Quick Contents

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.
Chapter 10.
Chapter 11.

Chapter 12.

iIRMX® Application Development Environment
Target Environment Development

Designing an Application

C Compiler-specific Information

Debugging Applications

Porting Applications

Using Compact and Large Memory Models
Using the Flat Memory Model

Developing Applications for ROM

Developing Applications for Multibus II
Developing Applications in Assembly Language

Developing Applications in PL/M

Appendix A. Resource and Stack Size Guidelines

Index

Programming Techniques iii



Notational Conventions

Most of the references to system calls in the text and graphics use C syntax instead of
PL/M (for example, the system call send_message instead of send$message). |f you
areworking in C, you must use the C header files, rmx_c.h, udi_c.h, and rmx_err.h.

If you are working in PL/M, you must use dollar signs ($) and use the rmxplm.ext and
error.lit header files.

This manual uses the following conventions:

Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the Hradix character (for example, 0FFH). Binary numbersinclude the B radix
character (for example, 11011000B).

Bit 0 isthe low-order bit. If abit isset to 1, the associated description istrue
unless otherwise stated.

Data structures and syntax strings appear in this font.
System call names and command names appear in thisfont.

PL/M datatypes such asBY TE and SELECTOR, and iRM X data types such as
STRING and SOCKET are capitalized. All C datatypes are lower case except
those that represent data structures.

The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader

BIOS Basic I/O System

EIOS Extended 1/0 System

HI Human Interface

uDI Universal Development Interface

Whenever this manual describes /O operations, it assumes that tasks use BIOS
cals(suchasrg_a read, rq_a write, andrq_a_special). Although not
mentioned, tasks can also use the equivalent EIOS calls (such asrq_s read,
rq_s write, and rq_s special) or UDI calls (dg_read or dg_write) to do the
same operations.



Contents

1 iRMX® Application Development Environment
Examples Provided with the Operating System..........ccocvveveeeveeveerereseseseenens 2
Application Development TOOIS.........coeverererie e 2
ASSEMDIEIS ...t 3
Fg10= O] 00] o T1 1= £SO SR 3
OptiMIZING COUE ......ocveeeceeeeeeeeieere e 4
NON-INtel COMPIErS......cciieeeeeeeeee e 5
Application Building UtiHIties...........coovveviviiniieceeececeseee e 5
[DI= o180 o1 Te N oo K= ST 6
Application DevelOpmeENnt PrOCESS..........ccovererieieseseseseeeeeeseeseesesee e e e 7
2 Target Environment Development
Generating Target FilES.....oooiiiiiieeee e e 9
Generating a Target File EXample........c.cooooiiiiiiieiiece e 9
3 Designing an Application
ApPPliCation CalEONIES ....ccuviviiiiriereeeeeeee e stese s ste et e e e aeseeneesresnens 14
MEBSUMEIMENT ...ttt 14
ProCeSS CONIOL......couiietirieeeiesieeete ettt sttt s ene 14
(D=1 - WA ol (U1 F= 1 o o ISR 14
(D=5 o g 00 0 01= o €= 15
C Multitasking DemO Program.........ccevereriesesesiesesesesseseessessesssssessessesseses 15
DEMO COUE LOCALION. ....cveeeverieieiesiereeie sttt sttt 15
Running the Multitasking DeMO..........ccccvvverereseeseseeeeee e eeneas 17
USING the MaKEfi1€.....ooeeieecece e 18
Programming CONCEPES .....evvvrveieeeierieeeeeeieeaeseeseestesre e seesresseeeeseeseenseneens 21
Creating and Catal 0ging OBJECES.......ccce e 21
Operations 0N ODJECES ......ccveieieeceieeeeee et 22
(O Lo [ IS T 22
Task Creation Code EXample.......ccccvvevereviniese st 24
Creating and Catal oging Objects Code Example..........ccocovevvvrerennne. 25
Processing Input/Output Result Segments (IORS) .......cceveieverevevese e, 26
Processing an IORS Code EXaMPIE.........ccceveverereseneeeeesesesee e e 27
Using a Response Pointer During Inter-task Communication............ccceeeeee... 28
Programming Techniques Contents 5



Task Synchronization/Data Passing Code Example.........cccccoeeierenennnne

Using Buffer Pools............ccce......

Creating Buffer Pools Code Example.........cccoveieiiie s
Using Buffer Pools Code EXample.........c.cooeeerieinnenie e

Methods of Screen Input/Outpuit...

Screen Input/Output Code EXample.........cccooeeieiini e,

In-line Exception Processing.........

Writing Y our Own Exception Handler ...........coooeriiiiiiinenceeeeee
Exception Handler Control FIOW...........cooeiiiiririeee e
Exception Processing Code EXample........ccccoeveienenenieeienenese e
Getting and Setting Terminal AttribULeS..........oooo i
Getting/Setting Terminal Attributes Code Example.........ccccooeveneieneennn.

Interrupt Processing..........cceeeeueee.
Interrupt Handlers..................
Interrupt Servicing.................
Interrupt Latency .......cccceeeeee

29
32
33
36
38

SRR EEEE

46
47
51

vi

C Compiler-specific Information53

Using the iC-386 Compiler to Develop iIRMX Applications.........ccccceceveveenen.
Using the C Language Header FIleS..........ccoovveviievieneve e
Binding Your Codeto Interface Libraries.........cccocvvevvivvesvneseeceesieseinens

Condition and Error Codes....

Using Non-Intel Toolsto Develop iRMX Applications.........cccccvevereresennnn.
Using Microsoft C /C++ Development TOOIS........ccovvvvvneneeieeeereeieieens
Microsoft Visual C++ Compiler Invocation...........ccceeveeveeeeieereneene

Using Header Files........ccccceeueniee.
Existing iC-386 Applications
Built-in functions...................

Using Interface Libraries..............

Debugging with the Soft-Scope DebUgQEr .......coevveeveeeirece e

Summary of Debug Switches

Contents

53
53

55
55
56
57
58
58
59
59
60
60
61
62
62
62
62



5 Debugging Applications

Example Application Program...........ccceeeeeeieereesesiesesesesseseeeeseeseese s seesns 63
INCIUAE FIES ...t e 65
Compiling and Running the Code...........ccoovvvvireniene s 65

Debugging the Program ........ccccccevieeieiese s se s e s sre e 67
Debugging APProaCh #1.......ccoccvveeeie et snens 67
Debugging APProaCh H2.......cvcvieeene et snens 72

Viewing System ObJECES.......civiiiieeceeeee e s nnen 75

Alternative Debugging TEChNIQUES .......ccvveeeeiresesese e ste e seesie e 77

6 Porting Applications

Porting Code from 16-BitSt0 32-BitS........ccccooerininiiinere e 79
Using Existing 16-Bit COde.........cocoririieiiieee e 80
Advantages of 32-Bit Application Code..........ccooerveeerieieieiene e 80
Porting Entire Applicationsto 32-BitS........ccccoiiiiiieieeeee e 81

Porting 16-Bit PL/M Codeto 32 BitS......ccccccieriieie e 82
Differences Between PL/M-386 and Previous PL/M Code............ccc..... 83

Porting 16-Bit C Codeto 32 BitS........cceiirieeieeeese e 84
Using the rmx_c.h Header file.........ccoooeiiiie e, 84
Using the NATIVE_WORD Type Definition .........cccccooeveiennieneneien, 85

Porting 16-Bit ASM Codeto 32 BitS......cccoeiereiiie e 85

Example: Porting @ DeVICe DIIVEN .........coeiieeieese e 89
DL 10 0 1 T TSP 9

Migrating Code to a PC-BUS Platform...........ccooeiiiiiineneceeee e 100
Using a Numeric Processor Extension (NPX) ......ccoooeiiiiieinieneneee, 100

Segmentation CONSIAEIELIONS..........coveiueriirere et 101

7 Using Compact and Large Memory Models

Choosing aMemory MOE .......cccoovvererinere e 103
32-Bit APPIICALIONS ....c.veeceeie st 104
16-Bit APPlICALIONS .....eeveieceecticeeeee e s 104
POrting ApPliCaLIONS.......ccvcieeeieerer e nnen 105
Using ROM and RAM Compiler Controls..........cceevvveeeieenereseneseeseennns 105

SUDSYSEEMS ...ttt sttt e e e sa et aesreere e e e e e e eneesresrenreens 105
SUDSYSEEM AQVANTAES.....cvevereeeieeiesee ettt re et 106
CloSEd SUDSYSIEMS.......ecuveieiecie ettt s 106
OPEN SUDSYSLEMS.......oceeceeeeee et e 107
Subsystem ConfigUIatioNS..........cueeereerereniese s see e ee e 107
Creating a Closed SUBSYStEM ........ccceveieviie e 107
Creating an Open SUDSYSEEM........cceeeeerreeiere et 109

Programming Techniques Contents vii



8 Using the Flat Memory Model
Flat MOOEl OVEIVIEW. .....c.oieieiriiieeeeie ettt 111
Flat Model Advantages and Disadvantages..........cceevveveneresesenieesieneens 112
Executing Flat Model Applications 0N iIRMX .......ccocovvvvivenieneneeeeeeseeaeniens 112
Using Flat Model With Paging SUPPOIt .......cccoveeveeeiererecece e 113
Paging SUBSYSEEM........ccviicicicece et 114
ThePaging JoD.......covie i 114
[dentity MapPiNg......coueveererererieseereseeeee e ese et ee e e e s 115
Flat Model SUPPOIt COOE .......ccveieeiereieciese et 115
Conversion of Flat Model Pointersin System Calls.........ccoooevvevereeeenns 115
The Flat MOdel JOD ..o 116
EXECULION MOGEL ..o 116
Y (=0 O 118
EXiSting System CallS.......ccvvieieesece et 118
Using the Flat Model System CallS........ccvvveeeeecieiererese e 118
Virtual MEIMOTY ...ttt 119
Porting Compact/Largeto Flat .........ccovvveveceeieceeeese e 119
[DI= o180 o[ To S U o] o o o H S 120
9 Developing Applications for ROM
TESHNG @ SYSEOIM ...ttt bbb st 122
Loading an Application intd ROM ...........cooeriririeienerese e 122
Preparing an Application to Reside in ROM .........ccccooviiiiiiineneneneeeee 122
Methodology for Burning an Application into ROM...........ccccceeniieneienienne. 125
Developing a ROM-based Application SyStem .........ccocceereeierierieeieneneene e 125
Overview of the ROM-based Application Example.........c.ccooeieieienennen. 126
Generating the ROM-based Application Example........ccccoceeeveieienennen. 126
Configuring the IRMX OS ..o e 127
Setting the System Debug Values ... 132
Setting the RAM and ROM ValUEs.........cccooeiereieneieeeneeeeee e 135
Debugging the ROM Initialization ProCess.........ccoeeeeeeernercncneneeeee 140
Testing the APPlICALTION ........couiiiieee e e 145
10  Developing Applications for Multibus 1l
L0010 S - 1 1] o) =S 147
Examples Using Nucleus Communication System Calls..........ccoccevvvvrverenene. 148
Interconnect Space EXample - ISCAN.C ..ocvvvvvvveeeeeieriere e 149
Creating a Port for Message Passing - tranpOrt.C........coveveeeeseseveeseeseesessennens 150
Sending Data USiNg SeNd _FSUP ...cccoeeeievienesesieseseseeseie e ses e eeeeeneas 150
Sending and RECEIVING MESSAgES........ccceverierereeieieeieseestese e sreseeeeeeseenee s 153
viii Contents



RECEIVING AMESSAGE .....eeeeeerieieeteeeeee ettt see b e eneas 154

SENAING BMESSAGE ....c..ecueeeeeeie ettt ee e 154
Sending aMessage in Fragments.........cooceiererenene e 154
Receiving aMessage in Fragment FOIM ..o 155
The Name Server EXamMPIe. ..o 155
The General EXAMPIES.......coeiiiee et 157

Example 1: Sending and Receiving Unsolicited Messages..........cccceueenen. 158

Execution of Client and Server Programs .........ccocceeeevenenesesesennns 158
RUNNING EXAMPIE L ... 159
Example 2: Sending Asynchronous Solicited Messages.........c.ccoovveeenens 160
Execution of Client and Server Programs .........ccccceeeevenenesenesennens 160
RUNNING EXAMPIE 2.t 161

11  Developing Applications in Assembly Language

Invoking System Calls from Assembly Language.........ccceeeevererererreereerensennens 163
Interrupt Handler EXamPle........coevvieiececeeeeree e 167

Generating the Interrupt Handler Example.........ccccoovevveeeceevenesceseseseenn 167
OS EXENSION EXAMPIE......oeeiieseiee ettt 167

12  Developing Applications in PL/M

Invoking System CallSfrom PL/M ... 171
Including External Declaration FIlES.........cccooiiiiiiiiereeee e 172
Binding Your Codeto Interface Libraries.........ccooooeieeeneiceieeceieee e 173
PL/M Multitasking EXamMPIe ........cooeieeiieeenee e 174
EXGMPIE OVEINVIBIW ...ttt s enea 174
Location of Multitasking Example Code...........cccooeereienenene e 175
Compiling and Binding the Multitasking Example Code............cccccueu..... 175
Running the Multitasking EXample..........ccooviiinineneneree e 176
Programming Concepts lllustrated by the Multitasking Demo............cccccee..e. 178
IN-line EXCEPLion ProCESSING ......cceeiieierieeesie ettt 179
USE Of Literal FilES....c.oiiieeiiiericeieee et 180

A Resource and Stack Size Guidelines

RESOUrCE REQUITEMENES ......cveieieeeeeeie sttt ens 183
RAM REQUITEMENES. .....ccviiteiieeieeieeeeieseestesiestesseeeessessessesesssessessesssessessesssssesses 184
Attaching aLogiCal DEVICE.......ccceeeeeeeeeriese st 184
Creating @an 1/0O JOD........cveveieieccee e s 185
Opening & CONNECLION ......cccceieriereee et 185
Other RAM REQUITEMENES. .....ccueiieierieceieeeeese et 185
L@ o 1= ot B 011 g = 186

Programming Techniques Contents iX



Stack Size LimMitations.........cooeereieierese e e 186
Stack Size Limitation for Interrupt Handlers..........coooeeeeieiincieienene, 186
Stack Guidelines for Creating Tasks and JOBS...........ccooerererienienencnennens 187
Stack Guidelines for Tasksto be Loaded or Invoked...........cocooeeeeecrennns 187
Arithmetic Technique for Estimating Stack Size........cccceoeieiiieicienenns 187
Computing StACK SIZE.......ooiiiieiieeeeieeeeie e e 188
EMpirical TEChNIQUE .....cue it 189
Index 191
Tables
Table 1-1. Code ExamplesinthisManual ..o 2
Table 3-1. Demo.c Functionsand System CallS........ccooeieririnineneneeeeee e 16
Table 3-2. Servicing Interrupts with an Interrupt Handler ............oooeeoriiiiiiiincicnne 48
Table 3-3. Servicing Interrupts with an Interrupt Task.........cooeveeerenienienieiereresee 49
Table 3-4. Servicing Interrupts with an Interrupt Handler, an Interrupt Task, and
MUItiple BUFFEITNG . ...ceeeeeeeeeeee e e 50
Table4-1. Build Settings for Microsoft Developer Studio.........c.ccveeeeeririciencnenenene 56
Table 10-1. Flow of Program Execution for Example 1.........ccocvereiiniininenecceeenns 158
Table 10-2. Flow of Program Execution for Example 2..........cccvereiieiininenenceeens 160
Table 11-1. Registers Containing Returned System Call Values..........ccccoceieviienennene 164
Table12-1. PL/M Literal Filesfor Use with iRMX System Calls.........ccocooeeiiiinnnene 181
Table A-3. Stack Requirements for Interrupts and System Calls.........ccooeererierieeiienenne 188
Figures
Figure 1-1. The 32-bit Application Development Process (Intel ToolS)......ccccccvvveeenee. 7
Figure 1-2. The 32-bit Application Development Process (Non-Intel Toals)............... 8
Figure 6-1. Device Driver Example Using r_32 Conditional Statements............cc....... 91
Figure 6-2. Literal File Usingr_32 Conditional Statements.........ccccecevvvivrvrvrerenennn 94
Figure 7-1. Basic Large/Compact Model Program..........cccccevevieneveseseeeeseesesseesennes 103
Figure 8-1. Basic Flat Model Program .........cccccvvrieieiesenecceseesese e e e 111
Figure 8-2. Flat Application Program oniRMX with Paging........cccceeeevveveneninsnsennnn, 113
Figure 8-3. Execution of aFlat Model Program oniRMX .......cccceeveveeiecvenesesenseennns 117
Figure 9-1. Example Segment Map ......cccoceverierereseeeseeeeeseesiese e e eseesse e seenees 131
Figure 10-1. Board Scanning AlQorithm..........ccoveiviinenie e 149
Figure 10-3. Algorithm for the Client Board ...........ccocveeeeeeierennsn e 152
Figure 10-4. Algorithm for the Server Board ..........cccveeveeievenesie s seeeeseene e 152
Figure 11-1. OS Extension Code in Assembly Language.........ccccvveverereneereeienieniennnns 168

X Contents



iIRMX® Application
Development Environment

This manual describes techniques for developing applications on the iRMX®
Operating System (OS). Y ou can aso use this manual as a porting guide for your
iRMX applications.

This manual assumes you are familiar with these concepts:

*  Programming in the iRM X environment using either C, PL/M, or Assembler
e UsingiRMX jabs, tasks, mailboxes, files, and segments

» Using object module linking

e Using object libraries

See also: iRMX objects, Introducing the iRMX Operating Systems
and System Concepts

Programming Techniques Chapter 1



Examples Provided with the Operating System

TheiRMX OS provides code examples to help you learn about the iIRMX application
development environment. These examples are in various subdirectories of the
/rmx386/demo directory. This manual gives instructions on compiling and running
the examples, which are summarized in Table 1-1.

Table 1-1. Code Examplesin thisManual

Example Description Chapter
C language: Multitasking demo, basic concepts, compiling, binding Ch. 3
Debug Session (PL/M) Ch.5
Porting code: PL/M language differences Ch. 6
Porting code: assembly language differences Ch. 6
Device Driver Porting (8274) Ch. 6
Using Compact and Large Memory Models Ch.7
Using Flat Memory Model Ch. 8
C language: Multibus II, board scanning Ch. 10
C language: Multibus Il, creating a data transport protocol port Ch. 10
C language: Multibus II, send/receive RSVP Ch. 10
C language: Multibus II, send/receive a data chain message Ch. 10
C language: Multibus II, sending a message in fragments Ch. 10
C language: Multibus Il, receiving a message in fragments Ch. 10
Assembly language: Macro definitions for common source code Ch. 11
Assembly language: Invoking system calls Ch. 11
Assembly language: Interrupt handler Ch. 11
Assembly language: OS Extension Ch. 11
PL/M: External declarations, interface libraries, and binding Ch. 12
PL/M: Multitasking, basic concepts, compiling, binding Ch. 12
PL/M: <Ctrl-C> handler Ch. 12

Application Development Tools

Intel provides tools for developing iIRMX applications for your system, including:
* Assemblers

e Compilers

* Application building utilities

»  Debuggers

* Non-Intel tool support

See also: C Library Reference

2 Chapter 1 Application Development Environment



Assemblers

Use the ASM 386 assembler to produce code for your application. ASM 386 supports
Intel3861 , Intel4867 , and Pentium® microprocessors.

See also: Developing Applications in Assembly Language, Chapter 11,
ASMI386 Assembly Language Reference

Intel Compilers
Use these compilersto develop iRM X applications:
 iC-386
e PL/M-386
* Non-Intel C compilers

TheiC-386 compiler supports the ANSI standard for the C programming language
with some extensions.

TheiC-386 and PL/M-386 compilers produce 32-bit code. Depending on the
compiler, non-Intel C compilers produce either 16-bit or 32-bit code.

|:| Note

Many non-Intel compilers can produce C or C++ code. TheiRMX
OS supports only C code produced with such compilers, not C++
code.

See also: iC-386 Compiler User's Guide,
C Library Reference,
PL/M-386 Programmer's Guide

Programming Techniques Chapter 1 3



Intel compilers offer these features:

Separate compilation of source code files

Libraries containing external declaration calls and literal files
Inter-language programming in C, PL/M, or Assembler
Support for ROM-based applications

Code optimization for optimizing code performance or size

In-line functions and macros to access microprocessors and numeric
COprocessors

Run-time libraries to access floating-point support or the OS interfaces

See also: Y our compiler's programmer's manual

Optimizing Code

Use these iC-386 compiler controls to optimize your code:

Thenoal i gn control produces compact nonaligned data structures. Data
structures used for iIRMX system calls require the noal i gn control. Non-Intel C
compilers provide data packing features to perform the same function.

