The token
received is for standard output, i.e., the console.

Programming Techniques Chapter 3 39

In procedure write_read (demo.c), the program sends output to and waits for input
from the I/O devices established above.

rq_a_write (output_conn_t,
Write a message to the console by sending it the
console token.

(UINT_8 far *) msg_3,
Sends the message addressed by msg_ptr to the
screen.

(NATIVE_WORD) strlen(msg_3),
Sends the number of bytes to be written, which is the
size of the message addressed by msg_ptr.

write_mbx, &status);
The mailbox that receives the IORS.

error_check (__LINE__, __FILE__, status);
#ifdef _FLAT_

rq_wait_iors (output_conn_t, write_mbx, INFINITE_WAIT,
&iors, &status);

#else
actual = rq_wait_io (output_conn_t, write_mbx, INFINITE_WAIT,

&status);
Returns the actual number of bytes written in the
previous a_write call. The waiting period for wait_io to
return data is set to infinite. This tells the procedure that
no I/O will occur until data arrives. This call also
recycles the IORS and deletes the IORS for all other
BIOS calls. The user does not have to specifically
delete the IORS.

40 Chapter 3 Designing an Application

In-line Exception Processing
Exceptions can be processed three ways: in-line, using the default exception handler,
or by assigning your own exception handler. Each one has advantages and
disadvantages. In-line handling is the simplest to create but you must also explicitly
pass control to your exception handler. Use one of several default handlers to let the
system handle the default. The appropriate default handler (selected in the ICU)
should be used for your application. Create your own exception handler to have
control over handling exceptions. Ensure that the exception is genuine, for example,
that the handler does not read an interrupt as an exception.

Writing Your Own Exception Handler
You need to consider several things when you write your own exception handler. For
example, 32-bit code requires 32-bit exception handlers, and 16-bit code requires 16-
bit exception handlers. The only time this is not true is when the exception handler
deletes the offending job, deletes the offending task, or suspends the offending task.

Another consideration is the type of exception you are processing. With this release
of the iRMX OS, you can write exception handlers that process hardware traps. This
means that your handler can process three groups of errors:

• Hardware traps

• Numeric Processor Extension (NPX) exceptions

• All other programming and environmental conditions

Finally, if you set the system’s default exception handler in the ICU on the (NUC)
Nucleus screen by setting DSH equal to "User", your exception handler module must
have these characteristics:

• The public entry point must be named rqsysex.

• It must be 32-bit code.

• It must be compiled as Near using Intel OMF386 tools (iC-386, PL/M-386, or
ASM386).

Programming Techniques Chapter 3 41

Exception Handler Control Flow
When writing a custom exception handler, follow these guidelines:

• Use the /rmx386/demo/c/intro/nstexh.h file as a starting template for your
exception handler.

• Code the exception handler initialization at the beginning of the application.

• Pass control to the custom exception handler rather than to the system default
exception handler.

• Check for the type of exception and handle appropriately. Hardware exceptions
can now be returned to your handler. Consequently, you need to check for these
exceptions as well as programming and environment exceptions.

See also: get_exception_handler, rqe_get_exception_handler,
set_exception_handler, and rqe_set_exception_handler system calls,
System Call Reference

• You can delete the calling task that encounters the exception by using a NULL
task token when invoking the delete_task system call. The system default
exception handler does this automatically.

• Check if a task is interrupt-driven and if it is, use the reset_interrupt system call
to delete it. If your exception handler deletes tasks using the delete_task system
call, be sure that it does not attempt to delete an interrupt task. The delete_task
system call cannot delete an interrupt task. Attempting to do so causes an
exception, re-triggering the exception handler to try and delete the task again.
This causes an infinite loop.

See also: delete_task and reset_interrupt system calls,
System Call Reference

• Depending on your application requirements, your exception handler can have
full or partial control.

See also: Exception Handling, System Concepts,
Default Exception Handler screen, ICU User's Guide and Quick
Reference

42 Chapter 3 Designing an Application

Exception Processing Code Example
Demo calls except.c, which contains two procedures that handle exceptional
conditions. The first procedure gets the current exception handler and specifies the
level of control. The second is an in-line exception handler.

These are the functions and associated system calls used in except.c.

Procedure Functions Demonstrated System Calls Used

set_exception Get the exception handler
Set the exception mode

rq_get_exception_handler
rq_set_exception_handler

error_check Format the errors that occur
during system calls

rq_c_format_exception
rq_exit_io_job

The initial task (in demo.c) and Task2 (in task2.c) call procedure set_exception,
the exception handler.

See also: get_exception_handler and
set_exception_handler system calls, System Call Reference,
Managing Exceptional Conditions, System Concepts

set_exception((int) NO_EXCEPTIONS);
Set the exception mode to zero, which tells the OS
never to pass control to default exception handler
routines. (NO_EXCEPTIONS) is defined as zero in the
header file rmx_def.h).

This code in procedure set_exception, from except.c, creates and invokes the
exception handler.

rq_get_exception_handler ((EXCEPTIONSTRUCT far *) &except_info,
&status);

Transfer exception handler information to the data
structure addressed by except_info.

except_info.exception_mode = except_mode;
Replace the exception mode with the zero parameter
passed from the initial task. This tells the system not to
use the default exception handler.

Programming Techniques Chapter 3 43

rq_set_exception_handler ((EXCEPTIONSTRUCT far *) &except_info,
&status);

Set the exception handler information with the altered
data addressed by except_info (which is zero). This
system call tells the system under what condition to pass
control to the exception handler.

This code in procedure error_check, from except.c, formats the exception and tells
you which error has occurred and where in the application it occurred.

rq_c_format_exception ((char *) &local_string, (UINT_16)
_MAX_STRING, test_status, (BYTE) 1, &status);

Identify the type of error for the condition and place it in
local_string.

local_string.text[local_string.length] = 0;
Terminate the string with a null (0) for output purposes.

printf ("\nInternal Error in module %s at line # %d\n", module,
number);

Output where the error occurred.

printf ("Status = %s\n", &local_string.text);
Output what type of error occurred.

44 Chapter 3 Designing an Application

Getting and Setting Terminal Attributes
Before accessing the terminal for input or output, you must retrieve the current
attributes and change them as necessary. Use the BIOS a_special system call and its
spec_func parameter or use the EIOS s_special call and its function parameter.

See also: a_special and s_special system calls, System Call Reference

Getting/Setting Terminal Attributes Code Example
The initial task's code (in demo.c) uses both the a_special and s_special calls to
access terminal attributes. The two calls use different I/O Result Segments (IORS).
This code example in the initial task gets the current terminal attributes by calling
a_special.

rq_a_special (input_conn_t,
Select the token on which to perform the function.

SPECIAL_GET_TERM_DATA,
Specify the parameters to request the current terminal
attributes.

(void far *) &term_atts,
Specify the pointer to the array where the attribute data
is placed.

read_mbx, &status);
Specify the mailbox which receives the IORS.

The initial task then waits until the IORS arrives. This code (demo.c) illustrates how
it waits:

#ifdef _FLAT_
rq_wait_iors(input_conn_t, read_mbx, INFINITE_WAIT, &iors, &status);
error_check (__LINE__, __FILE__, status);
error_check (__LINE__, __FILE__, iors.status);
#else
iors_tkn = rq_receive_message (read_mbx,

Set iors_token to receive the terminal attributes.

INFINITE_WAIT,
Wait infinitely for the terminal attributes to arrive.

(SELECTOR far *) 0, &status);
Specify the mailbox which receives the IORS token.

Programming Techniques Chapter 3 45

iors = (A_IORS_DATA_STRUCTURE *) buildptr(iors_tkn,
(void near *) 0);

Build a pointer to and check the status of the IORS.

error_check (__LINE__, __FILE__, iors->status);
#endif

#ifndef _FLAT_
rq_delete_segment (iors_tkn, &status);

Manually delete the IORS because a_special does not
recycle it.

error_check (__LINE__, __FILE__, status);
#endif

term_atts.connection_flags = ((term_atts.connection_flags
& (~CMASK_LINE_EDIT))|1) | CMASK_ECHO;

Modify two terminal attributes to cause no line editing
and no keystroke echoing to the screen. This long
assignment statement alters the least-significant three
bits of the 16-bit connection_flags element of the
term_atts data structure. The literals
C_MASK_LINE_EDIT and C_MASK_ECHO are equal to
3 and 4, respectively. (The NOT operator is defined in
the header file not.h. The literals C_MASK_LINE_EDIT
and C_MASK_ECHO are defined in the header file
tscrn.h. These header files are in the same directory as
demo.)

rq_s_special (input_conn_t, SPECIAL_SET_TERM_DATA, (void far *)
&term_atts, (IORSSTRUCT far *) 0, &status);

Write the modified terminal attributes back to the
physical terminal connection. When using the s_special
call, you can avoid specifically deleting the IORS.

46 Chapter 3 Designing an Application

Interrupt Processing

✏ Note
Interrupt processing involves knowledge of interrupts, interrupt
controllers/lines, level of control, the Interrupt Descriptor Table
(IDT), and interrupt tasks. These concepts are described in the
Managing Interrupts chapter of the System Concepts manual.

Applications under the iRMX OS use interrupts to deal with external events.
Processing these events asynchronously enables the OS to facilitate real-time
processing.

These program examples cover interrupt handling, interrupt tasks, and interrupt
latency. These examples use this hardware setup:

• PC Bus system running the iRMX OS

• Data Translation DT2806 Multi-Function I/O Expansion Board jumpered as
follows:

– I/O address 370H: In - W25, W29, W30, W31, and W32; Out - W26, W27,
and W28

– Timer 0 output to IRQ3: In - W24; Out - W2

✏ Note
Since the application uses IRQ3, make sure no other card, such as a
network card, uses this interrupt. Also, since IRQ3 disables
COM2, ensure no other devices use COM2.

Interrupt Handlers
Use an interrupt handler to process interrupts when real-time speed and minimal
processing are required. You can use an interrupt handler to call an interrupt task,
which is slower to respond but enables more flexibility in processing. An interrupt
handler executes into the context (stack, data segments) of the task that was
interrupted. An interrupt task has its own context and runs with equal or lower
priority interrupts disabled.

There are two example applications that demonstrate interrupt handling and interrupt
tasks. The interrupt handling example is inthand.c and the interrupt task example is
inttask.c. Both of these examples are located in the /rmx386/demo/c/int directory.

Programming Techniques Chapter 3 47

The inthand.c example generates an interrupt and uses an interrupt handler to process
the interrupt. The main program of the example sits idle while the interrupt handler
processes the interrupt in the background. Every time an interrupt occurs, the
interrupt handler increments a count. Finally, the main program prints the number of
interrupts processed by the interrupt handler while it was sleeping.

The inttask.c example processes interrupts using an interrupt task. Every time an
interrupt occurs, the interrupt task prints the message that it has processed that
interrupt. The main program sits idle until the interrupt task is finished.

A single makefile compiles and binds these examples. To run the examples, attach to
the directory, run make, and then run the executable.

- af /rmx386/demo/c/int <CR>

- make <CR>

To run inthand.c, type:

- inthand <CR>

To run inttask.c, type:

- inttask interrupts <CR>

where interrupts is the number of interrupts to process. The default value is 10
(minimum) and the maximum value is 100.

Interrupt Servicing
This section illustrates how interrupts are serviced. Tables 3-2, 3-3, and 3-4 outline a
scenario where an interrupt handler is assigned to a level, an interrupt arrives at that
level and is serviced, and the assignment of an interrupt handler is canceled. The
tables show these cases:

• In Table 3-2, the interrupt handler deals with the interrupt (handler is assigned to
master level 4).

• In Table 3-3, the interrupt handler invokes an interrupt task, either immediately
or after filling a single buffer of data (handler is assigned to master level 4).

• In Table 3-4, an interrupt handler and an interrupt task use multiple buffers to
service interrupts (handler is assigned to slave level 35).

The Interrupt Levels Necessarily Disabled column of each table indicates that the
events of the example cause certain levels to be enabled or disabled. Other events
outside the scope of the example might cause other levels to be disabled as well.

See also: Interrupts, System Concepts

48 Chapter 3 Designing an Application

Table 3-2. Servicing Interrupts with an Interrupt Handler

Step Events Explanation

Interrupt Levels
Necessarily
Disabled

1 -- No interrupt handler assigned to level
M4.

M4

2 rq_set_interrupt
(LEVEL_4,0,...);

A task assigns an interrupt handler to
level M4.

None

3 Level 4 device
interrupts

An interrupt arrives at level M4. All

4 . The interrupt is serviced by the interrupt
handler.

All

5 rq_exit_interrupt
(LEVEL_4,...);

Interrupt hardware reset by the interrupt
handler.

All

6 Interrupt handler
returns.

Interrupts are re-enabled. None

7 rq_reset_interrupt
(LEVEL_4,...);

A task cancels the assignment of an
interrupt handler to level M4.

M4

Programming Techniques Chapter 3 49

Table 3-3. Servicing Interrupts with an Interrupt Task

Step Events Explanation

Interrupt Levels
Necessarily
Disabled

1 -- No interrupt handler assigned to level
M4. M4

2 rq_set_interrupt
(LEVEL_4, 1, ...);

A task assigns an interrupt handler to
level M4 and assigns itself to be the
interrupt task for that level. It specifies
that one signal_interrupt request can be
outstanding.

M4-M7,
50-77

3 rq_wait_interrupt or
rqe_timed_-
interrupt
(LEVEL_4,...);

The interrupt task begins to wait for an
interrupt. None

4 Level 4 device
interrupts

An interrupt arrives at level M4. The
interrupt handler gains control and
optionally, does some servicing. The
handler may service several interrupts by
performing steps 4 through 6 of
Table 3-2. All

5 rq_signal_interrupt
(LEVEL_4,...);t

The interrupt handler invokes the
interrupt task.

M4-M7,
50-77

6 .
.

The interrupt is serviced by the interrupt
task.

M4-M7,
50-57

7 rq_wait_interrupt or
rqe_timed_-
interrupt.
(LEVEL_4,...);

The interrupt task finishes and begins to
wait for another level M4 interrupt.
Control passes back to the interrupt
handler and then back to an application
task. None

8 rq_reset_interrupt
(LEVEL_4,...);

A task cancels the assignment of a
handler to M4. M4

50 Chapter 3 Designing an Application

Table 3-4. Servicing Interrupts with an Interrupt Handler, an Interrupt Task, and
Multiple Buffering

Step Events Explanation

Interrupt Levels
Necessarily
Disabled

1 -- No interrupt handler assigned to level 35 35

2 rq_set_interrupt
(LEVEL_35, 2, ...);

A task assigns an interrupt handler to
level 35 and assigns itself to be the
interrupt task for that level. It specifies
two signal_interrupt requests can be
outstanding (double buffering).

M4-M7
36-77

3 rq_wait_interrupt or
rqe_timed_interrupt
(LEVEL_35,...);

The interrupt task begins to wait for an
interrupt. None

4 Level 35 device
interrupts

An interrupt arrives at level 35. The
interrupt handler gains control and does
some servicing. All

5 .
.
.

The handler services all interrupts, as
described in steps 4 through 6 of
Table 3-2, until the first buffer is full. All

6 rq_signal_interrupt
(LEVEL_35,...);

The interrupt handler invokes the
interrupt task.

M4-M7,
36-77

7 .
.
.

The interrupt task processes the full
buffer. Meanwhile, the interrupt handler
services interrupts, as described in
steps 4 through 6 of Table 3-3, until the
next buffer is full.

M4-M7,
36-77

8 rq_wait_interrupt or
rqe_timed_interrupt
(LEVEL_35,...);

The interrupt task finishes and waits for
another signal from the interrupt
handler. Control passes back to the
interrupt handler and then back to an
application task. None

9 rq_reset_interrupt
(LEVEL_35,....);

A task cancels the assignment of an
interrupt handler to level 35. 35

Programming Techniques Chapter 3 51

Interrupt Latency
The intlat.c example, in the /rmx386/demo/c/intlat directory, measures interrupt
latency. Interrupt latency is the delay between when a device issues an interrupt
request and when the microprocessor responds to the request.

See also: Interrupts, System Concepts

The intlat.c example uses this software setup:

• An Esubmit file, measure.csd, executes intlat a specified number of times,
saving each of the executions' data in a unique data file. See the comment
header of measure.csd for more information on this feature.

• A file makefile, which compiles and binds intlat.c.

See also: readme.txt, measure.csd, /rmx386/demo/c/intlat directory,
Driver Programming Concepts

A single makefile compiles and binds the example. To run the example, first attach
to the directory, and then run makefile to generate the proper files.

- af /rmx386/demo/c/intlat <CR>

- make <CR>

Now run measure.csd:

- esubmit measure(executions,timings_per_execution) <CR>

where executions is a number from 1 to 999 (3E7H), and timings_per_execution is a
number from 1 to 8192 (2000H).

The results are placed in the log directory in the file named intlat.xxx.

✏ Note
The intlat executable can be run alone but it requires certain
parameters. To view the parameters, enter:

- intlat -HELP <CR>

■■ ■■ ■■

52 Chapter 3 Designing an Application

Programming Techniques Chapter 4 53

C Compiler-specific Information 4
This chapter provides information on:

• The iC-386 compiler

• Non-Intel tools you can use

– The iRMX-supplied elements and how to use them

– Debugging your object code

• Adding a first-level job created with non-Intel tools

Using the iC-386 Compiler to Develop iRMX
Applications

Support files supplied with the iC-386 compiler facilitate iRMX application
development. Using these files enables you to use iRMX system calls like C
procedures calls.

Using the C Language Header Files
The iRMX directory structure includes Intel-supplied header files in the /intel/include
directory. These files have an extension of .h. Header files provide data structure
definitions used by iRMX system calls and useful literal definitions used in iC-386
code. Use #include statements to include the header files.

These header files provided with the OS allow you to write programs with or without
underscores in system call names, structure data types, and condition code
mnemonics.

See also: Header Files, System Call Reference, for a list of header files to include
in your programs.

54 Chapter 4 C Compiler-specific Information

Binding Your Code to Interface Libraries
After you have written your programs and inserted include statements for the
necessary header files, compile the code and bind it to the appropriate iRMX
interface library.

Interface libraries supplied with the OS provide a standard interface to the system
calls. The interface libraries contain procedures that correspond to iRMX system
calls. The interface procedure performs operations needed to invoke the actual
system call, such as to call gates.

See also: Interface Libraries, System Call Reference,
Using the 80386 Binder, Intel386 Family Utilities,
Detailed bind sequence descriptions, iC-386 Compiler User's Guide

✏ Note
When using header files or other external files, make sure you
specify the correct path to the file, especially when using a
makefile.

Condition and Error Codes
The header files rmxerr.h and rmx_err.h in the /intel/include directory define iRMX
condition codes that may occur during system operations. The condition codes are
divided into three categories:

• Programmer errors

• Environmental conditions

• Hardware traps

A programmer error is a condition, such as a syntax error, that can be changed in the
application code. An environmental condition is an OS problem over which you have
no control. A hardware trap is when the microprocessor generates a hardware
interrupt request based on the occurrence of certain internal microprocessor events.

The header files list the condition codes by OS layer and by ascending numeric
values. Each entry includes the condition code mnemonic, the numeric value, and a
brief description.

See also: Condition codes in individual call descriptions, Master list of condition
codes, and Header files, System Call Reference

Programming Techniques Chapter 4 55

Using Non-Intel Tools to Develop iRMX Applications

✏ Note
C++ is not supported. Many of these tools allow you to develop C
or C++ applications. The iRMX OS supports only C applications
developed with these tools. There is no iRMX support for C++
applications.

The iRMX OS environment allows you to develop C applications using Microsoft
MSVC 32-bit versions to version 6.

For assembly code, you can use Microsoft MASM which produces 32-bit code
accepted by the Microsoft linkers.

The iRMX OS provides these elements:

• A set of common C header files, compatible with all supported compilers.

• A custom cstart module for each supported compiler, in each supported memory
model.

• An iRMX Shared C Library that provides an iRMX/C interface and is
compatible with all supported compilers. It is compatible with existing iC-386
applications without recompiling or relinking.

Using Microsoft C /C++ Development Tools
Microsoft C/C++ tools are tailored to the Windows environment so you cannot use
the default compiler switches, libraries, and header files. Override the defaults with
options, libraries, and header files appropriate for the iRMX environment as listed
here.

This section describes only the switches known to be necessary or to cause problems.
Some switches not discussed here may be useful in your application, however, these
have not been evaluated.

✏ Note
The compiler and linker invocations in this section illustrate the use
of required switches, but this is not how the example programs
invoke these tools. Examine makefile.m in the
\rmx386\demo\c\intro directory to see the invocation used in the
examples.

56 Chapter 4 C Compiler-specific Information

Microsoft Visual C++ Compiler Invocation

iRMX applications require certain project settings in Microsoft Developer Studio. To
view and verify settings required by iRMX software, select Microsoft Developer
Studio’s Project>Settings menu option. The table below lists the required settings;
leave all other settings at their default values.

✏ Note

The \iRMXIII\Project directory includes a flat model sample program
that is compiled using the Microsoft Developer Studio (MSVC 6.0).
Each subdirectory under the Projects directory is a separate workspace
for MSVC

Table 4-1. Build Settings for Microsoft Developer Studio

Tab Category Field Value

General Microsoft Foundation Classes Not using MFC

Debug This tab requires no special settings.

Custom Build This tab requires no special settings.

Common options Display only field; shows values derived from other fields
on this tab.

Debug info C7 compatibleGeneral

Optimizations Disable
Maximize Speed

Code Generation Calling convention __cdecl *

Precompiled
headers

Not using precompiled
headers

Enabled (checked)

Preprocessor definitions WIN32 _DEBUG
_WIN32

EC++

Preprocessor

Ignore standard include paths Enabled (checked)

Project Options Display only field; shows values derived from other fields
on this tab.

Important: You must add value:
/heap:0x100000,0x2000

Link

General Object/library modules

Generate debug info

Additions library path

Ignore all default libraries

cstrtf3m.obj
ciff3m.lib
netiff3m.lib
rmxiff3m.lib

Enabled (checked)

c:\irmxIII\lib

Enabled (checked)

Programming Techniques Chapter 4 57

Customize Output filename

Use program database

Must have an .RTA
extension

Disabled (not
checked)

Debug Debug info

Debug info

Microsoft format

Enabled (checked)

Enabled (checked)

Input Object/library modules

Additions library path

Ignore all default libraries

cstrtf3m.obj
ciff3m.lib
netiff3m.lib
rmxiff3m.lib

c:\irmxIII\lib

Enabled (checked)

Output

Stack allocations Reserve

Commit

0x4000

0x2000

Version information Major

Minor

21076

20052

Resources This tab requires no special settings.

Browse Info This tab requires no special settings.

Using Header Files
The iRMX OS provides a set of common C header (#include) files that work with
all supported compilers. The header files support all compiler-specific C data types
and compiler-specific aliases. One file, yvals.h, contains all compiler-specific
declarations, macros, and built-ins. It determines which compiler you are using and
automatically makes the necessary adjustments.

These are a few of the header files designed to use with non-Intel development tools,
with definitions and suggestions:

<_align.h> Starts 2-byte/4-byte alignment (16-bit/32-bit compilers). This
header file (with <_noalign.h>) is required to support multiple
compilers.

<_noalign.h> Ends multiple-byte alignment (see _align.h above); provides
compiler-independent byte alignment. You can include this
header file before structures to be affected, and then change
back to _align.h.

<_restore.h> Returns structure alignment to the compiler default (as
specified on the command line).

<rmxtypes.h> Defines iRMX kernel data types (UINT_8, etc.) to make them
available to C programmers.

58 Chapter 4 C Compiler-specific Information

<yvals.h> Contains standard C values, macros, built-in functions, and
support definitions for all supported compilers.

See also: Header files, C Library Reference, for C functions,
iRMX header files, System Call Reference, for iRMX OS definitions

Existing iC-386 Applications
You must use iC-386 version V4.7 or later with the common header files, because the
headers use global align/noalign pragmas instead of individual alignment pragmas for
each structure. The global pragmas do not work correctly with earlier versions of iC-
386, and unexpected results may occur. The individual alignment pragmas for each
structure declaration have been removed from the header files since they are non-
standard.

See also: Structure Data Alignment, in this chapter

Built-in functions
The yvals.h header file provides compiler-independent versions of the common built-
in functions. ANSI C built-in functions are provided for new code, and the iC-386
built-in function names are provided for all compilers to simplify porting an existing
iC-386 application to other compilers.

Listed below are the generic built-in functions provided for all compilers. An
application that uses these built-in functions instead of the compiler-specific built-ins
will remain portable across all supported compilers. Refer to the iC-386 Compiler
User's Guide for more information on the use of these functions.

Function Name Action
buildptr Construct a pointer from a selector and offset
causeinterrupt Generate a software interrupt
inbyte Input a byte from an I/O port
inword Input a word from an I/O port
outbyte Output a byte to an I/O port
outword Output a word to an I/O port
byte_rol Rotate a byte left
byte_ror Rotate a byte right
hword_rol Rotate a 16-bit word left
hword_ror Rotate a 16-bit word right
blockinbyte Input a sequence of bytes from an I/O port
blockinword Input a sequence of 16-bit words from an I/O port
blockoutbyte Output a sequence of bytes to an I/O port
blockoutword Output a sequence of 16-bit words to an I/O port

Programming Techniques Chapter 4 59

selector 16-bit selector data type
disable Disable interrupts
enable Enable interrupts

Calling Conventions
The iRMX system calls and Shared C Library functions require different calling
conventions. These conventions are supported by each compiler in different ways.
To achieve uniform function declarations, all functions and system call prototypes are
declared in the header files with one of the following modifier macros:

_Cdecl Declares the VPL (Variable Parameter List) calling convention, used by
some Shared C Library functions.

_Pascal Declares functions that use the FPL (Fixed Parameter List) calling
convention, including most Shared C Library functions. It also
indicates that the function preserves the (E)DI and (E)SI registers. The
compiler does not need to save these registers.

_Fparam Used for FPL functions that do not preserve (E)DI and (E)SI. This
includes all iRMX system calls. The compiler will produce code
surrounding the call to save and restore these registers, if necessary.

These macros are resolved in yvals.h, where they are mapped into the correct
keyword for each supported compiler. Not all compilers support all of the calling
conventions. For example, the Intel iC-386 compiler does not fully support the
_Pascal convention (it does not preserve EDI/ESI). To resolve this, _Pascal is
mapped to _Fparam in the iC-386 section of yvals.h.

✏ Note
The Microsoft 32-bit compiler does not support the _Pascal calling
convention so _Pascal is mapped to _Cdecl for flat model
applications.

Structure Data Alignment
There are two types of data alignment required in the header files:

• The iRMX Shared C Library accepts and returns structures that are 32-bit
aligned. This means that members of the structure are arranged so that they do
not cross a 32-bit boundary. The compiler adds bytes of 0 between elements as
necessary. The structures are aligned the same for both 16- and 32-bit
applications.

60 Chapter 4 C Compiler-specific Information

• The iRMX system calls accept and return structures that are byte-aligned (also
known as non-aligned).

To support both types of alignment on all supported compilers, the header files
change the setting of the compiler's global alignment switch during compilation.
Your application should therefore make no assumptions about structure alignment.
Instead, the application should include one of these header files before structure
declarations that require alignment or non-alignment:

<_align.h> Enables structure alignment

<_noalign.h> Disables structure alignment

<_restore.h> Restores compiler default alignment (as specified on the
command line)

✏ Note
Do not use the #pragma noalign declaration in any application
that includes the new common header files, including iC-386
applications.

Alignment with iC-386
The iC-386 compiler does not provide a way to return to the default alignment, nor
does it provide a way to determine the default alignment at compile time. This is not
consistent with the common header files, which no longer use individual #pragmas
around every structure. To avoid this problem, set this macro on the command line
for compiler invocation:

__NOALIGN__

The <_restore.h> header file examines this macro when attempting to restore the
default alignment for iC-386. If __NOALIGN__ is defined, <_restore.h> sets the
alignment to noalign. If the macro is not defined, <_restore.h> sets the alignment
to align since this is the iC-386 default.

To use the macro, define it in conjunction with the iC-386 NOALIGN pragma and/or
command line switches. For example:

ic386 hello.c noalign define(__NOALIGN__) /* command line example */

#pragma noalign /* program example */

#define __NOALIGN__

Supported Memory Models
The iRMX OS and the C header files support these memory models:

Programming Techniques Chapter 4 61

• 16-bit large model
• 16-bit compact model
• 32-bit compact model
• 32-bit flat model

If you attempt to compile a program in any other memory model, the header files
return an error message. This prevents you from using an incorrect model that would
not run correctly but would compile and link without errors. The error message is:

#error: Invalid memory model

This feature is not available on iC-386, since the compiler does not always set the
flags that determine the memory model (for example, subsystems do not cause the
compiler to set any of memory model flags).

Using Cstart Startup Code
The provided cstart modules initialize processes and call main(). Link to the proper
cstart module for your compiler and memory model. The files are in the \intel\lib
directory.

Cstart Module Compiler
cstartli.obj Intel 16-bit large
cstartci.obj Intel 16-bit compact
cstart32.obj Intel 32-bit compact
cstrtf3m.obj Microsoft 32-bit flat

Cstart provides the starting address for the program. The generic cstart algorithm is:

1. Set up stack and DS register.
2. Initialize any compiler-specific data.
3. Call any compiler-specific initialization routines.
4. Call get_arguments to obtain the command line arguments.
5. Call main().
6. Call any compiler-specific cleanup routines.
7. Call exit(0).

✏ Note
Upon returning from main(), the program calls exit() with a status
of zero (E_OK). Status from main() is ignored. Since most
programs do not return a value from main(), it is left undefined.
Calling exit() with an E_OK status also prevents random error
messages from appearing on the terminal at program termination.

62 Chapter 4 C Compiler-specific Information

Stack Size
The default stack size provided in the cstart modules is 4 Kbytes. You can override
this size in the link step.

Stack usage for a 16-bit application is actually greater than for an equivalent 32-bit
application, because the OS converts the 16-bit parameters to 32-bits by expanding
them and pushing an entire copy of the parameter frame on the stack before entry to
an OS primitive.

Using Interface Libraries
There are a variety of interface libraries supplied with the OS for the interface to C
library functions and iRMX system calls. For different Intel and non-Intel tools you
must bind (link) to different libraries.

See also: Interface Libraries, System Call Reference, for a complete list of library
files

Debugging with the Soft-Scope Debugger
The Soft-Scope debugger is provided with the iRMX OS. You must convert your
final object module to OMF-386 format before you can debug it with Soft-Scope.
Use the standard Soft-Scope procedures for debugging. If you are using Microsoft C
or Watcom C compilers, you can also do remote debugging with Soft-Scope for
Windows. The debugging tools supplied with non-Intel compilers are not suitable for
on-target iRMX application debugging.

See also: Soft-Scope Debugger User Guide

Summary of Debug Switches
Use the command-line switches shown below to produce debug symbols for the Soft-
Scope debugger. To eliminate debug symbols from your final code, do not use these
switches when compiling, linking, and invoking STL.

Tool Debug Switch

Microsoft C 32-bit Compiler /Z7 /Od
Linker /DEBUG /DEBUGTYPE:CV /PDB:None

■■ ■■ ■■

Programming Techniques Chapter 5 63

Debugging Applications 5
This chapter contains a sample PL/M program demonstrating task communication. A
description of the program is included. The program compiles without errors,
however, it does not run due to an error. The error exists to show the debug process.
A debugged version of this program is also provided.

This chapter outlines a step-by-step process using the SDM monitor (SDM) and
System Debugger (SDB) commands to locate the error, fix it, and then test the
corrected code. Additional debugging techniques and commands are also provided in
addition to instruction on running the example.

Example Application Program
This program includes three tasks:

• An initialization task, called Init, that creates a mailbox and the two other tasks

• A task called Alphonse that exchanges messages using mailboxes

• A task called Gaston which exchanges messages using mailboxes like Alphonse

The debug (error) version of the source code is listed in this chapter. These files are
located in:

/rmx386/demo/plm/sdb/alphonse.plm
/rmx386/demo/plm/sdb/gaston.plm
/rmx386/demo/plm/sdb/init.plm

The version of this program which does not contain an error is in:

/rmx386/demo/plm/intro/alphonse.plm
/rmx386/demo/plm/intro/gaston.plm
/rmx386/demo/plm/intro/init.plm

64 Chapter 5 Debugging Applications

✏ Note
To run the errorless program in the /rmx386/demo/plm/intro
directory, first attach to the directory, then compile the program by
entering make. Finally, run the program by entering tskcom32.

This makefile creates the PL/M multitasking demo and the
tskcom32 program described below.

See also: Designing an Application, Chapter 3, for more
information on the PL/M multitasking demo.

This is how the corrected program (tskcom32) works:

1. The application code runs as a Human Interface (HI) program. Enter the name
of the program at the HI prompt.

2. The task called Init runs first. This task creates a master mailbox and catalogs it
in the root directory under the name Master. It creates the tasks Alphonse and
Gaston then suspends itself.

3. When Gaston receives control, it:

– Gets the token for the mailbox created by Init. Gaston looks up the name
Master in the root job's object directory.

– Creates a segment in which it will place a message and a response mailbox
to which Alphonse will send a reply.

– Loops and places a message in the segment after displaying it on the screen,
sends the segment to the master mailbox, then waits at the response mailbox
for a reply.

4. When Alphonse receives control, it:

– Gets the token for the mailbox created by Init by looking up the name in the
root job's object directory.

– Loops and waits at the mailbox for a message and checks to see if the token
it received is a segment. If so, Alphonse places its own message in the
segment (after displaying it on the screen), then sends the segment to the
response mailbox. If it is not a segment, Alphonse exits the loop and deletes
itself.

The two tasks, Alphonse and Gaston, synchronize by using the two mailboxes.
Gaston sends a message to the first mailbox and waits at the second one before
continuing. Alphonse waits at the first mailbox. When it receives a message, it sends
a reply to the second mailbox and waits at the first for another message. This cycle
continues for six messages.

Programming Techniques Chapter 5 65

After sending its sixth message, Gaston exits the loop. Instead of sending a segment
to the master mailbox, Gaston displays a final message to the screen then sends the
task token (the token for the Init task) to the mailbox. When Alphonse receives this
token and finds it is not a segment, Alphonse exits its loop and deletes itself.

To finish the processing, Gaston causes the Init task to resume processing since Init
suspended itself earlier. When Init takes over, it deletes both offspring tasks and
returns control to the Human Interface level.

Include Files
The init.plm file uses both Nucleus and EIOS calls so it includes the external files for
both these layers. The alphonse.plm and gaston.plm files use Nucleus and HI system
calls so they include the external files for those two layers.

Each task must contain its own set of include files because each is a separately
compiled module. If the tasks were all contained in the same program module, only
one set of $include statements would be needed.

Compiling and Running the Code
The example code contains an error to invoke SDB. A makefile compiles and binds
the example code (init.plm, alphonse.plm, and gaston.plm).

The PL/M compiler commands in makefile do not include controls for selecting the
model of segmentation (small, compact, medium, or large) because the $compact
control was already included in the source files.

The compiler produces three files of object code. If the PL/M compiler command
did not specify names for the object code files, the files would be given the names
init.obj, alphonse.obj, and gaston.obj by default.

66 Chapter 5 Debugging Applications

After compiling, you must bind the object files with the iRMX interface libraries.
The section from makefile shows the bind command lines:

sdbIII:alphonse.obj gaston.obj init.obj

$(BND)

init.obj, &

alphonse.obj, &

gaston.obj, &

$(PLMLIB), &

$(RMXLIB), &

pr($@.mp1) &

oj($@) &

renameseg(code32 to code) &

segsize(stack(+2400)) &

rc(dm(5000,0fffffH))

Bind the three object files, init.ob3, gaston.ob3, and alphonse.ob3, together with the
two libraries plm386.lib and rmxifc32.lib. The $(PLMLIB) alias is for the
/intel/lib/plm386.lib library. This library is the standard PL/M library distributed with
the compiler. The $(RMXLIB) alias is for the /rmx386/lib/rmxifc32.lib library. This
is the 32-bit compact version of the iRMX interface library.

The object control specifies the name of the executable file generated by BND386.
In this case, the file is called sdbiii.

The SEGSIZE(STACK(+2400)) control reserves 2400 bytes of stack in addition to
the amount required by the program. This amount represents the amount required by
iRMX applications that include the Human Interface.

See also: Resource and Stack Size Guidelines, Appendix A

The rc(dm(5000,0fffffH)) control directs BIND386 to produce an STL (single-
task loadable) module and to assign a minimum of 5000H bytes of dynamic memory
to the module.

Programming Techniques Chapter 5 67

Debugging the Program
The sample program does not include error checking even though it contains an error.
This is to demonstrate more features of the System Debugger (SDB). This section
describes two approaches for using SDB to find the error and correct it.

The addresses and token values in these examples have been assigned by the system
in this debugging session. Most of these values will change from session to session.
In a debugging session, it is helpful to record the various addresses and tokens.

Invoking SDM freezes both the application code and the operating system code.
However, you can disassemble and execute the application instructions by using
SDM and SDB commands.

See also: System Debugger Reference

To compile the program, first attach to the directory, then invoke the makefile by
entering:

- af /rmx386/demo/plm/sdb <CR>

- make <CR>

This command produces an executable file called sdbiii. To run sdbiii, type this at
the Human Interface prompt.

- sdbiii <CR>

Debugging Approach #1
When the sample program runs, the system displays this message:

Interrupt 13 at c4f0:00000399 General Protection ECODE =00000000

..

The values c4f0:00000399 are where the Code Segment and Instruction Pointer
Registers (CS:EIP) were pointing when the program halted. (The CS value of c4f0
varies with each invocation of the application.) The prompt (..) indicates that SDM
is active. However, since the program has been executed, you must re-enter SDM to
re-execute the code. Use the CLI-restart feature to return to the Command Line
Interpreter (CLI). This command works only if the existing CS:EIP is GDT-based
protected mode code.

To restart the CLI, enter:

..g 284:1c <CR>

68 Chapter 5 Debugging Applications

The system responds with the Human Interface prompt (-). Next, enter:

- debug sdbiii <CR>

The system responds with:

SEGMENT MAP FOR JOB: 84A8

NAME BASE NAME BASE NAME BASE NAME BASE

LDT(2) C998 LDT(3) C9A0 LDT(4) C9A8

Break At c998:00000000

..

Use SDM's g (go) command to set a breakpoint at the instruction where the program
halted (remember the CS:EIP value is given in the interrupt message displayed when
the program halts). The code segment (CS) value will change each time you re-enter
SDM, but the instruction pointer (EIP) will remain the same. Enter:

..g,399 <CR>

Break At c998:00000399

To find out where you are in the code, use SDM's d (display) command to display a
disassembled block of code. Enter:

..10 dx, <CR>

The system displays this code:

c998:00000399H F366A5 rep movsw

c998:0000039CH 1E push ds

c998:0000039DH 07 pop es

c998:0000039EH B800000000 mov eax,0

c998:000003A3H 8BD0 mov edx,eax

c998:000003A5H 52 push edx

c998:000003A6H 50 push eax

c998:000003A7H 6800000000 push 0

c998:000003ACH 668B057A000000 mov ax,word ptr 07a

c998:000003B3H BF00000000 mov edi,0h 

Programming Techniques Chapter 5 69

The instruction at address c998:00000399 is a move string word instruction. The
only move word instruction in the sample program is the PL/M MOVW call when
Gaston enters the loop after creating the segment.

response$mbox = RQ$CREATE$MAILBOX (/* Create response mailbox */

fifo,

@status);

seg$token = RQ$CREATE$SEGMENT(/* Create message segment */

seg$size,

@status);

DO WHILE count < final$count;

message.count = 23;

CALL MOVW (@main$message, @message.text, SIZE(main$message));

CALL RQCSENDCORESPONSE (/* Send message to screen */

NIL,

0,

@message.count,

@status);

If displaying the instruction does not provide enough information about why the
program halted, look at the surrounding code by displaying forward or backward
from the CS:EIP. Because you specified a comma in the previous DX command, you
can display forward another 10 instructions from the current CS:EIP by entering only
a comma (,). However, since the instruction where the exception occurred is
traceable to the sample code, you know where the program fails. Refer to Debugging
Approach #2 for displaying backward from the CS:EIP.

To examine what happens when the system tries to move the message, return to the
protected-mode prompt (by entering a <CR>) and examine register contents before
and after MOVSW is executed. Enter this command:

..x <CR>

The system displays this:

EAX=07e4ca88 CS=c998 EIP=00000399 EFL=00013297 LDTR=02a0

EBX=00000072 SS=ca70 ESP=000007fc EBP=000007fc TR =0278

ECX=00000017 DS=c9a0 ESI=0000007c FS =ca88 MSW =fffb

EDX=0000ca88 ES=ca88 EDI=00000001 GS =0034

GDTR .BASE=00110000 .LIMIT=0f9ff

IDTR .BASE=0011fa00 .LIMIT=007ff

70 Chapter 5 Debugging Applications

To execute the MOVSW instruction, enter:

..n, <CR>

The system displays:

c998:00000399H F366A5 rep movsw -

Enter a comma:

, <CR>

The system responds with:

Interrupt 13 at c998:00000399 General Protection ECODE =00000000

..

To see how executing this instruction changed register contents, enter:

..x <CR>

The system displays:

EAX=07e4ca88 CS=c998 EIP=00000399 EFL=00003297 LDTR=02a0

EBX=00000072 SS=ca70 ESP=000007fc EBP=000007fc TR =0278

ECX=00000008 DS=c9a0 ESI=0000009a FS =ca88 MSW =fffb

EDX=0000ca88 ES=ca88 EDI=0000001f GS =0034

GDTR .BASE=00110000 .LIMIT=0f9ff

IDTR .BASE=0011fa00 .LIMIT=007ff

In the assembly language MOVSW instruction, DS:ESI represents the source from
which the data is moving; ES:EDI is the destination and ECX is the count.

See also: MOVSW, ASM386 Macro Assembler Operating Instructions/ASM386
Assembly Language Reference

Programming Techniques Chapter 5 71

To check the limit of the ES register, enter:

..ddt(es) <CR>

The system displays:

GDT(6481T) DSEG32 BASE=002ecce0 LIMIT=0001f P=1 DPL=0 ED=0 W=1 A=1 G=0

..

The LIMIT parameter shows that the segment limit is 1FH (31 decimal). Since the
system counts from zero, the segment size is 32 decimal, which is the value assigned
to seg$size in Gaston. The EDI register tries to move the word into memory at
ES:1FH and 20H when the error occurred. The system was trying to write past the
segment limit of 1FH into 20H when the program halted. This suggests the PL/M
MOVW instruction should be changed to a MOVB instruction. At this point, you could
exit SDM, change the PL/M code, then recompile and run it.

However, you can use SDM's x (examine/modify) command to change a register
value and the g command to execute the program. Making changes with the x and s
(substitute) commands enables you to test code without having to recompile and bind
it.

The ECX register contains the count of bytes or words moved. If you decrease the
count in the ECX register from 17 to 15 before you execute the MOVSW instruction,
you should be able to move all the data. Exit and re-enter SDM and set a breakpoint
at the MOVSW instruction by entering:

..g 284:1c <CR>

-debug sdbiii <CR>

..g,399 <CR>

Set the ECX register to 15. Enter:

..x ecx=f <CR>

Now, execute the rest of the program by entering:

..g <CR>

The system responds with:

After you, Alphonse

After you, Gaston

Interrupt 13 at cec8:00000399 General Protection ECODE =00000000

..

Since the change was valid for one pass through the code, the first pass through the
Gaston loop worked. The next pass failed.

72 Chapter 5 Debugging Applications

To return to the CLI, enter:

..g 284:1c <CR>

This partially successful run shows that if you reduce the number of words moved,
the program works. Therefore, to make a permanent fix, you should change the
PL/M MOVW call to MOVB in the sample code, then recompile and bind it.

Debugging Approach #2
You can also make changes in the disassembled code. Suppose you have run the
program for the first time, and the system displayed this message:

Interrupt 13 at 6368:00000399 General Protection ECODE =00000000

..

Restart the system using the CLI-restart feature as you did in Debugging Approach
#1, then re-enter SDM by entering:

-debug sdbiii <CR>

Set a breakpoint at the instruction that was executing when the program failed and
display a block of disassembled code by entering:

..g,399 <CR>

..5 dx <CR>

The system displays:

8340:00000399H F366A5 rep movsw

8340:0000039CH 1E push ds

8340:0000039DH 07 pop es

8340:0000039EH B800000000 mov eax,0

8340:000003A3H 8BD0 mov edx,eax

Programming Techniques Chapter 5 73

To look at the instructions preceding MOVSW, enter:

..14 dx cs:eip - 25 <CR>

The system displays this code:

8340:00000374H 7A00 jle $+02 ;a=00000376

8340:00000376H 0000 add byte ptr [eax],al

8340:00000378H 64C6050000000017 mov byte ptr fs:0,17

8340:00000380H BE7C000000 mov esi,7c

8340:00000385H 668B057A000000 mov ax,word ptr 7a

8340:00000391H B917000000 mov ecx,17

8340:00000396H 8ECO mov es,ax

8340:00000398H FC cld

8340:00000399H F366A5 rep movsw

8340:0000039CH 1E push ds

8340:0000039DH 07 pop es

8340:0000039EH B800000000 mov eax,0

8340:000003A3H 8BD0 mov edx,eax

MOVSW is a repetitive move from DS:ESI to ES:EDI. Looking at the preceding
instructions, you see the instruction at address 8340:00000391 moves 017H into
ECX. Remember that ECX is the count of bytes or words moved. To display the ES
register contents, use this command line:

ddt(es) <CR>

The screen displays:

GDT(6481T) DSEG32 BASE=002ecce0 LIMIT=0001f P=1 DPL=0 ED=0 W=1 A=1

..

74 Chapter 5 Debugging Applications

As in the last example, you can check the limit. Since the segment size is 32
(decimal) and the system is trying to write 17H words, the system fails when it tries
to write past the segment limit. To reduce this count you must move the data.
Re-enter SDM and, using the SDM s command, change the code at 8340:00000391
by entering the following instructions outlined in bold:

Screen Input/Output Comments

..g 284:1c <CR>
-debug sdbiii <CR>
..s cs:391 <CR> Enter SDM to

substitute memory at
EIP=00000391.

e110:00000391 b9 - , Enter comma to step the
count.

e110:00000392 17 - f <CR> Enter the new count.
..g <CR> Re-start code execution.

The system responds with six iterations of this:

After you, Alphonse

After you, Gaston

.

.

.

After six iterations of the previous screen, the monitor displays:

If you insist, Alphonse

-

Programming Techniques Chapter 5 75

Viewing System Objects
Consider that a problem you are experiencing could be deadlock. By looking at
system objects at various stages of execution, you can observe how synchronization
(or lack of it) is occurring. To do this you use SDM commands

You can view any object in a job using the vo (view job object) command (specifying
the job's token) to provide the broad picture of the system state, then the vt (view
token, or display iRMX object) command to focus on individual elements. Suppose,
you want to view the state of the objects before entering the loop in which Gaston
and Alphonse exchange messages. Assume you have stepped through the code,
verifying system calls until you located the CS:EIP for the Nucleus create_segment
system call in Gaston. Re-enter SDM and set a breakpoint at this CS:EIP by
entering:

-debug sdbiii <CR>

..g,352 <CR>

To get the job token, enter:

..vj <CR>

The system displays this screen output. The values in the output may differ from
yours. Comments have been added to the output.

Job Token (iRMX Job Tree) Comments
0258 Root Job

11b8 Human Interface
4f38 Command Line Interpreter

b7e0 Application Job
3f70 EIOS
3968 iRMX NET
3238 BIOS

76 Chapter 5 Debugging Applications

The token for the application job in this output is b7e0. To view objects for this job,
enter:

..vo b7e0 <CR>

The system displays:

Child Jobs:

Tasks: c250 c170 c108

Mailboxes: c238 t c098

Semaphores:

Regions:

Segments: c2a0 c3c0 c418 c100 c8a8 c850

c700 c740 c1f0 c120

Extensions:

Composites: bc10 c7a0

Buffer Pools:

..

At this stage of program execution, two mailboxes exist. The t following mailbox
c238 means one or more tasks are waiting at this mailbox (Alphonse was created
first and is waiting for a message from Gaston). Examine mailbox c238 by entering:

..vt c238 <CR>

The system responds with:

Object type = 3 Mailbox

Mailbox type Object Task queue head c170

Queue discipline FIFO Object queue head 0000

Containing job b7e0 Object cache depth 08

Task queue c170

Use SDB’s u (display system calls in a task's stack) command to view the waiting
task's stack. To unwind the stack, enter:

..vu c170 <CR>

Programming Techniques Chapter 5 77

The system displays:

gate #0430

Return cs:eip - c850:0000020f

c1f0:000007e4 00000040 8075c700 0000003e 0000c700 0000ffff 0000c238

c1f0:000007fc 00000000

(Nucleus) receive message

|.....excep$p.....|...response$p....|..time..|..mbox..|

You can continue to examine objects or set a breakpoint at the return CS:EIP.

Set the CS:EIP by entering:

..g, 20f <CR>

This causes SDM to display:

Interrupt 13 at c850:00000399 General Protection ECODE =00000000

This message indicates that the program halts in Gaston and that c850:00000399 is
the last instruction executing.

Alternative Debugging Techniques
This chapter has shown two ways to find an error and two ways to make temporary
fixes from the SDM/SDB. The message displayed when the program halts contains
the CS:EIP of the last instruction executing. If setting the CS:EIP at this instruction
and displaying the surrounding code does not help you locate this point in your
application code, there is another method.

Use combinations of the vj, vo, vt, vu, and vs commands to locate the running task.
Then set the breakpoint at the CS:EIP of the last executing instruction and display
code, objects, and registers to determine how the system is executing that instruction.

■■ ■■ ■■

78 Chapter 5 Debugging Applications

Programming Techniques Chapter 6 79

Porting Applications 6
This chapter discusses porting existing 16-bit iRMX II code to the 32-bit iRMX III,
DOSRMX, or iRMX for PCs OS. The topics covered are:

• Three different approaches to porting iRMX code

• The compiler switches used to port code

• Language differences for PL/M, C, and ASM

• An example of porting a device driver

• Porting code to PC-bus systems

Before porting code, learn the data types recognized by iRMX OSs. Mismatching
data types when porting code cause program errors.

See also: Data Types, System Call Reference

Porting Code from 16-Bits to 32-Bits
Migrating from 16-bit iRMX II-based applications to 32-bit iRMX III-based
applications increases performance if large data manipulations or numerics are
involved. It also makes code easier to maintain. Use one of these porting strategies
to port your code:

• Use the existing 16-bit object files without any changes.

• Port only the code that gains in performance due to the change to 32 bits.

• Port the entire application to 32 bits.

In the following situations, however, you should not port to 32 bits:

• If the platform on which the application will run uses an Intel 80286
microprocessor and there is no performance reason or other need to move to an
Intel386 or higher microprocessor. The iRMX III OS requires an Intel386 or
higher microprocessor.

• If all computations only involve integers smaller than 64 Kbytes (65,536 bytes)
and there is no present or foreseeable need to use contiguous memory areas
larger than 64 Kbytes.