Theopt i m ze control specifies the optimization level the compiler usesto
generate object code. Optimized object code is compact and runs faster but takes
longer to compile.

The nodebug control requests that the compiler not produce debug information.
This optimizes the code the compiler generates.

The segmentation controls specify the memory model for an application.
Segmentation controlsinclude; compact, large, and flat.

See also: C Compiler-specific Information, Chapter 4,

iC-386 Compiler User’s Guide

Chapter 1 Application Development Environment



Non-Intel Compilers

Thistable lists the non-Intel compilers supported in theiRMX OS.

Supported in MSVC to version 6

32-bit compiler yes (flat model)
32-bit linker yes

librarian yes

make utility yes
assembler yes (in-line)

Application Building Utilities

Application building utilities aid in developing iIRM X applications. These utilities

include:

e TheLIB386 librarian utility organizes object modulesinto libraries.

»  The BND386 binding utility binds object modules to produce an executable

module or amodule for incremental binding.

The MAP386 map utility creates cross-reference maps of object modules.

*  TheBLD386 system builder utility builds aworking system. Y ou can configure
the Interactive Configuration Utility (ICU) to automatically invoke the BLD386

when generating an application system for the iRMX OS.

See also: Overlays, System Concepts,
L1B386, BND386, MAP386, Intel386 Family Utilities

Programming Techniques

Chapter 1




Debugging Tools

Y ou can use several toolsto debug your iRM X application programs, such as:

Soft-Scope debugger
For most debugging tasks, use the Soft-Scope debugger. It providesall
the tools you need for debugging iRM X applications, including source-
level and symbolic debugging capabilities.

SDM System Debug Monitor (SDM)
A debug monitor for debugging systems, disassembling code, executing
breakpoints, displaying memory, and downloading programs.

iRMX System Debugger (SDB)
A symbolic debugging tool for debugging iRMX applications and

system programs. Thistool extends the SDM’ s disassembly functions
for interpreting iIRMX calls, data structures, and stacks.

See also: Debugging an Application, Chapter 4,
Soft-Scope  Debugger User’s Guide,
System Debugger Reference

6 Chapter 1 Application Development Environment



Application Development Process

TheiRMX development environment provides the programming tools needed to
develop 32-hit applications. Figure 1-1 shows the development process for 32-bit
applications using Intel tools. Figure 1-2 shows the development processif you are
using non-Intel tools.

ACTIVITY

Create
Source
Files

Translate
Source
Code

Bind
Object
Files

Execute/Debug
Application
Software

PROGRAM
Executable
iRMX 32 Bit

Program
| |Application .
Loader > IRMX
Development/
Target
System
Soft—IS”cope

iRMX is a registered trademark of Intel Corporation

TOOL

FILE

‘ AEDIT ‘4% Source Files

Fortran-386
ASM386
PL/M-386

LIB386

¢ Load
RCONFIGURE

BND386

Object Files

1

iIRMX

| iSDM 111/SDB

Library
<]
<
< R .
> iRMX 32 Bit
Interface
Libraries

Libraries

W-2503

Figure 1-1. The 32-bit Application Development Process (Intel Tools)

Y ou can use the 32-bit compiler and utilities from iRM X using the RUNS6 utility.
Thisis user-transparent through aliases provided by theiRMX OS.

Programming Techniques

Chapter 1



Intel Suppor

t

Intel
header files

Cstart
module

os
independent
C library

iRMXO C++
class library

\\

OMF-386
converter

v

iIRMX
executable

C App
source code

Non-Intel Tools

!

Non-Intel
C/C++ compiler

v

Non-Intel
librarian

v

v

Non-Intel < Non-Intel
linker LIB format

16 bit .EXE or
32 bit .EXP

OM02627-2

Figure 1-2. The 32-bit Application Development Process (Non-Intel Tools)

Chapter 1

Application Development Environment



Target Environment Development

This chapter describes the Multibus (MB) target file modification and generation on a
PC development environment.

Generating Target Files

The Interactive Configuration Utility (ICU) enables you to modify the definition files
(:icu:*.bck) to create Multibus (MB) target filesin a PC-hosted system.

See also: ICU User's Guide and Quick Reference

For example, you can generate files on a PC (using DOSRM X or iRMX for PCs),
and then copy these files to your target MB system.

Generating a Target File Example

Y ou can use the ICU to generate new target files or modify existing files. Inthis
example, create a new target file by modifying an existing definition file for the SBC
486133SE board. Y ou can create the file on a PC and then copy the file to a Multibus
system.

1. Create aworking directory called "icutest”, attach to this directory, and then
copy the definition file to this directory.

- crdir icutest <CR>
- af :icutest: <CR>
- copy :icu:486133.bck to $ <CR>

2. Invoke the ICU under the DOSRMX or iRMX for PCs OS and select the 486133
definition file.

- icu386 486133. bck <CrR>
3. ThelCU outputsthis query. Answer with ay.

Do you want to restore fromthe file ? [y]/n: y <CR>

Programming Techniques Chapter 2 9



10

4. Answer the next query with an.
Do you want to overwite input file [y]/n: n <CR>

5. At the next query, enter an output name different than that of the definition file.
Enter new output file nane: icutest.def <CR>

6. ThelCU acknowledges and processes the command and outputs:

The Definition File has been restored to the file:
| CUTEST. DEF

To see the RESTORE nessages, inspect the log file:
| CUTEST. LOG

|:| Note

A message may appear that the definition file has been modified.
Ignore this message.

The ICU queries:
Continue to the ICU Main Menu? [y]/n: y <CR>
The ICU command appears with the list of available ICU commands.

7. For this example, we will change the target directory of the generation files.
First, view the main screen to list all changeable options in the definition file.

ENTER COVWANDS: c gen <CR>
8. The Generation (GEN) screen appears.
9. To change thetarget directory, type:
:raf =/ msa32/ boot /i cut est <CR>
10. Press<CR>twice. The GEN screen re-appears with the modified settings.
11. Return to commands screen by quitting the GEN screen.
1 g <CR>
12. Savethefile before generating the new files.
:s <CrR>

Chapter 2 Target Environment Development



13.

14.

15.

16.

17.

18.

19.

Generate the new definition file at the commands screen.

ENTER COMVANDS: g <CR>

You are queried for a prefix.

Enter a letter to be used as prefix: r <CR>
The ICU generates the files used by the definition file. When the ICU finishes,
the ENTER COMMAND: prompt appears. Now exit from the ICU.

ENTER COWAND: e <CR>

On exiting, the ICU creates the definition file, icutest.def. 1t also creates the
submit file, icutest.csd. Thisfile generates the target environment files. Inthis
example, the target environment is a Multibus system using a SBC 486133SE
board.

Run the submit file.

- submit icutest over icutest.out echo <CR>
Use AEDIT to access icutest.out to check for any generation errors. If there are
no errors, then copy the target environment file to the target system. If there are
errors, invoke the ICU using icutest.def.
- icu386 icutest.def <CR>
Correct the errors, save the changes and regenerate the target environment file.
To copy filesto atarget system, use either iRMX-Net or TCP/IP.
A. UseiRMX-Net by:
1) Attaching to the Multibus system:
- ad rempte_systemas remr <CR>
2) Copying icutest to the Multibus system.
- copy icutest to :rem nsa32/ boot <CR>

See dso: iRMX-Net, Network User's Guide and Reference,
FTP, TCP/IP and NFSfor the iRMX Operating System

Programming Techniques Chapter 2 11



|:| Note

The boot directory, msa32/boot, is for definition files on Multibus
Il systems. For Multibus | systems, substitute /boot32 for
msa32/boot.

B. If both the devel opment system and the target environment system have
TCP/IP running, use FTP to upload the files.

20. Test thefileson the new target system.
21. Test and re-generate the filesif required.

12 Chapter 2 Target Environment Development



Designing an Application

This chapter presents concepts for designing and creating an iRMX application. This
includes application code demonstrating the concepts. Details about the location and
running of the example application code, demo.c, are located at the end of the
chapter. Thiscodeiswrittenin C using the iC-386 compiler. Y ou should be familiar
with C syntax and structures to understand the examples.

See also: Introducing the iRMX Operating Systems,
System Concepts,
iC-386 Compiler User's Guide,
C Library Reference
C Compiler-specific Information, Chapter 4

Programming Techniques Chapter 3 13



Application Categories

Most iIRMX applications are written for one of three categories: measurement,
process control, or data acquisition. There is no distinct differentiation between
categories and an application can overlap one or more categories.

Measurement

A point of saleterminal for agas station is an example of aniRMX application
focusing on measurement. Asthe fuel tank on a car fills, the application tracks the
quantity pumped by interacting with aflow meter. When the fuel tank isfilled and
flow stops, the flow meter signals the application to calcul ate the cost based on the
amount of fuel pumped.

Process Control

An assembly line conveyor belt is an example of an iIRM X application focusing on
process control. Component parts are removed from the conveyor belt by human
operators and placed in certain devices. Electronic eyes monitor the number of
component parts passing at given points. |f the human operators require more time to
remove a part from the belt, an electronic eye recognizes that fewer parts are being
removed from the belt. The electronic eye then triggers the application to slow the
speed of the belt.

Data Acquisition

A telephone communications network is an example of an iIRMX application
focusing on data acquisition. The network is partitioned into specific sectors. The
application monitors the amount of telephone traffic that occursin each sector.
Subsequent analysis identifies those sectors that have large amounts of telephone
traffic. Routing schemes could then be developed to handle the large amount of
traffic. Additionally, connection times could be recorded before and after to check
the efficiency of the routing schemes.

14 Chapter 3 Designing an Application



Design Concepts
All iRMX applications, regardless of category, use some or all of these functions:

e Handling I/O

e Interprocess communication

e Intertask synchronization

e Creating and cataloging objects
e Contralling devices

e Allocating memory

»  Processing exceptions

e Prioritizing tasks

e Computing
e Handling interrupts
e Filesharing

C Multitasking Demo Program

The demonstration program, demo.c, presents programming concepts which use some
or al of the functions listed above. Use this program as an aid in developing your
own application code. This program is described later in greater detail.

Demo Code Location

The /rmx386/demo/c/intro directory contains this source code and related files. Itis
easier to understand the examplesif you produce hard copies of the source code or
view them from a console screen using an ASCI| text editor.

make file to generate example

demo.c main program code containing the initial task

task2.c second task code

crbpool.c buffer pool code

except.c exception handler

Demo Example Generation Environment Command

iC-386 demo iIRMX make

Watcom C demo DOS make -f makefile.w
Microsoft C demo DOS make -f makefile.w
Borland C demo DOS make -f makefile.w

Programming Techniques Chapter 3 15



The C versions of the demo are generated from the same demo.c source. All versions
of the demo are functionally equivalent, and all run under the iIRMX OS.

See als0: C Compiler-specific Information, Chapter 4

Table 3-1 lists the functions and associated system calls used in demo.c.

Table 3-1. Demo.c Functionsand System Calls

Procedure Functions Demonstrated System Calls Used
main() IORS mailbox creation rq_create_mailbox
Getting terminal attributes rq_a_special
Receiving an IORS rq_receive_message
Deleting an IORS rq_delete_segment
Setting terminal attributes rq_s_special
Getting iIRMX version dg_get_system_id
Building the job's object directory rq_create_mailbox
rq_catalog_object
rg_create_semaphore
rq_catalog_object
rq_create_buffer_pool
rq_catalog_object
rg_get_priority
rq_create_task
rq_catalog_object
Getting buffer pool memory rq_request_buffer
Using semaphores rq_send_message
rq_receive_units
Displaying data to the console rq_s_write_move
write_read Console I/O rq_a_write
rq_wait_io
rq_wait_iors
rq_a_read
prompt_and_wait Console I/O rq_a_write
rq_wait_io
rq_wait_iors
Job termination from console rq_exit_io_job

16

Chapter 3

Designing an Application




Running the Multitasking Demo

|:| Note

Before running any C examples, load the clib.job or configure it
into the OS with the ICU. Y ou can manually load it by entering
this command at the HI prompt:

-sysload /rnx386/jobs/clib.job
See also: clib.job, System Configuration and Administration

The makefile file first compiles and binds the source files using iC-386 and BND386
and then creates an executable program named demo. Enter these commands to first
attach to the directory where the demo files reside and then use the make command
to run the makefile:

- af /rnx386/denb/c/intro <CR>
- make <CR>

To execute demo, enter:
- denp <CR>

After typing the filename, the program prompts you with this message:
iRMX II'l C Miltitasking Denp, VXY

Wel come to the C Multitasking Denp!

At the pronmpt you will be given 60 seconds to hit any key.
If you do not hit a key the denmo will continue anyway.
You may hit an "E" if you wish to exit the program

You now have <xx> seconds left to hit a key.

After you press a key, the program clears the screen and prompts you with this
message:

Pl ease hit a key which will be forwarded to task2 for processing.

Assuming you enter the letter X for the first keystroke, the main program, containing
theinitial task, reads the X from the terminal and passesit onto Task2. Task2 wakes
up and prints out this message to the screen:

TASK2 PROCESSI NG X
Pl ease hit a key which will be forwarded to task2 for
processi ng

Programming Techniques Chapter 3 17



The X continuesto appear at the rate of one per second and will repeat indefinitely
until you enter another keystroke. Also, notice that the prompt to enter another
keystrokeis buried in the middle of Task2's processing message and the string of
lettersthat it displays.

Entering the next two keystrokes concludes the program. This output assumes you
enter the characters Y and Z:

TASK2 PROCESSI NG Y <CR>

Pl ease hit a key which will be forwarded to task2 for
processi ng

TASK2 PROCESSI NG Z <CR>

Thi s concludes the C Denmp Program

This woul d be a good tinme to exam ne the program code
to see how these features work.

W will now exit by generating an error.
| NTERNAL ERROR | N MODULE denp.c at |ine #450
STATUS = 0023: E_SUPPORT

After you enter the final keystroke, the initial task recognizes that you have entered
three characters, signaling the code to end the program. The initia task ends the

program before Task2 begins to repeatedly print the third character to the console
screen.

Using the Makefile

Each of the demonstration programs has its own unique makefile for compiling and
binding the programs.

A listing of the makefile for generating demo follows:

# *-*-* pmakefile okok
#
# This makefile generates the i C-386 nultitasking denp
# for iRW II11.
#
# I nvocat i on: make
#
#t
## Conpile and Bind sw tches
#t

18 Chapter 3 Designing an Application



DEBUG
TYPE
#t
##t
#t
LANG
CLI BDIR
RMXLI BDI R
RUN86
#t
#t
#t
BND3
BND
BNDFLAGS
#t
#t
#t
cc3
cc
CFLAGS
#t
#t
#t
CLIB
CSTART
RMXLI B
uDI LI B
#t
#t
#t
. SUFFI XES
.c.obj:

. obj

Tool

B

nodb
noty

and library definitions

;1 ang:
:sd:intel/lib
:sd: rnx386/1ib

cutils:run86

nder definitions

:sd:intel/bin/bnd386. exe
$(RUNB6) $( BND3)
$(DEBUG $(TYPE) rn(code to code32)

Conpi | er definitions

$(LANG) i c386
$( RUNB6) $( CC3)

cp dn(0) extend ot(3) si(:include:) nosrclines $(DEBUG

Li braries

= $(CLIBDIR)/cifc32.1ib
$(CLI BDI R/ cst art 32. obj

= $(RWKLIBDIR)/rnkifc32.1ib

= $(RWKLIBDIR)/udiifc32.1ib

Implicit rules

.C

$(CO $*.c 0j ($@ pr($*.1st) $(CFLAGS)

Programming Techniques

Chapter 3

19



#t
#it Targets and explicit rules
#t

default: deno

deno: crbpool . obj denp.obj except.obj task2.obj $(BND3) $(CSTART) $(CLIB) \
$(RWXLI B) $(UDILIB) makefile

$( BND) &

$( CSTART) , & C startup nodul e

deno. obj , & C Denp nodul es

task2. obj, &

except. obj, &

crbpool . obj, &

$(CLI B), & TRWX Il Shared C Interface library
$(UDI LI B), & TRWIII UDl Interface library

$( RMXLI B) & TRW Il SystemCall Interface library

$(DEBUG) 0j ($@ pr($@ npl) &
rn(code32 to code) ss(stack(2400H)) rc(dm 4000h, OFFFFFh))

#t
#t Dependency i nformation
#t
CWNCI NCS = :include:i186.h i ncl ude: i 286. h include:i386.h \
rinclude:i86.h i ncl ude: | ocal e. h include:reent.h \
rinclude:rmxc. h sinclude: rnxtypes.h :include:time.h \
rinclude:rmx_err.h i ncl ude: stdio. h include:stdlib.h\
rinclude:rmx_c. h i ncl ude: yval s. h include: _align.h\
rinclude: _noalign.h include: _restore.h i nclude: udi.h \
rinclude:udi_c.h deno. h makefil e
crbpool . obj : $(CVMNCI NCS) cr bpool . ¢
deno. obj : $(CWNCI NCS) denp. c :include:ctype.h :include:rnx_def.h \
rinclude:string.h
except.obj $(CMNCI NCS) except.c :include:rnx_def.h
t ask2. obj : $(CWNCI NCS) task2.c :include:rnx_def.h :include:string.h

20 Chapter 3 Designing an Application



Programming Concepts

The specific programming concepts conveyed in demo.c are:

Creating objects using iIRMX system calls
Catal oging objects so tasks can share them

Processing an I nput/Output Result Segment (IORS) data structure to check the
status of an 1/0O operation

Using response pointers during inter-task communication
Simultaneous task processing and data sharing
Using buffer poolsto create memory resources for a job

Processing in-line exceptions resulting from iRM X system calls in application
code

Getting and setting terminal attributes

Performing screen input/output to read and write data using the physical terminal
screen

Performing simultaneous input/output so tasks perform /O operations
independent of one another

Accessing the IORS

Processing interrupt tasks

Creating and Cataloging Objects

Every iRMX object has attributes. These attributes enable you to customize the
object's use in an application. Y ou specify these attributes when you create an object.

Listed below are iRM X objects used in the demo.c program.

Objects in demo.c Description of use

Task An initial task does input and a subtask does output

Semaphore One semaphore synchronizes the initial task and subtask

Mailbox Two local mailboxes exchange input/output and a global
mailbox transfers between the initial task and subtask

Buffer pool One buffer pool passes messages and objects between
mailboxes

Programming Techniques Chapter 3 21



Operations on Objects

The OS has an object-based architecture. There are three main advantagesto
working in an object-based OS. These advantages are: design consistency, type
checking protection, and customization.

Design Consistency. The Nucleus provides objects and functionality found in most
normal OSs.

See also: Objects, Introducing the iRMX Operating Systems,
Nucleus, System Concepts

Type Checking Protection. Because each object has a type attribute, the OS can
check for incorrect parameters (object token) in a system call, thereby avoiding
system call errors.

Customization. Y ou can define additional object types and system calls (known as
operating system extensions). Use these features to customize the OS. However,
limit the OS extensions to one application for easy maintenance.

Creating Tasks

If you have tasks that need to share resources (such as data or code), consolidate
those tasks in the same job. If you have tasks that perform dissimilar functions,
separate those tasks into different jobs. This maximizes modularity and adds
protection because of separate memory spaces.

For simple applications that involve only one programmer and that have no
maintenance or expansion plans, it issimpler to put all the tasksin one job which lets
the tasks:

*  Share the same processor

» Useoneready queue

» Areremoved from the task queue when waiting for aresource
e Share the same memory space

» Passdataby reference

e Communicate using mailboxes and semaphores

22 Chapter 3 Designing an Application



Tasksin different jobs on the same processor can:

e Passdata by reference through global segments

» Useoneready queue

» Have different memory spaces but all in the processor's memory space

*  Share the same priority scheme

Dividing an application into jobs provides:

Functional partitioning

Memory separation

Privilege

Each jobisagroup of tasks that perform similar
functions. This enables easier management and
understanding of large projects. Programmers only need
to understand how their code interfaces with the code
produced by other members of the project team. Aslong
as the interfaces between code modules are controlled,
the project itself can respond to significant design
changes without adverse schedule impact.

Each job hasits own memory pool. This provides
protection from segmentation overflow. Tasksfrom
different jobs have a minimal impact on an application if
one becomes a runaway task.

To isolate an environment in which privileged
operations occur, group those tasks with high priorities
into one job.

See also: Jobs, System Concepts

Programming Techniques

Chapter 3 23



Task Creation Code Example

In this example, only two tasks exist: theinitial task (in the file demo.c) and the
subtask Task2 (in the file task2.c). Regardless of the number of tasksin your
particular job, the principles for task creation remain the same.

The following code, from demo.c, shows how theinitial task creates, assigns a
priority to, and catalogs Task?2.

priority = rqg_get_priority(CALLER, &status);
Get the priority of the calling task, which is the initial
task.

task = rq_create_task (-- priority,
Create the subtask and give it a lower priority than the

initial task.