80 Chapter 6 Porting Applications

• Because the Intel386 microprocessor object module format (OMF386) does not
support memory overlays, iRMX III cannot support overlay loading in 32-bit
applications. iRMX II applications that use overlays can still execute in 16-bit
compatibility mode.

• Applications written in 16-bit require more code and data space (an average of
30%) when ported to 32 bits. Additional space is required for the OS itself. If
there are severe constraints on memory in the system, you should not port to 32
bits.

• In certain cases, the application may be written using a 16-bit compiler for which
no 32-bit compiler is available.

Using Existing 16-Bit Code
Most 16-bit iRMX II executable code does not need to be recompiled for 32-bit
iRMX systems. These 16-bit applications run together with 32-bit applications
without change. For example, the iRMX II dir command can be used on an
iRMX III system without changes.

iRMX II applications (either run-time loadable or configured as first-level jobs) will
run under iRMX III without modification as long as they do not include 16-bit
interrupt-handlers, device-drivers, and OS extensions. Such applications execute in
16-bit compatibility mode.

16-bit C (compiled with iC-286 V4.1 or later) and 16-bit PL/M programs are also
fully binary compatible with iRMX III provided no 16-bit device drivers, interrupt
handlers or OS extensions are used. However, C applications may be more stack-
intensive than PL/M applications. They may run out of stack space under iRMX III
unless they are allocated additional stack size using the SEGSIZE control in
BND286.

Advantages of 32-Bit Application Code
This list describes situations in which it is an advantage to port from 16 bits to 32-bit
code.

• Applications containing intensive computations with unsigned integers larger
than 64 Kbytes (65,536) or signed integers larger than 32 Kbytes (32,768) will
run faster.

• Intel386, Intel486, and Pentium microprocessors offer several bit and bit-string
manipulation instructions. Applications that do bit-field manipulation in
software could improve their performance. Applications that previously used
bytes to store binary flags could be rewritten much more compactly.

Programming Techniques Chapter 6 81

• Applications where the processor might access memory across a 32-bit bus, like
Multibus II, will access it faster.

• When there is a 32-bit interface between the microprocessor, the numeric
processor, and memory; floating-point applications will see a moderate
performance boost because operands are transferred in 32-bit blocks to and from
the processor.

• When manipulating large data arrays, you can use fewer segments because you
are not constrained to the 64 Kbyte size limitation. Data is now accessed in a
single, large (up to 4 Gbytes) segment, which saves the overhead of multiple
segment manipulation. Reading and writing this segment from and to mass
storage is also faster because a single I/O call is used instead of multiple
64 Kbyte-constrained I/O calls.

Porting Entire Applications to 32-Bits
You must recompile and rebind all the code when porting your entire application
system. Although it requires greater effort, this method provides the best overall
performance.

This list describes important considerations when re-generating 16-bit code into
32-bit code.

• The logical pathname (:rmx:) points to the /rmx386 directory instead of /rmx286.
The directory :rmx:inc contains files with EXTERNAL declarations for the
iRMX and UDI calls in the PL/M source.

• You must bind the 32-bit iRMX III code with the 32-bit iRMX and UDI
interface libraries (rmxifc32.lib, udiifc32.lib, in this example).

• When binding compact model object files, a RENAMESEG control must be
used to rename the code segment (output by PL/M-386) from CODE to
CODE32. The code segments of the rmxifc and udiifc libraries are already
named CODE32. In the compact model, only one code segment is allowed and
BND386 can only combine segments that have the same name.

• Use 32-bit word sizes if the 16-bit application being ported has:

– Any arithmetic operation involving DWORDs (in PL/M-286) or long/double
declarations in C-286.

– String searching/copying operations (CMPB/ CMPW/MOVB/MOVW in
PL/M) are limited to 64 Kbyte segments with a 16-bit OS. All physical
memory can be covered by one 32-bit operation.

82 Chapter 6 Porting Applications

– Certain variable declarations at the start of each source module and
procedure/function, especially at the size of arrays. Any arrays of close to
64 Kbyte size, or 32 Kbyte 16-bit WORD size, may benefit from being
extended.

– 80286 code which performs bit manipulation routines. Performance may be
increased by re-coding with 32-bit microprocessor-based functions. These
functions may have to call assembler routines to access these bit
manipulation functions.

Porting 16-Bit PL/M Code to 32 Bits
Once you decide how much application code needs to be ported, you must choose
between two porting processes. The only difference between the two methods is the
invocation switches on the compiler:

WORD16 switch This is typically the easiest method to use when porting code.
This switch causes all WORD values to remain 16-bits and all
DWORD values to remain 32-bits. First, edit your source file
to change the data types of variables that can be larger. For
example, variables containing the offset of indirect near calls
and those that indicate the size of data transfers should be
changed to a DWORD value. Then compile your source code
using the WORD16 switch.

No switches Compile the code you select for porting using the PL/M-386
compiler and no switches. This forces a default value of 16
bits for each HWORD value, 32 bits for each WORD value
and a 64-bit value for each DWORD value. Because 64-bit
arithmetic is much slower than 32-bit arithmetic, you should
carefully review the existing DWORD variables. Those
variables that need to be only 32-bit values should be changed
to WORD variables.

When converting 16-bit PL/M code to 32 bits, you must:

• Change the WORD data type to WORD_16

• Change the DWORD data type to WORD_32

• Use the WORD16 compiler switch

Programming Techniques Chapter 6 83

Differences Between PL/M-386 and Previous PL/M Code
This section describes differences between code that was compiled using versions of
the PL/M compiler other than PL/M-386. If you are using binary compatibility and
not recompiling your code, you do not need to make changes. Some of these
differences are changes to the iRMX OS, others are changes to the compiler. Each
difference is explained along with any changes you need to make are:

• OFFSET is a reserved word in PL/M-386. If you are porting code to 32 bits and
your code contains variables named OFFSET, change these variable names. For
example, change:

DECLARE OFFSET WORD;

To:

DECLARE OFF_SET WORD_32;

• The limits of the PL/M built-in string functions, such as CMPB, FINDB, SKIPB,
SETB, MOVB, CMPW, SETW, and so on, have increased from 0FFFFH to
0FFFFFFFFH. This enables searches of buffers that are greater than 64 Kbytes
in length. You can force the buffer length to remain 64 Kbytes by means of
truncation. That is, you place the result of the CMPB and FINDB functions into
WORD_16 variables and truncate the upper 16 bits. Be sure your code does not
attempt to search past the end of your forced 64 Kbyte segment.

• Change all WORD_16 variables that contain the offset of a POINTER to
WORD_32 variables. For example, change:

DECLARE

PTR$OVERLAY LITERALLY 'STRUCTURE(offset WORD, base TOKEN)';

To:

DECLARE

PTR$OVERLAY LITERALLY 'STRUCTURE(off_set WORD_32,

base TOKEN)';

84 Chapter 6 Porting Applications

• Change all variables that reference data transfer counts from WORD_16 values
to WORD_32 values. For example, change:

DECLARE

save$count WORD,

.

.

.

save$count = iors.count;

To:

DECLARE

save$count WORD_32,

.

.

.

save$count = iors.count;

/* iors.count is now a 32-bit value /*

Porting 16-Bit C Code to 32 Bits
These sections describe the main concerns when creating or modifying 16-bit code
which will be ported to 32 bits. The two main concerns are:

• Including the rmx_c.h file and using its types

• Using the NATIVE_WORD type for variables which will expand from 16 bits to
32 bits when porting your application

Using the rmx_c.h Header file
The /intel/include/rmx_c.h file provides definitions for system calls, structures and
other items needed for iRMX application development. Including this file and using
its definitions throughout your application enables much easier conversion of that
code from 16-bit to 32-bit source.

See also: Header Files, System Calls

Programming Techniques Chapter 6 85

Using the NATIVE_WORD Type Definition
Type definitions of variables which expand from 16 bits to 32 bits when porting to
32-bit code should use the NATIVE_WORD type definition. Examples of these
variables are:

• I/O counts

• Memory pool sizes

• Stack sizes

• Segment sizes

• Application-specific variables which must expand to 32 bits

This example uses NATIVE_WORD and includes a pointer overlay:

typedef struct exception_struct {

NATIVE_WORD offset;

SELECTOR base;

BYTE exception mode;

};

The I/O count in this iRMX system call uses NATIVE_WORD:

rqawrite (output$conn$t, (BYTE *) message,

(NATIVE_WORD) strlen(message), write$mbx,

&status;

Porting 16-Bit ASM Code to 32 Bits
If you use ASM386, you must use registers differently. These sections describe the
differences.

• Properly clear all registers used as index or scratch locations to check for zero.
If they are not properly cleared, bits left in the extended (upper 16 bits) of the
register may interfere with the intended operation. To properly clear registers
change:

mov ax, word ptr ds:8

or ax, ax

jz ...

To:

movzx eax, word ptr ds:8

or eax, eax

jz ...

86 Chapter 6 Porting Applications

• Use two shl (shift left) statements before a jump in the index to a case
statement. To properly increment an index, change:

xor bh, bh

mov bl, cdate.interrupt_type

and bl, ts_more_ints

shl bl, 1 ; Make bx a pointer to a

; 16-bit word to index

; into case_table

jmp cs:case_table[bx]

To:

xor ebx, ebx

mov bl, cdata.interrupt_type

and bl, ts_more_ints

shl ebx, 2 ; Make bx a pointer to a

; 32bit word to index

; into case_table]

jmp cs:case_table[ebx]

• PL/M-like procedures that return pointers now place the POINTER in DX:EAX
instead of ES:BX. For example, change:

mov es, ptr_base

mov bx, ptr_offset

ret

To:

mov dx, ptr_base

mov eax, ptr_offset

re

• Change interrupt handlers written in assembly language to run in the 32-bit
environment. This example shows an interrupt handler for the 16-bit system:

int_handler proc near

public cominthandler

pusha ; save the processor state

push ds

push es

push cx ; make room for status

mov bp, sp ; ss:bp is status$p

Programming Techniques Chapter 6 87

push ss

push bp

call rqgetlevel

push ax ; returned level

push ss ; ax = rqgetlevel(status$p)

push bp

call rqsignalinterrupt

pop cx

pop es

pop ds

popa

iret ; return from interrupt

int_handler endp

code ends

end

This is an interrupt handler ported to a 32-bit system. Note the IF-ELSE statement
that is added to this example. This IF block enables using the same code on 16-bit
and 32-bit systems, depending on which assembler is used and how it is invoked.

%IF (%r_32) THEN (%' ; macro definitions which

%define (ax) (eax) ; allow code to go both ways

%define (bx) (ebx)

%define (cx) (ecx)

%define (dx) (edx)

%define (si) (esi)

%define (di) (edi)

%define (bp) (ebp)

%define (sp) (esp)

%define (mov16) (movzx)

%define (pusha) (pushad)

%define (popa) (popad)

%define (pushf) (pushfd)

%define (popf) (popfd)

%define (iret) (iretd)

%define (dw) (dd)

%define (dd) (dp)

) ELSE (%'

88 Chapter 6 Porting Applications

%define (ax) (ax)

%define (bx) (bx)

%define (cx) (cx)

%define (dx) (dx)

%define (si) (si)

%define (di) (di)

%define (bp) (bp)

%define (sp) (sp)

%define (mov16) (mov)

%define (pusha) (pusha)

%define (popa) (popa)

%define (pushf) (pushf)

%define (popf) (popf)

%define (iret) (iret)

%define (dw) (dw)

%define (dd) (dd)

)FI%'

int_handler proc near

public cominthandler

%pusha ; save the processor state

push ds

push es

%IF (%r_32) THEN(push fs

push gs) FI

push %cx ; make room for status

mov %bp, %sp ; ss:bp is status$p

push ss ; ax = rqgetlevel(status$p)

push %bp

call rqgetlevel

push %ax ; CALL rq$signal$interrupt(ax, status$p)

push ss

push %bp

call rqsignalinterrupt

pop %cx ; pop status

; restore processor state

Programming Techniques Chapter 6 89

%IF (%r_32) THEN(pop gs

pop fs) FI

pop es

pop ds

%popa

%iret ; return from interrupt

int_handler endp

code ends

end

To assemble this example, select one of these statements:

ASM286 inthand.asm object(inthand.ob2) pr(inthand.ls2) %SET(r_32,0)

ASM386 inthand.asm object(inthand.ob3) pr(inthand.ls3) %SET(r_32,1)

Example: Porting a Device Driver
This section contains a portion of an example device driver (8274 Terminal Driver)
ported to the iRMX OS. Though changes to the driver are minimal, you must also
port the include files and libraries. In this code, the PL/M compiler's and Assembler's
SET controls, a PL/M identifier, permits IF-ELSE branches while compiling the
code.

PLM386 :F1:x8274.P28 SET(r_32)word16 ; for 32 bits

PLM286 :F1:x8274.P28 RESET (r_32) ; for 16 bits

PLM86 :F1:x8274.P28 SET(tsc) RESET(r_32)

90 Chapter 6 Porting Applications

Two identifiers are used: tsc and r_32. The r_32 identifier is used to port the code
to the iRMX OS. IF-ELSE decision blocks were added so the same code can be
compiled into a driver for both the 32-bit and 16-bit versions of the OS. The LIB
statements for the 8274 Driver are:

LIB386 :F1:xcmdrv.lib nobu ; for 32-bit systems

delete x8274

add :F1:x8274.obj

compress

quit

exit

LIB286 :F1:xcmdrv.lib nb ; for 16-bit systems

delete x8274

add :F1:x8274.obj

compress

quit

exit

LIB86

delete :F1:xcmdrv.lib(x8274)

add :F1:x8274.obj to :F1:xcmdrv.lib

exit

Programming Techniques Chapter 6 91

Figure 6-1 is a device driver example which uses the r_32 porting identifier.

$title('x8274: 8274 terminal device driver')

/*

* Allow iRMX I/II common source

*/

$IF tsc

$OPTIMIZE(3)

$COMPACT(tsc -CONST IN CODE- HAS x8274)

$large (other_libs

$EXPORTS RQ$GetTaskTokens;

$EXPORTS RQ$LookupObject;

$EXPORTS RQ$CreateSegment;

$EXPORTS RQ$DeleteSegment)

$ELSE

$COMPACT

$ROM

$OPTIMIZE(3)

$ENDIF

$subtitle('Module Header')

/*
*

* TITLE: x8274
*

* ABSTRACT: This module is the interface between the iRMX286

* Terminal Support, and the 8274 MPSC.
*

x8274:

DO;

$include(:f1:xcomon.lit)

$include(:f1:xnutyp.lit)

$include(:f1:xiotyp.lit)

$include(:f1:xexcep.lit)

$include(:f1:xtsdtn.lit)

$include(:f1:xtssow.ext)

$include(:f1:xgdlay.ext)

$include(:f1:xncall.ext)

Figure 6-1. Device Driver Example Using r_32 Conditional Statements

92 Chapter 6 Porting Applications

$subtitle('Data structures and literals')

/*

* 8274 register values

*/

DECLARE

WR0 LITERALLY '00H',

WR1 LITERALLY '01H',

.

.

.

/*

* 8274 Device information Structure

*/

DECLARE

i8274$CONTROLLER$INFO LITERALLY 'STRUCTURE(

i8274$INFO$1,

i8274$INFO$2,

i8274$INFO$3,

i8274$INFO$4,

i8274$INFO$5,

i8274$INFO$6,

i8274$INFO$7)';

DECLARE

$IF r_32

i8274$INFO$1 LITERALLY 'filler(22) WORD',

$ELSE

i8274$INFO$1 LITERALLY 'filler(13) WORD',

$ENDIF

i8274$INFO$2 LITERALLY 'ch_a_data_port WORD,

ch_a_status_port WORD,

ch_b_data_port WORD,

ch_b_status_port WORD',

i8274$INFO$3 LITERALLY 'ch_a_in_rate_port WORD,

ch_a_in_rate_cmd_port WORD,

ch_a_in_rate_counter BYTE,

ch_a_in_rate_freq DWORD',

.

.

.

Figure 6-1. Device Driver Example Using r_32 Conditional Statements (continued)

Programming Techniques Chapter 6 93

$IF r_32

DECLARE

SIZEOFOFFSET LITERALLY 'DWORD'; /* Support for larger segments*/

$ELSE

/* Note that either type of segmentation is supported */

DECLARE

SIZEOFOFFSET LITERALLY 'WORD';

$ENDIF

DECLARE

BOOLEAN LITERALLY 'BYTE',

TRUE LITERALLY '0FFH',

FALSE LITERALLY '000H',

FOREVER LITERALLY 'WHILE TRUE',

PTR$OVERLAY LITERALLY 'STRUCTURE(off_set SIZEOFOFFSET,

base TOKEN)',

P$OVERLAY LITERALLY 'STRUCTURE(off_set SIZEOFOFFSET,

base WORD)',

STRING LITERALLY 'STRUCTURE(length BYTE, char(1) BYTE)',

NO$TIME$LIMIT LITERALLY '0FFFFH',

.

.

.

Figure 6-1. Device Driver Example Using r_32 Conditional Statements (continued)

94 Chapter 6 Porting Applications

Figure 6-2 is a literal file which uses the r_32 porting identifier.

xtstdn.lit
/*

* xtsdtn.lit

*

* Terminal Support cdata, udata, and bddata structures as

* available to the user for the purpose of writing a terminal

* driver which is compatible with the Terminal Support Code.

* This file has the same structure as xtsdat.lit but only

* defines that portion of the structure which is visible to the

* user.

*

* Defines RECV$INFO$STRUCT for MBII drivers

*

* Defines a substructure TS$BDDATA4 which is the same as

* TS$BDDATA3 minus driver$user$only. This enables drivers to

* overlay a different structure over TS$UDATA (TS$UDATA1 +

* TS$UDATA2 + TS$BDDATA1 + TS$BDDATA2 + TS$BDDATA4 + a driver

* specific structure)

*

* Adds 32 bit conditional support.

*/

DECLARE

TS$CDATA LITERALLY 'STRUCTURE(

ios$data$segment SEGMENT,

status WORD_16,

interrupt$type BYTE,

interrupting$unit BYTE,

dinfo$p POINTER,

driver$cdata$p POINTER,

$IF r_32

reserved(46) BYTE,

$ELSE

reserved(34) BYTE,

$ENDIF

udata(1) BYTE)';

Figure 6-2. Literal File Using r_32 Conditional Statements

Programming Techniques Chapter 6 95

* CDATA STRUCTURE duplicated here for use with UDATA members

* for single structure overlay

*/

DECLARE

TS$CDATA$INC LITERALLY

'ios$data$segment SEGMENT,

status WORD_16,

interrupt$type BYTE,

interrupting$unit BYTE,

dinfo$p POINTER,

driver$cdata$p POINTER,

$IF r_32

reserved1(46) BYTE';

$ELSE

reserved1(34) BYTE';

$ENDIF

DECLARE

TS$UDATA LITERALLY 'STRUCTURE(

TS$UDATA1,

TS$UDATA2,

TS$BDDATA1,

TS$BDDATA2,

TS$BDDATA3)';

DECLARE

TS$UDATA1 LITERALLY

'uinfo$p POINTER,

term$flags WORD_16,

$IF r_32

in$rate WORD_32,

out$rate WORD_32,

$ELSE

in$rate WORD_16,

out$rate WORD_16,

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

96 Chapter 6 Porting Applications

$ENDIF

scroll$number WORD_16,

xysize WORD_16,

xyoffset WORD_16',

TS$UDATA2 LITERALLY

'raw$size WORD_16,

raw$data$p POINTER,

raw$in WORD_16,

raw$out WORD_16,

output$scroll$count WORD_16,

unit$number BYTE,

$IF r_32

reserved(1099) BYTE',

$ELSE

reserved(890) BYTE',

$ENDIF

TS$BDDATA1 LITERALLY

'buffered$device BYTE,

buff$input$state WORD_16,

buff$output$state WORD_16,

select(2) BYTE,

lineramp POINTER,

function$id BYTE,

$IF r_32

in$count WORD_16,

$ELSE

in$count BYTE,

$ENDIF

out$count WORD_16',

TS$BDDATA2 LITERALLY

'units$available WORD_16,

output$buffer$size WORD_16,

user$buffer$p POINTER,

echo$count BYTE,

echo$buffer$p POINTER,

received$special WORD_16,

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

Programming Techniques Chapter 6 97

special$modes WORD_16,

high$water$mark WORD_16',

TS$BDDATA3 LITERALLY

'low$water$mark WORD_16,

fconchar WORD_16,

fcoffchar WORD_16,

link$parameter WORD_16,

spchiwater$mark WORD_16,

special$char(4) BYTE,

$IF r_32

bd$reserved(41) BYTE,

driveruseonly(48) BYTE';

$ELSE

bd$reserved(25) BYTE,

driveruseonly(32) BYTE';

$ENDIF

/* Note! TS$BDDATA4 must be same as TS$BDDATA3 minus

driveruseonly */

DECLARE

TS$BDDATA4 LITERALLY

'low$water$mark WORD_16,

fconchar WORD_16,

fcoffchar WORD_16,

link$parameter WORD_16,

spchiwater$mark WORD_16,

special$char(4) BYTE,

$IF r_32

bd$reserved(41) BYTE';

$ELSE

bd$reserved(25) BYTE';

$ENDIF

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

98 Chapter 6 Porting Applications

DECLARE

$IF r_32

TS$UDATA$SIZE LITERALLY '1280',

TS$CDATA$SIZE LITERALLY '40H';

$ELSE

TS$UDATA$SIZE LITERALLY '1024',

TS$CDATA$SIZE LITERALLY '30H',

TS$UDATA$FACTOR LITERALLY '10';

$ENDIF

DECLARE

INPUT$ONLINE LITERALLY '0001H',

INPUTCMDPENDING LITERALLY '0002H',

INPUT$FULL LITERALLY '0008H',

RAW$BUFF$FULL LITERALLY '0010H';

DECLARE

OUTPUT$SEMAPHORE LITERALLY '001H',

OUTPUT$STOPPED LITERALLY '002H',

OUTPUT$SCROLL LITERALLY '004H',

OUTPUT$CONTROL LITERALLY '008H';

DECLARE

FLOW$CONTROL LITERALLY '001H',

SPECIAL$CHAR$MODE LITERALLY '002H';

DECLARE

NONBUFDEVRAWSIZE LITERALLY '100H';

/* Structure for passing MBII messages to term$check */

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

Programming Techniques Chapter 6 99

DECLARE

RECV$INFO$STRUCT LITERALLY

'STRUCTURE(

data$p POINTER,

flags WORD_16,

status WORD_16,

trans$id WORD_16,

data$length WORD_32,

forwarding$port TOKEN,

remote$socket WORD_32,

control$msg(20) BYTE,

reserved(4) BYTE)';

/* Structure for passing Mailbox messages to term$check */

DECLARE

MBOX$RECV$INFO$STRUCT LITERALLY

'STRUCTURE(

object$t TOKEN,

resp$mbox$t TOKEN)';

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

100 Chapter 6 Porting Applications

Migrating Code to a PC-Bus Platform
This section discusses the differences between the way a PC-bus system and other
systems handle numeric processors. Be aware of these differences when porting code
to a PC-bus system from a different system.

Using a Numeric Processor Extension (NPX)
You can increase the performance of math-intensive tasks by using a Numeric
Processor Extension (NPX) or math coprocessor to perform the math functions. In
systems that use a math coprocessor, the processor and the microprocessor are
synchronized by a busy signal from the numeric processor. In a PC-bus system, this
numeric error signal is routed through the programmable interrupt controllers (PICs).
The numeric error signal is connected to the slave PIC interrupt 5, which is connected
to the master PIC interrupt 2.

The OS, through task prioritization, automatically disables certain interrupt levels
when a task runs. The levels disabled depend on the priorities of the current and
previous tasks. If a task can create a physical interrupt, make sure that the task's
priority does not mask the interrupt level that it uses. Failure to coordinate the task's
priority with the physical interrupts it uses can cause a system deadlock situation.

See also: Disabled interrupt levels, System Concepts

✏ Note
If a task's code includes instructions that execute on a NPX, the
task should not have a priority high enough to disable the interrupt
level of the NPX. The highest task priority for tasks using NPX
instructions is 45. Code written on a PC-bus system can be ported
to a Multibus system without change. Code written on a Multibus
system can be moved to a PC-bus system if the tasks that execute
on a NPX have a priority of 46 or numerically higher.

Programming Techniques Chapter 6 101

Segmentation Considerations
The 32-bit interface libraries for the iRMX OS support only the compact
segmentation model. This requires 32-bit application code to reside in the same code
segment as the interface libraries. The best way to implement this is to structure your
application as one or more compact subsystems. When porting an existing 16-bit
large memory model application to a 32-bit compact memory model application,
consider this:

• Compact model code runs faster than large model code. It takes 26 clocks for
each segment register load. Near calls used in a compact segmentation model
require no segment register loads; far calls in a large segmentation model require
at least 4 register loads per call. Register loading impacts application
performance quickly, especially if nested calls are made. A simple large model,
16-bit test program making recursive calls to just four system calls had a 6
percent performance boost when changed to compact.

• When moving from large to compact, insure that a valid DS value is available to
jobs and tasks created by the create_job, rqe_create_job, create_io_job,
rqe_create_io_job, load_io_job, rqe_load_io_job, and create_task system
calls.

See also: Using Compact and Large Memory Models, Chapter 7,
Using the Flat Memory Model, Chapter 8

The second option follows. The EXPORTS directive causes the compiler to provide
a FAR interface for the procedure task_1. This interface includes setting up DS upon
procedure entry.

$COMPACT(my_code -CONST IN CODE- HAS my_proc;

$ EXPORTS task$1)

...

...

my_proc:

DO;

...

...

task$1: PROCEDURE PUBLIC;

...

...

END task$1;

END my_proc;

■■ ■■ ■■

102 Chapter 6 Porting Applications

Programming Techniques Chapter 7 103

Using Compact and
Large Memory Models

This chapter provides information on using the compact and large memory models to
build iRMX applications. These guidelines apply only if you use a compiler that
supports segmentation, like the Intel compilers. Understanding the following
concepts will help you better understand the information presented in this chapter:

• Segmentation models
• Subsystems
• iRMX jobs, tasks, and segments

See also: Segmentation models and subsystems,
iC-386 Compiler User's Guide,
PL/M-386 Programmer's Guide

Choosing a Memory Model
When compiling your application source code, use compiler controls to specify the
memory model for the application.

Memory Segments
Initial CS:EIP

CS

SS:ESP

OM04190

DS
(ES)

SS

Code

Data

Stack

Figure 7-1. Basic Large/Compact Model Program

7

104 Chapter 7 Using Compact and Large Memory Models

32-Bit Applications
For 32-bit applications, use the compact model by specifying the compact compiler
control. If you need the efficiency and protection of multiple segments, divide your
code into subsystems.

The compiler places code sections from all linked modules in the same code segment,
which are addressed by the CS register. Data sections are placed into a single data
segment and addressed by the DS register. Stack sections are placed into a stack
segment and addressed by the SS register.

For 32-bit programming, only the compact model is allowed and there is no segment
size limitation.

16-Bit Applications
For 16-bit applications, follow these guidelines when choosing a segmentation
model:

• Use the compact model if your code and data can each fit into a 64 Kbyte
segment.

• Use the large model if you cannot use the compact model. There are fewer size
and iRMX restrictions with large, but this model results in the largest number of
segment register switches.

Compile and bind your application under the compact model to determine if it fits
into the compact model. If it is too large for the compact model, BND386 returns an
error message. If an error message occurs, use the large segmentation model or
compact subsystem.

✏ Note
When using the Soft-Scope debugger on 16-bit, multiple stack
applications, you must set the segsize(stack(x)) parameter to be
greater than or equal to 1024 bytes when binding the application.
This is because the iRMX OS assumes stack segments which are at
least 1024 bytes in length.

Code and data sections from each object module have their own code and data
segments. The total size of code and data can be more than 64 Kbytes. Stack
sections have a single stack segment and are addressed by the SS register. Code and
data segments are paired. During program execution, both the CS and DS registers
are updated whenever a public or external procedure is activated.

Programming Techniques Chapter 7 105

Porting Applications
When porting iRMX source code from a 16-bit application to 32-bit application, you
must change the segmentation model if the code is not already compact. Use the
compact segmentation model because the iRMX OS supports only this model for 32-
bit applications.

If you use exception handlers with the compact model, use the exports subsystem
control to export the exception handler procedures. This enables other segments to
access the handler with a far call.

See also: Porting Applications, Chapter 6

If you are porting from a large/compact application to a flat application, you must use
unique system calls and data types.

See also: Porting Large/Compact to Flat, Chapter 8

Using ROM and RAM Compiler Controls
If your application will be loaded into RAM, you can use the ROM or RAM controls
to adjust segment sizes so that your application fits into the compact model.
Specifying the ROM or RAM compiler controls determines whether the constants
defined in your programs are placed in the code or the data areas. This provides
additional control on the size of those segments.

For example, if your application's data is slightly larger than 64 Kbytes, specifying
the ROM control (which places the constants in the code segment) might allow the
remaining data to fit in a 64 Kbyte segment. This could make your code eligible for
the compact model.

See also: Developing Applications for ROM, Chapter 9

Subsystems
Subsystems are very efficient for applications with multiple program modules that
need to share data and communicate efficiently. You must use the compact or large
models when using subsystems. A subsystem is a collection of program modules that
have the same segmentation model and share the same code and data segments. For
large applications, set up your application to use multiple compact subsystems.

See also: Subsystems, iC-386 Compiler User's Guide
or the PL/M-386 Programmer's Guide

106 Chapter 7 Using Compact and Large Memory Models

Subsystem Advantages
Subsystems are efficient for these reasons:

• Code and data can be partitioned for easier maintenance.

• Segment registers are changed only when an application calls procedures or
accesses data in another subsystem.

• Calls made only within a subsystem are near calls.

• Pointers referenced only within a subsystem are near pointers.

• Data is protected from being overwritten by other subsystems.

• Subsystems are useful for building loadable device drivers.

See also: Making a Driver Loadable, Driver Programming Concepts

Closed Subsystems
Closed subsystems have these attributes:

• The subsystem is named.

• A module list is needed.

• The exports control lists the functions and variables of a subsystem accessible
by outside subsystems.

• Only the listed modules are combined in a closed subsystem.

• You can add or delete modules from the subsystem by changing the list of
modules and regenerating the system.

The code and data segment names for a closed subsystem have the subsystem name
as a prefix. For example, a 32-bit closed subsystem named subsystem1 uses
subsystem1_code32 for the code segment and subsystem1_data for the data
segment. The stack segment is named stack. In a closed subsystem, the execution
stack is shared with other subsystems.

See also: Prefixes, System Concepts

Programming Techniques Chapter 7 107

Open Subsystems
Open subsystems have these attributes:

• The subsystem is unnamed.

• A module list is not needed.

• Segmentation controls are the only subsystem-specific compiler controls used.

• All modules using the same segmentation model are automatically combined.

• Modules can be freely added or deleted.

The code segment for an open subsystem is named code32 for 32-bit applications.
The data segment for an open subsystem is named data for 32-bit applications. The
stack subsystem is named stack.

Subsystem Configurations
There can be only one open subsystem in a program, but there can be multiple closed
subsystems. Every module in a program is either part of a closed subsystem or by
default, part of an open subsystem. A program can consist of one of these subsystem
configurations:

• Only the open subsystem, which is the default configuration

• One or more closed subsystems

• One or more closed subsystems and the open subsystem

You create a subsystem configuration when you compile and bind your application
program. You specify a subsystem as closed by declaring a name for it.

See also: Subsystems, iC-386 Compiler User's Guide
or the PL/M-386 Programmer's Guide

Creating a Closed Subsystem
To create a closed subsystem, create a subsystem declaration at the beginning of your
source code. Specify this information:

• The compact compiler control (to use the compact subsystem model)

• Name of the closed subsystem

• Segment in which to place constants

• Modules that belong in the subsystem using the has control

• Functions that are accessible outside the subsystem using the exports control

108 Chapter 7 Using Compact and Large Memory Models

The PL/M application ramdrv.p38, in the /rmx386/demo/plm/ldd directory, contains
this closed compact subsystem declaration:

$compact(ramdrv -CONST IN CODE- HAS

$ ramdrv,

$ xram;

$ EXPORTS

$ ram$init$io,

$ ram$finish$io,

$ ram$queue$io,

$ ram$cancel$io)

This declaration defines a closed compact subsystem named ramdrv. It contains the
modules ramdrv and xram. The declaration exports the four procedures:
ram_init_io, ram_finish_io, ram_queue_io, and ram_cancel_io. The
export declaration forces the interface to these calls to be far calls. This enables other
subsystems to access these procedures. This same subsystem declaration must be
added to each module of the subsystem.

To generate this subsystem, use the makefile to compile your source code modules
and bind the resulting object modules to the system. First attach to the directory
where the demo resides then invoke the makefile.

- af /rmx386/demo/plm/ldd <CR>

- make <CR>

This section from makefile in the /rmx386/demo/plm/ldd directory binds the closed
subsystem:

ramdrv:ramdrv.obj $(LIBS) $(BND3)

$(BND) ramdrv.obj,$(LIBLIST) &

oj($@) pr($@.mp1) $(BNDFLAGS) &

rn(code to $@_code32)

This instructs the binder to:

• Bind the RAM disk driver object module

• Bind the libraries including the loadable device driver library, the iC-386 library,
the UDI interface library, and the iRMX interface library

• Use the renameseg instruction to remap the code segment into the
ramdrv_code32 code subsystem

• Use the rc instruction to allocate dynamic memory with an initial size of
5 Kbytes and a maximum size of 1 Mbyte

Programming Techniques Chapter 7 109

Creating an Open Subsystem
To create an open subsystem, create a subsystem declaration at the beginning of your
source code. Specify this information:

• The compact compiler control (to use the compact subsystem model)

• Name of the compilation module

• Segment in which to place constants

You can optionally specify the functions that are accessible outside the subsystem
using the exports control. Do not specify a name for the subsystem as this creates a
closed subsystem.

An example of an open subsystem is not included with the iRMX OS. However, you
can generate an open subsystem by modifying ramdrv.p38, described in the previous
section. First make a copy of ramdrv.p38 called ramdrv.org. This will be the
original backup copy. Modify the existing ramdrv.p38 to match this:

$compact(-CONST IN CODE- HAS

$ ramdrv,

$ xram;

$ EXPORTS

$ ram$init$io,

$ ram$finish$io,

$ ram$queue$io,

$ ram$cancel$io)

This open subsystem declaration is the same as the closed compact subsystem except
the subsystem is unnamed.

To compile the modified ramdrv.p38 file, first make a copy of makefile call
makefile.org. This will be the original backup copy. Modify the existing makefile to
match this:

ramdrv:ramdrv.obj $(LIBS) $(BND3)

$(BND) ramdrv.obj,$(LIBLIST) &

oj($@) pr($@.mp1) $(BNDFLAGS)

110 Chapter 7 Using Compact and Large Memory Models

This instructs the binder to:

• Bind the RAM disk driver object module

• Bind the libraries including the loadable device driver library, the iC-386 library,
the UDI interface library, and the iRMX interface library

• Use the rc instruction to allocate dynamic memory with an initial size of
5 Kbytes and a maximum size of 1 Mbyte

For an open subsystem, do not use the renameseg instruction to remap the code into
the code subsystem.

■■ ■■ ■■

Programming Techniques Chapter 8 111

Using the Flat Memory Model 8
This chapter provides information on using the flat memory model with applications
for the iRMX OS. Only a small number of DOS-based compilers generate code for
32-bit segmented memory models, such as compact. Most DOS/Windows-based 32-
bit compilers produce flat-model applications. The iRMX OS supports these
compilers; follow the guidelines in this chapter.

See also: Memory models, 80386 Programmer’s Reference Manual

Flat Model Overview
The flat model is a 32-bit memory model where an application runs entirely in a
single segment. All segment registers point to this segment. The application does
not modify the segment registers. The only pointers available to the application are
near (offset-only).

Memory Segment
Initial CS:EIPOffset Zero

CS, SS, DS, ES point
to the same segment

Initial SS:ESP

OM04189

Code

Data

Stack

Figure 8-1. Basic Flat Model Program

112 Chapter 8 Using the Flat Memory Model

Developing 32-bit flat model applications with third party tools is similar to
development using the segmented third party compilers/tools (both 16- and 32-bit).
The resulting flat model Microsoft Portable Executable (MPE) object model is
loadable by the Application Loader. This record format is recognizable by the Soft
Scope Debugger.

See also: C Compiler-specific Information, Chapter 4

Flat Model Advantages and Disadvantages
These are the advantages of using a flat model from an application point of view:

• It uses fewer iRMX objects and GDT slots since fewer segment objects are
created.

• There is no need to load segment registers to de-reference pointers since all
pointers are near, resulting in some performance enhancement.

• It can use common off-the-shelf 32-bit compilers.

These are the disadvantages of using a flat model from an application point of view:

• Memory allocation is less efficient since each distinct area of the application 
code, data, and stack  must be a minimum of 4 Kbytes, and must be a multiple
of 4 Kbytes.

• Enabling paging in the microprocessor degrades system-wide performance by
approximately 4%.

• There is less protection between the code, data and stack areas of an application.

Executing Flat Model Applications on iRMX
You can load and run a flat model application on the iRMX OS through the services
of the paging subsystem, flat model support code, and the Application Loader. Flat
model applications run in protection ring three of the microprocessor.

The paging subsystem provides an environment in which a flat model application can
dynamically add physical memory to or free physical memory from its own address
space.

The Application Loader recognizes a flat model application in MPE format, creates a
flat model environment for it, and loads the application into this environment. Once
loaded, control is passed to the flat model application.

Programming Techniques Chapter 8 113

Using Flat Model With Paging Support
Paging support for flat model in iRMX means turning on the paging mode of the
processor but not implementing demand paging. Demand paging can interfere with
the running of a real-time OS because it swaps pages from memory to disk and back.
The iRMX OS uses paging for virtual address translation only. When a flat model
application is running, a page fault is equivalent to a general protection fault. This
provides the processor-based protection that you would normally lose by not using
segmentation.

With paging support, the flat model application resides in an iRMX "virtual
segment," which resides in part of a virtual memory space of 4 Gbytes. Physical
memory is only assigned to areas of the virtual segment that require it, such as the
code, data, stack, and any dynamic storage requested while the application is running:

iRMX Virtual Segment

Initial CS:EIPOffset Zero

CS, SS, DS, ES point
to the same iRMX segment Initial SS:ESP

OM04411

Code

Data

Stack

Malloc
Area

Task2 code,
data, & stack

Non-allocated areas

Virtual segment limit
(GP fault if crossed)

Figure 8-2. Flat Application Program on iRMX with Paging

114 Chapter 8 Using the Flat Memory Model

Paging Subsystem
The paging subsystem is an extension of the iRMX Nucleus and provides the
necessary paging support for flat model applications. It is available as a first-level or
a loadable job.

You can configure the paging subsystem into the OS with the ICU, or load it with the
sysload command. This subsystem is small, using less than 14 Kbytes of code and
data.

The Paging Job
You can load the paging job, paging.job, at any time iRMX is running. This job
contains the entire paging subsystem. Once loaded, the OS part of memory is
identity-mapped, paging is enabled, and the rqv_ system calls become available. To
load the job, type:

- sysload /rmx386/jobs/paging.job [block1, block2,...block8]

where:

blockn consists of memory_start, memory_end

The block parameter defines a block of physical memory that is outside the range of
physical memory managed by the Nucleus Free Space Manager (FSM). The paging
subsystem identity maps all physical memory known to the FSM. If there are blocks
of memory that are not known to the FSM, you should specify these so that they can
be identity-mapped as well. You can define up to eight memory blocks, however,
these memory blocks should not overlap. A memory block that overlaps with a
previously-defined block is ignored.

The memory_start and the memory_end parameters represent the start and the end
addresses of the physical memory block, respectively. The start address is rounded
up to the next 4 Kbyte boundary. The end address is rounded up to the next 4 Kbyte
boundary minus one. These addresses must be hexadecimal and do not need the “H”
(hexadecimal) suffix.

✏ Note
Any physical memory that is not known to either the Free Space
Manager (from the ICU configuration) or the paging subsystem is
not accessible from your application once paging is enabled.

Errors and initialization messages are reported to the :config:paging.log file.
Initialization messages include the identity memory map created by the paging
subsystem. Check the log file to verify that the actual physical memory has been
identity-mapped correctly.

Programming Techniques Chapter 8 115

Identity Mapping

The paging subsystem identity-maps all physical memory known to the Free Space
Manager. This includes memory which is configured in the ICU as a first-level job
or which is added from using the sysload command. Identity mapping helps protect
dedicated memory, such as that found on dual port memory for a custom device
driver, from being over-written.

See also: MEMF, PIMM Commands, ICU User’s Guide and Quick Reference

Flat Model Support Code
The flat model support code provides the flat-to-segmented pointer conversion
libraries required to allow flat applications to make iRMX system calls and C library
calls.

The flat model support code is a configurable part of the operating system. This code
may be loaded via the sysload command. This subsystem consists of approximately
20 Kbytes of code and data.

Conversion of Flat Model Pointers in System Calls
In a flat model application, all pointers are near (offset-only) pointers. The iRMX
OS requires all pointer parameters in system calls to be far pointers. Therefore, all
near flat model pointers must be converted to far pointers before entering the OS
itself. The flat.job automatically performs the conversion for each system call made
by your application.

This job contains the entire flat model support code and requires the paging
subsystem. Flat model applications can make iRMX system calls and C library calls
once flat.job is loaded. To load the job, type:

- sysload /rmx386/jobs/flat.job <CR>

Errors and initialization messages are reported to the :config:flat.log file.

116 Chapter 8 Using the Flat Memory Model

The Flat Model Job
You can load the flat model job, flat.job, at any time the iRMX OS is running.
There are no command line options for flat.job.

✏ Note
You cannot use the ICU to configure the flat memory model as a
first-level flat job.

You cannot configure flat model applications as first-level jobs but
you can configure them as loadable jobs.

Execution Model
The Application Loader recognizes a flat model MPE program and creates a flat
environment for the program using the paging subsystem (it must be loaded or
configured into the system). After the program is loaded into the flat environment, a
job gets created for the loaded code the same as it does for segmented programs.

Figure 8-3 shows the loading and execution flow of a flat model program.

Programming Techniques Chapter 8 117

iRMX Virtual Segment
CS, DS, SS, ES point
to the virtual segment
Initial EIP

Initial ESP

OM04412

Code

Data

Stack

Malloc
Area

Task2 code,
data, & stack

Non-allocated areas

Virtual segment limit
(GP fault if crossed)

iRMX Flat
Executable

Application
Loader

Paging
Subsystem

Nucleus

User Job

Note:
At run-time, CS is different because
it must be an executable selector.

Figure 8-3. Execution of a Flat Model Program on iRMX

118 Chapter 8 Using the Flat Memory Model

System Calls
The following is a list of new system calls required to manage virtual segments and
provide other flat model support.

Since most flat model compilers do not support far pointers (or support “based”
variables), they cannot access normal iRMX segments. Instead, several system calls
are provided to either access iRMX segments, or eliminate the need for them entirely.

See also: System Call Reference

Virtual Memory Nucleus Basic I/O System

rqv_create_segment rq_move_data rq_wait_iors

rqv_allocate rq_get_buffer_limit

rqv_allocate_at rq_validate_buffer

rqv_free

rqv_change_access

rqv_map_physical

Existing System Calls
These existing calls have been changed slightly for paging support. In all cases, the
changes add functionality to work with the new virtual segments. You can continue
to use these calls from segmented applications.

• rq_delete_segment

• rqe_get_address

• rq_get_size

Using the Flat Model System Calls
When developing a flat model application, be aware of these unique issues, which are
not a concern if you are developing a segmented application:

• Virtual memory and the corresponding allocation and de-allocation of physical
memory

• Use of iRMX segments by a flat model application

Programming Techniques Chapter 8 119

Virtual Memory
New system calls provide two levels of access to the paging mechanism. The
rqv_allocate_at system call provides low-level access. The Application Loader, as
well as other system utilities, use this system call to gain direct access to a virtual
segment. Using this call enables an application to place the code, data, stack, and
other segments into a unique location in the virtual segment specified by the object
module being loaded.

The rqv_allocate_at system call provides high-level access. This allocation system
call provides management of the virtual address space within a virtual segment. The
call is meant to be used by applications and any other free space manager, such as
malloc and sbrk. It allocates physical memory, places it within an available area of
the virtual segment, and then returns a near pointer to the allocated memory. For the
flat model application, this system call is preferred over rq_create_segment, since
the latter returns a token which is not accessible using the flat memory model.

The memory required for page tables is charged to the calling job's memory pool.
The first allocation to a virtual segment will incur a 4 Kbyte overhead for a page
table. You should compute job memory pools with this page table overhead in mind.

Porting Compact/Large to Flat
If you need to access iRMX segments, use one of these mechanisms:

• The rqv_allocate system call replaces the rq_create_segment call in flat model
applications. It allocates physical memory to the application's virtual segment
with no additional objects or slots being consumed.

To share this memory with another task, pass a near pointer through a data mailbox if
the other task is in the same virtual segment (job). Another method is to create a
descriptor around the allocated memory and pass the token for the descriptor
passed through a normal mailbox.

• The rq_wait_iors BIOS system call replaces either rq_receive_message or
rq_wait_io after an I/O call. This call returns the asynchronous IORS into a
buffer in the caller's address space, instead of in an iRMX segment.

120 Chapter 8 Using the Flat Memory Model

Debugging Support
The System Debugger (SDB) understands and displays flat model versions of the
iRMX system calls. The debugging procedures are similar to those used for compact
and large model applications. However, with flat model applications, the stack
parameters are reversed. Take this into account when viewing the stack using the vs
or vu SDB commands.

See also: vs, vu commands, System Debugger Reference

■■ ■■ ■■

Programming Techniques Chapter 9 121

Developing Applications for ROM 9
Using the iRMX III OS, you can create ROM-based iRMX applications. Configuring
a ROM-based system has several benefits. You can write-protect your stable code,
load your system quicker than a RAM-based system, and incur lower costs than with
a RAM-based system.

✏ Note
You can only create ROM-based applications under the iRMX III
OS. You cannot use the DOSRMX or iRMX for PCs OS.

This chapter contains information on:

• Testing your application from RAM

• Calculating size and location parameters

• Programming your application into ROM

• Creating an example ROM application

You may need to refer to one or more of these manuals:

• ASM386 Macro Assembler Operating Instructions/ASM386 Assembly Language
Reference

• iC-386 Compiler User's Guide

• C Library Reference

• ICU User's Guide and Quick Reference

• Intel386 Family Utilities

• PL/M-386 Programmer's Guide

• System Debugger Reference

Chapter 9 Developing Applications for ROM122

Testing a System
The normal development cycle is to load your system using the bootstrap loader, test
it, correct any errors, and then reassemble or recompile any appropriate program
code. Next, you must regenerate your system and load the system again. Continue
this procedure until you have created a functional target system.

Once you have created your final system, fine-tune the memory allocated for the
system by editing the MEMS and MEMF screens in the Interactive Configuration
Utility (ICU). If your target system will reside in ROM, enable the ROM feature by
entering “Yes” to the “System in ROM” entry on the ROM screen of the ICU. You
must also make any necessary changes to the ROM screen.

See also: Setting the Memory Address and Size Values, in this chapter

Loading an Application into ROM
When you place an iRMX application system in EPROM/FLASH, a number of
hardware assumptions are made by the iRMX initialization code regarding memory
layout. These assumptions are:

• The entire iRMX application system image (minus the ROM Initialization Code)
is in a contiguous section of memory described by a single entry on the MEMS
screen of the ICU definition file.

• The ROM Initialization Code must reside within 64 Kbytes of the top of
ROM/FLASH memory and on a 4 Kbyte boundary.

• Volatile System Memory (system RAM) must reside within the first megabyte of
memory, below and directly adjacent to Free Space Memory.

• The first section of the Free Space Manager, defined on the MEMF screen of the
ICU, must be large enough to contain those parts of the application system that
are copied from ROM to RAM.

Preparing an Application to Reside in ROM
You can configure a ROM-based iRMX application as a first-level job. This job
often contains a single initialization task that creates or starts the creation of all other
objects required by the first-level job.

The root task creates the first-level jobs. Each time the root task creates a first-level
job, the root task suspends itself to allow the new job's initialization task to perform
synchronous initialization.

Programming Techniques Chapter 9 123

The root task creates first-level jobs using this programming loop:

Repeat for each first-level job

Create first-level job

Suspend root task (until resumed by a

first-level job finishing its initialization)

Until finished

End

Synchronous initialization consists of functions that must be performed before some
other first-level job is created. Typically, this requires creating objects or making
resources available that subsequent tasks will use. For example, the initialization task
in the EIOS job must ensure that the EIOS is ready before it can allow the root task to
create other first-level jobs that would use EIOS functions.

When the initialization task finishes its synchronous initialization, it must inform the
root task that it is finished so the task can resume execution and create another first-
level job. The initialization task must always inform the root task that it has
completed its synchronous initialization process by calling the rq_end_init_task
system call. This call requires no parameters and causes the root task to resume
execution and create the next first-level job.

✏ Note
You must include the rq_end_init_task system call in the
initialization task of each of your first-level jobs even if they do not
require synchronous initialization; otherwise the root task remains
suspended.

The amount of synchronous initialization depends on your job structure. You must
determine how the pieces of your system interact and how they must synchronize.

Chapter 9 Developing Applications for ROM124

Another important factor in initialization is the order in which the root job creates
first-level jobs. Shown below is an example order. The order the root task uses to
create first-level jobs depends on where the jobs are started in relation certain OS
layers. This ordering depends what parameters you specify with the ICU, not on the
priority of the tasks.

Order Root Job First-Level Job I/O User Job

1 Root Job

2 System Debugger

3 Basic I/O System

4 Extended I/O System

5 I/O User Jobs

6 User Jobs

7 Human Interface

8 Shared C Library

See also: Help message for the (SEQ) and (TPUJ) ICU screens, Interactive
Configuration Utility

Programming Techniques Chapter 9 125

Methodology for Burning an Application into ROM
When burning an application into ROM, your ROM/Flash programmer should be
capable of handling OMF386 or Intel hex format code. The procedure is:

1. Identify which format your ROM/Flash programmer takes.

2. The builder generates the OMF386 output file. This file is specified in the ROF
entry of the ICU GEN screen. Load the code directly into the ROM/Flash
programmer, splitting the code between multiple devices if necessary.

3. If your ROM/Flash programmer requires hexadecimal format, use the OH386
utility to convert the OMF386 code to OH386 code.

Both OMF386 and hex format contain both code and data. The presence of data in
the input file to the ROM/Flash programmer may cause a warning, which you can
ignore.

Use your Flash/ROM programmer to extract code only within the address range that
will be placed in ROM.

Developing a ROM-based Application System
When developing a ROM-based application, you should develop as much of the
application as possible to be a program loadable under the Human Interface CLI.
Remove all the bugs possible in the loadable version of the job. Use the Soft-Scope
debugger and other iRMX tools to help debug your system.

In case the target hardware does not support a full-featured iRMX environment with
a Human Interface, you can write intelligent stubs that simulate the target hardware.
Then run both the application and its hardware-simulating stubs in a loadable iRMX
environment. This allows you to complete as much of the debugging as possible with
a loadable job instead of a ROM-based job.