&t ask2,
Set the start address by pointing to the first instruction
of Task2.

_get_ds(),

Set the data segment parameter to create its own data
segment.

(UNT_16 far *) NULL,
Set the stack pointer for automatic stack allocation.

(NATI VE_WORD) 0x2400,
Set the stack size to 2400H bytes. Set stack sizes to at
least 300H bytes for Nucleus system calls and 700H
bytes for C library calls.

(U NT_16) O,
Set task flags to zero, indicating no floating point
instructions.
&st at us) ;
A pointer to where the condition code returns.
error_check (__LINE_, _ FILE , status);

Each time a system call is made, a subsequent call is
made to error_check, which checks the error of status
of the previous system call.

udi str((char *) & nx_str, " TASK2");
Call iRMX procedure udistr to convert Task2 from a
null-terminated C string to a counted iRMX string.

rg_catal og_obj ect (CALLER, task, & nmx_str, &status);
Catalog the subtask, Task2, in the object directory of
the initial task (in demo.c).

24 Chapter 3 Designing an Application



Creating and Cataloging Objects Code Example

The following code, from demo.c, catal ogs and creates a mailbox, a semaphore and a
buffer pool.

See also: System Concepts, for information about creating these objects.

|:| Note
If debugging with Soft-Scope debugger or the iRM X System
Debugger (SDB), catalog objects so TOKEN values correlate with
their respective namesin the program. Although the $ character is
valid in avariable name, it should be omitted from variable names
used as input to the debugger.

mai | _box = rqg_create_mail box (FI FO_ QUEU NG &st at us);
Create a mailbox.

error_check (__LINE_, __FILE , status);
udistr((char *) & nx_str, (const char *) "MBX");
Convert MBX from a C string to an iRMX string.

rg_catal og_obj ect (CALLER,
CALLER is null so the object is cataloged in the initial
task's object directory.

mai | _box,
Catalog the mailbox object.
& mx_str,
Give the object the catalog name of MBX.
&st atus);
A pointer to where the condition code returns.
error_check (__LINE_, __FILE , status);

semaphore = rqg_create_semaphore ((U NT_16) O,
Create a semaphore and set the initial number of units
to zero.

(U NT_16) 3,
Set the maximum number of units to three.

FI FO_ QUEUI NG &status);
Use zero to indicate a FIFO queuing scheme.

error_check (__LINE_, __FILE , status);
udi str((char *) & nx_str," SEMAPHORE") ;
Convert the C string to an iRMX string.

Programming Techniques Chapter 3 25



rg_catal og_object (CALLER, semaphore, & nx_str, &status);
Catalog the semaphore in the initial task's job directory.

error_check(__LINE_, _ FILE ,status);
pool _tkn = create_buf_pool ((U NT_16) 18, (U NT_16) 18, (U NT_16) O,
( NATI VE_WORD) POOL_SEG Sl ZE, &status);
Create a buffer pool through procedure
create_buf_pool in external file crbpool.c.

error_check (__LINE_, __FILE , status);
udistr((char *) & nx_str,"BUFFER'");
Convert the C string to an iRMX string.

rg_catal og_object (CALLER, pool _tkn, & nx_str, &status);
Catalog the buffer pool in the initial task's job directory.

error_check(__LINE__, _ FILE ,status);

Processing Input/Output Result Segments (IORS)

|ORS data structures are processed to check the status of an 1/0O operation. The 1/O
system creates an IORS when a task requests an /O operation, such as through the
a special system call. The resulting IORS contains information about the request
and the device on which the 1/0 was performed.

The resulting |ORS contains information such as error conditions, the type of
operation, the device, and pointers to where the datais stored. The statusis checked
by accessing specific fields in the IORS data structure. For example, fields, such as
st at us and uni t _st at us, would contain status (including error) codes after the
I/O operation.

AnIORSisalso anintegral part of writing adevice driver. Since adevice driver
interacts between the 1/0 system and the related device, an IORS provides
information about the operation performed on the device as well as about the device
itself.

See also: DUIB and IORS: Device driver Interfaces, Driver Programming
Concepts and System Call Reference

26 Chapter 3 Designing an Application



Processing an IORS Code Example

Theinitial task, in demo.c, performs the I/O operation of getting the attribute of the
input device. TheiRMX OS creates the |ORS and then checksit to verify that the
attributes were successfully obtained.

rg_a_special (input_conn_t, SPECI AL_GET_TERM DATA, (void far *)
& ermatts, read_nbx, &status);
This 1/0 operation gets terminal attributes of the input
device. The IORS will be placed in the read_mbx
mailbox when it arrives.

error_check(__LINE__, __FILE ,status);

The initial task then waits until the |IORS arrives. This code illustrates how it waits:

#ifdef FLAT_
If flat model is used, you must use the following call to
access the IORS.

rg_wait_iors (input_conn_t,
Return the IORS specified in the previous connection.

r ead_nbx,
Set iors_token to receive the terminal attributes.

I NFI NI TE_WAI'T,
Wait infinitely for the terminal attributes to arrive.

& ors, &status);
Point to a buffer where the IORS is placed.

error_check (__LINE_, _ FILE , status);
error_check (__LINE__, _ FILE _, iors.status);
#el se

iors_tkn = rqg_recei ve_nmessage (read_nbx,
Set iors_token to receive the terminal attributes.

I NFI NI TE_WAI'T,
Wait infinitely for the terminal attributes to arrive.

(SELECTOR far *) 0, &status);
Specify the mailbox which receives a status response.

error_check(__LINE__, __FILE ,status);
iors = (A_IORS_STRUCTURE *) buildptr(iors_tkn, (void near *) 0);
Build a pointer to the IORS.

Programming Techniques Chapter 3 27



error_check (__LINE_, __FILE , a_iors->status);

Check the status of the IORS.

rg_del ete_segnment (iors_tkn, &status);

Manually delete the IORS because a_special does not
recycle it.

Using a Response Pointer During Inter-task
Communication

28

Tasks usually need to communicate with one another. Examples of thisare:
* A serving task informing a requesting task that a processis done

*  Onetask informing another that it has received some information

* A requesting task passing information to several serving tasks

*  Onetask passing datato another

»  Two or more tasks synchronizing their processing

Mailboxes in demo output messages, get user input, and transfer data. A semaphore
synchronizes tasks.

The application uses two local mailboxes to pass messages and capture data.
Messages to the terminal (output) are also sent to amailbox. A task checksthe
mailbox for a message and sends the message to the terminal. User response to the
message is captured in a data buffer and placed in another mailbox (in the same task)
and returned to the main program.

A mailbox is also used to pass a data buffer among tasks. The initial task places a
data buffer in the mailbox and catalogs the mailbox in its object directory. Demo
imposes arestriction by explicitly cataloging the subtask. The restriction means only
demo and its subtask (Task2) can access the mailbox. Depending on your
application, cataloging a subtask is optional. The subtask accesses the mailbox and
processes the data buffer it contains.

The semaphore synchronizes activities between the initial task and the subtask. The
initial task creates a semaphore which tracks units sent to it by the subtask. The
semaphore is assigned a maximum number of units which serves asatrigger. Asthe
subtask processes each data input from the initial task, it sends one unit to the
semaphore. The semaphore accumulates these units. Theinitia task stops and
checks the semaphore to seeiif it contains its maximum number of units. If it does,
theinitial task knows that the subtask has completed all of its processing.

Chapter 3 Designing an Application



Task Synchronization/Data Passing Code Example

Theinitial task synchronizes its processing with Task2, the subtask. Theinitial task
waits for, receives, and processes keystrokes at the same time that Task2 is writing
the previous keystroke to the terminal and waiting for the next one. This
synchronization enables input from and output to the terminal to be in separate tasks.

After the initial task obtains user input of a keystroke, it passes the data to Task2
through a mailbox. Task2 prints the keystroke to the screen and acknowledges the
input by incrementing the count in the semaphore. It continues printing while waiting
for another input from the initial task.

These are the functions and associated system calls used in the file task2.c (Task2).

Task Name Functions Demonstrated System Calls Used
task2 Getting object directory elements  rg_lookup_object
Character and Semaphore I/O rq_receive_message
rq_create_mailbox
rq_a_write
rq_wait_io

rq_release_buffer
rq_send_units

This code from the initia task, in demo.c, shows data passing between tasks and the
synchronization of tasks among each other.

for (i =1; i <= 3; i++)

Start a loop which will execute three times.

.(code)

rg_send_nessage (nmil _box,
Send a message to the mailbox signaling Task2 to
execute.

buf f _tkn,
Send the data buffer, containing the user keystroke, in
the mailbox.

semaphore, &status);
Identify the semaphore as the object notified by Task2
when it finishes a process.

Programming Techniques Chapter 3 29



.(code)

rg_receive_units (semaphore,
Monitor the semaphore to see if it has received three
units from Task2.

(U NT_16) 3,
Set the trigger number to three units.

I NFI NI TE_WAI'T, &status);

The semaphore waits infinitely to get three units. Task2
sends one unit to the local variable semaphore, which
points to and increments semaphore in the initial task.
After the initial task sends the third and final keystroke to
Task2, the initial task examines the number of units in
the object semaphore and, since it matches the trigger
number of three, continues processing.

End the loop.

Theinitial task and Task2 communicate and synchronize through mailboxes and
semaphores. Thiscodelisting isfor Task2, located in the file task2.c:

dumy = udistr ((char *) & nx_str,"MBX");
mai | _box = rqg_l ookup_obj ect (CALLER, & nx_str, INFINTE WAIT,
&st at us) ;
Look up MBX as the mailbox defined in the object
directory of the initial task.

error_check (__LINE_, _ FILE ,status);
dumy = udistr ((char *) & nx_str,"BUFFER");
pool tkn = rqg_l ookup_object (CALLER, & nx_str, I NFINTE_WAIT,
&st at us) ;
Use the buffer defined in the object directory of the initial
task.

error_check (__LINE_, _ FILE , status);

buff _tkn = NULL_TOKEN;
Set this buffer so Task2 does not release it back to the
buffer pool.

buff2_tkn = rq_recei ve_nmessage (nmail _box, |INFINITE_WAIT,
(SELECTOR far *) &semaphore, &status);
Retrieve the buffer containing the keystroke from the
mailbox. If the mailbox is empty then wait until it is filled.

30 Chapter 3 Designing an Application



wite_nmbx = rqg_create_nail box (FIFO QUEUI NG &status);

Create a local mailbox to output messages to the
terminal.

whi | e ( TRUE)

Start an infinite loop.

if (status == E_CK)
{
rg_awite (output_conn_t, (U NT_8 far *) nessage,
(NATI VE_WORD) strlen (nessage), wite_nbx, &status);
Output the message that Task2 is processing.

error_check (__LINE_, __ FILE _,status);

#i f def FLAT

#el se

#endi f

If a flat model is used, use the following call.

rg_wait_iors (output_conn_t, wite_nbx, INFINNTE_ WAIT, & ors,
&st at us) ;
Waits for an IORS and copies it to a user-provided
buffer.

actual = rg_wait_io (output_conn_t, wite_nbx, INFINTE WAIT,
&st at us) ;
Returns the concurrent condition code for the prior call
to the calling task.

error_check (__LINE_, _ FILE ,status);
if (buff_tkn !'= (selector) NULL)
{rg_rel ease_buffer (pool _tkn, buff_tkn, (U NT_16) O,

&st at us) ;
Release the buffer back to the buffer pool. However,
skip this the first time through since the buffer has not
been retrieved from the buff_tkn variable.
error_check (__LINE_, _ FILE _,status);

}
buff _tkn = buff2_tkn;
Transfer the buffer from buff2_tkn to buff_tkn. This
enables buff2_tkn to monitor the mailbox and accept a
new buffer (keystroke) when it arrives.

Programming Techniques Chapter 3

31



rg_send_units (semaphore, (U NT_16) 1, &status);
Every time Task2 receives a keystroke from the initial
task, Task2 sends a unit to the object semaphore.
Task2 knows where to send the unit because the initial
task passed the token for semaphore to the mailbox.
This token for semaphore is kept in Task2's version of
the variable semaphore (semaphore is a local variable).

error_check (__LINE_, _ FILE ,status);
}

&code)

rg_a wite (output_conn_t, (UNT_8 far *) dummy,
(NATIVE_WORD) 1, write_nbx, &status);
Output the buffer (keystroke) to the terminal.

error_check (__LINE_, _ FILE , status);
#ifdef FLAT_
rg_wait_iors (output_conn_t, wite_nbx, INFINTE WAIT,

&st at us) ;
#el se
actual = rg_wait_io (output_conn_t, wite_nbx, INFINTE WAIT,
&st at us) ;
#endi f
error_check (__LINE__, _ FILE , status);

buff2_tkn = rq_recei ve_nmessage (nmail _box, (U NT_16) 100,
(selector far *) &semaphore, &status);
Check the mailbox to see if a buffer has been sent by
the initial task. If a buffer does not arrive after one
second, return to the top of the loop and repeat
processing.

Using Buffer Pools

Buffer pools provide a shared resource of buffers, which are fixed-length segments of
memory. Any tasks can use these segments, eliminating the need to repeatedly create
or delete memory segments. Use this sequence when creating a buffer pool:

1. Createthe buffer pool using the create buffer_pool system call. One of the
pool's attributes is having its memory segments defined as contiguous or daisy-
chained. Select the contiguous attribute for applications where few data objects
are passed or few object transfers are made. Select the daisy-chain attribute if
the application transfers alarge number of data objects or has alarge number of
transfers.

32 Chapter 3 Designing an Application



2. Once the buffer pool is created, initialize the pool by allocating a set of memory
segments (buffers), for the pool. Use the create_segment system call to define
segments. The size of the segment must accommodate the size of any objects
being passed. For example, demo uses one byte buffers. Thissize
accommodates the user-input keystroke captured in the buffer.

3. Release the buffer into the buffer pool using the release buffer system call.
Thiscall initialy populates the buffer pool, as well as recycles buffers when they
are no longer needed. The most efficient way to create buffers and release them
to the buffer pool iswith aloop. Set the loop control variable to the initial
number of buffersin the pool.

See also: Buffer ports, System Concepts

|:| Note

Create and fill buffer pools at the beginning of your job since
creating iIRMX memory segmentsis a slow process relative to
other system calls.

Creating Buffer Pools Code Example

Theinitial task in demo.c creates and catal ogs a buffer pool. Once the buffer pool
has been established, the calling task must request a buffer, assign data to it, and pass
the buffer to the subtask (Task2). After receiving the buffer, the serving task must
secure the data and release the buffer back to the buffer pool for possible use by other
tasks.

Thefile crbpool.c contains a procedure, called by demo.c, that creates a buffer pool.
Thisfile aso creates an initial number of memory segments, and releases them to the
buffer pool. A token for the buffer pool isreturned to the caller. These arethe
functions and associated system calls used in crbpool.c.

Procedure Functions Demonstrated System Calls Used
create_buf_pool Buffer pool creation rq_create_buffer_pool
Buffer pool initialization rq_create_segment

rq_release_buffer

Theinitial task in demo.c calls procedure cr eat e_buf _pool (defined in crbpool.c)
asfollows:

pool _tkn = create_buf_pool
This call passes parameters to an external procedure in
crbpool.c, which creates the buffer pool and the buffers
used in the pool.

Programming Techniques Chapter 3 33



((UNT_16) 18,
Create a maximum of 18 buffers.

(U NT_16) 18,
Create a minimum of 18 buffers.

(U NT_16) O,
Set the flags attribute to zero to create contiguous
buffers.

(NATI VE_WORD) POOL_SEG SI ZE, &stat us);
Set the size of each buffer to one byte.

error_check (__LINE_, _ FILE , status);

udi str((char *) & mx_str,"BUFFER");
rg_catal og_obj ect (CALLER, pool _tkn, & mx_str, &status);

Catalog the buffer pool in the object directory of the
initial task.

The following is code from procedure cr eat e_buf _pool in crbpool.c:

SELECTOR creat e_buf _pool (
Receive the attributes sent from the initial task.

U NT_16 max_buf s,
Parameter declaring the maximum number of buffers in
the buffer pool.

U NT_16 init_numbufs,
Parameter declaring the initial number of buffers in the
buffer pool.

U NT_16 attrs,
Parameter declaring attributes for the buffer pool as
contiguous buffers.

NATI VE_WORD  si ze,
Parameter declaring the size of each buffer as one byte.

U NT_16 *status_ptr )
Exception pointer.

{

SELECTOR buf _pool ;
Variable declaration for the buffer pool.

SELECTOR buf _t ok;
Variable declaration for the buffer.

i nt i

34 Chapter 3 Designing an Application



Variable declaration for the loop control variable.

buf _pool = rqg_create_buffer_pool (max_bufs, attrs, status_ptr);
Create the buffer pool.
error_check (__LINE_, __ FILE ,*status_ptr);
for (i =1; i <= init_numbufs; i++)

Set the loop counter variable to the minimum number of
buffers so the buffers are created when the loop
finishes.

{ buf_tok = rqg_create_segnent (size, status_ptr);
Create the buffer (memory segments).

if (*status_ptr !'= E OK)
return (NULL_TOKEN) ;
Check if the segments are created correctly.

rg_rel ease_buffer (buf_pool, buf_tok, (U NT_16) 2,
status_ptr);
Make the buffer part of the buffer pool.

if (*status_ptr !'= E OK)
return (NULL_TOKEN); }
return (buf_pool); }
Return the token for the complete buffer pool back to the
initial task.

Programming Techniques Chapter 3 35



Using Buffer Pools Code Example

In order to use buffers from the buffer pool, the initial task and Task2 must request
and release buffers. Recall that when the initial task wasinvolved in itsloop to send
user-supplied keystrokes to Task2, the object being sent was a buffer. This code,
from demo.c, shows how the main program requests a buffer from the buffer pool
and waits for datato cometo it.

for (i =1; i <= 3; i++)
Set the loop to capture three keystrokes.
{
buff _tkn = rqg_request _buffer(pool _tkn, (U NT_32) 1, &status);
Request a token for a free buffer from the buffer pool.
error_check (__LINE_, _ FILE , status);
#ifdef FLAT_
If the flat model is used, you must use a temporary
buffer.
*tnmp_buff = wite_read(nessage_2, INFINITE WAIT, &status)
actual = rg_nove_data(_get_ss(), tnp_buff, buff_tkn,
(void *) 0, (UINT_32) POOL_SEG Sl ZE, &status);
error_check (__LINE__, _ FILE , status);
#el se
buffer = (U NT_8) buildptr(buff_tkn, (void near *) 0);
Build a pointer to the buffer.
*pbuffer = wite_read (nessage_2, INFINITE_WAIT, &status);
The program waits indefinitely for the user to enter a
keystroke. When a key is pressed, the character goes
into a buffer, which is a pointer constructed from
buff_tkn.
error_check (__LINE_, _ FILE , status);
#endi f
rg_send_nessage (nmmil _box, buff_tkn, senaphore, &status);
A semaphore is passed as the exchange to which the
response should be sent.
error_check (__LINE_, _ FILE , status);
}
After Task2 receives the buffer in amailbox, it processesit, and then releases the
buffer to the poal for recycling. This code isfrom task2.c.
36 Chapter 3 Designing an Application



{
rg_a wite (output_conn_t, (UNT_8 far *) nessage, (NATIVE WORD)
strlen(nmessage), wite_nbx, &status);
Output a message to the terminal that Task?2 is
processing.

error_check (__LINE_, _ FILE ,status);
#ifdef FLAT_
If the flat model is used, use the following call.

rg_wait_iors (output_conn_t, wite_nbx, INFINTE WAIT,
& ors, &status);

#el se
actual = rg_wait_io (output_conn_t, wite_nbx, INFINTE WAIT,
&st at us) ;
Retrieve the status of the a_write and delete the
resulting IORS.
#endi f
error_check (_LINE_, _ FILE _,status);
if (buff_tkn !'= (selector) NULL)
{
rg_rel ease_buffer (pool _tkn, buff_tkn, (U NT_16) 0, &status);
error_check (__LINE_, _ FILE ,status);
}

The first time through the loop, the variable buff_tkn is
NULL, or zero, so Task2 skips the code that releases
the buffer back to the buffer pool. The second and third
times through, Task?2 releases the buffer before
capturing the currently received keystroke. The
parameter buff_tkn contains the token that indicates
which buffer to release (the same buffer requested by
the initial task for the previous loop pass).

buff _tkn = buff2_tkn;
After releasing the buffer, buff_tkn can be set equal to
buff2_tkn, the token of the buffer containing newly
arrived keystroke. The buff2_tkn token is now free to
accept the next user keystroke when it arrives at the
mailbox.

rg_send_units (semaphore, (U NT_16) 1, &status);
Task2 sends a unit to the semaphore. Task2 will send a
total of three units to the semaphore.

error_check (_LINE_, _ FILE ,status);
}

Programming Techniques Chapter 3 37



Methods of Screen Input/Output

Applications can write from atask buffer to a connected physical file. A connected
physical file can be any I/O device. Thisexample obtains physical file connections
for the keyboard (input) and console screen (output). When dealing with 1/0
connections, tokens must be used. This example shows two methods that you can use
to perform this type of 1/O.