Once your application is ready for ROM/FLASH on the target hardware, you must
use the ICU to configure the iRMX application system containing your application.

Start with the Intel-provided ICU definition file that most closely fits your target
hardware. These files are located in the /rmx386/icu directory.

If you do not find the appropriate file, you can specify a new definition file using the
ICU. Once in the ICU, you must make modifications to the various layer/hardware
screens until your target hardware and software environment are fully described.

See also: Example ICU Session, ICU User’s Guide and Quick Reference

Chapter 9 Developing Applications for ROM126

Overview of the ROM-based Application Example
The following example illustrates how a ROM-based application system is generated.
The example describes the instructions for generating the example MIX486 ROM
application located in the /rmx386/demo/rom/mix4demo directory. The application
system defined by this example has these attributes:

• Runs on a MIX486 board (MIX486DX33, MIX486DX66, or MIX486SX33) in a
Multibus II backplane

• Loads out of FLASH into RAM and executes out of RAM

• Contains a simple Multibus II message passing program that waits at a specific
port for Multibus II messages and replies to them

First, develop the application as an Human Interface-loaded program. This program,
receive.c, does the message passing. After you make any changes to receive.c and it
is fully debugged, the following procedure converts it to a first-level job:

1. Add a call to rq_end_init_task to the program's initial task after completing any
required synchronous initialization. You can leave the rq_end_init_task call in
even if you run the demo application from the Human Interface.

2. Convert the program's initial task to a public procedure (already set up as main in
C programs).

3. Modify the bind process to produce a linkable version of the program instead of
the Single Task Loadable (STL) version.

4. Modify the bind process to suppress all Public symbols except the name of the
program's initial task and the name of one of the program's public variables.

Once the application program is ready as a first-level job, the next step is to configure
the iRMX OS to run on the target hardware.

Generating the ROM-based Application Example
The files used to generate the example ROM application are in the
/rmx386/demo/rom/mix4demo directory. These files are:

receive.c Receives a message from sendmb2 and returns a new message

sendmb2.c Sends a message to a port on a MB II agent running receive

makefile File used to generate the example

Programming Techniques Chapter 9 127

To generate the example:

1. Change the directory to /rmx386/demo/rom/mix4demo.

2. At the iRMX prompt, type: make <CR>

This creates the Human Interface programs receive and sendmb2, and the user job
module, receive.lnk.

Configuring the iRMX OS
You must configure the iRMX OS through the ICU to recognize that the target
hardware is a MIX486 board.

✏ Note
In the following ICU screens, enter the values listed in bold.
These values are specific to the example application and should not
be changed.

Setting the Hardware Values

In the following HARD screen, the hardware addresses are specific to the MIX486
board. Because the application does not need a finer time granularity than 10
milliseconds, set the KTR entry to 1. Specify “Yes” for the EMU entry so the system
includes an NPX Emulator. This Emulator is dormant if a math coprocessor is
present (MIX486DX33 or MIX486DX66 board) but provides numeric support when
no math coprocessor is present (MIX486SX33 board).

(HARD) Hardware

(BUS) System Bus Type [1=MBI / 2=MBII / 3=AT] 2

(TP) 8254 Timer Port [0-0FFFFH] 0D0H

(CIL) Clock Interrupt Level [0-7] 0

(CN) Timer Counter Number [0,1,2] 0

(CIN) Clock Interval [0-65535 msec] 10

(KTR) Kernel Tick Ratio [1-65535] 1

(CF) Clock Frequency [0-65535 khz] 1250

(TPS) Timer Port Separation [0-0FFH] 02H

(EMU) Emulate Numeric Processor [Yes/No] YES

(IF) Initialize On-board Functions [0=No / 1-0FFH] 08H

(BIP) Board Initialization Procedure [1-45 Chars]

Chapter 9 Developing Applications for ROM128

Setting the Multibus II Addresses and Port Separation Values

In the following Multibus II screen, the Multibus II hardware addresses and port
separations are specific to MIX486 boards. The application uses only aligned buffers
so no message passing transfer/alignment buffers are included.

(MBII) Multibus II Hardware

(MDP) Message Device Base Port Address [0-0FFFFH] 0H

(MDS) Message Device Port Separation [0-0FFH] 04H

(MDL) Message Interrupt Level [Encoded Level] 04H

(MCO) Message Device Duty Cycle for One Cycle DMA [0-0FFH] 052H

(MCT) Message Device Duty Cycle for Two Cycle DMA [0-0FFH] 097H

(MDC) Message Device Duty Cycle for Burst DMA [0-0FFH] 04AH

(DDP) Message Device ADMA Data Port [0-0FFFFH] 0H

(GBR) ADMA Burst Register [0-0FFFFH] 0H

(GDR) ADMA Delay Register [0-0FFFFH] 0H

(AIB) ADMA Base Port Address [0-0FFFFH] 0200H

(ACI) ADMA Channel for Input [0-0FFFFH] 02H

(ACO) ADMA Channel for Output [0-0FFFFH] 03H

(DIB) DMA Input Buffer Size [0-0FFFFFFFFH] 0H

(DOB) DMA Output Buffer Size [0-0FFFFFFFFH] 0H

(DDA) DAG Device Used [Yes/No] YES

(DBA) DAG Base Port [0-0FFFFH] 0300H

(WDP) Watchdog Present [Yes/No] NO

(WDM) Watchdog Mboxes [0-0FFH] 03H

(WDI) Watchdog Transmission Interval [1-0FFFFFFFFH] 03E8H

(WDT) Watchdog Timeout [1-0FFFFFFFFH] 03E8H

Setting the Master and Slave Interrupt Values

In the following INT and SLAVE screens, the Master and Slave Interrupt layout is
specific to the MIX486 board.

(INT) Interrupts

(MP) 8259A Master Port [0-0FFFFH] 0C0H

(MPS) Master PIC Port Separation [0-0FFH] 02H

(IS) Interrupt Slaves [Yes/No] YES

(SLAVE) Slave Interrupt Levels

Slave = Slave_number, Level_Sensitive, Port, Separation

[0-7] [Yes/No] [0-0FFFFH] [0-0FFH]

[1] Slave = 7 , NO , 0C4H , 02H

[2] Slave =

Programming Techniques Chapter 9 129

Setting the Subsystem Values

In the following SUB screen, include the System Debug Monitor and System
Debugger subsystems only as an aid to debugging. Remove these when configuring
the production system.

The application does not require the services of other subsystems because those
provided by the Kernel, Nucleus, and Message Passing subsystem meet the
application’s needs.

(SUB) Subsystems

(UDI) Universal Development Interface [Yes/No] NO

(CLB) Shared C Library [Yes/No] NO

(HI) Human Interface [Yes/No] NO

(AL) Application Loader [Yes/No] NO

(NET) Networking [Yes/No] NO

(EIO) Extended I/O System [Yes/No] NO

(BIO) Basic I/O System [Yes/No] NO

(PGS) Paging Subsystem [Yes/No] NO

(VMD) VM86 Dispatcher [Yes/No] NO

(SDM) System Debug Monitor [Yes/No] REQ

(SDB) System Debugger [Yes/No] YES

(OE) OS Extension [Yes/No] NO

Setting the Memory Address and Size Values

In the following MEMS and MEMF screens, change the memory parameters to
reflect a ROM-based application.

(MEMS) Memory for System

SYS = low [0-0FFFFFFFFH], high [0-0FFFFFFFFH]

[1] SYS = 0FFF80000H, 0FFFFFFEFH

[2] SYS =

(MEMF) Memory for Free Space Manager

FSM = low [0-0FFFFFFFFH], high [0-0FFFFFFFFH]

[1] FSM = 020000H , 09FFFFH

[2] FSM = 0C0000H , 07FFFFFH

[3] FSM =

In a ROM/FLASH-based system, the MEMS entry reflects the physical address of
the ROM/FLASH devices once the system is switched to Protected Virtual Address
Mode. It is assumed to be contiguous, in other words, it is all defined in a single SYS
entry.

Chapter 9 Developing Applications for ROM130

On some boards, the ROM/FLASH is at a different address on reset and then is
switched to its final location through I/O output operations. On the MIX486 board,
this address range is fixed and encompasses the two 2 Mbit FLASH sites on the
board.

✏ Note
If you adjust the physical address of ROM/FLASH during the
system initialization process, you must do it in-line in the
custom_initial_hw_setup subroutine. No jumps or calls are
allowed.

See also: Debugging the ROM Initialization Process, in
this chapter

The FSM sections of the MEMF screen describe the RAM Memory available to the
Free Space Manager. The space in memory between 9FFFFH and 0C0000H is
required by the MIX486 board due to its use of a PC chipset. In a ROM/FLASH-
based system, the first FSM section must provide enough RAM storage for system
objects copied from ROM/FLASH to RAM during the system initialization process.
Items that are copied from ROM to RAM are the system GDT, LDT, IDT and four
TSSs. Calculate the minimum size for the first FSM section of memory as:

Size(FSM(0)0 = ((Final GDT size * 8) * 2) +

Final IDT size * 8) + 200H

In cases where the application system executes out of RAM, the first FSM memory
section must be large enough to contain the minimum FSM size, calculated above, in
addition to the memory required to hold all code segments that make up the
application system. Refer to the Segment Map (Figure 9-1) portion of the .mp2 file
generated by BLD386 for the application system and add up the segment sizes for all
“ER” type segments listed there.

The final sum of the equation above plus the application code segments is the final
minimum size of the FSM(0) section of memory.

When the system initializes (during the ROM Initialization Code and the early stages
of Nucleus initialization), it removes memory from the FSM(0) memory section
(beginning at the lowest specified memory address) as needed to handle the items
copied from ROM to RAM. FSM(0)'s final low address is adjusted upwards
accordingly.

Figure 9-1 lists the Segment Map from the mix4dxro.mp2 file.

Programming Techniques Chapter 9 131

SEGMENT MAP

TABLE BIT DPL ACCESS USE BASE LIMIT SEGMENT NAME

GDT

1 1 0 RW 16 FFF80000H 00000DBFH GDT:

2 1 0 RW 16 FFF80DC0H 0000008FH IDT:

33 1 0 RW 16 0000FAA8H 00000003H ?DUMMY_MODULE.SDM3_ALIAS_SEGMENT3

34 1 0 ER 16 FFFA8754H 0000296EH SDM_DASM.DASM_CODE

35 1 0 RW 16 FFFA0BB0H 000013E5H SDM_DASM.DASM_DATA

44 1 0 ER 16 FFFAB0C4H 00000015H SDM_DASM.CODE

45 1 0 ER 32 FFFB1AD8H 0000BFC7H M3.SDMIII_CODE32

46 1 0 RW 32 0000A3C4H 00000860H M3.SDMIII_DATA

47 1 0 RW 16 0000FAA0H 00000003H ?DUMMY_MODULE.SDM3_ALIAS_SEGMENT

48 1 0 RW 16 0000FAA4H 00000003H ?DUMMY_MODULE.SDM3_ALIAS_SEGMENT2

49 1 0 RW 16 FFFA0AE2H 000000CCH SDM_DASM.SDM_DASM_DATA

60 1 0 RW 32 00000000H 000060CAH NUCDAT.DATA

80 1 0 ER 32 FFF80E50H 0001FC90H NUCDAT.CODE

85 1 0 RW 32 00006464H 000003FFH NUCDAT.STACK

300 1 0 RW 16 0000FA18H 00000087H ?DUMMY_MODULE.SHADOW_IDT_SEG

302 1 0 RW 32 0000FB8CH 00000007H ?DUMMY_MODULE.CC_120_SEG_5

308 1 0 ER 32 FFFC0A24H 00015AE5H SDBCNF.CODE

309 1 0 RW 32 0000B958H 00001064H SDBCNF.DATA

310 1 0 RW 32 0000B2FCH 00000659H SDBCNF.NEWSTACK

320 1 0 ER 32 FFFA3560H 00000139H NTRSTK.STK_OVFW

343 1 0 ER 32 FFFBEAC8H 00001F5AH M3.CC_CODE32

344 1 0 RW 32 0000AC28H 000006D3H M3.CC_DATA

400 1 0 RW 16 0000FA10H 00000003H ?DUMMY_MODULE.MI_ALIAS_SEGMENT

401 1 0 RW 16 0000FA14H 00000003H ?DUMMY_MODULE.MI_ALIAS_SEGMENT2

402 1 0 ER 32 FFFAB0DCH 000069FBH M3.MIII_CODE32

403 1 0 RW 32 00007270H 00001152H M3.MIII_DATA

404 1 0 RW 16 000083C4H 00001FFFH M3.STACK

426 1 0 ER 16 FFFA85B2H 000001A1H SDM_DASM.SDM_DASM_CODE

LDT.1 (LDT1)

1 1 0 RW 16 FFFA1F96H 00000DBFH LDT1:

72 1 0 ER 32 FFFA369CH 00004F15H E80387.A?MED

73 1 0 RW 32 00006C84H 000001DAH E80387.A?MSR

74 1 0 RW 32 00006E60H 0000028FH E80387.STACK

75 1 0 RW 32 000060CCH 00000394H NUCDAT.JOBDAT

Figure 9-1. Example Segment Map

Chapter 9 Developing Applications for ROM132

79 1 0 RW 32 00006864H 0000001DH NUCDAT.ESCAPE_SS

80 1 0 ER 32 FFFA3538H 00000026H NUCDAT.ENTRY_CODE

90 1 0 ER 16 FFFFFFF0H 00000003H NUCDAT.RESTART_CODE_ROM

91 1 0 ER 16 FFFFF000H 00000DCEH NUCDAT.CODE_ROM

92 1 0 RW 32 00006884H 000003FFH NTRSTK.SE_STACK

93 1 0 RWD 16 FFFF7198H 0000FF57H SDM_DASM.STACK

94 1 0 RW 32 00007198H 000000D4H M3.DATA

95 1 0 ER 16 FFFBDAA0H 00001024H M3.SDMIII_NPX_CODE

96 1 0 ER 32 FFFD650CH 0000050FH START.CODE

97 1 0 RW 32 0000C9C0H 0000004CH START.DATA

98 1 0 RWD 32 0000FA10H FFFFCFFFH START.STACK

99 1 0 RW 32 0000FAACH 0000007FH ?DUMMY_MODULE.CC_120_SEG_1

100 1 0 RW 32 0000FB2CH 0000001FH ?DUMMY_MODULE.CC_120_SEG_2

101 1 0 RW 32 0000FB4CH 0000001FH ?DUMMY_MODULE.CC_120_SEG_3

102 1 0 RW 32 0000FB6CH 0000001FH ?DUMMY_MODULE.CC_120_SEG_4

Figure 9-1. Example Segment Map (continued)

Setting the System Debug Values

In the following SDB screen, the System Debugger is entered through a Non-
Maskable Interrupt (NMI) generated across the interconnect space. Set the SLV
entry to 0FFH and set the NMI entry on the NUC screen to allow an NMI to trigger
the SDB.

(SDB) System Debugger

(SLV) SDB Interrupt Level [Encoded Level/NONE = 0FFH] 0FFH

(ESC) Enable Screen Scrolling Control [Yes/No] YES

Since the MIX486 board has no on-board serial devices, set the RCI entry to Primary
in the SDM screen so the Remote Console Interface Driver is the SDM/SDB's I/O
device.

(SDM) System Debug Console MultiBus Drivers

(D51) 8251 Console Controller Driver [Primary/Secondary/No] NO

(A54) 354 Port A Console Controller Driver [Primary/Secondary/No] NO

(B54) 354 Port B Console Controller Driver [Primary/Secondary/No] NO

(A74) 8274 Port A Console Controller Driver [Primary/Secondary/No] NO

(B74) 8274 Port B Console Controller Driver [Primary/Secondary/No] NO

(G79) SBX 279 Console Controller Driver [Primary/Secondary/No] NO

(A30) 82530 Port A Console Controller Driver [Primary/Secondary/No] NO

(B30) 82530 Port B Console Controller Driver [Primary/Secondary/No] NO

(RCI) Remote Console Interface Driver [Primary/Secondary/No] PRIMARY

Programming Techniques Chapter 9 133

PC Drivers

(SR1) Serial Port One [Primary/Secondary/No] NO

(BP1) Serial Port One Base Address [0-0FFFFH] 03F8H

(SR2) Serial Port Two [Primary/Secondary/No] NO

(BP2) Serial Port Two Base Address [0-0FFFFH] 02F8H

(CON) Console Port [Primary/Secondary/No] NO

With the SDM/SDB present in the configuration, set the Default Hardware Exception
Handler and NMI Exception Mode entries in the NUC screen to enable an NMI
signal to break to the monitor.

(NUC) Nucleus

(NGE) Number Of GDT Entries [440-8190] 500

(NIE) Number Of IDT Entries [0-256] 256

(PV) Parameter Validation [Yes/No] YES

(ROD) Root Object Directory Size [0-3840] 50

(DSH) Default Software Exception Handler [Job/Task/STask/User] JOB

(EM) Exception Mode [Never/Program/Environ/All] NEVER

(NEH) Name of Ex Handler Object Module [1-55 Chars]

(DHH) Default Hrdwr Exception Handler [Job/Task/STask/Monitor] MONITOR

(NMI) NMI Exception Mode [Ignore/Process] PROCESS

(NEB) NMI Enable Byte [0-255] 04H

(LSE) Low GDT/LDT Slot Excluded from FSM [440-8189/NONE=0] 0

(HSE) High GDT/LDT Slot Excluded from FSM [440-8189/NONE=0] 0

(RRP) Round Robin Priority Threshold [0-255] 140

(RRT) Round Robin Time Quota [0-255] 5

(RIE) Report Initialization Errors [Yes/No] YES

(MCE) Maximum Data Chain Elements [0-0FFFFH] 080H

(CS) Nucleus Communication Service [Yes/No] YES

Setting the Nucleus Communications Values

In the NCOM screen, set the Nucleus Communications Services entries to standard
values.

(NCOM) Nucleus Communication Service

(PMT) Message Task Priority [0-255] 128

(PDT) Deletion Task Priority [0-255] 128

(DPT) Default Number of Port Transactions [0-255] 16

(DHI) Default Host ID [0=None/1-254] 0

(VBP) Validate Buffer Parameters [Yes/No] YES

(MST) Max No. of Simultaneous Transactions [0-0FFFFH] 040H

(MSM) Max No. of Simultaneous Messages [0-0FFFFH] 080H

(RFT) Receive Fragment Failsafe Timeout [0-0FFFFH] 0400H

(NTM) Number of Trace Messages [0-255] 255

Chapter 9 Developing Applications for ROM134

Setting the System Job Values

In the SYSJ screen, no system jobs are required in this application system so set all
entries to “No.”

(SYSJ) System Jobs

(PCI) PCI Server Job [Yes/No] NO

(DL) MBII Downloader Job [Yes/No] NO

(ATC) ATCS/279/ARC Server Job [Yes/No] NO

(A50) ATCS/450 Server Job [Yes/No] NO

(BS) MSA BootServer Job [Yes/No] NO

(FPI) FPI Server Job [Yes/No] NO

(SSK) SoftScope Kernel Job [Yes/No] NO

Setting the User Job Values

Set the TP entry in the USERJ screen so the priority of the first-level job, receive,
starts at 155. Even though the job starts after the EIOS, it has no effect since there is
no BIOS or EIOS in the system. Therefore, the job starts immediately after the SDB
initialization job.

Since the job is written in C, the initial task's public name is main. Because it is
coded as a far procedure, no Public Variable Name is required for the VAR entry of
the USERJ screen. The initial task sets up its own data segment.

(USERJ) User Jobs

(NAM) Job Name [0-14 Chars] RECEIVE

(SEQ) Job Sequence [Before/After] AFTER

(ODS) Object Directory Size [0-3840] 10

(PMI) Pool Minimum [20H-0FFFFFFFH] 010000H

(PMA) Pool Maximum [20H-0FFFFFFFH] 0FFFFFH

(MOB) Maximum Objects [1-0FFFFH] 0FFFFH

(MTK) Maximum Tasks [1-0FFFFH] 0FFFFH

(MPR) Maximum Priority [0-255] 129

(EHS) Exception Handler Entry Point [1-31 Chars]

(EM) Exception Mode [Never/Prog/Environ/All] NEVER

(PV) Parameter Validation [Yes/No] YES

(TP) Task Priority [0-255] 155

(TSA) Task Entry Point [1-31 Chars] MAIN

(VAR) Public Variable Name [0-31 Chars]

(SSA) Stack Segment Address [SS:SP] 0000:0000H

(SSI) Stack Size [0-0FFFFH] 0500H

(NPX) Numeric Processor Ext. Used [Yes/No] NO

Programming Techniques Chapter 9 135

In the USERM screen, the builder looks for the first-level job link file, receive.lnk, in
the local directory.

(USERM) User Modules

Module = 1-55 characters

[1] Module = RECEIVE.LNK

[2] Module =

Setting the RAM and ROM Values

(ROM) ROM Code

(SYR) System In ROM [Yes/No] YES

(CPI) Copy ROM Initialization Code to RAM [Yes/No] NO

(EOR) Execute System Out of Rom/Flash Yes/No] NO

(VSS) Volatile System Memory Starting Address [0-0FFFFFFFFH] 0H

(VSE) Volatile System Memory Ending Address [0-0FFFFFFFFH] 01FFFFH

(RBA) Base Address of ROM Init code at reset [0-0FFFFFFFFH] 0FFFFF000H

(RDA) RAM Destination Address of ROM Init code [0-0FFFFFFFFH] 0H

(SRC) Size of ROM Initialization Code [0-0FFFFFFFFH] 0H

(CRS) Custom ROM Initialization Source File [1-45 Chars] MIXINIT.INC

(CRO) Custom ROM Initialization Object File [1-45 Chars] MIX4IN.LNK

In this application system, the ROM Initialization Code mode of operation is
RAM-less (CPI=NO). In the RAM-less mode, the ROM Initialization Code expects
to be entered using a near jump placed at the Reset Vector (at FFFFFFF0H). In this
case, the ROM Initialization Code immediately sets up its initial GDT/IDT in
nonvolatile memory before switching the microprocessor into protected mode.

Setting the ROM Initialization Code mode of operation to RAM-full (CPI=YES)
means that the ROM Initialization Code expects to be entered using a far jump from
some non-iRMX initial program, such as a Flash utility. In this case, the ROM
Initialization Code copies itself from nonvolatile memory into RAM and sets up its
initial GDT/IDT in RAM before switching the microprocessor into protected mode.
This mode allows nonvolatile memory to be remapped to a new physical address.
The RAM destination address of the ROM Initialization Code (RDA) must be within
the first megabyte.

See also: Calculating Volatile Memory Size, in this chapter

The system copies the OS and its associated application from ROM to RAM as part
of the initialization process (EOR=NO). It defines system RAM memory excluded
from the Free Space Manager in the address space from 0 to 1FFFFH. The system
uses this memory as Volatile System Memory, which is static memory used for stack
and data by the OS layers and application program.

Chapter 9 Developing Applications for ROM136

This Volatile System memory must be below and contiguous to the first FSM section
for Free Space Memory. It must be at least 300H bytes in length since the ROM
Initialization Code uses 300H bytes of memory just below the start of the first FSM
section for its own stack and data area. The OS and/or application can also use this
memory since the ROM Initialization Code will already have completed its work by
the time the OS begins.

Calculating Volatile Memory Size

In configuring your application system to be ROM\Flash-based, you must reserve a
certain portion of Volatile System Memory as static data and stack. To identify the
minimum memory requirements for your specific application, you can calculate the
memory requirements based on information in the .mp2 file generated for your
application. The demonstration application generates the mix486dx.mp2 file (Figure
9-1).

As shown in Figure 9-1, the Segment Map of an .mp2 file lists the base address and
limit of each segment defined in the application system. Using the information in
both the GDT and LDT sections of the Segment Map, you can calculate the amount
of code (MEMS) and data (VSS and VSE) needed by your application system, as
follows.

1. Find the highest code physical address in non-volatile ROM. These addresses
start with “FFF”. In mix486dx.mp2, the highest code address is LDT Slot 96
listed in this line:

96 1 0 ER 32FFFD650CH 0000050FH START.CODE

2. Add the base address (FFF0650H) and the limit for the code address (50FH) to
obtain their sum (FFF06A1BH).

3. Obtain the high address in the MEMS screen, which is FFFFFFEFH in the
example.

4. The sum of the base address and limit (FFF06A1BH) must be less than or equal
to the MEMS high address (0FFFFFFEFH), as is the case in the example.

Now calculate the memory requirements for RAM:

1. Find the highest data physical address in RAM. These addresses start with
“0000”. As seen in Figure 9-1, the highest data address is listed is GDT Slot
302:

302 1 0 RW 32 0000FB8CH 00000007H ?DUMMY_MODULE.CC_120_SEG_5

2. Add the base address (0FB8CH) and the limit for the data address (7H) to obtain
their sum (FB93H).

Programming Techniques Chapter 9 137

3. The sum of the base address and limit must be less than or equal to the VSE high
address (1FFFFH). Finally, adjust the VSE parameter to be equal to the low
address of the MEMF entry minus one.

✏ Note
If you do not allocate enough Volatile System Memory, you will
see the following error message when you generate the system. If
the segment_name is a data segment, check the VSS and VSE
entries. If the segment_name is a code segment, check the MEMS
entries.

*** WARNING 177: SEGMENT ALLOCATED OUTSIDE SPECIFIED RANGE

SEGMENT: segment_name

Set the base address of the ROM Initialization Code to 0FFFFF000H using the RBA
entry in the ROM screen. This address must be on a 4 Kbyte boundary and be within
64 Kbytes of the system restart vector, which resides at 0FFFFFFF0H. The restart
vector does a near jump to this address.