See also: a writeand wait_io system calls,
System Call Reference

Screen Input/Output Code Example

A very simple type of 1/O isused for clearing the screen. This code, from demo.c,
shows the procedure:

voi d cl ear_screen
(voi d)
{int i;
Declare the loop control variable.
for (i =1; i <= 25; i++)
printf ("\n");
This loop clears the console by sending it 25 newlines.

}

The second method of /O first establishes the input and output devices in procedure
main in demo.c:

i nput _conn_t = _get_rnx_conn (fileno (stdin));
Get the token for the read operation connection. The
token received is for the standard input, i.e., the
keyboard.

output _conn_t = _get_rmx_conn (fileno (stdout));
Get the token for the write connection. The token
received is for standard output, i.e., the console.

38 Chapter 3 Designing an Application



In procedurewri t e_r ead (demo.c), the program sends output to and waits for input
from the I/O devices established above.

rg_a wite (output_conn_t,
Write a message to the console by sending it the
console token.

(U NT_8 far *) msg_3,
Sends the message addressed by msg_ptr to the
screen.

(NATI VE_WORD) strlen(nsg_3),
Sends the number of bytes to be written, which is the
size of the message addressed by msg_ptr.

write_nbx, &status);
The mailbox that receives the IORS.

error_check (__LINE_, _ FILE , status);
#ifdef _FLAT_
rg_wait_iors (output_conn_t, wite_nbx, INFINTE WAIT,
& ors, &status);
#el se
actual = rg_wait_io (output_conn_t, wite_nbx, INFIN TE WAIT,
&st at us) ;
Returns the actual number of bytes written in the
previous a_write call. The waiting period for wait_io to
return data is set to infinite. This tells the procedure that
no 1/0 will occur until data arrives. This call also
recycles the IORS and deletes the IORS for all other
BIOS calls. The user does not have to specifically
delete the IORS.

Programming Techniques Chapter 3 39



In-line Exception Processing

Exceptions can be processed three ways: in-line, using the default exception handler,
or by assigning your own exception handler. Each one has advantages and
disadvantages. In-line handling isthe simplest to create but you must also explicitly
pass control to your exception handler. Use one of several default handlersto let the
system handle the default. The appropriate default handler (selected in the |CU)
should be used for your application. Create your own exception handler to have
control over handling exceptions. Ensure that the exception is genuine, for example,
that the handler does not read an interrupt as an exception.

Writing Your Own Exception Handler

Y ou need to consider several things when you write your own exception handler. For
example, 32-bit code requires 32-bit exception handlers, and 16-bit code requires 16-
bit exception handlers. The only time thisis not true is when the exception handler
deletes the offending job, deletes the offending task, or suspends the offending task.

Another consideration is the type of exception you are processing. With this release
of theiRMX OS, you can write exception handlers that process hardware traps. This
means that your handler can process three groups of errors:

* Hardwaretraps
*  Numeric Processor Extension (NPX) exceptions
» All other programming and environmental conditions

Finaly, if you set the system’s default exception handler in the ICU on the (NUC)
Nucleus screen by setting DSH equal to "User", your exception handler module must
have these characteristics:

e The public entry point must be named r gsysex.
e It must be 32-hit code.

e |t must be compiled as Near using Intel OMF386 tools (iC-386, PL/M-386, or
ASM386).

40 Chapter 3 Designing an Application



Exception Handler Control Flow
When writing a custom exception handler, follow these guidelines:

e Usethe/rmx386/demo/c/intro/nstexh.h file as a starting template for your
exception handler.

»  Code the exception handler initialization at the beginning of the application.

e Passcontrol to the custom exception handler rather than to the system default
exception handler.

»  Check for the type of exception and handle appropriately. Hardware exceptions
can now be returned to your handler. Consequently, you need to check for these
exceptions as well as programming and environment exceptions.

See also: get_exception_handler, rqe_get_exception_handler,
set_exception_handler, andrge_set_exception_handler system calls,
System Call Reference

* You can delete the calling task that encounters the exception by using a NULL
task token when invoking the delete task system call. The system defaullt
exception handler does this automatically.

» Checkif atask isinterrupt-driven and if it is, use thereset_interrupt system call
to deleteit. If your exception handler deletes tasks using the delete task system
call, be sure that it does not attempt to delete an interrupt task. The delete_task
system call cannot delete an interrupt task. Attempting to do so causes an
exception, re-triggering the exception handler to try and delete the task again.
This causes an infinite loop.

See also: delete task and reset_interrupt system calls,
System Call Reference

»  Depending on your application requirements, your exception handler can have
full or partia control.

See also: Exception Handling, System Concepts,
Default Exception Handler screen, ICU User's Guide and Quick
Reference

Programming Techniques Chapter 3 41



Exception Processing Code Example

Demo calls except.c, which contains two procedures that handle exceptional
conditions. The first procedure gets the current exception handler and specifies the
level of control. The second is an in-line exception handler.

These are the functions and associated system calls used in except.c.

Procedure Functions Demonstrated System Calls Used

set_exception  Get the exception handler rq_get_exception_handler
Set the exception mode rq_set_exception_handler

error_check Format the errors that occur rq_c_format_exception
during system calls rq_exit_io_job

Theinitial task (in demo.c) and Task2 (in task2.c) call procedure set _excepti on,
the exception handler.

See also: get_exception_handler and
set_exception_handler system calls, System Call Reference,
Managing Exceptional Conditions, System Concepts

set _exception((int) NO_EXCEPTI ONS);
Set the exception mode to zero, which tells the OS
never to pass control to default exception handler
routines. (NO_EXCEPTIONS) is defined as zero in the
header file rmx_def.h).

Thiscodein procedure set _except i on, from except.c, creates and invokes the
exception handler.

rg_get _excepti on_handl er (( EXCEPTI ONSTRUCT far *) &except _i nfo,
&st at us) ;
Transfer exception handler information to the data
structure addressed by except_info.

except _i nfo. excepti on_node = except _node;
Replace the exception mode with the zero parameter
passed from the initial task. This tells the system not to
use the default exception handler.

42 Chapter 3 Designing an Application



rg_set _excepti on_handl er (( EXCEPTI ONSTRUCT far *) &except_info,

&st at us) ;
Set the exception handler information with the altered

data addressed by except_info (which is zero). This
system call tells the system under what condition to pass
control to the exception handler.

Thiscodein procedure er r or _check, from except.c, formats the exception and tells
you which error has occurred and where in the application it occurred.

rg_c_format _exception ((char *) & ocal _string, (U NT_16)
_MAX_STRING test_status, (BYTE) 1, &status);
Identify the type of error for the condition and place it in

local_string.

local _string.text[local _string.length] = 0;
Terminate the string with a null (0) for output purposes.

printf ("\nlnternal Error in module % at line # %\ n", nodul e,

nunber) ;
Output where the error occurred.

printf ("Status = %\n", & ocal _string.text);
Output what type of error occurred.

Programming Techniques Chapter 3 43



Getting and Setting Terminal Attributes

Before accessing the terminal for input or output, you must retrieve the current
attributes and change them as necessary. Use the BIOS a_special system call and its
spec_f unc parameter or use the EIOS s _special call and itsf unct i on parameter.

See also: a special and s_special system calls, System Call Reference

Getting/Setting Terminal Attributes Code Example

Theinitial task's code (in demo.c) uses both the a_special and s_special callsto
accessterminal attributes. The two calls use different 1/0 Result Segments (I0ORS).
This code example in the initial task gets the current terminal attributes by calling

a special.

rg_a_special (input_conn_t,
Select the token on which to perform the function.

SPECI AL_GET_TERM DATA,
Specify the parameters to request the current terminal
attributes.

(void far *) & ermatts,
Specify the pointer to the array where the attribute data
is placed.

read_nbx, &status);
Specify the mailbox which receives the IORS.

Theinitia task then waits until the IORS arrives. This code (demo.c) illustrates how
it waits:
#i fdef _FLAT_
rg_wait_iors(input_conn_t, read_nbx, INFINITE_WAIT, & ors, &status);
error_check (__LINE_, _ FILE , status);
error_check (__LINE_, _ FILE , iors.status);
#el se
iors_tkn = rqg_recei ve_message (read_nbx,
Set iors_token to receive the terminal attributes.

I NFI NI TE_WAI'T,
Wait infinitely for the terminal attributes to arrive.

(SELECTOR far *) 0, &status);
Specify the mailbox which receives the IORS token.

44 Chapter 3 Designing an Application



iors = (A_| ORS_DATA STRUCTURE *) buildptr(iors_tkn,
(void near *) 0);
Build a pointer to and check the status of the IORS.

error_check (__LINE_, __FILE , iors->status);
#endi f

#i f ndef _FLAT_

rg_del ete_segnment (iors_tkn, &status);
Manually delete the IORS because a_special does not
recycle it.

error_check (__LINE_, _ FILE , status);
#endi f

termatts.connection_flags = ((term.atts.connection_flags
& (~CMASK_LINE_EDIT))|1) | CVASK_ECHG

Modify two terminal attributes to cause no line editing
and no keystroke echoing to the screen. This long
assignment statement alters the least-significant three
bits of the 16-bit connection_flags element of the
term_atts data structure. The literals
C_MASK_LINE_EDIT and C_MASK_ECHO are equal to
3 and 4, respectively. (The NOT operator is defined in
the header file not.h. The literals C_MASK_LINE_EDIT
and C_MASK_ECHO are defined in the header file
tscrn.h. These header files are in the same directory as
demo.)

rg_s_special (input_conn_t, SPECI AL_SET_TERM DATA, (void far *)
& ermatts, (IORSSTRUCT far *) 0, &status);
Write the modified terminal attributes back to the
physical terminal connection. When using the s_special
call, you can avoid specifically deleting the IORS.

Programming Techniques Chapter 3 45



Interrupt Processing

|:| Note

Interrupt processing involves knowledge of interrupts, interrupt

controllerg/lines, level of control, the Interrupt Descriptor Table
(IDT), and interrupt tasks. These concepts are described in the

Managing Interrupts chapter of the System Concepts manual.

Applications under the iIRMX OS use interrupts to deal with external events.
Processing these events asynchronously enables the OS to facilitate real -time
processing.

These program examples cover interrupt handling, interrupt tasks, and interrupt
latency. These examples use this hardware setup:

e PC Bus system running the iRMX OS

e DataTrandation DT2806 Multi-Function I/O Expansion Board jumpered as
follows:

— 1/O address 370H: In- W25, W29, W30, W31, and W32; Out - W26, W27,
and W28

—  Timer O output to IRQ3: In - W24; Out - W2

|:| Note

Since the application uses IRQ3, make sure no other card, such asa
network card, usesthisinterrupt. Also, since IRQ3 disables
COM2, ensure no other devices use COM2.

Interrupt Handlers

46

Use an interrupt handler to process interrupts when real-time speed and minimal
processing are required. Y ou can use an interrupt handler to call an interrupt task,
which is dlower to respond but enables more flexibility in processing. An interrupt
handler executes into the context (stack, data segments) of the task that was
interrupted. An interrupt task has its own context and runs with equal or lower
priority interrupts disabled.

There are two exampl e applications that demonstrate interrupt handling and interrupt
tasks. Theinterrupt handling exampleisinthand.c and the interrupt task example is
inttask.c. Both of these examples are located in the /rmx386/demo/c/int directory.

Chapter 3 Designing an Application



The inthand.c example generates an interrupt and uses an interrupt handler to process
the interrupt. The main program of the example sitsidle while the interrupt handler
processes the interrupt in the background. Every time an interrupt occurs, the
interrupt handler increments a count. Finally, the main program prints the number of
interrupts processed by the interrupt handler while it was sleeping.

The inttask.c example processes interrupts using an interrupt task. Every time an
interrupt occurs, the interrupt task prints the message that it has processed that
interrupt. The main program sitsidle until the interrupt task is finished.

A single makefile compiles and binds these examples. To run the examples, attach to
the directory, run make, and then run the executable.

- af /rnx386/deno/c/int <CR>
- make <CR>

To run inthand.c, type:
- inthand <CR>
To run inttask.c, type:
- inttask interrupts <CR>

where interrupts is the number of interrupts to process. The default valueis 10
(minimum) and the maximum value is 100.

Interrupt Servicing

This section illustrates how interrupts are serviced. Tables 3-2, 3-3, and 3-4 outline a
scenario where an interrupt handler is assigned to alevel, an interrupt arrives at that
level and is serviced, and the assignment of an interrupt handler is canceled. The
tables show these cases:

e InTable 3-2, theinterrupt handler deals with the interrupt (handler is assigned to
master level 4).

e InTable 3-3, theinterrupt handler invokes an interrupt task, either immediately
or after filling asingle buffer of data (handler is assigned to master level 4).

e InTable 3-4, aninterrupt handler and an interrupt task use multiple buffersto
service interrupts (handler is assigned to slave level 35).

The Interrupt Levels Necessarily Disabled column of each table indicates that the
events of the example cause certain levels to be enabled or disabled. Other events
outside the scope of the example might cause other levels to be disabled as well.

See also: Interrupts, System Concepts

Programming Techniques Chapter 3 47



Table 3-2. Servicing Interruptswith an Interrupt Handler

Interrupt Levels

Necessarily
Step  Events Explanation Disabled
1 -- No interrupt handler assigned to level M4
M4,
2 rg_set_interrupt A task assigns an interrupt handler to None
(LEVEL_4,0,...); level M4.
3 Level 4 device An interrupt arrives at level M4. All
interrupts
4 The interrupt is serviced by the interrupt Al
handler.
5 rg_exit_interrupt Interrupt hardware reset by the interrupt Al
(LEVEL_4,...); handler.
6 Interrupt handler Interrupts are re-enabled. None
returns.
7 rg_reset_interrupt A task cancels the assignment of an M4
(LEVEL_4,...); interrupt handler to level M4.
48 Chapter 3 Designing an Application




Table 3-3. Servicing Interruptswith an Interrupt Task

Interrupt Levels
Necessarily
Step  Events Explanation Disabled
1 -- No interrupt handler assigned to level
M4, M4
2 rg_set_interrupt A task assigns an interrupt handler to
(LEVEL_4, 1, ...); level M4 and assigns itself to be the
interrupt task for that level. It specifies
that one signal_interrupt request can be M4-M7,
outstanding. 50-77
3 rg_wait_interrupt or The interrupt task begins to wait for an
rge_timed_- interrupt. None
interrupt
(LEVEL_4,...);
4 Level 4 device An interrupt arrives at level M4. The
interrupts interrupt handler gains control and
optionally, does some servicing. The
handler may service several interrupts by
performing steps 4 through 6 of
Table 3-2. All
5 rg_signal_interrupt The interrupt handler invokes the M4-M7,
(LEVEL_4,...);t interrupt task. 50-77
6 . The interrupt is serviced by the interrupt ~ M4-M7,
task. 50-57
7 rg_wait_interrupt or The interrupt task finishes and begins to
rge_timed_- wait for another level M4 interrupt.
interrupt. Control passes back to the interrupt
(LEVEL_4,...); handler and then back to an application
task. None
8 rg_reset_interrupt A task cancels the assignment of a
(LEVEL_4,...); handler to M4. M4

Programming Techniques Chapter 3 49



Table 3-4. Servicing Interruptswith an Interrupt Handler, an Interrupt Task, and

Multiple Buffering

Interrupt Levels

Necessarily
Step  Events Explanation Disabled
1 -- No interrupt handler assigned to level 35 35
2 rg_set_interrupt A task assigns an interrupt handler to
(LEVEL_35, 2, ...); level 35 and assigns itself to be the
interrupt task for that level. It specifies
two signal_interrupt requests can be M4-M7
outstanding (double buffering). 36-77
3 rg_wait_interrupt or  The interrupt task begins to wait for an
rge_timed_interrupt interrupt. None
(LEVEL_35,...);
4 Level 35 device An interrupt arrives at level 35. The
interrupts interrupt handler gains control and does
some servicing. All
5 The handler services all interrupts, as
described in steps 4 through 6 of
Table 3-2, until the first buffer is full. All
6 rg_signal_interrupt  The interrupt handler invokes the M4-M7,
(LEVEL_35,...); interrupt task. 36-77
7 The interrupt task processes the full
buffer. Meanwhile, the interrupt handler
services interrupts, as described in
steps 4 through 6 of Table 3-3, until the  M4-M7,
next buffer is full. 36-77
8 rg_wait_interrupt or  The interrupt task finishes and waits for
rge_timed_interrupt another signal from the interrupt
(LEVEL_35,...); handler. Control passes back to the
interrupt handler and then back to an
application task. None
9 rg_reset_interrupt A task cancels the assignment of an
(LEVEL_35,....); interrupt handler to level 35. 35
50 Chapter 3 Designing an Application




Interrupt Latency

Theintlat.c example, in the /rmx386/demo/c/intlat directory, measures interrupt
latency. Interrupt latency isthe delay between when a device issues an interrupt
reguest and when the microprocessor responds to the request.

See also: Interrupts, System Concepts
Theintlat.c example uses this software setup:

« AnEsubmit file, measure.csd, executes intlat a specified number of times,
saving each of the executions datain a unique datafile. See the comment
header of measure.csd for more information on this feature.

* A file makefile, which compiles and binds intlat.c.

See also: readme.txt, measure.csd, /rmx386/demo/c/intlat directory,
Driver Programming Concepts

A single makefile compiles and binds the example. To run the example, first attach
to the directory, and then run makefile to generate the proper files.

- af /rnx386/deno/c/intlat <CR>
- make <CR>

Now run measure.csd:
- esubmit measure(executions,timnngs_per_execution) <CR>

where executionsis a number from 1 to 999 (3E7H), and timings_per_executionisa
number from 1 to 8192 (2000H).

The results are placed in the log directory in the file named intlat.xxx.

|:| Note

Theintlat executable can be run alone but it requires certain
parameters. To view the parameters, enter:

- intlat -HELP <CR>

Programming Techniques Chapter 3 51



52 Chapter 3 Designing an Application



C Compiler-specific Information

This chapter provides information on:

« TheiC-386 compiler

« Non-Intel tools you can use
— TheiRMX-supplied elements and how to use them
— Debugging your object code

e Adding afirst-level job created with non-Intel tools

Using the iC-386 Compiler to Develop iRMX
Applications

Support files supplied with the iC-386 compiler facilitate iIRM X application
development. Using these files enables you to use iIRMX system callslike C
procedures calls.

Using the C Language Header Files

TheiRMX directory structure includes Intel-supplied header filesin the /intel/include
directory. Thesefiles have an extension of .h. Header files provide data structure
definitions used by iIRM X system calls and useful literal definitions used in iC-386
code. Use#i ncl ude statements to include the header files.

These header files provided with the OS allow you to write programs with or without
underscores in system call names, structure data types, and condition code
mnemonics.

See also: Header Files, System Call Reference, for alist of header filesto include
in your programs.

Programming Techniques Chapter 4 53



Binding Your Code to Interface Libraries

After you have written your programs and inserted include statements for the
necessary header files, compile the code and bind it to the appropriate iIRMX
interface library.

Interface libraries supplied with the OS provide a standard interface to the system
cals. Theinterface libraries contain procedures that correspond to iRM X system
cals. Theinterface procedure performs operations needed to invoke the actual
system call, such asto call gates.

See also: Interface Libraries, System Call Reference,
Using the 80386 Binder, Intel386 Family Utilities,
Detailed bind sequence descriptions, iC-386 Compiler User's Guide

D Note

When using header files or other external files, make sure you
specify the correct path to the file, especially when using a
makefile.

Condition and Error Codes

The header files rmxerr.h and rmx_err.h in the /intel/include directory define iIRMX
condition codes that may occur during system operations. The condition codes are
divided into three categories:

e Programmer errors
*  Environmental conditions
* Hardwaretraps

A programmer error is a condition, such as a syntax error, that can be changed in the
application code. An environmental condition is an OS problem over which you have
no control. A hardware trap is when the microprocessor generates a hardware
interrupt request based on the occurrence of certain internal microprocessor events.

The header files list the condition codes by OS layer and by ascending numeric
values. Each entry includes the condition code mnemonic, the numeric value, and a
brief description.

See also: Condition codesin individual call descriptions, Master list of condition
codes, and Header files, System Call Reference

54 Chapter 4 C Compiler-specific Information



Using Non-Intel Tools to Develop iRMX Applications

|:| Note

C++ isnot supported. Many of these tools allow you to develop C
or C++ gpplications. The iRMX OS supports only C applications
developed with these tools. Thereisno iRMX support for C++
applications.