✏ Note
Accessing an address of 0FFFFF000H while in Real Mode is based
on a feature of all Intel Architecture microprocessors. At reset, all
address lines are driven high by the microprocessor and stay that
way until the first far jump is made. The ROM Initialization Code
makes sure the hardware descriptor tables (GDT and IDT) refer to
this high memory address area by the time the first far jump is
made (immediately after switching to PVAM).

You can verify the size of the ROM Initialization Code by looking at the Segment
Map in the .mp2 file generated by the BLD386 utility. Refer to Figure 9-1, LDT Slot
91.

The size of the ROM Initialization Code varies based on the amount of code your
application requires to properly configure your system hardware. In the MIX486
example, the code is approximately 3500 bytes in length.

Since the RAM-less mode of ROM Initialization is used, this example sets the RDA
and SRC entries to 0H.

Chapter 9 Developing Applications for ROM138

When the ICU generates the configuration files for a ROM-based system, it creates a
ROM Custom Initialization include file whose name is
definition_file_base_name.inc.inc. The ICU places into it a set of empty ASM386
macros as well as a small amount of assembler code. In the MIX486 example, the
ICU definition file is mix486dx.bck, so the ROM Custom Initialization include file is
created as mix486dx.inc. See the comments in the .inc file for areas where you can
customize the initialization code.

When developing a ROM-based iRMX system, modify this ROM Custom
Initialization include file to use your custom code. Copy the file to a different file
whose pathname you list in the CRS entry. The System Generation submit file
copies the CRS-specified file over the ROM Custom Initialization include file. It
uses this file when generating the ROM Initialization Code object files. By giving it
a different name, you insure your modifications to the ROM Custom Initialization
include file will not be destroyed the next time you run the ICU.

As part of the modifications made to mix486dx.inc to yield mixinit.inc, calls are made
to two near procedures, mix4_init and init_486. Specify the link file containing
these two procedures as mix4in.lnk in the CRO entry of the ROM screen. These calls
are specific to the MIX486 board. The files mix4in.lnk, mix486dx.bck, and
mixinit.inc are located in the /rmx386/demo/rom/mix486 directory.

✏ Note
If you are programming ROM on different target hardware, you
can create your own external procedures. This means you must:

• Use 16-bit code

• Name the Code Segment as “code_rom”

• Not use a data segment

• Modify the .inc file to call your procedure

• Modify the CRO entry of the ROM screen

(INCL) Includes and Libraries [1-30 Characters]

(UDF) UDI Includes and Libs /RMX386/UDI/

(HIF) Human Interface Includes and Libs /RMX386/HI/

(EIF) Extended I/O System Includes and Libs /RMX386/EIOS/

(ALF) Application Loader Includes and Libs /RMX386/LOADER/

(BIF) Basic I/O System Includes and Libs /RMX386/IOS/

(MNF) Intel Monitor Includes and Libs /RMX386/SDM/

(SDF) System Debugger Includes and Libs /RMX386/SDB/

(NUF) Nucleus Includes and Libs /RMX386/NUCLEUS/

(ILF) Interface Libraries /RMX386/LIB/

Programming Techniques Chapter 9 139

(DTF) Development Tools Path Name :LANG:

(VMF) Virtual 8086 Mode includes and libs /RMX386/VM86/

(NET) iRMX-NET Files /RMX386/RMXNET/

(CLF) Shared C Libraries /RMX386/CLIB/

(ISL) Intel Support Libraries /INTEL/

(SJM) System Jobs Object Modules /RMX386/JOBS/

Use the standard iRMX generation screen and directory structure to generate the
application system.

(GEN) Generate File Names

(RMB) Remote Boot Translation [Yes/No] NO

(RBF) Remote Boot File Name [1-55 Chars] /RBOOT32/RMX386.386

(ROF) ROM Code File Name [1-55 Chars] MIX486DX.ROM

(RAF) RAM Code File Name [1-55 Chars] MIX486DX.RAM

The file you specify in the ROF parameter is the OMF386 output of the builder. This
output is your iRMX application system which you can program into ROM/FLASH.

The comment record allows you to tag your definition file, specifying its contents.
This record is placed in the Nucleus code segment and is available through a pointer
to it in the RQSYSINFO segment cataloged in the root job.

(COMNT) Comments for Build file each line = 1-55 characters - IN QUOTES

[1] = 'iRMX III Release 2.2 Operating System '

[2] = 'for MIX486DX33 and MIX486DX66 '

[3] = 'Nucleus/SDM/SDB in ROM using 28f020 flash devices '

[4] = 'RAM-LESS ROM Init Version '

[5] =

Chapter 9 Developing Applications for ROM140

Debugging the ROM Initialization Process
To help debug the ROM Initialization process, there are debug write calls at strategic
points in the ROM Initialization Code path. The purpose is to send an output
character through an I/O port so you can track the progress of ROM Initialization
Code as it executes on your board.

✏ Note
BX register—Your code must preserve the contents of the BX
register at the beginning of the custom_init_real_mode macro
and restore this value to the BX register before leaving the
custom_init_real_mode macro.

When developing your own "DebugOp" code, be aware that the
character to be output is passed to the DebugOp macro using the
AL register.

The file mixinit.inc, derived from mix4dxro.inc, is listed below. This file identifies
those sections of the code you must change to support your MIX486 board.

If you wish to have debug characters sent to your output device, you must initialize
and activate your device by placing the appropriate code in DebugOp and
custom_initial_hw_setup macros.

%*define(DebugOp(val)) (%'

; Place any debug output/notification instructions here for aid in

; debugging the rom initialization code. Only I/O instructions are

; recommended since the same routine will operate in both real and

; protected mode

;

; Code which prints debug information to COM1

;

; mov dx, 03F8H

; mov al, %val

; out dx, al

; mov dx, 03FDH

;do_input:

; in al, dx

; and al, 40H

; jz do_input

;purge do_input

;

nop

)%'

Programming Techniques Chapter 9 141

%*define(custom_extrn_1) (%'

;

; Place any external procedure declaration here which will be jumped TO

; from custom_initial_hw_setup. Since the stack is NOT set up at this

; time, only a jump instruction is allowed if an external procedure is

; to be activated. In this case, a label must be placed after the jump

; instruction in custom_initial_hw_setup so that the execution flow can

; return there via a jump in the external procedure.

;EXTRN my_initial_hw_setup_proc

)%'

%*define(custom_extrn_2) (%'

;

; Place any external procedure declaration here which will be CALLED or

; JUMPED TO from custom_init_real_mode and/or

; custom_init_protected_mode. In the case of RAM-LESS rom

; initialization, the stack is NOT set up until just before the call to

; custom_init_protected_mode; therefore, only a JMP instruction is

; allowed in custom_init_real_mode if an external procedure is to be

; activated. In this case, a label must be placed after the JMP

; instruction in custom_init_real_mode so that the execution flow

; can return there via a JMP instruction in the external procedure.

; In the case of RAM-FULL rom initialization, the stack will be set up

; before custom_init_real_mode is called. Thus, a CALL instruction is

; allowed in the custom_init_protected_mode subroutine in both RAM-LESS

; and RAM-FULL modes of rom initialization but is only allowed in

; custom_init_real_mode in the RAM-FULL mode of rom_initialization.

;EXTRN my_custom_init_real_mode_proc

;EXTRN my_custom_init_protected_mode_proc

EXTRN mix4_init: near

EXTRN init_486: near

)%'

%*define(custom_initial_hw_setup) (%'

;

; Place any board initialization code here which must be done when the

; system resets, i.e. before the ROM Initialization code starts to run

;

mov cr2, edx

)%'

Chapter 9 Developing Applications for ROM142

%*define(custom_init_real_mode) (%'

;

; Place any board initialization code here which must be done

; while the system is still running in Real Mode, i.e. before the

; ROM Initialization Code switches the processor to Protected

; Mode. If an external procedure must be accessed from

; custom_rom_init, be sure to use a JMP instruction if the rom

; initialization mode is RAM-LESS.

;

nop

)%'

%*define(custom_init_protected_mode) (%'

;

; Place any board initialization code here which must be done

; immediately after the ROM Initialization Code has switched the

; system to Protected Mode

;

;***

push ds

push es

push fs

push gs

mov edx, cr2

push dx

call mix4_init ; mix4_init(cpu_sig)

call init_486 ; /* enable 486

internal cache */

pop gs

pop fs

pop es

pop ds

)%'

%*define(custom_clear_rnc) (%'

;

; Procedure clear_rnc which is called after switch to protected mode

;

code_rom segment er use16 public

;

Programming Techniques Chapter 9 143

; Dummy procedure clear_rnc. The real clear_rnc procedure is

; required for Multibus II systems. Therefore, if your target

; system runs on Multibus II, comment out this dummy clear_rnc

; procedure by placing a ';' in front of each of its four lines.

;

; public clear_rnc

;clear_rnc proc

; ret

;clear_rnc endp

code_rom ends

)%'

%*define(monitor_break_option) (%'

;

; Variable used to indicate if the user wishes to break to the

; SDM monitor upon completion of the ROM Initialization Code and entry

; into the nucleus initialization code. Set to 0FFH if monitor break is

; desired, otherwise set to 0.

;

; NOTE: Only set MONITOR_BREAK to 0FFH if you have iSDM configured into

; the iRMX application system.

PUBLIC MONITOR_BREAK

MONITOR_BREAK DB 0H

)%'

To verify that the iRMX Nucleus initialization code has been entered, set the SLV
entry in the SDB screen to 0FFH (you can change this later if you do not want SDM
configured in your final system).

With the "DebugOp" macro modified and the output device initialized, the following
ASCII characters will appear on a terminal connected to your output device:

1 <====== Sent to output device by initialization code above

2 <====== Sent to output device immediately after call to custom_init_real_mode
macro - will probably be overwritten by the next character if code
switches successfully into protected mode

3 <====== Sent to output device immediately after call to
custom_init_protected_mode macro

Chapter 9 Developing Applications for ROM144

1 <====== Sent to output device before microprocessor type is determined

Next 8 characters are the base address in RAM in reverse order at which
the iRMX GDT will be placed

0 <===== Translates to 18000H

0

0

8

1

0

0

0

4 <====== Sent to output device as delimiter before the iRMX GDT has been copied
from nonvolatile memory to RAM and expanded

Next 8 characters are the base address in RAM in reverse order of the
iRMX GDT just prior to loading it using an LGDT instruction; this is the
address to which the LGDT instruction will point

0 <===== Translates to 18000H

0

0

8

1

0

0

0

5 <====== Sent to output device immediately after LGDT instruction has been
issued; ROM Initialization Code now running out of the iRMX GDT

6 <====== Sent to output device immediately after LIDT instruction has been issued;
ROM Initialization Code now running out of the iRMX IDT

7 <====== Sent to output device immediately after LTR instruction has been issued;
ROM Initialization Code now running out of a temporary Hardware Task
defined in the iRMX GDT

8 <====== Sent to output device immediately before jumping to the iRMX Hardware
Task; the ROM Initialization Code has just set up the iRMX Hardware
TSS to reflect the new Free Space Memory base address

After the series 5, 6, 7, and 8 appear on the terminal, the flow of control leaves the
ROM Initialization Code and enters the iRMX nucleus initialization code.

Programming Techniques Chapter 9 145

Testing the Application
There are two ways to execute the test application. You can execute the receive
program from the Human Interface during RAM-based testing or as a user job which
is executed from ROM on the Multibus II target.

To run the receive application from the Human Interface on the Multibus II target,
attach to the /rmx386/demo/rom/mix4demo directory containing the application and
type:

- receive <CR>

No messages will be displayed and the program will continue to run until terminated
by a Ctrl-C character.

The receive program waits to receive a message at port 0x801 sent by the sendmb2
application. When it receives the message, it forms a new message and returns it to
sendmb2.

To run the receive application from ROM, first follow the directions in this chapter to
generate the application and burn the ROMs. Install the ROMs in the target and then
apply power to the system.

To test whether the receive application is running successfully, regardless of whether
it runs from the Human Interface or from ROM, execute the sendmb2 program.
From the Human Interface on another Multibus II board, attach to the
/rmx386/demo/rom/mix4demo directory containing the application and type:

- sendmb2 slot_id <CR>

Where slot_id is the slot number of the Multibus II agent running the receive
application.

The sendmb2 program sends a message to port 0x801 on the Multibus II agent
running the receive program.

The final display from the sendmb2 program is:

Attempting to send 50 messages to slot X

Messages sent/received [50]

Program terminated successfully.

■■ ■■ ■■

Chapter 9 Developing Applications for ROM146

Programming Techniques Chapter 10 147

Developing Applications
for Multibus II

This chapter provides a conceptual explanation for most of the Multibus II examples
provided with the iRMX OS. These examples provide a more complete
understanding of message passing techniques using the iRMX OS.

Code Examples
Each example in the manual includes a brief description of the example. Source code
for each example is provided with the iRMX OS.

✏ Note
The files dcomext.h and dcomlit.h are common to the examples in
this chapter.

The source code for the examples are located in the /rmx386/demo/c/mb2/intro
directory. To attach to this directory, type:

- af /rmx386/demo/c/mb2/intro <CR>

To generate the proper executable 32-bit modules for these examples, run the
generation command (DOS batch file) for your compiler:

Compiler Generation Command

iC-386 demo - make

Microsoft C - mscdemo

Watcom C - watdemo

If each host has its own disk, enter this command on both host's terminals. If one of
the hosts is diskless, use the file server to generate the example.

10

148 Chapter 10 Developing Applications for Multibus II

Examples Using Nucleus Communication System
Calls

The examples in this chapter are presented in an order similar to their use in a real
system. The examples step you through these concepts:

Module Use

icscan.c Scanning the system to determine what boards are in the system. This
example runs independently of all the other modules.

tranport.c Creating a data transport protocol port to use in message passing.

sndrsvp.c Sending an RSVP message to another board and waiting for a reply.
This module must be run with rcvrsvp.c or sndfrag.c.

rcvrsvp.c Answering an RSVP message from the receiving board. This module
must be run with sndrsvp.c.

sndmsg.c Sending a contiguous buffer. This example must be run with either
rcvmsg.c or dcrcvmsg.c.

dcsndmsg.c Sending a data chain message. This example must be run with either
rcvmsg.c or dcrcvmsg.c.

rcvmsg.c Receiving a contiguous buffer. This example must be run with either
sndmsg.c or dcsndmsg.c.

dcrcvmsg.c Receiving a data chain message. This example must be run with either
sndmsg.c or dcsndmsg.c.

sndfrag.c Sending a fragmented message. This example must be run with
sndrsvp.c.

rcvfrag.c, Receiving a fragmented message.
sfrag.c

✏ Note
The examples make certain assumptions about the locations of the
host boards in the Multibus II system that they run on. The
REMHOSTID definition in the sndrsvp.c, sndmsg.c, dcsndmsg.c,
sfrag.c examples assume the processor location board is in slot 0.
Change this definition if you want to change the remote host to any
processor board in the board.

Programming Techniques Chapter 10 149

Interconnect Space Example - iscan.c
Before passing messages between agents (boards) in your system, you need to
determine what boards are in your system and the message addresses (cardslot
number for boards on the PSB) for the boards. Writing a board scanner task will
provide you with this information. This task accesses an interconnect register,
allowing you to dynamically determine host IDs, board type, and multiple
occurrences (instances) of a board type.

This section presents an example of getting the interconnect information for an entire
system. The example performs the board scan, get the slot number and board type of
each board in the system and places the information into an array of structures called
sys_map. When the board scan is complete, sys_map is displayed on the console
screen.

Figure 10-1 presents a board-scanning algorithm. The read statements in this figure
refer to the rq_get_interconnect system call. For a map or template of a particular
board's interconnect registers, refer to the board's hardware reference manual.

FOR i = 0 to number of slots minus 1

DO;

Read board(i) vendor ID register;

IF vendor ID <> 0 then

DO;

Read board(i) class and subclass ID registers /*

Determine

board type */

Write the board information into the system map

END;

ELSE;

Write 'empty' into the sys_map for the slot number

END;

END;

Get ID of local host

FOR i = 0 to number of slots minus 1

DO:

Print slot numbers and board types to console screen

END;

Figure 10-1. Board Scanning Algorithm

150 Chapter 10 Developing Applications for Multibus II

In the fourth line of the board scanner algorithm, a vendor ID of 0 (for PSB hosts
only) indicates that either the board was manufactured by a non-licensed vendor or
the cardslot is empty. If you are also scanning the iLBX II bus, replace the 0 with
0FFFFH.

To run the board scanner example, type:

- icscan <CR>

The source code for this example is located in the /rmx386/demo/c/mb2/intro
directory.

Creating a Port for Message Passing - tranport.c
Once you have information on what boards are in your system, the next step is to
create a port for message passing and associate a buffer pool with it. This module
creates a buffer pool, releases a number of 400H byte buffers to it, creates a data
transport type port, and then creates a token to use as a reference to the port.

The source code for this example is located in the /rmx386/demo/c/mb2/intro
directory.

Sending Data Using Send_rsvp
Now that you have information on the boards in the system and a data port, you are
ready to send data in message form. The next example illustrates one of the most
common message passing formats, the request/response, typically used between two
iRMX hosts. Two terms, client and server, are used to describe the boards involved
in request/response messages. The client is the requesting board and the server is the
responding board.

Figure 10-2 shows the logical representation of the message-passing model for a
request/response transaction. A task on the client board initiates the transaction by
sending an send_rsvp call to a well-known port on the server board (see
Figure 10-3). Because the ports on a remote board cannot be dynamically
determined, this example assumes a port that is created on all boards as a starting
point for message passing. Once you have a host_id for a remote board
(REMHOSTID), you combine it with the port_id (REMPORT) of the well-known
port to create the socket for the destination of a message. When the server board
receives the message, it replies with the send_reply call (see Figure 10-4). The
request/response messages continue until the data requested in the original send_rsvp
system call is received by the task on the client board.

See also: send_rsvp, send_reply, System Call Reference

Programming Techniques Chapter 10 151

For this example, we assume:

• The port on the client board has one buffer large enough for the requested data.

• The port receiving the RSVP message is not being used as a sink port.

Local CPU
4

7

5 6

83

1 10

9

2

LEGEND

From Client Board
From Server Board

Message Passing Bus

W-0305

Board issuing the RSVP call
Client Board

Board replying to the RSVP call
Server Board

Operations that are transparent to calling tasks

RECEIVE RECEIVE

SEND SEND

Local CPU

TASK 1

TASK 2

Bus Interface Bus Interface

1. Task 1 on the Client board issues a send_rsvp system call. In an RSVP/REPLY transaction,
the board that issues the call is the client; the board that replies is the server.

2. The Nucleus Communication Service (NCS) turns the information from the send_rsvp system
call into a message then sets the buffer space for the expected reply.

3. The Message Passing Coprocessor (MPC) sends the message across a message passing bus
to the remote agent specified in the send_rsvp system call.

4. The CPU on the server board receives a PIC interrupt because a Multibus II message has been
received.

5. The NCS on the server board directs the message to the appropriate port (and, therefore, task).

6. Task 2 responds with a send_reply system call that contains information about the data being
sent.

7. The NCS on the server board turns the information in the send_reply system call into a
message that is sent by the MPC.

8. The message travels across the message passing bus, an operation transparent to the
operating systems on both boards.

9. The MPC on the client board places the message into the buffer that was set up in step 2, and
then sends an interrupt to the CPU, informing it of the completion of the message transaction.

10. The NCS on the client board directs the message to the correct task using the port ID
(REMPORT). The CPU on the client board is aware of operations in steps 1, 2, 9, and 10.

Figure 10-2. An RSVP/REPLY Transaction between Two iRMX Hosts

152 Chapter 10 Developing Applications for Multibus II

Figure 10-3 is an algorithm for the client board in this transaction.

Client board

Call an external procedure called get$dport that returns a

TOKEN for the local port to be used in the RQ$SEND$RSVP call.

Initialize the socket structure, declared externally.

Set the message size to be zero length.

Initialize the global variable rsvp_size to the LITERAL RSVPB

(128 bytes).

Issue the RSVP system call using the previously initialized

variables.

Use the RQ$RECEIVE$REPLY system call to wait for an answer.

Send the reply message, "This is a send$reply message" to the

console screen.

Exit from the example.

Figure 10-3. Algorithm for the Client Board

Figure 10-4 is an algorithm for the server board in this transaction.

Server board

Call an external procedure, get$dport, that returns a TOKEN to

be used in the RQ$RECEIVE and RQ$SEND$REPLY calls.

Perform an RQ$RECEIVE using the TOKEN returned from get$dport.

Perform an RQ$SEND$REPLY on successful completion of the

RQ$RECEIVE.

IF the data arrives correctly (msg_ptr <> NIL)

Return the buffer to the buffer pool.

End server procedure.

Figure 10-4. Algorithm for the Server Board

Programming Techniques Chapter 10 153

The send message example must be run with the corresponding receive message
example. To run these examples, first type this command on the host in slot 0, or in
the slot as server defined by the REMHOSTID parameter:

- rcvrsvp <CR>

Then type this command on the host in any slot:

- sndrsvp <CR>

The source code for this example is located in the /rmx386/demo/c/mb2/intro
directory.

Sending and Receiving Messages
This section presents examples of sending and receiving buffers (messages) either as
contiguous buffers or as data chains. The example is presented in two modules, one
that sends a message and one that receives it. A port's ability to receive messages in
data chain form is set according to the attributes of the port's associated buffer pool.

The programs for sending messages:

File Action Object

sndmsg.c Send Contiguous buffer

dcsndmsg.c Send Data chain buffer

rcvmsg.c Receive Contiguous buffer

dcrcvmsg.c Receive Data chain buffer

The source code for this example is located in the /rmx386/demo/c/mb2/intro
directory.

154 Chapter 10 Developing Applications for Multibus II

Receiving a Message
The receive example must be run with the corresponding send message example. To
run a receive example, first type one of these commands on the server in slot 0, or in
the slot as server defined by the REMHOSTID parameter:

- rcvmsg <CR> for sending a contiguous buffer
or

- dcrcvmsg <CR> for sending a data chain

After setting the host in slot 0 to receive, run the respective send example on another
host. After receiving the message, the host terminal in slot 0 displays:

Message received by [rcvmsg|dcrcvmsg] as a

[contiguous buffer|data chain] is as follows:

This is the message sent by [sndmsg|dcsndmsg] as

a [contiguous buffer|data chain].

Sending a Message
The send example must be run with a receive message example. To run a send
example, type one of these commands on the host in any slot other than 0:

- sndmsg <CR> for sending a contiguous buffer
or

- dcsndmsg <CR> for sending a data chain

Sending a Message in Fragments
This section presents an example of sending and receiving a message that is broken
into fragments. The example is presented in two modules, one that sends the
fragmented message and one that receives it. A port's ability to receive messages in
fragment form is set according to the attributes given to the port at the time of its
creation.

The send fragment example must be run with the send RSVP procedure. To run
these examples, first type this command on the server in slot 0, or in the slot as server
defined by the REMHOSTID parameter:

- sndfrag <CR>

This procedure breaks the data into fragments and sends them to a processor board.
Then type this command on the host in any slot other than 0:

- sndrsvp <CR>

Programming Techniques Chapter 10 155

This procedure receives the fragmented data and displays it on the host terminal from
which the sndrsvp command was executed:

This is a reply sent in fragments.

Receiving a Message in Fragment Form
This section presents an example of sending a message and receiving it in fragment
form. The example is presented in two modules. The first module, sfrag, initiates a
transaction which forces receiving in fragment form. The second module, rcvfrag,
receives the message and prints it on the console screen. To run these examples, first
type this command on the server in slot 0, or in the slot as server defined by the
REMHOSTID parameter:

- rcvfrag <CR>

Then type this command on the host in any slot other than 0:

- sfrag <CR>

The host terminal from which the sfrag command was executed displays:

This is a reply to a fragmented message.

The host terminal in slot 0 displays:

This was received via fragmentation.

This is the second fragment.

The Name Server Example
This is the most complex example provided with the iRMX OS. This example
implements a table that dynamically catalogs the names of all the ports created in a
system. Two tasks, one for remote requests and one for local requests, manage the
name server table.

The remote server task uses both control and data messages to service requests. The
local server services requests through data mailboxes. The name server table is
implemented as a circular list which is accessed by procedures that insert or delete
port names, get or change socket information, and set up the table for these accesses.

When a client board makes a request to the name server, the request is sent, the
calling task waits for a reply, and the name server returns information specific to the
request (e.g., the result of modifying an entry in the table or the socket for a remote
port).

156 Chapter 10 Developing Applications for Multibus II

The example, written in PL/M, for the name server is located in the
/rmx386/demo/plm/mb2/nservr directory. This command makes the directory
containing the name server example the current directory.

- af /rmx386/demo/plm/mb2/nservr <CR>

To generate the executable name server, run the makefile by entering:

- make <CR>

✏ Note
If an error is generated after running the makefile, you may need to
modify the file. Edit this file and delete the WORD16 switch from
this line:

PLMFLAGS=$(DEBUG) Set(r_32) word16

The name server can be run as a background job to one of the processors. To start
the name server running as a background job, enter:

- background nservr > nservr.doc <CR>

See also: background command, Command Reference

Two modules demonstrate the use of the name server: nssndmsg and nsrcvmsg,
which execute as a pair. Nsrcvmsg must execute first. It posts a socket with the
name server under the name receiver. Nssndmsg then executes, sending the name
server a look-up request on the name receiver. Nssndmsg then sends a message to
receiver and nsrcvmsg prints the message:

On the same host in which you invoked nservr as a background process, enter:

- nsrcvmsg <CR>

On another host, enter:

- nssndmsg <CR>

The host terminal displays:

This is a simple message.

This process can be demonstrated on either host board, but the order of module
execution cannot be changed.

Programming Techniques Chapter 10 157

The General Examples
The two examples presented in this section are located in the
/rmx386/demo/plm/mb2/general directory. The concepts they demonstrate are:

• Example 1: sending and receiving unsolicited messages

• Example 2: sending and receiving asynchronous solicited messages

To examine the examples, attach their directory by entering:

- af :rmx:demo/plm/mb2/general <CR>

To generate the executable modules for all of these examples, run the makefile by
entering:

- make <CR>

If each host has its own disk, this command must be entered on both host's terminals.
If one of the hosts is diskless, enter this command on the host which is acting as its
fileserver.

✏ Note
The module utils.lit contain default client and server PSB slot
definitions. They can be changed for running the examples. All
PSB slot numbers are in hexadecimal.

158 Chapter 10 Developing Applications for Multibus II

Example 1: Sending and Receiving Unsolicited Messages
This example demonstrates sending and receiving unsolicited messages. It can be
executed on any Multibus II boards running the OS or on any single board running as
both the CPU and the communications board (short-circuit mode). The client and
server boards must be situated in slot CLIENTPSBSLOT and
SERVERPSBSLOT, respectively. These slots are defined in utils.lit, located in
this example's directory.

In this example, the client is defined as host 4 and the server as host 2.

Execution of Client and Server Programs

This table shows the various steps the client and server programs perform during the
execution of example one.

Table 10-1. Flow of Program Execution for Example 1

Steps Program Action

1 client
server

Enable in-line exception handling
Enable in-line exception handling

2 client
server

Create port object; associate port with a default remote socket
Create port object; associate port with a default remote socket

3 client Prompt user for message
Encrypt message
Send message asynchronously to server
Wait for response from board in slot SERVERPSBSLOT

4 server Receive message and display in encrypted form
Decrypt message and display in decrypted form
Send decrypted message back to client board

5 client Display decrypted message
Prompt user for another message

This cycle repeats steps 3 through 5 until six messages have been sent and received.
The programs then terminate.

Programming Techniques Chapter 10 159

Running Example 1

To run this example, first enter this command on the host in slot 4:

- clnt32 <CR>

The terminal displays:

Enter any string of characters:

Second, enter this command on the host in slot 2:

- srvr32 <CR>

The server will wait for input from the host in slot 4. For example, your message on
host 4 can be:

My exciting message! <CR>

When host 0 receives the message, it first displays the encrypted version, then the
decrypted version.

Message received is: [encrypted version is displayed]

Converted message: My exciting message!

The server then sends the converted message back to the client, which displays the
message and prompts for the next input.

Message received is: My exciting message!

Enter any string of characters:

After six messages, both programs terminate.

160 Chapter 10 Developing Applications for Multibus II

Example 2: Sending Asynchronous Solicited Messages
This example demonstrates sending asynchronous solicited messages and using
buffer pools. It can be executed on any Multibus II boards running the OS or on any
single board running as both the CPU and the communications board (short-circuit
mode). The client and server boards must be situated in slot CLIENTPSBSLOT
and SERVERPSBSLOT, respectively. These slots are defined in utils.lit, located
in this example's directory.

In this example, the client is defined as host 4 and the server as host 2.

Execution of Client and Server Programs

This table shows the various steps the client and server programs perform during the
execution of example two.

Table 10-2. Flow of Program Execution for Example 2

Steps Program Action

1 client
server

Enable in-line exception handling
Enable in-line exception handling

2 client
server

Create port object; associate port with a default remote socket
Create port object; associate port with a default remote socket

3 client
server

Create buffer pool; associate pool with the port created earlier
Create buffer pool; associate pool with the port created earlier

4 client
server

Create buffers and release them to the pool
Create buffers and release them to the pool

5 client Prompt user for message
Encrypt message and send message asynchronously to server
Wait for asynchronous send transmission message

6 client
server

Wait for response from board in slot SERVERPSBSLOT
Receive encrypted msg from board in slot CLIENTPSBSLOT
Move message from buffer pool buffer to application buffer
Release the buffer back to the buffer pool
Decrypt message and display decrypted form
Send decrypted message synchronously to client board

7 client Release buffer back to buffer pool; display decrypted message
Prompt user for another message

This cycle repeats steps 5 through 7 until eight messages have been sent and received.
The programs then terminate.

Programming Techniques Chapter 10 161

Running Example 2

To run this example, first enter this command on the host in slot 4:

- solclnt32 <CR>

The terminal displays:

Enter any string of characters:

Second, enter this command on the host in slot 2:

- solsrvr32 <CR>

The server will wait for input from the host in slot 4. For example, your message on
host 4 can be:

- My exciting message! <CR>

When host 0 receives the message, it first displays the encrypted version, then the
decrypted version.

Message received is: [encrypted version is displayed]

Converted message is: My exciting message!

The server then sends the converted message back to the client which displays the
message and prompts for the next input.

Message received is: My exciting message!

Enter any string of characters:

After eight messages, both programs terminate.

■■ ■■ ■■

162 Chapter 10 Developing Applications for Multibus II

Programming Techniques Chapter 11 163

Developing Applications in
Assembly Language

This chapter provides information on invoking system calls from assembly language.
It also provides an example of an interrupt handler and an OS extension interface.

Files referred to in this chapter are located in the /rmx386/demo/asm/intro directory.

Invoking System Calls from Assembly Language
To invoke system calls from assembly language programs, the assembly language
programs must obey the Fixed Parameter List (FPL) procedure-calling protocol used
by C and PL/M. For example, if your ASM386 program uses the SendMessage
system call, then you must call the RqSendMessage interface procedure from your
assembly language code.

In general, to call a C or PL/M procedure, do this:

1. Push all the parameters onto the stack.

Push the parameters in the order they are listed in the system call reference
manuals; that is, starting with the leftmost parameter and working towards the
right.

Push long pointers (complete addresses consisting of a selector and an offset)
selector (as a 16-bit value) first, then the offset (as a 32-bit value for PL/M 32-bit
mode).

2. Call the procedure.

The CALL instruction also places the return address of your calling procedure
onto the stack. This enables control to return to your program after the system
call completes.

11

164 Chapter 11 Developing Applications in Assembly Language

Some system calls return values. In assembly language, the returned values are
available in registers as listed in Table 11-1.

Table 11-1. Registers Containing Returned System Call Values

Type 32-bit Register

BYTE AL

WORD AX

DWORD EAX

INTEGER AX

POINTER DX:EAX

SELECTOR AX

The file reg.inc (used by the interrupt handler example) contains macro definitions
used to produce common source code for iRMX II and III. These macro definitions
define the register values shown in Table 11-1. The interrupt handler description on
page 167 shows how to invoke these definitions.

When writing assembly language routines that call iC-386 or PL/M-386 interface
procedures, use the compact model with ASM near calls.

If some of your application code is written in either C or PL/M, your assembly
language code should use the same interface procedures as those used by your code.
However, if your application is written entirely in assembly language, using the
compact interface library and coding your application to make NEAR calls will
produce size and performance advantages.

See also: Using Compact and Large Memory Models, Chapter 7

Programming Techniques Chapter 11 165

This listing of reg.inc shows definitions for common sourced code.

; macro definitions for common sourced code

%IF (%RMX EQ 3) THEN (%'

%define (ax) (eax)

%define (bx) (ebx)

%define (cx) (ecx)

%define (dx) (edx)

%define (si) (esi)

%define (di) (edi)

%define (bp) (ebp)

%define (sp) (esp)

%define (mov16) (movzx)

%define (pusha) (pushad)

%define (popa) (popad)

%define (pushf) (pushfd)

%define (popf) (popfd)

%define (iret) (iretd)

%define (dw) (dd)

%define (dd) (dp)

) ELSE (%'

%define (ax) (ax)

%define (bx) (bx)

%define (cx) (cx)

%define (dx) (dx)

%define (si) (si)

%define (di) (di)

%define (bp) (bp)

%define (sp) (sp)

%define (mov16) (mov)

%define (pusha) (pusha)

%define (popa) (popa)

%define (pushf) (pushf)

%define (popf) (popf)

%define (iret) (iret)

%define (dw) (dw)

%define (dd) (dd)

) FI%'

166 Chapter 11 Developing Applications in Assembly Language

This example shows how to call iRMX system calls from assembly language. The
example assumes that the compact segmentation model is used.

DATA segment RW PUBLIC
seg_tok DW ?
excep DW ?
DATA ENDS

CODE segment ER PUBLIC

extrn rqcreatesegment: near

my_prog PROC near
;
; Get addressability to parameters
;
push ebp
mov ebp, esp
;
; Save caller's DS and obtain local DS
;
push ax
push ds
mov ax, data
mov ds, ax

.

. Typical ASM statements

.
;
; seg_tok = rq$create$segment (400H, @excep);
;
movzx ax,400H
push eax
push ds
push offset excep
call rqcreatesegment
mov seg_tok, ax
;
; IF except <> E$OK THEN GOTO error;
;
cmp excep, 0
jnz error

.

. Typical ASM statements

.
my_prog ENDP
CODE ENDS
END

Programming Techniques Chapter 11 167

Interrupt Handler Example
The assembly language application, inthand.asm, provides an example of an interrupt
handler. The include file, reg.inc, used by this application provides macro definitions
used for various versions of the iRMX OS. The proper definitions are invoked using
one of these ASM invocation lines (from makefile):

asm86 .ob1 .ls1

asm286 .ob12 .ls2

asm386 .obj .lst

Generating the Interrupt Handler Example
The inthand.asm file contains the assembly language code for the interrupt handler.
To examine the example, attach to the directory by entering:

- af /rmx386/demo/asm/intro <CR>

The inthand.asm file contains the assembly language code for the interrupt handler.
To generate the object file from inthand.asm, run the makefile utility by entering:

- make <CR>

OS Extension Example
This assembly language code provides a listing of the recommended interface to an
OS extension.

Once a call gate has been reserved for use as an OS extension (either using the ICU
in the iRMX III OS, or using the rmx.ini configuration), it can be bound to an
application using the rqe_set_os_extension system call. Other applications can
access the OS extensions using assembly language interface procedures described
below.

168 Chapter 11 Developing Applications in Assembly Language

This ASM module is a sample interface to Call Gate 441, which is one of the
user-accessible gates. The OS Extension procedure tied to the gate has this FAR
external interface:

out$char: PROCEDURE(value, status$p) EXTERNAL;

GATE_441 equ 441

$GENONLY

%*DEFINE(CALL_G(ARG))

(DB 9AH

DD 0, %ARG*8)

Name Interface

Code Segment ER PUBLIC

Public Outchar

Outchar Proc Near

;

; PLM CALL - CALL OUT$CHAR (VALUE, @STATUS);

Figure 11-1. OS Extension Code in Assembly Language

Programming Techniques Chapter 11 169

;
; STACK FRAME AFTER PUSHING EBP
;
; ,__________________________,
; ESP -> | OLD EBP | [EBP]
; |__________________________|
; | OFFSET OF RET. ADD. | [EBP + 4]
; |__________________________|
; | OFFSET OF STATUS | [EBP + 8]
; |__________________________|
; | SEGMENT OF STATUS | [EBP + 12]
; |__________________________|
; | VALUE (PARAMETER) | [EBP + 16]
; '__________________________'
;

push ebp
mov ebp, esp
push dword ptr ss:[ebp + 16] ; value
push dword ptr ss:[ebp + 12] ; selector of status_p
push dword ptr ss:[ebp + 8] ; offset of status_p

%call_g(GATE_441)

;CALL gate_441 - Invoke entry procedure through the call gate
les edi, pword ptr ss:[ebp + 8] ; Load status_p in es:edi
mov cx,es:[edi] ; Load condition code

; in cx
jcxz done ; If CX=0, then no error
;
; Error processing code IF CX <> 0
;
done:
;
pop ebp
ret 12
Outchar Endp

Code Ends
End

Figure 11-1. OS Extension Code in Assembly Language (continued)

■■ ■■ ■■

170 Chapter 11 Developing Applications in Assembly Language

Programming Techniques Chapter 12 171

Developing Applications in PL/M 12
This chapter contains specific information about using PL/M to create application
code. It discusses:

• Making calls to the operating system

• Using include files and libraries

• Linking or binding object modules

• A multitasking demo program that uses iRMX system calls

• A <Ctrl-C> handler example

You should already be familiar with these concepts as well as the PL/M language and
PL/M segmentation models.

See also: PL/M-386 Programmer's Guide,
Introducing the iRMX Operating Systems

You can compile, bind, and run the demo program from the Human Interface, or you
can use the code and this discussion purely as an example of how to perform certain
operations in PL/M under the OS.

Invoking System Calls from PL/M
Invoking iRMX system calls is just like calling any PL/M procedure. Because you
do not define the system calls in your programs, they must be external procedures.
Therefore, include external declarations for each system call you invoke.

See also: Binding Your Code to Interface Libraries

172 Chapter 12 Developing Applications in PL/M

Including External Declaration Files
When you call a procedure that is not defined in your current program module (a
separately compiled portion of code), declare that procedure to be external. The
binder can then satisfy the references to that procedure as it links the program
modules together. A program in one module can then call a procedure in another
module.

Include files are supplied with the iRMX OS. These files are placed permanently in
one location and provide the external procedure declarations for all iRMX system
calls. The declarations are written once, placed in an include file, and then used in
place of repeating the actual declaration in each module.

For example, to use the PL/M include file nuclus.ext, place this statement at the
beginning of your PL/M source code. This statement declares all the Nucleus system
calls to be external.

$include(/rmx386/inc/nuclus.ext)

See also: Header files, System Calls, for a list of external declaration include files
for PL/M which are supplied with iRMX

Because each include file contains external declarations for many system calls,
including a particular file will probably result in external declarations for several
system calls your program does not invoke. These extra external declarations pose
no problems for the compilers and cause no error conditions.

Programming Techniques Chapter 12 173

Binding Your Code to Interface Libraries
After you have written your programs and inserted include statements for the
necessary system calls, compile the code and bind it to the appropriate iRMX
interface library.

Interface libraries supplied with the iRMX OS provide a standard interface to the
system calls. The interface libraries contain procedures that correspond to iRMX
system calls. These procedures have the same names and use the same parameters as
the system calls. The interface procedure performs operations to invoke the actual
system call. For example, iRMX interface procedures make calls to call gates when
accessing system calls.

After compiling the program code, satisfy the external references to the system calls
by using BND386, which binds the compiled code to the appropriate interface
libraries. There are several interface libraries to choose from. The library you
choose depends on the system calls and the segmentation model used.

See also: Interface Libraries, System Call Reference, for the general iRMX
libraries and the UDI libraries

Using the UDI calls exclusively enables an application to be easily transported
between Intel OSs. To help you choose which library to bind your program to,
consider this:

• If your code includes only UDI system calls or if it uses the I/O support provided
by the language, bind your program only to the UDI library.

• If your code does not invoke UDI system calls, or you do not plan to include the
language's I/O support, bind the code just to the iRMX library.

• If your code invokes both UDI and other iRMX system calls, bind the code to
both of the libraries for the segmentation model you chose.

174 Chapter 12 Developing Applications in PL/M

PL/M Multitasking Example
The PL/M example program is called exampl32. In addition to studying this program
and its discussion, you can use the files as a starting point in developing your
application code. This could save you time when creating the source module, adding
include statements, or producing code that attaches the console, etc.

These sections provide:

• An overview of the demo program

• The location of the code in the standard iRMX directory structure

• Information on how to build and run the program

Example Overview
The multitasking example demonstrates some iRMX programming concepts by
printing prompts to the console screen and accepting input from the user. To
accomplish this, the program uses two tasks: the initial task and a second task called
Task2. The main program code contains the initial task and it creates Task2.

The function of the initial task in the main program code is this:

• Set up the programming environment by creating objects, the second task, etc.

• Prompt the user for and capture keyboard input

• Pass the captured input to Task2

• Exit with an error after receiving three user-supplied keystrokes

The function of Task2 is to receive user-supplied keystrokes from the initial task and
process them. The processing consists of printing the received keystroke to the
screen once every second.

Because the job uses two tasks, each task can perform its function separately from the
other task. Communication and data passing between the initial task and Task2 are
handled using some basic iRMX programming techniques.

Programming Techniques Chapter 12 175

Location of Multitasking Example Code
The files for the multitasking example are in the /rmx386/demo/plm/intro directory.

Before attempting to understand this example, produce hard copies of the source code
or be able to view them from a console screen.

These files are the source files for the examples:

makefile File to generate 32 bit example

demo.plm Main program code containing the initial task

task2.plm Second task code

crbpool.plm Buffer pool code

except.plm Exception handling code

strng.plm String manipulation utility

condec.plm Decimal conversion utility

Compiling and Binding the Multitasking Example Code
In addition to the example source code files, there is a file you can use to compile and
bind the example. The file makefile compiles and binds the source files using
PL/M-386 and BND386 and creates two 32-bit executable programs named
exampl32 and tskcom32.

✏ Note
The example, tskcom32, is the PL/M version of the task
communication example described in Chapter 5, Debugging
Applications.

Before running makefile, first attach to the directory where the examples are
kept. Then run the makefile utility:

- af /rmx386/demo/plm/intro <CR>

- make <CR>

Now run the example by entering:

- tskcom32 <CR>

176 Chapter 12 Developing Applications in PL/M

The make command executes makefile. This initiates the compilation and binding of
all the job's source code files.

✏ Note
If you wish to generate the example as another user, create a new
directory, copy the example's files to the new directory, move to
that directory and invoke makefile. Generating the example from
another directory enables you to alter source code, while keeping
the original version intact.

Running the Multitasking Example
You should now have a file called exampl32 that you can execute. To run the
example, type its name as follows:

- exampl32 <CR>

After typing the filename, the example prompts you with this message:

iRMX PL/M Example, Vx.y

Welcome to the PL/M Demo Program!

At the prompt you will be given 60 seconds to hit any key.

If you do not hit a key the demo will continue anyway.

You may hit an "E" if you wish to exit the program.

You now have <xx> seconds left to hit a key.

At this point, the example is executing code in the promptandwait procedure from
the file demo.plm. The example is counting down from 60, waiting for you to press a
key to begin the demo. The string <xx> in the previous screen is the decrementing
count. To continue, press a key. After pressing any key, the example clears the
screen and prompts you with this message:

Please hit a key which will be forwarded to task2 for

processing.

Assuming you enter the letter X for the first keystroke, the main program, containing
the initial iRMX task, reads the X from the terminal and passes it on to Task2. Task2
wakes up and prints out this message to the screen:

TASK2 PROCESSING

Please hit a key which will be forwarded to task2 for

processing

XX

Programming Techniques Chapter 12 177

The X characters that Task2 prints to the screen continue to appear at the rate of one
per second. The character will repeat indefinitely until you enter another keystroke.
Also, notice that the prompt to enter another keystroke is buried in the middle of
Task2's processing message and the string of letters that it displays. A close
examination of the initial task and Task2 show the synchronization used to time the
output of these tasks. The tasks use a semaphore to achieve task communication.

Entering the next two keystrokes concludes the example. This output assumes you
enter the characters Y and Z:

TASK2 PROCESSING Y

Please hit a key which will be forwarded to task2 for

processing

YY

TASK2 PROCESSING Z

This concludes the PL/M Demo Program.

This demo now exits by generating an internal error.

INTERNAL ERROR AT # 340 STATUS = 0023: E$SUPPORT

After you enter the final keystroke, the initial task recognizes that you have entered
three characters. This signals the code to end the program. Notice that the initial
task ends the program before Task2 can begin printing the third character to the
console screen.

178 Chapter 12 Developing Applications in PL/M

Programming Concepts Illustrated by the
Multitasking Demo

This example demonstrates the use of iRMX system calls from a PL/M program. For
simplicity, in the discussions of these calls, the iRMX system call prefix (rq) is
usually dropped. The example illustrates nine common iRMX programming
concepts as listed below.

In-line exception processing The processing of all errors resulting from iRMX
system calls in your application code rather than
using the default exception handler, which deletes
tasks that get errors.

Using literal files Using separate files that contain PL/M data structure
definitions and literal definitions needed to make
system calls. Providing separate literal files relieves
you from repeating data structure and literal
definitions throughout modules.

Getting and setting terminal
attributes

Using iRMX system calls to get the current terminal
attributes. After getting and altering the attributes,
you can use another iRMX system call to set them.

Creating tasks Using an iRMX system call to create additional
tasks from an existing task.

Cataloging objects Describing to the system where key objects the job
uses reside. Tasks can easily share cataloged
objects.

Using response pointers
during inter-task
communication

Instructing server tasks where to respond with
information that signals the completion of a request
task. Response pointers allow server tasks to keep
track of which request tasks they are responding to.

Using buffer pools Creating areas of memory for a job that tasks can
use as a common memory resource. Once a buffer
pool and its buffers have been created, the system
can use the memory by simply requesting and
releasing buffers.

Performing screen
input/output

Reading and writing data to the physical terminal
screen.

Performing simultaneous
input/output

Tasks performing I/O operations independent of one
another. For example, one task may wait for
terminal input while another task processes data and
writes it to the terminal.

Programming Techniques Chapter 12 179

In-line Exception Processing
In-line exception processing provides a way for your application to handle errors
generated from system calls. You can process them in-line, use the default exception
handler, or assign your own exception handler. The example in this section shows
how to process exceptions in-line. In order to do this, first create your own in-line
exception handler routine, and then, explicitly pass control to your exception handler
routine instead of to the default exception handler routines.

To get the OS to pass control to your routine instead of a default routine, reset the
value of the current task's exception mode and code your tasks to call your exception
handler routine.

The example uses a procedure called set$exception in the file except.plm to reset
the exception mode to a value of zero. A value of zero tells the OS never to pass
control to default exception handler routines. If you examine the beginning code of
both the initial task and Task2, you will see that the very first executable statement is
a call to the set$exception procedure as follows:

CALL set$exception(NO$EXCEPTIONS);

This call passes a zero value parameter (NO$EXCEPTIONS supplied from a literal file)
to the procedure. When set$exception executes, it calls
get$exception$handler, which returns exception handler information to the data
structure addressed by except$info.

The procedure then replaces the exception mode with zero using this statement:

except$info.mode = except$mode;

The procedure then calls set$exception$handler to reset the exception handler
information with the altered data addressed by except$info.

See also: set_exception_handler and rq_set_exception_handler system calls,
System Call Reference

The technique of setting the exception mode to zero is not always desirable. You
should understand managing exceptions before deciding on a specific technique.

See also: Exception handlers, Chapter 3,
Exceptional condition management, System Concepts

180 Chapter 12 Developing Applications in PL/M

Since (with exception mode set to 0) the OS will no longer pass control to exception
handler routines, your tasks must check for individual errors or provide your own in-
line exception handler routine. This example uses a procedure called error$check
in the file except.plm as the inline exception handler routine. Notice that in the
source code for the initial task and Task2, a call to error$check follows every
system call. This code is from task2.plm.

CALL rqsopen (co$conn, WRITE$ONLY, 0, @status);

CALL error$check(510,status);

mail$box = rq$lookup$object (CALLER, @(3,'MBX'),

INFINITE$WAIT, @status);

CALL error$check(520,status);

pool$tkn = rq$lookup$object (CALLER, @(6,'BUFFER'),

INFINITE$WAIT, @status);

CALL error$check(530,status);

Each time a system call is made, a subsequent call is made to error$check; passing
it a line number and a word containing the status from the previous system call. The
routine error$check tests the value of status and returns to the calling task if it is
zero (no error occurred). If the value of status is not zero (an error occurred), then
error$check builds an error message, prints it to the screen, and exits the job.

The line numbers passed as the first parameter in calls to error$check have no
implicit meaning. These numbers are arbitrary numbers that can be associated with a
system call. This technique enables you to easily find a system call that generates an
error.

Use of Literal Files
Within the iRMX directory structure are find Intel-supplied literal files. These files
are located in the directory /rmx386/inc and have a file extension of .lit. Literal files
provide many data structure definitions used by iRMX system calls and useful literal
definitions for PL/M code. Use include statements to include those literal files that
apply to a code file.

These PL/M statements are from the initial task's code in the file demo.plm. These
statements show how to include six literal files.

$include(/rmx386/inc/error.lit)

$include(/rmx386/inc/common.lit)

$include(/rmx386/inc/nstexh.lit)

$include(/rmx386/inc/tscrn.lit)

$include(/rmx386/inc/iaiors.lit)

$include(/rmx386/inc/io.lit)

Programming Techniques Chapter 12 181

Table 12-1 shows which Intel-supplied literal files are useful for various types of
system calls.

Table 12-1. PL/M Literal Files for Use with iRMX System Calls

Nucleus System Call Literal File

create$job nstexh.lit
get$exception$handler nstexh.lit
get$task$tokens ngttok.lit
get$type ngttyp.lit
set$exception$handler nstexh.lit

BIOS System Call Literal File

agetconnection$status iagtcs.lit, io.lit
agetfile$status iagtfs.lit, iotyp.lit, io.lit
a$open io.lit
a$physical$attach$device io.lit
a$seek io.lit
a$special tscrn.lit

EIOS System Call Literal File

createiojob nstexh.lit, iexioj.lit
e$create$io$job nstexh.lit
exitiojob iexioj.lit
get$logical$device$status io.lit
get$logical$attach$device io.lit
sgetconnection$status isgtcs.lit, io.lit
sgetfile$status isgtfs.lit, ifltyp.lit, io.lit
s$open io.lit
s$seek io.lit
s$special isiors.lit, tscrn.lit

Human Interface System Call Literal File

cgetoutput$connection hgtocn.lit
cgetoutput$pathname hgtocn.lit

message passing calls nmesgs.lit
buffer pool calls nbpool.lit

182 Chapter 12 Developing Applications in PL/M

Aside from the literal files shown in Table 12-1, two other important literal files
exist: common.lit and iaiors.lit. The file common.lit contains many literal
declarations commonly used in PL/M programming. You should include this file in
all your PL/M programs. The file iaiors.lit contains the structure for the I/O Result
Segment (IORS) returned in most BIOS system calls. You should include this file in
all your PL/M programs that make BIOS system calls.