TheiRMX OS environment allows you to develop C applications using Microsoft
MSV C 32-hit versionsto version 6.

For assembly code, you can use Microsoft MASM which produces 32-bit code
accepted by the Microsoft linkers.

TheiRMX OS provides these elements:
e A set of common C header files, compatible with all supported compilers.

e A custom cstart module for each supported compiler, in each supported memory
model.

* AniRMX Shared C Library that provides an iRMX/C interface and is
compatible with all supported compilers. It is compatible with existing iC-386
applications without recompiling or relinking.

Using Microsoft C /C++ Development Tools

Microsoft C/C++ tools are tailored to the Windows environment so you cannot use
the default compiler switches, libraries, and header files. Override the defaults with
options, libraries, and header files appropriate for the iRM X environment as listed
here.

This section describes only the switches known to be necessary or to cause problems.
Some switches not discussed here may be useful in your application, however, these
have not been evaluated.

|:| Note

The compiler and linker invocations in this section illustrate the use
of required switches, but thisis not how the example programs
invoke these tools. Examine makefile.min the
\rmx386\demo\c\intro directory to see the invocation used in the
examples.

Programming Techniques Chapter 4 55



Microsoft Visual C++ Compiler Invocation

iRMX applications require certain project settings in Microsoft Developer Studio. To
view and verify settings required by iRMX software, select Microsoft Devel oper
Studio’ s Project>Settings menu option. The table below lists the required settings;
leave all other settings at their default values.

|:| Note

The\iRMXI11\Project directory includes a flat model sample program
that is compiled using the Microsoft Developer Studio (MSVC 6.0).
Each subdirectory under the Projects directory is a separate workspace
for MSVC

Table4-1. Build Settingsfor Microsoft Developer Studio

Tab Category Field Value
General Microsoft Foundation Classes Not using MFC
Debug This tab requires no special settings.
Custom Build This tab requires no special settings.
EC++ Common options Display only field; shows values derived from other fields
on this tab.
General Debug info C7 compatible
Optimizations Disable
Maximize Speed
Code Generation Calling convention __cdecl *
Precompiled Not using precompiled Enabled (checked)
headers headers
Preprocessor Preprocessor definitions WIN32 _DEBUG
_WIN32
Ignore standard include paths Enabled (checked)
Link Project Options Display only field; shows values derived from other fields
on this tab.

Important: You must add value:
/heap:0x100000,0x2000

General Object/library modules cstrtf3m.obj
ciff3m.lib
netiff3m.lib
rmxiff3m.lib

Generate debug info Enabled (checked)
Additions library path c:\irmxIINlib
Ignore all default libraries Enabled (checked)

56 Chapter 4 C Compiler-specific Information



Customize Output filename Must have an .RTA
extension
Use program database Disabled (not
checked)
Debug Debug info
Debug info Enabled (checked)
Microsoft format Enabled (checked)
Input Object/library modules cstrtf3m.obj
ciff3m.lib
netiff3m.lib
rmxiff3m.lib
Additions library path c:\irmxIINlib
Ignore all default libraries Enabled (checked)
Output
Stack allocations  Reserve 0x4000
Commit 0x2000
Version information  Major 21076
Minor 20052
Resources This tab requires no special settings.
Browse Info  This tab requires no special settings.

Using Header Files

TheiRMX OS provides a set of common C header (#i ncl ude) files that work with
all supported compilers. The header files support al compiler-specific C datatypes
and compiler-specific aliases. Onefile, yvals.h, contains all compiler-specific
declarations, macros, and built-ins. It determines which compiler you are using and
automatically makes the necessary adjustments.

These are afew of the header files designed to use with non-Intel devel opment tools,
with definitions and suggestions:

<_align.h>

<_noalign.h>

<_restore.h>

<rmxtypes.h>

Programming Techniques

Starts 2-byte/4-byte alignment (16-bit/32-bit compilers). This
header file (with <_noalign.h>) is required to support multiple
compilers.

Ends multiple-byte alignment (see _align.h above); provides
compiler-independent byte alignment. Y ou can include this

header file before structures to be affected, and then change

back to _align.h.

Returns structure alignment to the compiler default (as
specified on the command line).

DefinesiRMX kernel datatypes (UINT_8, etc.) to make them
available to C programmers.

Chapter 4 57



<yvalsh> Contains standard C values, macros, built-in functions, and
support definitions for all supported compilers.

See also: Header files, C Library Reference, for C functions,
iRMX header files, System Call Reference, for iRM X OS definitions

Existing iC-386 Applications

Y ou must use iC-386 version V4.7 or later with the common header files, because the
headers use global align/noalign pragmas instead of individual alignment pragmas for
each structure. The global pragmas do not work correctly with earlier versions of iC-
386, and unexpected results may occur. Theindividual alignment pragmas for each
structure declaration have been removed from the header files since they are non-
standard.

See also: Structure Data Alignment, in this chapter

Built-in functions

The yvals.h header file provides compiler-independent versions of the common built-
in functions. ANSI C built-in functions are provided for new code, and the iC-386
built-in function names are provided for all compilersto simplify porting an existing
iC-386 application to other compilers.

Listed below are the generic built-in functions provided for all compilers. An
application that uses these built-in functions instead of the compiler-specific built-ins

will remain portable across all supported compilers. Refer to the iC-386 Compiler
User's Guide for more information on the use of these functions.

Function Name Action

buildptr Construct a pointer from a selector and offset
causeinterrupt Generate a software interrupt

inbyte Input a byte from an I/O port

inword Input a word from an 1/O port

outbyte Output a byte to an I/O port

outword Output a word to an I/O port

byte_rol Rotate a byte left

byte_ror Rotate a byte right

hword_rol Rotate a 16-bit word left

hword_ror Rotate a 16-bit word right

blockinbyte Input a sequence of bytes from an I/O port
blockinword Input a sequence of 16-bit words from an I/O port
blockoutbyte Output a sequence of bytes to an 1/O port

blockoutword

Chapter 4

Output a sequence of 16-bit words to an 1/O port

C Compiler-specific Information



selector 16-hit selector data type
disable Disable interrupts
enable Enable interrupts

Calling Conventions

TheiRMX system calls and Shared C Library functions require different calling
conventions. These conventions are supported by each compiler in different ways.
To achieve uniform function declarations, al functions and system call prototypes are
declared in the header files with one of the following modifier macros:

_Cdecl Declaresthe VPL (Variable Parameter List) calling convention, used by
some Shared C Library functions.

_Pascal Declares functions that use the FPL (Fixed Parameter List) calling
convention, including most Shared C Library functions. It also
indicates that the function preserves the (E)DI and (E)SI registers. The
compiler does not need to save these registers.

_Fparam Used for FPL functions that do not preserve (E)DI and (E)SI. This
includes al iIRMX system calls. The compiler will produce code
surrounding the call to save and restore these registers, if necessary.

These macros are resolved in yvals.h, where they are mapped into the correct
keyword for each supported compiler. Not all compilers support all of the calling
conventions. For example, the Intel iC-386 compiler does not fully support the
_Pascal convention (it does not preserve EDI/ESI). To resolvethis, Pascal is
mapped to _Fparam in the iC-386 section of yvals.h.

|:| Note

The Microsoft 32-bit compiler does not support the Pascal calling
convention so _Pascal is mapped to _Cdecl for flat model
applications.

Structure Data Alignment
There are two types of data alignment required in the header files:

* TheiRMX Shared C Library accepts and returns structures that are 32-bit
aligned. This means that members of the structure are arranged so that they do
not cross a 32-bit boundary. The compiler adds bytes of 0 between elements as
necessary. The structures are aligned the same for both 16- and 32-hit
applications.

Programming Techniques Chapter 4 59



e TheiRMX system calls accept and return structures that are byte-aligned (also
known as non-aligned).

To support both types of alignment on all supported compilers, the header files
change the setting of the compiler's global alignment switch during compilation.

Y our application should therefore make no assumptions about structure alignment.
Instead, the application should include one of these header files before structure
declarations that require alignment or non-alignment:

< align.h> Enables structure alignment
< noalign.h> Disables structure alignment

< restore.h> Restores compiler default alignment (as specified on the
command line)

|:| Note

Do not use the #pr agna noal i gn declaration in any application
that includes the new common header files, including iC-386
applications.

Alignment with iC-386

TheiC-386 compiler does not provide away to return to the default alignment, nor
does it provide away to determine the default alignment at compiletime. Thisis not
consistent with the common header files, which no longer use individual #pragmas
around every structure. To avoid this problem, set this macro on the command line
for compiler invocation:

__NOALI GN__

The <_restore.n> header file examines this macro when attempting to restore the
default alignment for iC-386. If __ NOALI GN__ isdefined, <_restore.h> setsthe
alignment to noal i gn. If the macroisnot defined, <_restore.h> sets the alignment
toal i gn sincethisistheiC-386 default.

To use the macro, define it in conjunction with the iC-386 NOALI GN pragma and/or
command line switches. For example:

ic386 hello.c noalign define(__NOALIGN ) /* command |ine exanple */
#pragnma noal i gn /* program exanple */
#define _ NOALIGN__

Supported Memory Models
TheiRMX OS and the C header files support these memory models:

60 Chapter 4 C Compiler-specific Information



e 16-hit large model

e 16-bit compact model
e 32-bit compact model
e 32-bit flat model

If you attempt to compile a program in any other memory model, the header files
return an error message. This prevents you from using an incorrect model that would
not run correctly but would compile and link without errors. The error message is:

#error: Invalid nenory nodel

This feature is not available on iC-386, since the compiler does not always set the
flags that determine the memory model (for example, subsystems do not cause the
compiler to set any of memory model flags).

Using Cstart Startup Code

The provided cstart modules initialize processes and call main(). Link to the proper
cstart module for your compiler and memory model. Thefilesarein the\intel\lib

directory.

Cstart Module Compiler
cstartli.obj Intel 16-bit large
cstartci.obj Intel 16-bit compact
cstart32.0bj Intel 32-bit compact
cstrtf3m.obj Microsoft 32-bit flat

Cstart provides the starting address for the program. The generic cstart algorithm is:

Set up stack and DS register.

Initialize any compiler-specific data.

Call any compiler-specific initialization routines.

Call get_arguments to obtain the command line arguments.
Call main().

Call any compiler-specific cleanup routines.

Call exit(0).

Nog~wWNE

]

Note

Upon returning from main( ), the program calls exit( ) with a status
of zero (E_OK). Statusfrom main() isignored. Since most
programs do not return avalue from main( ), it isleft undefined.
Calling exit( ) with an E_OK status also prevents random error
messages from appearing on the terminal at program termination.

Programming Techniques Chapter 4 61



Stack Size

The default stack size provided in the cstart modulesis 4 Kbytes. Y ou can override
thissizein thelink step.

Stack usage for a 16-hit application is actually greater than for an equivalent 32-bit
application, because the OS converts the 16-bit parameters to 32-bits by expanding
them and pushing an entire copy of the parameter frame on the stack before entry to
an OS primitive.

Using Interface Libraries

There are avariety of interface libraries supplied with the OS for the interfaceto C
library functions and iRMX system calls. For different Intel and non-Intel tools you
must bind (link) to different libraries.

See also: Interface Libraries, System Call Reference, for acomplete list of library
files

Debugging with the Soft-Scope Debugger

The Soft-Scope debugger is provided with the iRMX OS. Y ou must convert your
final object module to OMF-386 format before you can debug it with Soft-Scope.
Use the standard Soft-Scope procedures for debugging. If you are using Microsoft C
or Watcom C compilers, you can also do remote debugging with Soft-Scope for
Windows. The debugging tools supplied with non-Intel compilers are not suitable for
on-target iIRM X application debugging.

See also: Soft-Scope Debugger User Guide

Summary of Debug Switches

62

Use the command-line switches shown below to produce debug symbols for the Soft-
Scope debugger. To eliminate debug symbols from your final code, do not use these
switches when compiling, linking, and invoking STL.

Tool Debug Switch
Microsoft C 32-bit Compiler /1Z7 10d
Linker /DEBUG /DEBUGTYPE:CV /PDB:None
bou

Chapter 4 C Compiler-specific Information



Debugging Applications

This chapter contains a sample PL/M program demonstrating task communication. A
description of the program isincluded. The program compiles without errors,
however, it does not run dueto an error. The error exists to show the debug process.
A debugged version of this program is also provided.

This chapter outlines a step-by-step process using the SDM monitor (SDM) and
System Debugger (SDB) commands to locate the error, fix it, and then test the
corrected code. Additional debugging techniques and commands are aso provided in
addition to instruction on running the example.

Example Application Program
This program includes three tasks:
* Aninitiaization task, called Init, that creates a mailbox and the two other tasks
» A task called Alphonse that exchanges messages using mailboxes
» A task called Gaston which exchanges messages using mailboxes like Alphonse

The debug (error) version of the source code islisted in this chapter. Thesefilesare
located in:

/rmx386/demo/plm/sdb/al phonse.plm
/rmx386/demo/plm/sdb/gaston.plm
/rmx386/demo/plmysdb/init.plm

The version of this program which does not contain an error isin:

/rmx386/demo/plnvintro/al phonse.plm
/rmx386/demo/plnyintro/gaston.plm
/rmx386/demo/plnvintro/init.plm

Programming Techniques Chapter 5 63



Note

To run the errorless program in the /rmx386/dema/plm/intro
directory, first attach to the directory, then compile the program by
entering make. Finally, run the program by entering t skcon82.

This makefile creates the PL/M multitasking demo and the
tskcom32 program described below.

See also: Designing an Application, Chapter 3, for more
information on the PL/M multitasking demo.

Thisis how the corrected program (tskcom32) works:

1

The application code runs as a Human Interface (HI) program. Enter the name
of the program at the HI prompt.

Thetask called Init runsfirst. Thistask creates a master mailbox and catal ogs it
in the root directory under the name Master. It creates the tasks Alphonse and
Gaston then suspends itself.

When Gaston receives control, it:

Gets the token for the mailbox created by Init. Gaston looks up the name
Master in the root job's object directory.

Creates a segment in which it will place a message and a response mailbox
to which Alphonse will send areply.

Loops and places a message in the segment after displaying it on the screen,
sends the segment to the master mailbox, then waits at the response mailbox
for areply.

When Alphonse receives contral, it:

Gets the token for the mailbox created by Init by looking up the namein the
root job's object directory.

Loops and waits at the mailbox for a message and checks to see if the token
it received isasegment. If so, Alphonse placesits own message in the
segment (after displaying it on the screen), then sends the segment to the
response mailbox. If it isnot a segment, Alphonse exits the loop and deletes
itself.

The two tasks, Alphonse and Gaston, synchronize by using the two mailboxes.

Gaston sends a message to the first mailbox and waits at the second one before
continuing. Alphonse waits at the first mailbox. When it receives a message, it sends
areply to the second mailbox and waits at the first for another message. Thiscycle
continues for six messages.

Chapter 5 Debugging Applications



After sending its sixth message, Gaston exits the loop. Instead of sending a segment
to the master mailbox, Gaston displays a final message to the screen then sends the
task token (the token for the Init task) to the mailbox. When Alphonse receivesthis
token and finds it is not a segment, Alphonse exitsits loop and deletes itself.

To finish the processing, Gaston causes the Init task to resume processing since Init
suspended itself earlier. When Init takes over, it deletes both offspring tasks and
returns control to the Human Interface level.

Include Files

Theinit.plm file uses both Nucleus and EIOS calls so it includes the external files for
both these layers. The alphonse.plm and gaston.plm files use Nucleus and HI system
calls so they include the external files for those two layers.

Each task must contain its own set of include files because each is a separately
compiled module. If the tasks were al contained in the same program module, only
one set of $i ncl ude statements would be needed.

Compiling and Running the Code

The example code contains an error to invoke SDB. A makefile compiles and binds
the example code (init.plm, alphonse.plm, and gaston.plm).

The PL/M compiler commands in makefile do not include controls for selecting the
model of segmentation (small, compact, medium, or large) because the $conpact
control was aready included in the source files.

The compiler produces three files of object code. If the PL/M compiler command
did not specify names for the abject code files, the files would be given the names
init.obj, alphonse.obj, and gaston.obj by default.

Programming Techniques Chapter 5 65



66

After compiling, you must bind the object files with the iIRM X interface libraries.
The section from makefile shows the bind command lines:

sdbl I | : al phonse. obj gaston.obj init.obj
$( BND)
init.obj,
al phonse. obj ,
gast on. obj ,
$(PLM.I B),
$( RMXLI B) ,
pr($@ npl)
0j (%@
renameseg(code32 to code)
segsi ze(stack(+2400))
rc(dn( 5000, Of ffffH))

Ro R0 Ro R0 Ro RO Ro Ro Ro

Bind the three object files, init.ob3, gaston.ob3, and alphonse.ob3, together with the
two libraries plm386.lib and rmxifc32.lib. The $( PLM.I B) aliasisfor the
f/intel/lib/plm386.lib library. Thislibrary isthe standard PL/M library distributed with
the compiler. The $( RMXLI B) diasisfor the /rmx386/lib/rmxifc32.lib library. This
is the 32-bit compact version of the iIRMX interface library.

The obj ect control specifies the name of the executable file generated by BND386.
In this case, thefileis called sdbiii.

The SEGSI ZE( STACK( +2400) ) control reserves 2400 bytes of stack in addition to
the amount required by the program. This amount represents the amount required by
iRMX applications that include the Human Interface.

See also: Resource and Stack Size Guidelines, Appendix A

Ther c(dn( 5000, Of f f f f H) ) control directs BIND386 to produce an STL (single-
task loadable) module and to assign a minimum of 5000H bytes of dynamic memory
to the module.

Chapter 5 Debugging Applications



Debugging the Program

The sample program does not include error checking even though it contains an error.
Thisisto demonstrate more features of the System Debugger (SDB). This section
describes two approaches for using SDB to find the error and correct it.

The addresses and token values in these examples have been assigned by the system
in this debugging session. Most of these values will change from session to session.
In a debugging session, it is helpful to record the various addresses and tokens.

Invoking SDM freezes both the application code and the operating system code.
However, you can disassemble and execute the application instructions by using
SDM and SDB commands.

See also: System Debugger Reference

To compile the program, first attach to the directory, then invoke the makefile by
entering:

- af /rnmx386/ deno/ pl nl sdb <CR>
- make <CR>

This command produces an executable file called sdbiii. To run sdbiii, type this at
the Human Interface prompt.

- sdbiii <CR>

Debugging Approach #1
When the sampl e program runs, the system displays this message:

Interrupt 13 at c4f0: 00000399 General Protection ECODE =00000000

The values c4f 0: 00000399 are where the Code Segment and Instruction Pointer
Registers (CS.EIP) were pointing when the program halted. (The CSvalue of c4f 0
varies with each invocation of the application.) The prompt (. . ) indicates that SDM
isactive. However, since the program has been executed, you must re-enter SDM to
re-execute the code. Use the CLI-restart feature to return to the Command Line
Interpreter (CLI). Thiscommand works only if the existing CS:EIP is GDT-based
protected mode code.

To restart the CLI, enter:
..g 284:1c <Cr>

Programming Techniques Chapter 5 67



The system responds with the Human Interface prompt (-). Next, enter:
- debug sdbiii <CrR>

The system responds with:
SEGVENT MAP FOR JOB: 84A8

NAVE BASE NAME BASE NAME  BASE  NAME  BASE
LDT(2) 998 LDT(3) C9A0  LDT(4) C9A8

Break At ¢998: 00000000

Use SDM's g (go) command to set a breakpoint at the instruction where the program

halted (remember the CS:EIP value is given in the interrupt message displayed when
the program halts). The code segment (CS) value will change each time you re-enter
SDM, but the instruction pointer (EIP) will remain the same. Enter:

.. 0,399 <Cr>
Break At ¢998: 00000399

To find out where you are in the code, use SDM's d (display) command to display a
disassembled block of code. Enter:

.. 10 dx, <CrR>

The system displays this code:
€c998: 00000399H F366A5 rep nmovsSw
€998: 0000039CH 1E push ds
€c998: 0000039DH 07 pop es
€998: 0000039EH B800000000 nov eax, 0
c998: 000003A3H 8BDO mv edx, eax
€c998: 000003A5H 52 push edx
€c998: 000003A6H 50 push eax
€998: 000003A7H 6800000000 push 0
c998: 000003ACH 668B057A000000 mv ax,word ptr 0O7a
€998: 000003B3H BFO0000000 nov edi, O0h O

68 Chapter 5 Debugging Applications



Theinstruction at address c998: 00000399 is a move string word instruction. The
only move word instruction in the sample program is the PL/M MOvWcall when
Gaston enters the loop after creating the segment.

response$nmbox = RQECREATESMAI LBOX ( /* Create response nmail box */
fifo,
@t at us) ;

seg$t oken = RQBCREATESSEGVENT( /* Create nessage segnent */
seg$si ze,
@t at us) ;

DO WH LE count < final $count;
message. count = 23;

CALL MOVW ( @mi n$nessage, @message.text, S| ZE(nmai n$nessage));

CALL RQBC$SENDSCOSRESPONSE ( /* Send nessage to screen */
NI L,
0,
@ressage. count ,

@t at us) ;

If displaying the instruction does not provide enough information about why the
program halted, look at the surrounding code by displaying forward or backward
from the CS:EIP. Because you specified acommain the previous DX command, you
can display forward another 10 instructions from the current CS:EIP by entering only
acomma (, ). However, since the instruction where the exception occurred is
traceable to the sample code, you know where the program fails. Refer to Debugging
Approach #2 for displaying backward from the CS:EIP.

To examine what happens when the system tries to move the message, return to the
protected-mode prompt (by entering a <CR>) and examine register contents before
and after MOVSWis executed. Enter this command:

.. X <CR>
The system displaysthis:

EAX=07e4ca88 CS=c998 EI P=00000399 EFL=00013297 LDTR=02a0
EBX=00000072 SS=ca70 ESP=000007fc EBP=000007fc TR =0278
ECX=00000017 DS=c9a0 ESI=0000007c FS =ca88 MW =f f f b
EDX=0000ca88 ES=ca88 EDI =00000001 GS =0034

GDTR . BASE=00110000 . LI M T=0f of f

| DTR . BASE=0011f a00 . LI M T=007f f

Programming Techniques Chapter 5 69



70

To execute the MOVSWinstruction, enter:

.n, <CR>
The system displays:
€c998: 00000399H F366A5
Enter acomma
, <CR>

The system responds with:

Interrupt 13 at c998: 00000399 Cenera

rep novsw -

Prot ecti on ECODE =00000000

To see how executing this instruction changed register contents, enter:

.. X <CR>
The system displays:

EAX=07e4ca88
EBX=00000072
ECX=00000008
EDX=0000ca88

CS=c998
SS=ca70
DS=c9a0
ES=ca88

El P=00000399
ESP=000007f c
ESI =0000009a
EDI =0000001f

GDTR . BASE=00110000 . LI M T=0f of f
| DTR . BASE=0011f a00 . LI M T=007f f

EFL=00003297 LDTR=02a0

EBP=000007fc TR =0278
FS =ca88 MW =f f f b
GS =0034

In the assembly language MOvSWinstruction, DS:ESI represents the source from
which the data is moving; ES:EDI isthe destination and ECX isthe count.

See dso:

Assembly Language Reference

Chapter 5

MOV SW, ASMI386 Macro Assembler Operating Instructions/ ASM386

Debugging Applications



To check the limit of the ES register, enter:
..ddt (es) <CRrR>
The system displays:

GDT(6481T) DSEG32 BASE=002ecce0 LIM T=0001f P=1 DPL=0 ED=0 Wr1 A=1 G=0

ThelLl M T parameter shows that the segment limit is 1FH (31 decimal). Since the
system counts from zero, the segment size is 32 decimal, which is the value assigned
toseg$si ze in Gaston. The EDI register tries to move the word into memory at
ES:1FH and 20H when the error occurred. The system was trying to write past the
segment limit of 1FH into 20H when the program halted. This suggests the PL/M
MOVWinstruction should be changed to a MOVB instruction. At this point, you could
exit SDM, change the PL/M code, then recompile and run it.

However, you can use SDM's x (examine/modify) command to change a register
value and the g command to execute the program. Making changes with the x and s
(substitute) commands enables you to test code without having to recompile and bind
it.

The ECX register contains the count of bytes or words moved. If you decrease the
count in the ECX register from 17 to 15 before you execute the MOVSWinstruction,
you should be able to move al the data. Exit and re-enter SDM and set a breakpoint
at the MOVSWinstruction by entering:

..0 284:1c <CR>
-debug sdbiii <CR>
.. 0,399 <Cr>

Set the ECX register to 15. Enter:
.. X ecx=f <CR>

Now, execute the rest of the program by entering:
.. g <CrR>

The system responds with:
After you, Al phonse

After you, Gaston
Interrupt 13 at cec8: 00000399 General Protection ECODE =00000000

Since the change was valid for one pass through the code, the first pass through the
Gaston loop worked. The next pass failed.

Programming Techniques Chapter 5 71



Toreturn to the CLI, enter:
..0 284:1c <CR>

This partially successful run showsthat if you reduce the number of words moved,
the program works. Therefore, to make a permanent fix, you should change the
PL/M MOVWcall to MOVB in the sample code, then recompile and bind it.

Debugging Approach #2

Y ou can also make changes in the disassembled code. Suppose you have run the
program for the first time, and the system displayed this message:

Interrupt 13 at 6368: 00000399 General Protection ECODE =00000000

Restart the system using the CLI-restart feature as you did in Debugging Approach
#1, then re-enter SDM by entering:

-debug sdbiii <CR>

Set a breakpoint at the instruction that was executing when the program failed and
display a block of disassembled code by entering:

..g, 399 <CR>
..5 dx <CR>

The system displays:
8340: 00000399H F366A5 rep novsw
8340: 0000039CH 1E push ds
8340: 0000039DH 07 pop es
8340: 0000039EH B800000000 mov eax, 0
8340: 000003A3H 8BDO mov edx, eax

72 Chapter 5 Debugging Applications



To look at the instructions preceding MOVSW enter:

..14 dx cs:eip

- 25 <CR>

The system displays this code:

8340:
8340:
8340:
8340:
8340:
8340:
8340:
8340:
8340:
8340:
8340:
8340:
8340:

00000374H
00000376H
00000378H
00000380H
00000385H
00000391H
00000396H
00000398H
00000399H
0000039CH
0000039DH
0000039EH
000003A3H

7A00

0000
64C6050000000017
BE7C000000
668B057A000000
B917000000
8ECO

FC

F366A5

1E

07

B800000000
8BDO

$+02 ; a=00000376

add byte ptr [eax], al
nov byte ptr fs:0,17
nov esi, 7c

nov ax,word ptr 7a
mv ecx, 17

nov es, ax

cld

rep nNovsw

push ds

pop es

mv eax, 0

nov edx, eax

MOVSWis a repetitive move from DS:ESI to ES:EDI. Looking at the preceding

instructions, you see the instruction at address 8340: 00000391 moves 017H into
ECX. Remember that ECX isthe count of bytes or words moved. To display the ES
register contents, use this command line:

ddt (es) <CR>
The screen displays:

GDT(6481T) DSEG32 BASE=002ecce0 LIM T=0001f P=1 DPL=0 ED=0 W1 A-1

Programming Techniques

Chapter 5

73



Asin the last example, you can check the limit. Since the segment sizeis 32
(decimal) and the system istrying to write 17H words, the system fails when it tries
to write past the segment limit. To reduce this count you must move the data.
Re-enter SDM and, using the SDM s command, change the code at 8340: 00000391
by entering the following instructions outlined in bold:

Screen Input/Output Comments

.. 0 284:1c <Cr>

-debug sdbiii <CR>

..S €s:391 <Cr> Enter SDM to
substitute memory at
EIP=00000391.

el110: 00000391 b9 - , Enter comma to step the
count.

e110: 00000392 17 - f <CR> Enter the new count.

..g <CR> Re-start code execution.

The system responds with six iterations of this:
After you, Al phonse

After you, Gaston

After six iterations of the previous screen, the monitor displays:

If you insist, Al phonse

74 Chapter 5 Debugging Applications



Viewing System Objects

Consider that a problem you are experiencing could be deadlock. By looking at
system objects at various stages of execution, you can observe how synchronization
(or lack of it) is occurring. To do thisyou use SDM commands

Y ou can view any object in ajob using the vo (view job object) command (specifying
the job's token) to provide the broad picture of the system state, then the vt (view
token, or display iRMX object) command to focus on individual elements. Suppose,
you want to view the state of the objects before entering the loop in which Gaston
and Alphonse exchange messages. Assume you have stepped through the code,
verifying system calls until you located the CS:EIP for the Nucleus create_segment
system call in Gaston. Re-enter SDM and set a breakpoint at this CS:EIP by
entering:

-debug sdbiii <CR>
.. g, 352 <Cr>

To get the job token, enter:
.Vj <CR>

The system displays this screen output. The valuesin the output may differ from
yours. Comments have been added to the output.

Job Token (iIRMX Job Tree) Comments
0258 Root Job
11b8 Human Interface
4138 Command Line Interpreter
b7e0 Application Job
3f70 EIOS
3968 iRMX NET
3238 BIOS

Programming Techniques Chapter 5 75



The token for the application job in this output isb7e0. To view objects for thisjob,
enter:

..vo b7e0 <CrR>
The system displays:

Child Jobs:

Tasks: c250 cl70 c108

Mai | boxes: c238 t c098

Semaphor es:

Regi ons:

Segnent s: c2a0 c3c0 c418 cl1l00 c8a8 c850
c700 c740 clf o0 c120

Ext ensi ons:

Conposites: bcl0 c7a0

Buf f er Pool s:

At this stage of program execution, two mailboxes exist. Thet following mailbox
€238 means one or more tasks are waiting at this mailbox (Alphonse was created
first and iswaiting for a message from Gaston). Examine mailbox c238 by entering:

.vt c238 <CR>
The system responds with:
Chj ect type = 3 Mil box

Mai | box type hj ect Task queue head c170
Queue discipline FI FO oj ect queue head 0000
Cont ai ning job b7e0 hj ect cache depth 08

Task queue ¢170

Use SDB’su (display system callsin atask's stack) command to view the waiting
task's stack. To unwind the stack, enter:

..vu ¢c170 <CR>

76 Chapter 5 Debugging Applications



The system displays:
gate #0430

Return cs:eip - ¢850: 0000020f
c1f 0: 000007e4 00000040 8075c700 0000003e 0000c700 0000ffff 0000c238
c1f 0: 000007f c 00000000

(Nucl eus) receive nmessage
[..... excep$p. . ... |...response$p....|..tinme..|..nbox..|
Y ou can continue to examine objects or set a breakpoint at the return CS:EIP.
Set the CS:EIP by entering:
..g, 20f <CR>
This causes SDM to display:
Interrupt 13 at ¢850: 00000399 Ceneral Protection ECODE =00000000

This message indicates that the program halts in Gaston and that c850: 00000399 is
the last instruction executing.

Alternative Debugging Techniques

This chapter has shown two ways to find an error and two ways to make temporary
fixes from the SDM/SDB. The message displayed when the program halts contains
the CS: EI P of the last instruction executing. |f setting the CS: EI P at thisinstruction
and displaying the surrounding code does not help you locate this point in your
application code, there is another method.

Use combinations of the vj, vo, vt, vu, and vs commands to locate the running task.
Then set the breakpoint at the CS: EI P of the last executing instruction and display
code, objects, and registers to determine how the system is executing that instruction.

Programming Techniques Chapter 5 7



78 Chapter 5 Debugging Applications



Porting Applications

This chapter discusses porting existing 16-bit iRMX 11 code to the 32-bit iIRMX |11,
DOSRMX, or iRMX for PCs OS. The topics covered are:

e Threedifferent approaches to porting iRMX code
»  The compiler switches used to port code

e Language differencesfor PL/M, C, and ASM

* Anexample of porting a device driver

e Porting code to PC-bus systems

Before porting code, learn the data types recognized by iRMX OSs. Mismatching
data types when porting code cause program errors.

See also: Data Types, System Call Reference

Porting Code from 16-Bits to 32-Bits

Migrating from 16-bit iRM X I1-based applications to 32-bit iRMX 111-based
applications increases performance if large data manipulations or numerics are
involved. It also makes code easier to maintain. Use one of these porting strategies
to port your code:

» Usethe existing 16-hit object files without any changes.

»  Port only the code that gainsin performance due to the change to 32 hits.
e Port the entire application to 32 hits.

In the following situations, however, you should not port to 32 bits:

»  |f the platform on which the application will run uses an Intel 80286
microprocessor and there is no performance reason or other need to moveto an
Intel386 or higher microprocessor. TheiRMX |11 OS requires an Intel 386 or
higher microprocessor.

e |If al computations only involve integers smaller than 64 Kbytes (65,536 bytes)
and there is no present or foreseeable need to use contiguous memory areas
larger than 64 Kbytes.

Programming Techniques Chapter 6 79



e Because the Intel 386 microprocessor object module format (OMF386) does not
support memory overlays, iRMX |11 cannot support overlay loading in 32-bit
applications. iIRMX 1l applications that use overlays can till execute in 16-bit
compatibility mode.

» Applications written in 16-bit require more code and data space (an average of
30%) when ported to 32 bits. Additional spaceisrequired for the OSitself. If
there are severe constraints on memory in the system, you should not port to 32
bits.

* Incertain cases, the application may be written using a 16-bit compiler for which
no 32-hit compiler is available.

Using Existing 16-Bit Code

Most 16-bit iRM X Il executable code does not need to be recompiled for 32-bit
iIRMX systems. These 16-bit applications run together with 32-bit applications
without change. For example, theiRMX |1 dir command can be used on an
iRMX I11 system without changes.

iRMX Il applications (either run-time loadable or configured asfirst-level jobs) will
run under iIRMX 111 without modification as long as they do not include 16-bit
interrupt-handlers, device-drivers, and OS extensions. Such applications execute in
16-bit compatibility mode.

16-bit C (compiled with iC-286 V4.1 or later) and 16-bit PL/M programs are also
fully binary compatible with iRM X I11 provided no 16-bit device drivers, interrupt
handlers or OS extensions are used. However, C applications may be more stack-
intensive than PL/M applications. They may run out of stack space under iRMX I11
unless they are allocated additional stack size using the SEGSIZE control in
BND286.

Advantages of 32-Bit Application Code

80

Thislist describes situationsin which it is an advantage to port from 16 bits to 32-bit
code.

»  Applications containing intensive computations with unsigned integers larger
than 64 Kbytes (65,536) or signed integers larger than 32 Kbytes (32,768) will
run faster.

e Intel386, Intel486, and Pentium microprocessors offer several bit and bit-string
manipulation instructions. Applications that do bit-field manipulationin
software could improve their performance. Applications that previously used
bytes to store binary flags could be rewritten much more compactly.

Chapter 6 Porting Applications



«  Applications where the processor might access memory across a 32-hit bus, like
Multibus I1, will accessit faster.

*  When there is a 32-hit interface between the microprocessor, the numeric
processor, and memory; floating-point applications will see amoderate
performance boost because operands are transferred in 32-bit blocks to and from
the processor.

*  When manipulating large data arrays, you can use fewer segments because you
are not constrained to the 64 Kbyte size limitation. Dataisnow accessedin a
single, large (up to 4 Gbytes) segment, which saves the overhead of multiple
segment manipulation. Reading and writing this segment from and to mass
storage is also faster because asingle I/O call is used instead of multiple
64 Kbyte-constrained 1/0 calls.

Porting Entire Applications to 32-Bits

Y ou must recompile and rebind all the code when porting your entire application
system. Although it requires greater effort, this method provides the best overall
performance.

Thislist describes important considerations when re-generating 16-bit code into
32-bit code.

e Thelogica pathname (:rmx:) pointsto the /rmx386 directory instead of /rmx286.
The directory :rmx:inc contains files with EXTERNAL declarations for the
iRMX and UDI callsin the PL/M source.

e You must bind the 32-bit iIRMX 111 code with the 32-bit iRM X and UDI
interface libraries (rmxifc32.lib, udiifc32.lib, in this example).

*  When binding compact model object files, a RENAMESEG control must be
used to rename the code segment (output by PL/M-386) from CODE to
CODE32. The code segments of the rmxifc and udiifc libraries are already
named CODE32. In the compact model, only one code segment is allowed and
BND386 can only combine segments that have the same name.

»  Use 32-bit word sizesif the 16-bit application being ported has:

—  Any arithmetic operation involving DWORDs (in PL/M-286) or |long/double
declarationsin C-286.

—  String searching/copying operations (CMPB/ CMPW/MOVB/MOVW in
PL/M) are limited to 64 Kbyte segments with a 16-bit OS. All physical
memory can be covered by one 32-bit operation.

Programming Techniques Chapter 6 81



—  Certain variable declarations at the start of each source module and
procedure/function, especially at the size of arrays. Any arrays of closeto
64 Kbyte size, or 32 Kbyte 16-bit WORD size, may benefit from being

extended.

— 80286 code which performs bit manipulation routines. Performance may be
increased by re-coding with 32-bit microprocessor-based functions. These
functions may have to call assembler routines to access these bit
mani pulation functions.

Porting 16-Bit PL/M Code to 32 Bits

Once you decide how much application code needs to be ported, you must choose
between two porting processes. The only difference between the two methodsis the
invocation switches on the compiler:

82

WORD16 switch

No switches

Thisistypically the easiest method to use when porting code.
This switch causes all WORD valuesto remain 16-bits and al
DWORD valuesto remain 32-hits. Firgt, edit your sourcefile
to change the data types of variablesthat can be larger. For
example, variables containing the offset of indirect near cals
and those that indicate the size of data transfers should be
changed to a DWORD value. Then compile your source code
using the WORD16 switch.

Compile the code you select for porting using the PL/M-386
compiler and no switches. Thisforces a default value of 16
bits for each HWORD value, 32 bits for each WORD value
and a 64-bit value for each DWORD value. Because 64-hit
arithmetic is much dower than 32-bit arithmetic, you should
carefully review the existing DWORD variables. Those
variables that need to be only 32-hit values should be changed
to WORD variables.

When converting 16-bit PL/M code to 32 hits, you must:
Change the WORD data type to WORD_16
Change the DWORD data type to WORD_32

Use the WORD16 compiler switch

Chapter 6

Porting Applications



Differences Between PL/M-386 and Previous PL/M Code

This section describes differences between code that was compiled using versions of
the PL/M compiler other than PL/M-386. If you are using binary compatibility and
not recompiling your code, you do not need to make changes. Some of these
differences are changes to the iRM X OS, others are changes to the compiler. Each
difference is explained along with any changes you need to make are:

e OFFSET isareserved word in PL/M-386. If you are porting code to 32 bits and
your code contains variables named OFFSET, change these variable names. For
example, change:

DECLARE OFFSET V\ORD;
To:
DECLARE OFF SET WORD 32;

*  Thelimits of the PL/M built-in string functions, such as CMPB, FINDB, SKIPB,
SETB, MOVB, CMPW, SETW, and so on, have increased from OFFFFH to
OFFFFFFFFH. This enables searches of buffersthat are greater than 64 Kbytes
in length. Y ou can force the buffer length to remain 64 Kbytes by means of
truncation. That is, you place the result of the CMPB and FINDB functions into
WORD_16 variables and truncate the upper 16 bits. Be sure your code does not
attempt to search past the end of your forced 64 Kbyte segment.

e Changeall WORD_16 variables that contain the offset of a POINTER to
WORD_32 variables. For example, change:

DECLARE

PTRSOVERLAY LI TERALLY ' STRUCTURE( of f set WORD, base TOKEN)';
To:

DECLARE

PTRSOVERLAY LI TERALLY ' STRUCTURE( of f _set WORD 32,

base TOKEN) ' ;

Programming Techniques Chapter 6 83



e Change all variables that reference data transfer counts from WORD _16 values
to WORD_32 values. For example, change:

DECLARE
save$count WORD,
save$count = iors.count;
To:
DECLARE
save$count WORD 32,
save$count = iors.count;

/* iors.count is now a 32-bit value /*

Porting 16-Bit C Code to 32 Bits

These sections describe the main concerns when creating or modifying 16-bit code
which will be ported to 32 bits. The two main concerns are:

e Including the rmx_c.h file and using its types

» Using the NATIVE_WORD type for variables which will expand from 16 bits to
32 bits when porting your application

Using the rmx_c.h Header file

The /intel/include/rmx_c.h file provides definitions for system calls, structures and
other items needed for iRM X application development. Including thisfile and using
its definitions throughout your application enables much easier conversion of that
code from 16-bit to 32-bit source.

See also: Header Files, System Calls

84 Chapter 6 Porting Applications



Using the NATIVE_WORD Type Definition

Type definitions of variables which expand from 16 bitsto 32 bits when porting to
32-bit code should use the NATIVE_WORD type definition. Examples of these
variables are;

* |/Ocounts

e Memory pool sizes

+ Stack sizes

e Segment sizes

e Application-specific variables which must expand to 32 bits
This example uses NATIVE_WORD and includes a pointer overlay:

typedef struct exception_struct {

NATI VE_WORD of fset;
SELECTOR base;
BYTE exception node;

3
The I/O count in thisiRMX system call usesNATIVE_WORD:

rgfa$write (output$conn$t, (BYTE *) nessage,
(NATI VE_WORD) strlen(nessage), wite$nbx,
&st at us;

Porting 16-Bit ASM Code to 32 Bits

If you use ASM 386, you must use registers differently. These sections describe the
differences.