■■ ■■ ■■

Programming Techniques Appendix A 183

Resource and Stack Size Guidelines A
This appendix discusses guidelines for using memory to support iRMX object types.
It also discusses stack size requirements and calculations.

Resource Requirements
The Nucleus obtains memory from the calling job's memory pool when creating
objects or borrowing memory. When a job borrows memory from its parent, the
Nucleus uses three 16-byte paragraphs in addition to the amount it uses for object
creation. Table A-1 lists the memory requirements of the iRMX OS.

Table A-1. Nucleus Memory Requirements

Object Number of 16-byte Paragraphs Required

job 3 + object directory

object directory 1 per entry in the directory

task 5 + 6 (if the task uses the NPX) + stacksize/16 (if the Nucleus
allocates the stack)

mailbox 2 + size of high performance queue/4

semaphore 2

region 2

segment 1 + segsize/16

extension 2

composite 3 + number of positions available for components/8

184 Appendix A Resource and Stack Size Guidelines

The BIOS obtains memory from the calling job's memory pool when creating objects.
These values are shown in Table A-2.

Table A-2. BIOS Memory Requirements

Object Number of 16-byte Paragraphs Required

I/O Result
Segment

4 (5 for an internal IORS that the operating system creates
when attaching a device)

Connection to
named file

6

Connection to
physical file

4

User object 3 (minimum)

RAM Requirements
This information helps estimate the amount of RAM needed to use the EIOS. The
descriptions that follow state explicitly from which pool the RAM is taken. Use this
information when deciding how large to make the memory pools of the jobs in your
application.

Attaching a Logical Device
Each time one of your tasks uses the rq_logical_attach_device system call, the EIOS
uses 98 bytes of RAM from your job's pool and 64 bytes of RAM from the pool of
the EIOS job created during the configuration process. This RAM is in addition to
the RAM required by the BIOS for a device connection.

Both quantities of RAM are eventually returned to the memory pools from which
they originated, but they are returned at different times. The memory taken from the
EIOS pool is returned only when the device is detached. In contrast, the memory
taken from your job's pool is returned as soon the rq_logical_attach_device system
call finishes running.

Programming Techniques Appendix A 185

Creating an I/O Job
Whenever one of your tasks creates an I/O job, the EIOS uses 176 bytes of RAM
from the pool of this new I/O job. This is in addition to the RAM used by the
Nucleus to create the job. All of this memory returns to the pool of the parent job
after the I/O job has been deleted.

In addition to the memory requirement, rq_create_io_job and rqe_create_io_job
also require five entries in the object directory of the I/O job being created.

See also: Configuration, Programming Concepts for DOS and Windows,
Memory Screens, ICU User's Guide and Quick Reference

Opening a Connection
When a task opens a file connection using the rq_s_open system call, the EIOS uses
some RAM from the pool of the calling job to create objects. The amount of RAM
required depends on whether the connection is opened for buffered I/O or
nonbuffered I/O.

• If the connection is not buffered, the EIOS uses 64 bytes of RAM.

• If the connection is buffered, use this expression to compute the RAM size. This
amount is a function of the buffer size in bytes (S) and the number of buffers (N):

number_of_bytes = 80 + 5N + N(S + 64)

Regardless of whether the connection is buffered or not, all RAM returns to the
memory pool when the connection is closed or deleted.

Other RAM Requirements
For system calls other than those discussed above, the EIOS has varying memory
requirements. However, when you make an EIOS call, the call requires no more
than:

• 300 bytes of your job's memory pool

• 400 bytes of the calling task's stack

This RAM returns to your job's pool as soon as each system call finishes.

186 Appendix A Resource and Stack Size Guidelines

Object Counts
You can assume that the EIOS creates no more than 10 objects during the execution
of any system call.

Except in a few cases, all of these objects are deleted before the system call has
finished running. The few exceptions are the system calls that explicitly create
objects at the request of your application tasks, such as the rq_s_attach_file system
call (which creates a file connection) and the rq_logical_attach_device system call
(which creates a device connection).

Stack Size Limitations
You must know the stack size limitations depending on your application. Three
primary cases are listed below and are explained in these sections:

• Tasks that create iRMX jobs or tasks

• Interrupt handlers

• Tasks to be loaded by the Application Loader or tasks to be invoked by the
Human Interface

To use this information, you should already be familiar with the System Debugger
(SDB), and should know which system calls are provided by the various layers of the
OS. You also should know the difference between maskable and nonmaskable
interrupts.

Stack Size Limitation for Interrupt Handlers
Interrupt handlers, invoked by maskable or nonmaskable interrupts, use the stack of
the interrupted task. The OS assumes a maximum of 256 bytes of stack for interrupt
handlers. Exceeding this maximum causes stack overflow errors.

To stay within the 256 byte limitation, restrict the number of local variables that the
interrupt handler stores on the stack. For interrupt handlers serving maskable
interrupts, you can use up to 20 bytes of stack for local variables. For handlers
serving nonmaskable interrupts, use no more than 10 bytes. The balance of the
256 bytes is consumed by the rq_signal_interrupt system call and by storing the
registers on the stack.

See also: Interrupts, System Concepts

Programming Techniques Appendix A 187

Stack Guidelines for Creating Tasks and Jobs
When you create a task by invoking the rq_create_task system call, you must
specify the size of the task's stack. Since every new job has an initial task created
simultaneously with the job, you must also designate a stack size when you create a
job.

Specifying a stack size that is too small causes the task to overflow its stack. If the
stack overflows, the hardware will detect the error and cause the Nucleus to invoke
an exception handler. The exception handler either deletes the offending task or
activates SDM. Specifying a stack size that is too large wastes memory. Ideally, you
should specify a stack size that is only slightly larger (500 to 1000 bytes) than what is
actually required. This also minimizes problems resulting from unforeseen
situations.

These sections illustrate arithmetic and empirical techniques for estimating a task's
stack size. For best results, start with the arithmetic technique and then use the
empirical technique to adjust your original estimate.

If your programs are recursive, do not rely solely on either of these techniques. Stack
usage in recursive routines varies because of run-time events and should be tracked
carefully.

Stack Guidelines for Tasks to be Loaded or Invoked
If you are creating a task which will be loaded by the Application Loader or invoked
by the Human Interface, you must specify the size of the task's stack during the bind
process. These techniques will help you estimate stack size requirements.

Arithmetic Technique for Estimating Stack Size
The arithmetic technique slightly overestimates a task's stack size. Estimate the stack
size by:

• Accommodating the needs of two interrupt handlers: one for maskable interrupts
and one for nonmaskable interrupts.

• Allocating enough stack to satisfy the requirements of the most demanding OS
layer to satisfy the requirements of all system calls used by your task.

• Fulfilling requirements of the task's code (for example, the stack used to pass
parameters to procedures or to hold local variables in reentrant procedures).

188 Appendix A Resource and Stack Size Guidelines

Estimate the size of a task's stack by adding the amount of memory required to
accommodate these factors. This section explains how to compute these values.

See also: Stack Size Limitation for Interrupt Handlers

Table A-3 shows the stack size required by a task to support the system calls of each
layer. These figures include the 256 bytes required by the interrupt handlers.

Table A-3. Stack Requirements for Interrupts and System Calls

Layer Number of Bytes Required

UDI 6000

Human Interface 5000

C libraries 5000

Application Loader 2000

Extended I/O System 2000

Basic I/O System 1200

Nucleus 800

Computing Stack Size

To compute stack size, add these numbers:

• The number of bytes required for interrupts and system calls, according to the
most demanding layer you intend to use.

• The amount of stack required by the task's code. This amount is determined by
looking at the information about the STACK segment in the .mp1 map file
thatBND386 produces. This usage is the result of calling local procedures and
using the stack for local variables when your code is reentrant.

This sum is a conservative, but reasonable, estimate of a task's stack size
requirements. For more accuracy, use the sum as a starting point for the empirical
method.

Programming Techniques Appendix A 189

Empirical Technique
This technique starts with a larger-than-needed stack and uses SDM to determine
how much of the stack is unused. Once you have found out how much stack is
unused, you can modify your task-creation and job-creation system calls to create
smaller stacks.

To use this technique, change your program code to break to the monitor at the
beginning and at the end of the program. Use the convention appropriate to your
application for breaking to the monitor.

• When coding in C, use the void causeinterrupt (unsigned char 3);

statement.

• When coding in PL/M, use the CAUSE$INTERRUPT(3) statement.

• When using ASM, use INT3.

• When using the Human Interface to load the application, use the debug
command.

When SDM first receives control, fill the unused portion of the stack with a value that
would not normally appear there. For example, use the SDM's s command to fill the
remaining stack with a value of 0CCH.

Continue running the program. When SDM receives control at the end of the
program, examine the stack and see how much of it still contains the value you filled
in earlier. That portion was unused throughout the entire execution of the program.

Use this technique to estimate stack usage; the value you determine usually will not
be exact because a typical run of the program may not take the deepest path (use the
most stack) through the program. Also, a typical run may not encounter interrupts on
these paths.

■■ ■■ ■■

190 Appendix A Resource and Stack Size Guidelines

Programming Techniques Index 191

Index

A
a_special call, 44
a_special call, 44
a_write call, 30, 38
alignment

with iC-386 compiler, 60
alphonse.plm file, 63
application development, see also resource

requirements
assemblers, 3
binary compatibility with iRMX II, 80
debugging tools, 6
design concepts, 15
functional partitioning, 23
memory separation, 23
optimizing controls, 4
outline, 7
porting code to 32 bits, 79
privilege, 23
utilities, 5

ASM example, see examples, ASM code
ASM language

advantages of compact model, 164
assembler invocation line examples, 167
calling conventions for PL/M interface

procedures, 164
compact model example, 166
demo files, location, 163
incrementing an index, 86
interrupt handlers, 86
macro defs for common sourced code,

listing, 165
mixed code, ASM and PL/M, 164
parameter passing, 166
porting code to 32 bits, 85
returning pointers, 86
segmentation model calling conventions,

164

system calls, 163
system calls

from ASM source code, 166
assemblers, 3

B
binary compatibility with iRMX II, 80
BIOS memory requirements, 184
BLD386 utility, 5
BND386 utility, 5, 54
board-scanning algorithm, 149
buffer pools, 32, 36
buffer pools, 33
build settings, MSVC, 56

C
C

binding code, 54
condition codes, 54
debug switches, 62
debugging, 62
interface libraries, 54
iRMX-provided elements, 55

C demonstration program, 15
C example

cataloging objects, 25
inter-task communication, 28
IORS processing, 26
task creation, 22
type checking, 22

C interface library, 62
c_format_exception call, 42
catalog_object call, 25
cataloging objects, 21
clib.job file, 17
code blocks, displaying, 69
commands

192 Index

debug, 189
common sourced code, macro defs listing, ASM

code, 165
common.lit file, 182
compact/large models

exception handler restrictions, 105
RAM compiler control, 105
restrictions, 105
ROM

compiler control, 105
selecting size, 104

compiler controls
noalign control, 4
nodebug control, 4
optimize control, 4
segmentation control, 4

compilers
features, 4
iC-386, 3
non-Intel, 3
PL/M-386, 3
supported, 3

condec.plm file, 175
connection, RAM needed to open, 185
crbpool.c file, 15, 33
crbpool.plm file, 175
create_buffer call, 32
create_buffer_pool call, 32
create_buffer_pool call, 32
create_mailbox call, 30
create_segment call, 32, 34
create_segment call, 32, 34
create_task call, 24
creating objects, 21

D
data chain messages, 153
dcomext.h file, 147
dcomlit.h file, 147
dcrcvmsg.c file, 148, 153
dcsndmsg.c file, 148, 153
ddt SDM command, 71
debug session

approaches, 67
breakpoints, 68
changing disassembled code, 72

code blocks, displaying, 73
code display, 69
code listing, PL/M, 65
corrected program description, 64
deadlock, 75
disassembled code

changing, 74
displaying, 72

include files, 65
job tree screen output, 75
mailbox display, 76
objects, viewing, 75
re-entering the SDM monitor, 72
register contents, 69
running tasks, 77
running the code, 67
SDM commands, 67
single line execution, 70
stack contents, examining, 76
tokens, displaying, 75

definition files, 9
delete_segment call, 27, 44
delete_segment call, 44
demo.c file, 15
demo.c file

system calls, 16
demo.plm file, 175, 176
development tools, 2
directories

/rmx386/inc, 172
dx SDM command, 68

E
end_init_task call, 123
environmental conditions, see C, condition

codes
error conditions, see C, condition codes
exampl32 example, 176
example code summary, 2
examples

ASM interrupt handler, 167
debug PL/M, 63
debugging, 67

breakpoints, 68
developing for different environments, 9
device driver, PL/M, 89

Programming Techniques Index 193

interrupt handler, 167
synchronizing tasks with mailboxes, 64

examples, ASM code
compact model, 166
interrupt handler, 167
invocation lines, 167
pushing parameters onto the stack, 166
system calls, source code, 166

except.c file, 15, 42
except.plm file, 175, 179
exception handler

restrictions, memory model, 105
exception handlers

32-bit and 16-bit, 40
exception processing, 40, 42

PL/M, 179, 180
external procedures

calls in PL/M, 172

F
flat model

advantages, 112
disadvantages, 112
execution model, 116
overview, 111
paging, 113
porting compact/large, 119
subsystem, 114
system calls, 118

flat.job file, 115, 116
fragmented messages, 154
FTP (File Transfer Protocol), 12

G
gaston.plm file, 63
get_exception_handler, 42
get_exception_handler call

in PL/M example, 179
get_priority call, 24

H
header files, C, 57

I
I/O job creation, 185
iaiors.lit file, 182
iC-386

#include statement, 53
alignment, 60
header files, 53

icscan.c file, 148, 149
ICU, 9
include files

PL/M, 172, 180
include files, C, 57
init.plm file, 63
Interactive Configuration Utility (ICU), 9
interconnect space example, 149
interface libraries

PL/M, 173
interrupt handler, 48
interrupt handlers

example, ASM code, 167
porting to 32 bits, 86

interrupt processing, 46
interrupt task, 49
interrupts

stack size, 186
inter-task communication, 28
inthand.asm file, 167
inthand.c file, 46
inttask.c file, 46
IORS (Input/Output Result/Request Segment)

processing, 26

L
large model, See compact\large model
LIB386 utility, 5
libraries

C interface, 62
system call interface, 62
UDI, 62

literal files
PL/M, 180, 181

loading the stack, ASM example, 166
logical device, RAM needed, 184
lookup_object call, 180

194 Index

M
mailboxes, 76
make file, 15
MAP386 utility, 5
measure.csd file, 51
memory model, See segmentation model
memory requirements

BIOS, 184
EIOS object counts, 186
EIOS system calls, 185
logical device, 184
nucleus, 183
RAM, 184
stack size limitations, 186
stacks, 187, 188, 189

Microsoft C tools, 55
migrating existing code, see porting code
MSVC

build settings, 56
Multibus development, 9
Multibus II

data chain message, 153
fragmented messages, 154, 155
receiving buffers, 154
sending buffers, 154

Multibus II
board scanner, 149
client board algorithm, 152
examples, 147
general examples, 157
name server, 155
port creation example, 150
sending data, 150
server board algorithm, 152

multiple buffering, 50

N
n SDM command, 70
name server example, 155
noalign compiler control, 4
NOALIGN macro, 60
nodebug compiler control, 4
non-Intel C compiler support, 55
nservr file, 156
nucleus memory requirements, 183

nuclus.ext file, 172

O
object counts, EIOS number, 186
optimizing application code, 4

P
paging.job file, 114
parameter passing

ASM example, 166
performance gain, 81
PL/M example

demonstration program, 174
exception handlers, 180
include files, 172, 180
literal files, 180
running the demo program, 175

PL/M language
demonstration program, 174
exception processing, 179
external procedure calls, 172
get$exception$handler call, 179
include files, 172, 180
interface libraries, 173
literal files, 180, 181
lookup$object call, 180
set$exception$handler call, 179

plm code examples, 63
porting code to 32 bits

ASM code differences
incrementing an index, 86
interrupt handlers, example, 86
register usage, 85
returning pointers, 86

C code differences, 84
C code differences, 84
device driver example, 89
no switch method, 82
performance gain, 81
PL/M code differences

CMPB function, 83
FINDB function, 83
OFFSET, reserved word, 83
WORD_16 variables to WORD_32,

83

Programming Techniques Index 195

porting application, 81
WORD16 switch method, 82

programmer errors, see C, condition codes

R
RAM compiler controls, 105
RAM required

I/O jobs, 185
RAM requirements, 184
ramdrv.org file, 109
ramdrv.p38 file, 108
rcvfrag.c file, 148
rcvmsg.c file, 148, 153
rcvrsvp example, 153
rcvrsvp.c file, 148
Read-only Memory, See ROM
receive.c file, 126
receive_message call, 44
receive_message call, 27, 44
receiving buffers example, 154
reg.inc file, 164
register contents, examining, 69
register usage

clearing registers, 85
incrementing an index, 86
returning pointers, 86

release_buffer call, 34
release_buffer call, 30, 32, 36
release_buffer call, 32, 34, 36
reset_interrupt call, 41
resources requirements, 183
response pointers, 28
rmx.ini file, 167
rmx_c.h file, 84
rmx_def.h file, 42
rmx_err.h file, 54
rmx_err.h file, 54
rmxerr.h file, 54
ROM

configuring the OS, 127
debugging, 140
developing an application, 125
example application, 126
ICU configuration, 122
placing an application into, 125
segment map, 130

testing an application, 122
ROM compiler controls, 105
rq_a_special call, 44
rq_a_write call, 38
rq_a_write call, 30
rq_c_format_exception call, 42
rq_create_buffer call, 32
rq_create_buffer_pool call, 32
rq_create_io_job call, 185
rq_create_mailbox call, 30
rq_create_segment call, 34
rq_create_segment call, 32
rq_create_task call, 187
rq_delete_segment call, 44
rq_end_init_task call, 123
rq_get_exception_handler call, 42

in PL/M example, 179
rq_logical_attach_device call, 184
rq_lookup_object call, 180
rq_receive_message call, 27, 44
rq_release_buffer call, 32, 36
rq_release_buffer call, 34
rq_reset_interrupt call, 41
rq_s_special call, 44
rq_send_message call, 163
rq_send_units call, 30
rq_set_exception_handler call

in PL/M example, 179
rq_signal_interrupt call, 186
rq_wait_io call, 30
rq_wait_iors call, 30
rq_wait_iors call, 27
rqe_create_io_job call, 185
rqe_set_os_extension call, 167
RUN86 utility, 7

S
s_special call, 44
screen I/O, 38
sdbiii file, 67
SDM commands

vu, 76
segmentation compiler controls, 4
segmentation model, See flat model. See

compact\large model
segmentation models

196 Index

calling conventions, ASM language, 164
compact

advantages, ASM code, 164
ASM example, 166

send_message call, 163
send_reply call, 150
send_rsvp call, 150
send_units call, 30
sending buffers example, 154
sendmb2.c file, 126
set_exception_handler call

in PL/M example, 179
sfrag.c file, 148
sndfrag.c file, 148
sndmsg.c file, 148, 153
sndrsvp example, 153
sndrsvp.c file, 148
Soft-Scope III, 6
stack contents, examining, 76
stack size, see also memory requirements

computing, 188
estimating, 187
estimating, 189
limitations, 186
requirements for interrupts, 187
tasks and jobs, 187

strng.plm file, 175
subsystems

advantages of, 106
closed, 106
configurations, 107
creating closed, 107
creating open, 109
open, 107
overview, 105

synchronous initialization, 123
system call interface library, 62

System Debugger (SDB), 6

T
target environments, 9
task creation, 24
task creation, 22
task synchronization, 28
task synchronization examples, 64
task2.c file, 15
task2.c file, 24
task2.plm file, 175
terminal attributes, C, 44
tools, development, 2
transport.c file, 148
transport.c file, 150
type definitions

example, 85
NATIVE_WORD, 85

U
UDI library, 62

V
vj SDM command, 75
vo SDM command, 75

W
wait_io call, 30

X
x SDM command, 69

	iRMX® Programming Techniques
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: iRMX Application Development Environment
	Examples Provided with the Operating System
	Application Development Tools
	Assemblers
	Intel Compilers
	Application Building Utilities
	Debugging Tools

	Application Development Process

	Chapter 2: Target Environment Development
	Generating Target Files
	Generating a Target File Example

	Chapter 3: Designing an Application
	Application Categories
	Measurement
	Process Control
	Data Acquisition

	Design Concepts
	C Multitasking Demo Program
	Demo Code Location
	Running the Multitasking Demo
	Programming Concepts

	Creating and Cataloging Objects
	Operations on Objects
	Creating Tasks

	Processing Input/Output Result Segments (IORS)
	Processing an IORS Code Example

	Using a Response Pointer During Inter-task Communication
	Task Synchronization/Data Passing Code Example

	Using Buffer Pools
	Creating Buffer Pools Code Example
	Using Buffer Pools Code Example

	Methods of Screen Input/Output
	Screen Input/Output Code Example

	In-line Exception Processing
	Writing Your Own Exception Handler
	Exception Handler Control Flow
	Exception Processing Code Example

	Getting and Setting Terminal Attributes
	Getting/Setting Terminal Attributes Code Example

	Interrupt Processing
	Interrupt Handlers
	Interrupt Servicing
	Interrupt Latency

	Chapter 4: C Compiler-specific Information
	Using the iC-386 Compiler to Develop iRMX Applications
	Using the C Language Header Files
	Binding Your Code to Interface Libraries
	Condition and Error Codes

	Using Non-Intel Tools to Develop iRMX Applications
	Using Microsoft C /C++ Development Tools

	Using Header Files
	Existing iC-386 Applications
	Built-in functions
	Calling Conventions
	Structure Data Alignment
	Alignment with iC-386
	Supported Memory Models

	Using Cstart Startup Code
	Stack Size

	Using Interface Libraries
	Debugging with the Soft-Scope Debugger
	Summary of Debug Switches

	Chapter 5: Debugging Applications
	Example Application Program
	Include Files
	Compiling and Running the Code

	Debugging the Program
	Debugging Approach #1
	Debugging Approach #2

	Viewing System Objects
	Alternative Debugging Techniques

	Chapter 6: Porting Applications
	Porting Code from 16-Bits to 32-Bits
	Using Existing 16-Bit Code
	Advantages of 32-Bit Application Code
	Porting Entire Applications to 32-Bits

	Porting 16-Bit PL/M Code to 32 Bits
	Differences Between PL/M-386 and Previous PL/M Code

	Porting 16-Bit C Code to 32 Bits
	Using the rmx_c.h Header file
	Using the NATIVE_WORD Type Definition

	Porting 16-Bit ASM Code to 32 Bits
	Example: Porting a Device Driver
	xtstdn.lit

	Migrating Code to a PC-Bus Platform
	Using a Numeric Processor Extension (NPX)

	Segmentation Considerations

	Chapter 7: Using Compact and Large Memory Models
	Choosing a Memory Model
	32-Bit Applications
	16-Bit Applications
	Porting Applications
	Using ROM and RAM Compiler Controls

	Subsystems
	Subsystem Advantages
	Closed Subsystems
	Open Subsystems
	Subsystem Configurations
	Creating a Closed Subsystem
	Creating an Open Subsystem

	Chapter 8: Using the Flat Memory Model
	Flat Model Overview
	Flat Model Advantages and Disadvantages

	Executing Flat Model Applications on iRMX
	Using Flat Model With Paging Support

	Paging Subsystem
	The Paging Job

	Flat Model Support Code
	Conversion of Flat Model Pointers in System Calls
	The Flat Model Job

	Execution Model
	System Calls
	Existing System Calls

	Using the Flat Model System Calls
	Virtual Memory
	Porting Compact/Large to Flat

	Debugging Support

	Chapter 9: Developing Applications for ROM
	Testing a System
	Loading an Application into ROM

	Preparing an Application to Reside in ROM
	Methodology for Burning an Application into ROM
	Developing a ROM-based Application System
	Overview of the ROM-based Application Example
	Generating the ROM-based Application Example
	Configuring the iRMX OS
	Debugging the ROM Initialization Process

	Testing the Application

	Chapter 10: Developing Applications for Multibus II
	Code Examples
	Examples Using Nucleus Communication System Calls
	Interconnect Space Example - iscan.c
	Creating a Port for Message Passing - tranport.c
	Sending Data Using Send_rsvp
	Sending and Receiving Messages
	Receiving a Message
	Sending a Message

	Sending a Message in Fragments
	Receiving a Message in Fragment Form
	The Name Server Example
	The General Examples
	Example 1: Sending and Receiving Unsolicited Messages
	Example 2: Sending Asynchronous Solicited Messages

	Chapter 11: Developing Applications in Assembly Language
	Invoking System Calls from Assembly Language
	Interrupt Handler Example
	Generating the Interrupt Handler Example

	OS Extension Example

	Chapter 12: Developing Applications in PL/M
	Invoking System Calls from PL/M
	Including External Declaration Files
	Binding Your Code to Interface Libraries
	PL/M Multitasking Example
	Example Overview
	Location of Multitasking Example Code
	Compiling and Binding the Multitasking Example Code
	Running the Multitasking Example

	Programming Concepts Illustrated by the Multitasking Demo
	In-line Exception Processing
	Use of Literal Files

	Appendix A: Resource and Stack Size Guidelines
	Resource Requirements
	RAM Requirements
	Attaching a Logical Device
	Creating an I/O Job
	Opening a Connection
	Other RAM Requirements

	Object Counts
	Stack Size Limitations
	Stack Size Limitation for Interrupt Handlers
	Stack Guidelines for Creating Tasks and Jobs
	Stack Guidelines for Tasks to be Loaded or Invoked
	Arithmetic Technique for Estimating Stack Size
	Empirical Technique

	Index