»  Properly clear al registers used asindex or scratch locations to check for zero.
If they are not properly cleared, bits left in the extended (upper 16 bits) of the
register may interfere with the intended operation. To properly clear registers

change:
nov ax, word ptr ds:8
or ax, ax
jz

To:
novzx eax, word ptr ds:8
or eax, eax

jz

Programming Techniques Chapter 6 85



86

Usetwo shl (shift left) statements before ajump in the index to a case
statement. To properly increment an index, change:

xor bh, bh

nov bl, cdate.interrupt_type

and bl, ts_nore_ints

shl bl, 1 ; Make bx a pointer to a
; 16-bit word to index
; into case_table

jmp cs: case_t abl e[ bx]

To:

xor ebx, ebx

nov bl, cdata.interrupt_type

and bl, ts_nore_ints

shl ebx, 2 ; Make bx a pointer to a
; 32bit word to index
; into case_table]

jmp cs: case_t abl e[ ebx]

PL/M-like procedures that return pointers now place the POINTER in DX:EAX
instead of ES:BX. For example, change:

nov es, ptr_base
nov bx, ptr_offset
ret

To:
nov dx, ptr_base
nov eax, ptr_offset
re

Change interrupt handlers written in assembly language to run in the 32-bit
environment. This example shows an interrupt handler for the 16-bit system:

i nt _handl er proc near
public com nt handl er
pusha ; save the processor state
push ds
push es
push cX ;. make room for status
nov bp, sp ; ss:bp is status$p

Chapter 6 Porting Applications



push ss

push bp

call rggetl evel

push ax ; returned | eve

push ss ; ax = rqg$get $l evel (st at us$p)
push bp

call rqgsi gnal i nterrupt

pop cX

pop es

pop ds

popa

iret ; return frominterrupt

i nt _handl er endp

code ends
end

Thisisan interrupt handler ported to a 32-bit system. Note the IF-EL SE statement
that is added to this example. This IF block enables using the same code on 16-bit
and 32-bit systems, depending on which assembler is used and how it isinvoked.

WF (% _32) THEN (% ; macro definitions which
%lefine (ax) (eax) ; allow code to go both ways
%define (bx) (ebx)

%define (cx) (ecx)
%define (dx) (edx)
%define (si) (esi)
Ydefine (di) (edi)
%lefine (bp) (ebp)
%lefine (sp) (esp)
%lefine (nov16) (novzx)
%lefi ne (pusha) (pushad)
%lefine (popa) (popad)
%lefi ne (pushf) (pushfd)
%lefi ne (popf) (popfd)
%lefine (iret) (iretd)
%lefine (dw) (dd)
%lefine (dd) (dp)

) ELSE (%

Programming Techniques Chapter 6



Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i
Ydef i

) Fl %

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

(ax)
(bx)
(cx)
(dx)
(si)
(di)
(bp)
(sp)

(ax)
(bx)
(cx)
(dx)
(si)
(di)
(bp)
(sp)

(nmov16) (nov)
(pusha) (pusha)
(popa) (popa)
(pushf) (pushf)
(popf) (popf)
(iret) (iret)

(dw)
(dd)

(dw)
(dd)

i nt _handl er proc near
public com nt handl er

Y%ousha
push
push
WF (% _32) THEN(push
push

push
nov

push
push
cal

push
push
push
cal

pop

88 Chapter 6

ds
es
fs

save the processor state

gs) FI

%€ X ; make room for status
%p, Y%sp ; ss:bp is status$p

SS

ax = rg$get $l evel (status$p)

Ybop
rqgetl evel

%x ; CALL rqg$signal $interrupt(ax, status$p)

SS

Yop
rgsignal i nterrupt

%€ X ; pop status

restore processor state

Porting Applications



WF (% _32) THEN(pop gs
pop fs)
pop es
pop ds
%popa
% r et
i nt _handl er
code ends
end

To assemble this example, select one of these statements:
ASM286 i nt hand. asm obj ect (i nt hand. ob2) pr(inthand.|s2)

ASM386 i nt hand. asm obj ect (i nt hand. ob3) pr(inthand.|s3) %SET(r_32,1)

F

; return frominterrupt

endp

Example: Porting a Device Driver

This section contains a portion of an example device driver (8274 Terminal Driver)
ported to the iIRMX OS. Though changes to the driver are minimal, you must also

%SET(r_32, 0)

port the include files and libraries. In this code, the PL/M compiler's and Assembler's

SET controls, aPL/M identifier, permits | F-EL SE branches while compiling the

code.

PLMB86 : F1:x8274. P28 SET(r_32)wor d16
PLM286 : F1:x8274. P28 RESET (r_32)

Programming Techniques

for 32 bits
for 16 bits
PLMB6 : F1:x8274.P28 SET(tsc) RESET(r_32)

Chapter 6

89



90

Two identifiersareused: tsc andr _32. Ther _32 identifier is used to port the code
totheiRMX OS. |F-EL SE decision blocks were added so the same code can be
compiled into adriver for both the 32-bit and 16-bit versions of the OS. The LIB
statements for the 8274 Driver are:

LI B386 : Fl:xcmdrv.lib nobu ; for 32-bit systens
del ete x8274
add : F1: x8274. obj
conpr ess
qui t
exit
LI B286 : Fl:xcndrv.lib nb ; for 16-bit systens
del et e x8274
add : F1: x8274. obj
conpr ess
qui t
exit
LI B86
delete :Fl:xcndrv.|ib(x8274)
add : F1:x8274.0bj to :Fl:xcndrv.lib
exit

Chapter 6 Porting Applications



Figure 6-1 is adevice driver example which usesthe r _32 porting identifier.

$title(' x8274: 8274 terminal device driver')

/*
* Allow iR I/11 comon source
*/
$IF tsc
$OPTI M ZE( 3)
$COWPACT(tsc - CONST | N CODE- HAS x8274)
$large ( other_libs
$EXPORTS RQ@Get TaskTokens;
$EXPORTS R@BLookupQbj ect ;
$EXPORTS RQBCr eat eSegnent ;
$EXPORTS R®BDel et eSegnent)
$ELSE
$COVPACT
$ROM
$OPTI M ZE( 3)
$ENDI F

$subtitle(' Mbdul e Header')

/*
*

* TITLE:
*

* ABSTRACT:

*
*

x8274:
DG,

$i
$i
$i
$i
$i
$i
$i
$i

Figure 6-1. Device Driver Example Using r_32 Conditional Statements

ncl ude(:
ncl ude(:
ncl ude(:
ncl ude(:
ncl ude(:

ncl ude(:
ncl ude(:
ncl ude(:

f1:
f1:
f1:
f1:
f1:

f1:
f1:
f1:

x8274

This nodule is the interface between the i RMX286

Term nal Support, and the 8274 MPSC.

xconon. lit)

xnutyp.lit)
xiotyp.lit)
xexcep. lit)
xtsdtn.lit)
Xt ssow. ext)

xgdl ay. ext)
xncal | . ext)

Programming Techniques

Chapter 6

91



$subtitle('Data structures and literals')

/*
* 8274 regi ster val ues
*/
DECLARE
VRO LI TERALLY ' 00H ,
WR1 LI TERALLY ' 01H ,
/*
* 8274 Device information Structure
*/
DECLARE
i 8274$CONTROLLERSI NFO LI TERALLY ' STRUCTURE(
i 8274%1 NFOB1,
i 8274%1 NFOB2,
i 8274%1 NFO$3,
i 8274%1 NFOB4,
i 8274%1 NFOB5,
i 8274%1 NFO86,
i 827481 NFOB7) ' ;
DECLARE
$IFr_32
i 8274%1 NFOB1 LI TERALLY "filler(22) WORD
$ELSE
i 8274%1 NFOB1 LI TERALLY "filler(13) WORD
$ENDI F

i 8274%1 NFCB2 LI TERALLY 'ch_a_data_port WORD,
ch_a_status_port WORD,
ch_b_data_port WORD,
ch_b_status_port WORD' ,

i 8274%1 NFC$3 LI TERALLY "ch_a_in_rate_port WORD,
ch_a_in_rate_cnd_port WORD,
ch_a_in_rate_counter BYTE,
ch_a_in_rate_freq DWORD'

Figure 6-1. Device Driver Example Using r_32 Conditional Statements (continued)

92 Chapter 6

Porting Applications



$IFr_32
DECLARE

S| ZE$OF$SOFFSET LI TERALLY ' DWORD ; /* Support for |arger segments*/

$ELSE

/* Note that either type of segnentation is supported */

DECLARE

S| ZE$SOF$SOFFSET LI TERALLY ' WORD ;

$ENDI F

DECLARE
BOOLEAN
TRUE
FALSE
FOREVER

PTR$OVERLAY

P$OVERLAY

STRI NG
NCBTI MESLIM T

Figure 6-1. Device Driver Example Using r_32 Conditional Statements (continued)

LI TERALLY ' BYTE',
LI TERALLY ' OFFH ,
LI TERALLY ' O00H ,
LI TERALLY ' WH LE TRUE',

LI TERALLY ' STRUCTURE( of f _set S| ZESOF$OFFSET,
base TOKEN)',

LI TERALLY ' STRUCTURE( of f _set S| ZESOF$OFFSET,
base WORD) ',

LI TERALLY ' STRUCTURE(| ength BYTE, char (1) BYTE)',
LI TERALLY ' OFFFFH ,

Programming Techniques Chapter 6

93



Figure 6-2 isaliteral file which usesther_32 porting identifier.

xtstdn.lit
/*
* xtsdtn.lit
*
* Term nal Support cdata, udata, and bddata structures as
* avail able to the user for the purpose of witing a term nal
* driver which is conpatible with the Term nal Support Code.
* This file has the same structure as xtsdat.lit but only
* defines that portion of the structure which is visible to the
* user.
* Def i nes RECV$I NFOBSTRUCT for MBI drivers
* Defines a substructure TS$BDDATA4 which is the sanme as
* TS$BDDATA3 mi nus driver$user$only. This enables drivers to
* overlay a different structure over TSSUDATA ( TSSUDATALl +
* TSSUDATA2 + TS$BDDATAL + TS$BDDATA2 + TS$BDDATA4 + a driver
* speci fic structure)
* Adds 32 bit conditional support.
*/
DECLARE
TS$CDATA LI TERALLY ' STRUCTURE(
i os$dat a$segnent SEGVENT,
status WORD 16,
i nterrupt $type BYTE,
i nterrupting$unit BYTE,
di nf o$p PO NTER,
driver $cdat a$p PO NTER,
$IF r_32
reserved(46) BYTE,
$ELSE
reserved(34) BYTE,
$ENDI F
udat a( 1) BYTE) ' ;

Figure6-2. Literal File Usingr_32 Conditional Statements

94 Chapter 6 Porting Applications



* CDATA STRUCTURE duplicated here for use with UDATA nmenbers

* for single structure overlay
*/
DECLARE
TS$CDATASI NC LI TERALLY
' i os$dat a$segnent SEGVENT,
st at us WORD 16,
i nterrupt $type BYTE,
i nterrupting$unit BYTE,
di nf 0$p PO NTER,
dri ver $cdat a$p PO NTER,
$IFr_32
reservedl(46) BYTE' ;
$ELSE
reservedl(34) BYTE' ;
$ENDI F
DECLARE
TS$UDATA LI TERALLY ' STRUCTURE(
TS$UDATAL,
TS$UDATAZ,
TS$BDDATAL,
TS$BDDATA2,
TS$BDDATA3) ' ;
DECLARE
TS$UDATAL LI TERALLY
" ui nf o$p POl NTER,
t er nif | ags WORD 16,
$IFr_32
i n$rate WORD 32,
out $rate WORD 32,
$ELSE
i n$rat e WORD 16,
out $rate WORD 16,

Figure6-2. Literal File Usingr_32 Conditional Statements (continued)

Programming Techniques Chapter 6 95



$ENDI F

TS$UDATA2

$IF r_32

$ELSE

$ENDI F

TS$BDDATAL

$IFr_32

$ELSE

$ENDI F

96

TS$BDDATA2

scrol | $nunber
x$y$si ze
x$y$of f set
LI TERALLY
"rawssi ze
rawddat a$p
rawdi n
r awdout
out put $scrol | $count
uni t $nunber

reserved(1099)

reserved(890)

LI TERALLY

" buf f er ed$devi ce
buf f $i nput $stat e
buf f $out put $st at e
sel ect (2)
l'i ne$ransp
functionS$id

i n$count
i n$count
out $count

LI TERALLY

"uni t s$avail abl e
out put $buf f er $si ze
user $buf f er $p
echo$count
echo$buf f er $p
recei ved$speci a

WORD_16,

WORD_16,
WORD_16'

WORD_16,

PO NTER

BYTE' ,

WORD_16,
WORD_16,
WORD_16,
BYTE,

BYTE' ,

BYTE,
WORD 16,
WORD 16,
BYTE,

PO NTER

BYTE,

BYTE,
WORD 16,
BYTE,
WORD 16",
WORD 16,
WORD 16,
PO NTER,

PO NTER,
WORD 16,

Figure6-2. Literal File Usingr_32 Conditional Statements (continued)

Chapter 6

Porting Applications



speci al $nodes
hi gh$wat er $mar k

TS$BDDATA3 LI TERALLY
" | ow$wat er $mar k
f c$on$char
f c$of f $char
| i nk$par anet er
spc$hi $wat er $mar k
speci al $char (4)

$IFr_32
bd$r eserved(41)
driver $use$onl y(48)
$ELSE
bd$r eser ved( 25)
driver $use$onl y(32)
$ENDI F

WORD_16,
WORD_16'

WORD_16,

WORD_16,
WORD_16,
WORD_16,
WORD_16,
BYTE,

BYTE
BYTE' ;

BYTE
BYTE' ;

/* Note!l TS$BDDATA4 nust be sane as TS$BDDATA3 mi nus

driver$useS$only */
DECLARE
TS$BDDATA4 LI TERALLY
" | ow$wat er $mar k

f c$on$char

f c$of f $char

| i nk$par anet er
spc$hi $wat er $mar k
speci al $char ( 4)

$IFr_32

bd$r eserved(41)
$ELSE

bd$r eser ved( 25)
$ENDI F

Figure6-2. Literal File Usingr_32 Conditional Statements (continued)

Programming Techniques

WORD 16,

WORD 16,

WORD 16,
WORD 16,
WORD 16,
BYTE,
BYTE ;

BYTE' ;

Chapter 6

97



DECLARE
$IFr_32
TS$UDATAS$SI ZE
TS$CDATAS$SI ZE
$ELSE
TS$UDATAS$SI ZE
TS$CDATASSI ZE
TSSUDATASFACTOR
$ENDI F

DECLARE
I NPUT$ONLI NE
| NPUT$CVDSPENDI NG
| NPUT$FULL
RAVWSBUFF$FULL

DECLARE
OUTPUT$SEVAPHORE
OUTPUT$STOPPED
QUTPUT$SCROLL
QUTPUT$CONTROL

DECLARE
FLONSCONTROL
SPECI AL$CHAR$MODE

DECLARE

NON$BUF$DEVSRAVS S| ZE

/* Structure for passing MII

LI TERALLY
LI TERALLY

LI TERALLY
LI TERALLY
LI TERALLY

LI TERALLY

LI TERALLY

LI TERALLY
LI TERALLY

LI TERALLY

LI TERALLY
LI TERALLY

LI TERALLY

LI TERALLY
LI TERALLY

LI TERALLY

'1280'
"40H ;

11024,
' 30H ,

' 0010H

' 004H ,

'10'

' 0001H ,
' 0002H
' 0008H

'001H ,
'002H ,

' 008H ;

'001H ,
' 002H ;

"100H ;

messages to ternfcheck */

Figure6-2. Literal File Usingr_32 Conditional Statements (continued)

98 Chapter 6

Porting Applications



DECLARE
RECV$! NFOBSTRUCT LI TERALLY

' STRUCTURE(
dat a$p PO NTER,
fl ags WORD_16,
st at us WORD 16,
trans$i d WORD_16,
dat a$l engt h WORD 32,
f or war di ng$port TOKEN,
renot e$socket WORD 32,
control $nsg(20) BYTE,
reserved(4) BYTE) ' ;

/* Structure for passing Ml box messages to terntcheck */

DECLARE
MBOX$RECV$! NFOSSTRUCT LI TERALLY
' STRUCTURE(
obj ect $t TOKEN,

resp$mbox$t  TOKEN) ' ;

Figure6-2. Literal File Usingr_32 Conditional Statements (continued)

Programming Techniques Chapter 6 99



Migrating Code to a PC-Bus Platform

This section discusses the differences between the way a PC-bus system and other
systems handle numeric processors. Be aware of these differences when porting code
to a PC-bus system from a different system.

Using a Numeric Processor Extension (NPX)

Y ou can increase the performance of math-intensive tasks by using a Numeric
Processor Extension (NPX) or math coprocessor to perform the math functions. In
systems that use a math coprocessor, the processor and the microprocessor are
synchronized by a busy signal from the numeric processor. In a PC-bus system, this
numeric error signal is routed through the programmable interrupt controllers (PICs).
The numeric error signal is connected to the dlave PIC interrupt 5, which is connected
to the master PIC interrupt 2.

The OS, through task prioritization, automatically disables certain interrupt levels
when atask runs. The levels disabled depend on the priorities of the current and
previoustasks. If atask can create a physical interrupt, make sure that the task's
priority does not mask the interrupt level that it uses. Failure to coordinate the task's
priority with the physical interrupts it uses can cause a system deadlock situation.

See also: Disabled interrupt levels, System Concepts

|:| Note

If atask's code includesinstructions that execute on a NPX, the
task should not have a priority high enough to disable the interrupt
level of the NPX. The highest task priority for tasks using NPX
instructionsis 45. Code written on a PC-bus system can be ported
to a Multibus system without change. Code written on a Multibus
system can be moved to a PC-bus system if the tasks that execute
on aNPX have a priority of 46 or numerically higher.

100 Chapter 6 Porting Applications



Segmentation Considerations

The 32-bit interface libraries for the iIRMX OS support only the compact
segmentation model. This requires 32-bit application code to reside in the same code
segment asthe interface libraries. The best way to implement thisis to structure your
application as one or more compact subsystems. When porting an existing 16-bit
large memory model application to a 32-bit compact memory model application,
consider this:

e Compact model code runs faster than large model code. It takes 26 clocks for
each segment register load. Near calls used in a compact segmentation model
reguire no segment register loads; far callsin alarge ssgmentation model require
at least 4 register loads per call. Register loading impacts application
performance quickly, especialy if nested calls are made. A simple large model,
16-hit test program making recursive callsto just four system calls had a 6
percent performance boost when changed to compact.

*  When moving from large to compact, insure that avalid DS value is available to
jobs and tasks created by the create job, rge create job, create io jab,
rqe create io_job, load_io_job, rqe load_io_job, and create task system
cals.

See also: Using Compact and Large Memory Models, Chapter 7,
Using the Flat Memory Model, Chapter 8

The second option follows. The EXPORTS directive causes the compiler to provide
aFAR interface for the procedure task_1. Thisinterface includes setting up DS upon
procedure entry.

$COVPACT(my_code - CONST | N CODE- HAS ny_proc;
$ EXPORTS t ask$1)

ny_proc:
DO,

task$1l: PROCEDURE PUBLI C;

END t ask$1;
END ny_proc;

Programming Techniques Chapter 6 101



102 Chapter 6 Porting Applications



Using Compact and
Large Memory Models

This chapter providesinformation on using the compact and large memory modelsto
build iIRMX applications. These guidelines apply only if you use a compiler that
supports segmentation, like the Intel compilers. Understanding the following
concepts will help you better understand the information presented in this chapter:

*  Segmentation models
e Subsystems
* iRMX jabs, tasks, and segments

See also: Segmentation models and subsystems,
iC-386 Compiler User's Guide,
PL/M-386 Programmer's Guide

Choosing a Memory Model

When compiling your application source code, use compiler controls to specify the
memory model for the application.

Memory Segments
< Initial CS:EIP

CS—> Code

DS
(ES)% Data

SS—> Stack

<—SS:ESP

OM04190

Figure 7-1. Basic Large/Compact Model Program

Programming Techniques Chapter 7 103



32-Bit Applications

For 32-bit applications, use the compact model by specifying the conpact compiler
control. If you need the efficiency and protection of multiple segments, divide your
code into subsystems.

The compiler places code sections from all linked modules in the same code segment,
which are addressed by the CS register. Data sections are placed into a single data
segment and addressed by the DS register. Stack sections are placed into a stack
segment and addressed by the SS register.

For 32-bit programming, only the compact model is allowed and there is no segment
size limitation.

16-Bit Applications

104

For 16-hit applications, follow these guidelines when choosing a segmentation
model:

*  Usethe compact model if your code and data can each fit into a 64 Kbyte
segment.

e Usethelarge model if you cannot use the compact model. There are fewer size
and iRMX restrictions with large, but this model resultsin the largest number of
segment register switches.

Compile and bind your application under the compact model to determineiif it fits
into the compact model. If itistoo large for the compact model, BND386 returns an
error message. |f an error message occurs, use the large segmentation model or
compact subsystem.

|:| Note

When using the Soft-Scope debugger on 16-bit, multiple stack
applications, you must set the segsize(stack(x)) parameter to be
greater than or equal to 1024 bytes when binding the application.
Thisis because the IRMX OS assumes stack segments which are at
least 1024 bytesin length.

Code and data sections from each object module have their own code and data
segments. Thetotal size of code and data can be more than 64 Kbytes. Stack
sections have a single stack segment and are addressed by the SS register. Code and
data segments are paired. During program execution, both the CS and DS registers
are updated whenever a public or external procedure is activated.

Chapter 7 Using Compact and Large Memory Models



Porting Applications

When porting iRMX source code from a 16-bit application to 32-bit application, you
must change the segmentation model if the code is not already compact. Use the
compact segmentation model because the iIRMX OS supports only this model for 32-
bit applications.

If you use exception handlers with the compact model, use the expor t s subsystem
control to export the exception handler procedures. This enables other segments to
access the handler with afar call.

See also: Porting Applications, Chapter 6

If you are porting from a large/compact application to a flat application, you must use
unique system calls and data types.

See also: Porting Large/Compact to Flat, Chapter 8

Using ROM and RAM Compiler Controls

If your application will be loaded into RAM, you can use the ROM or RAM controls
to adjust segment sizes so that your application fits into the compact model.
Specifying the ROM or RAM compiler controls determines whether the constants
defined in your programs are placed in the code or the data areas. This provides
additional control on the size of those segments.

For example, if your application's datais dightly larger than 64 Kbytes, specifying
the ROM control (which places the constants in the code segment) might allow the
remaining datato fit in a 64 Kbyte segment. This could make your code eligible for
the compact model.

See also: Developing Applications for ROM, Chapter 9

Subsystems

Subsystems are very efficient for applications with multiple program modules that
need to share data and communicate efficiently. Y ou must use the compact or large
models when using subsystems. A subsystem is a collection of program modules that
have the same segmentation model and share the same code and data segments. For
large applications, set up your application to use multiple compact subsystems.

See also: Subsystems, iC-386 Compiler User's Guide
or the PL/M-386 Programmer's Guide

Programming Techniques Chapter 7 105



Subsystem Advantages

Subsystems are efficient for these reasons:

Code and data can be partitioned for easier maintenance.

Segment registers are changed only when an application calls procedures or
accesses data in another subsystem.

Calls made only within a subsystem are near calls.
Pointers referenced only within a subsystem are near pointers.
Data s protected from being overwritten by other subsystems.

Subsystems are useful for building loadable device drivers.

See also: Making a Driver Loadable, Driver Programming Concepts

Closed Subsystems

Closed subsystems have these attributes:

The subsystem is named.
A module list is needed.

The export s control lists the functions and variables of a subsystem accessible
by outside subsystems.

Only the listed modules are combined in a closed subsystem.

Y ou can add or delete modules from the subsystem by changing the list of
modules and regenerating the system.

The code and data segment names for a closed subsystem have the subsystem name
asaprefix. For example, a 32-bit closed subsystem named subsyst entl uses
subsyst enl_code32 for the code segment and subsyst eml_dat a for the data
segment. The stack segment is named st ack. In aclosed subsystem, the execution
stack is shared with other subsystems.

See also: Prefixes, System Concepts

106

Chapter 7 Using Compact and Large Memory Models



Open Subsystems
Open subsystems have these attributes:
e The subsystem is unnamed.
* A modulelist is not needed.
e Segmentation controls are the only subsystem-specific compiler controls used.
*  All modules using the same segmentation model are automatically combined.
*  Modules can be freely added or deleted.

The code segment for an open subsystem is named code32 for 32-bit applications.
The data segment for an open subsystem is named dat a for 32-bit applications. The
stack subsystem is named st ack.

Subsystem Configurations

There can be only one open subsystem in a program, but there can be multiple closed
subsystems. Every modulein aprogram is either part of a closed subsystem or by
default, part of an open subsystem. A program can consist of one of these subsystem
configurations:

e Only the open subsystem, which is the default configuration
*  Oneor more closed subsystems
e Oneor more closed subsystems and the open subsystem

Y ou create a subsystem configuration when you compile and bind your application
program. Y ou specify a subsystem as closed by declaring a name for it.

See also: Subsystems, iC-386 Compiler User's Guide
or the PL/M-386 Programmer's Guide

Creating a Closed Subsystem

To create a closed subsystem, create a subsystem declaration at the beginning of your
source code. Specify thisinformation:

e Theconpact compiler control (to use the compact subsystem model)
*  Name of the closed subsystem

e Segment in which to place constants

*  Modulesthat belong in the subsystem using the has control

» Functionsthat are accessible outside the subsystem using the expor t s control

Programming Techniques Chapter 7 107



108

The PL/M application ramdrv.p38, in the /rmx386/demo/plnvldd directory, contains
this closed compact subsystem declaration:

$conpact (randrv - CONST | N CODE- HAS

$ randrv,

$ Xr am

$ EXPORTS

$ ranti ni t $i o,

$ rantsf i ni sh$i o,
$ ranqueuesi o,
$ rancancel $i o)

This declaration defines a closed compact subsystem named r andr v. It contains the
modulesr amdr v and xr am The declaration exports the four procedures:
raminit_io,ramfinish_io,ramqueue_io,andram cancel _io. The
export declaration forces the interface to these callsto be far calls. This enables other
subsystems to access these procedures. This same subsystem declaration must be
added to each module of the subsystem.

To generate this subsystem, use the makefile to compile your source code modules
and bind the resulting object modules to the system. First attach to the directory
where the demo resides then invoke the makefile.

- af /rmx386/deno/pl mldd <CR>
- make <CR>

This section from makefile in the /rmx386/demo/plnvidd directory binds the closed
subsystem:

ramdrv:randrv. obj $(LIBS) $(BND3)
$(BND) randrv.obj, $(LIBLIST) &
0j ($@ pr($@npl) $(BNDFLAGS) &
rn(code to $@ code32)

This instructs the binder to:
e Bindthe RAM disk driver object module

» Bindthelibrariesincluding the loadable device driver library, the iC-386 library,
the UDI interface library, and the iIRMX interface library

» Usetherenaneseg instruction to remap the code segment into the
randr v_code32 code subsystem

* Usether c instruction to allocate dynamic memory with an initial size of
5 Kbytes and a maximum size of 1 Mbyte

Chapter 7 Using Compact and Large Memory Models



Creating an Open Subsystem

To create an open subsystem, create a subsystem declaration at the beginning of your
source code. Specify thisinformation:

e Theconpact compiler control (to use the compact subsystem model)
*  Name of the compilation module
e Segment in which to place constants

Y ou can optionally specify the functions that are accessible outside the subsystem
using theexport s control. Do not specify aname for the subsystem as this creates a
closed subsystem.

An example of an open subsystem is not included with the iIRMX OS. However, you
can generate an open subsystem by modifying ramdrv.p38, described in the previous
section. First make a copy of ramdrv.p38 called ramdrv.org. Thiswill be the
origina backup copy. Modify the existing ramdrv.p38 to match this:

$conpact (- CONST | N CODE- HAS
randrv,
Xram

EXPORTS
ransi nit $i o,
ransfini sh$i o,
ransqueue$i o,
rambcancel $i o)

R e R IR

This open subsystem declaration is the same as the closed compact subsystem except
the subsystem is unnamed.

To compile the modified ramdrv.p38 file, first make a copy of makefile call
makefile.org. Thiswill be the original backup copy. Modify the existing makefile to
match this:

ramdrv: randrv. obj $(LIBS) $(BND3)
$(BND) randrv. obj, $(LIBLIST) &
0j ($@ pr($@npl) $(BNDFLAGS)

Programming Techniques Chapter 7 109



This instructs the binder to:
e Bindthe RAM disk driver object module

» Bindthelibrariesincluding the loadable device driver library, the iC-386 library,
the UDI interface library, and the iIRMX interface library

e Usether c instruction to allocate dynamic memory with an initial size of
5 Kbytes and a maximum size of 1 Mbyte

For an open subsystem, do not use the r enameseg instruction to remap the code into
the code subsystem.

110 Chapter 7 Using Compact and Large Memory Models



Using the Flat Memory Model

This chapter provides information on using the flat memory model with applications
for theiIRMX OS. Only asmall number of DOS-based compilers generate code for
32-bit segmented memory models, such as compact. Most DOS/Windows-based 32-
bit compilers produce flat-model applications. TheiRMX OS supports these
compilers; follow the guidelines in this chapter.

See also: Memory models, 80386 Programmer’ s Reference Manual

Flat Model Overview

The flat model is a 32-bit memory model where an application runs entirely in a
single segment. All segment registers point to this segment. The application does
not modify the segment registers. The only pointers available to the application are
near (offset-only).

Memory Segment
Offset Zero > < Initial CS:EIP

Code

CS, SS, DS, ES point
to the same segment Data

Stack

< Initial SS:ESP

OM04189

Figure 8-1. Basic Flat M odel Program

Programming Techniques Chapter 8 111



Developing 32-bit flat model applications with third party toolsis similar to
development using the segmented third party compilerg/tools (both 16- and 32-hit).
The resulting flat model Microsoft Portable Executable (MPE) object model is
loadable by the Application Loader. Thisrecord format is recognizable by the Soft
Scope Debugger.

See also: C Compiler-specific Information, Chapter 4

Flat Model Advantages and Disadvantages

These are the advantages of using a flat model from an application point of view:

* ltusesfewer iIRMX abjects and GDT dots since fewer segment objects are
created.

e Thereisno need to load segment registers to de-reference pointers since all
pointers are near, resulting in some performance enhancement.

* |t can use common off-the-shelf 32-bit compilers.
These are the disadvantages of using a flat model from an application point of view:

e Memory dlocation is less efficient since each distinct area of the application [
code, data, and stack 0 must be a minimum of 4 Kbytes, and must be amultiple
of 4 Kbytes.

»  Enabling paging in the microprocessor degrades system-wide performance by
approximately 4%.

» Thereisless protection between the code, data and stack areas of an application.

Executing Flat Model Applications on iRMX

112

Y ou can load and run aflat model application on theiRMX OS through the services
of the paging subsystem, flat model support code, and the Application Loader. Flat
model applications run in protection ring three of the microprocessor.

The paging subsystem provides an environment in which aflat model application can
dynamically add physical memory to or free physical memory from its own address
space.

The Application Loader recognizes aflat model application in MPE format, creates a
flat model environment for it, and loads the application into this environment. Once
loaded, control is passed to the flat model application.

Chapter 8 Using the Flat Memory Model



Using Flat Model With Paging Support

Paging support for flat model in iRM X means turning on the paging mode of the
processor but not implementing demand paging. Demand paging can interfere with
the running of areal-time OS because it swaps pages from memory to disk and back.
TheiRMX OS uses paging for virtual address trandation only. When aflat model
application is running, a page fault is equivalent to a general protection fault. This
provides the processor-based protection that you would normally lose by not using
segmentation.

With paging support, the flat model application residesin an iRMX "virtual
segment,” which residesin part of a virtual memory space of 4 Gbytes. Physical
memory is only assigned to areas of the virtual segment that require it, such asthe
code, data, stack, and any dynamic storage requested while the application is running:

iIRMX Virtual Segment

Offset Zero > < Initial CS:EIP
Code
Data
CS, SS, DS, ES point Stack
to the same iRMX segment < Initial SS:ESP
Malloc
Area
<<—— Non-allocated areas
Task2 code,
data, & stack
P Virtual segment limit

(GP fault if crossed)

OMO04411

Figure 8-2. Flat Application Program on iRM X with Paging

Programming Techniques Chapter 8 113



Paging Subsystem

The paging subsystem is an extension of the iRM X Nucleus and provides the
necessary paging support for flat model applications. It isavailable as afirst-level or
aloadable job.

Y ou can configure the paging subsystem into the OS with the ICU, or load it with the
sysload command. This subsystem is small, using less than 14 Kbytes of code and
data.

The Paging Job

114

Y ou can |load the paging job, paging.job, at any time iRMX isrunning. Thisjob
contains the entire paging subsystem. Once |loaded, the OS part of memory is
identity-mapped, paging is enabled, and the rqv_ system calls become available. To
load the job, type:

- sysload /rnx386/j obs/ pagi ng.job [blockl, block2,...block8]
where:
bl ockn consistsof nenory_start, nenory_end

The bl ock parameter defines a block of physical memory that is outside the range of
physical memory managed by the Nucleus Free Space Manager (FSM). The paging
subsystem identity maps all physical memory known to the FSM. If there are blocks
of memory that are not known to the FSM, you should specify these so that they can
be identity-mapped aswell. Y ou can define up to eight memory blocks, however,
these memory blocks should not overlap. A memory block that overlaps with a
previously-defined block isignored.

Themenory_start and the menory_end parameters represent the start and the end
addresses of the physical memaory block, respectively. The start address is rounded
up to the next 4 Kbyte boundary. The end addressis rounded up to the next 4 Kbyte
boundary minus one. These addresses must be hexadecimal and do not need the “H”
(hexadecimal) suffix.

|:| Note

Any physical memory that is not known to either the Free Space
Manager (from the ICU configuration) or the paging subsystemis
not accessible from your application once paging is enabled.

Errors and initialization messages are reported to the : config: paging.log file.
Initialization messages include the identity memory map created by the paging
subsystem. Check the log file to verify that the actual physical memory has been
identity-mapped correctly.

Chapter 8 Using the Flat Memory Model



Identity Mapping

The paging subsystem identity-maps all physical memory known to the Free Space
Manager. Thisincludes memory which is configured in the ICU as afirst-level job
or which is added from using the sysload command. Identity mapping helps protect
dedicated memory, such as that found on dual port memory for a custom device
driver, from being over-written.

See also: MEMF, PIMM Commands, |CU User’s Guide and Quick Reference

Flat Model Support Code

The flat model support code provides the flat-to-segmented pointer conversion
libraries required to allow flat applications to make iRMX system callsand C library
cals.

The flat model support code is a configurable part of the operating system. This code
may be loaded viathe sysload command. This subsystem consists of approximately
20 Kbytes of code and data.

Conversion of Flat Model Pointers in System Calls

In aflat model application, al pointers are near (offset-only) pointers. TheiRMX
OS requires all pointer parametersin system callsto be far pointers. Therefore, all
near flat model pointers must be converted to far pointers before entering the OS
itself. The flat.job automatically performs the conversion for each system call made
by your application.

This job contains the entire flat model support code and requires the paging
subsystem. Flat model applications can make iRMX system callsand C library calls
onceflat.jobisloaded. To load the job, type:

- sysload /rnx386/jobs/flat.job <CR>
Errors and initialization messages are reported to the : config:flat.log file.

Programming Techniques Chapter 8 115



The Flat Model Job

Y ou can load the flat model job, flat.job, at any time the iIRMX OS is running.
There are no command line options for flat.job.

|:| Note

Y ou cannot use the ICU to configure the flat memory model as a
first-level flat job.

Y ou cannot configure flat model applications asfirst-level jobs but
you can configure them as |oadable jobs.

Execution Model

The Application L oader recognizes a flat model MPE program and creates a flat
environment for the program using the paging subsystem (it must be loaded or
configured into the system). After the program isloaded into the flat environment, a
job gets created for the loaded code the same as it does for segmented programs.

Figure 8-3 shows the loading and execution flow of a flat model program.

116 Chapter 8 Using the Flat Memory Model



iRMX Flat
Executable

User Job
[
‘ iRMX Virtual Segment
Application } N, <
Loader | - Code b
Data
Paging |
Subsystem ‘
‘ Stack
Nucleus | <
‘ Malloc
‘ Area
| <—
‘ Task2 code,
| data, & stack
Note: ‘ <
At run-time, CS is different because
it must be an executable selector. L

CS, DS, SS, ES point
to the virtual segment
Initial EIP

Non-allocated areas

Virtual segment limit

|
|
|
\
|
\
|
\
\
Initial ESP |
\
|
|
|
\
\
\
(GP fault if crossed) }

0OM04412

Figure 8-3. Execution of a Flat Model Program on iRM X

Programming Techniques

Chapter 8

117



System Calls

Thefollowing isalist of new system calls required to manage virtual segments and
provide other flat model support.

Since most flat model compilers do not support far pointers (or support “based”
variables), they cannot access normal iRMX segments. Instead, severa system calls
are provided to either access iIRMX segments, or eliminate the need for them entirely.

See also: System Call Reference

Virtual Memory Nucleus Basic 1/0 System
rqv_create_segment rq_move_data rq_wait_iors
rqv_allocate rq_get_buffer_limit

rqv_allocate_at rq_validate_buffer

rqv_free

rgv_change_access

rqv_map_physical

Existing System Calls

These existing calls have been changed dightly for paging support. In all cases, the
changes add functionality to work with the new virtual segments. Y ou can continue
to use these calls from segmented applications.

e rqg_delete segment
* rge_get address
e rg get size

Using the Flat Model System Calls

When developing a flat model application, be aware of these unique issues, which are
not a concern if you are devel oping a segmented application:

e Virtua memory and the corresponding allocation and de-allocation of physical
memory

* Useof iRMX segments by aflat model application

118 Chapter 8 Using the Flat Memory Model



Virtual Memory

New system calls provide two levels of access to the paging mechanism. The
rqv_allocate_at system call provides low-level access. The Application Loader, as
well as other system utilities, use this system call to gain direct accessto avirtual
segment. Using this call enables an application to place the code, data, stack, and
other segmentsinto a unique location in the virtual segment specified by the object
module being loaded.

Therqv_allocate at system call provides high-level access. Thisallocation system
call provides management of the virtual address space within avirtual segment. The
call is meant to be used by applications and any other free space manager, such as
malloc and sbrk. It allocates physical memory, placesit within an available area of
the virtual segment, and then returns a near pointer to the allocated memory. For the
flat model application, this system call is preferred over rq_create_segment, since
the latter returns atoken which is not accessible using the flat memory model.

The memory required for page tablesis charged to the calling job's memory pool.
Thefirst allocation to avirtual segment will incur a4 Kbyte overhead for a page
table. Y ou should compute job memory pools with this page table overhead in mind.

Porting Compact/Large to Flat
If you need to access iIRMX segments, use one of these mechanisms:

» Therqgv_allocate system call replacestherq_create segment call in flat model
applications. It alocates physical memory to the application's virtual segment
with no additional objects or slots being consumed.

To share this memory with another task, pass a near pointer through a data mailbox if
the other task isin the same virtual segment (job). Another method isto create a
descriptor around the allocated memory and pass the token for the descriptor
passed through a normal mailbox.

e Therqg_wait_iorsBIOS system call replaces either rq_receive_message or
rq_wait_io after an 1/0 call. Thiscall returns the asynchronous IORS into a
buffer in the caller's address space, instead of in an iIRMX segment.

Programming Techniques Chapter 8 119



Debugging Support

120

The System Debugger (SDB) understands and displays flat model versions of the
iRMX system calls. The debugging procedures are similar to those used for compact
and large model applications. However, with flat model applications, the stack
parameters are reversed. Take thisinto account when viewing the stack using the vs
or vu SDB commands.

See also: Vs, vu commands, System Debugger Reference

Chapter 8 Using the Flat Memory Model



Developing Applications for ROM

Using the iIRMX 111 OS, you can create ROM-based iRMX applications. Configuring
a ROM-based system has several benefits. Y ou can write-protect your stable code,
load your system quicker than a RAM-based system, and incur lower costs than with
a RAM-based system.

D Note

Y ou can only create ROM -based applications under the iRMX 111
OS. You cannot use the DOSRMX or iRMX for PCs OS.

This chapter contains information on:

» Tedting your application from RAM

e Cdculating size and location parameters

*  Programming your application into ROM

e Creating an example ROM application

Y ou may need to refer to one or more of these manuals:

e ASM386 Macro Assembler Operating I nstructions’ ASM386 Assembly Language
Reference

e iC-386 Compiler User's Guide

* CLibrary Reference

* ICU User's Guide and Quick Reference
* Intel386 Family Utilities

e PL/M-386 Programmer's Guide

»  System Debugger Reference

Programming Techniques Chapter 9 121



Testing a System

The normal development cycleisto load your system using the bootstrap loader, test
it, correct any errors, and then reassemble or recompile any appropriate program
code. Next, you must regenerate your system and load the system again. Continue
this procedure until you have created a functional target system.

Once you have created your final system, fine-tune the memory alocated for the
system by editing the MEM S and MEMF screensin the Interactive Configuration
Utility (ICU). If your target system will reside in ROM, enable the ROM feature by
entering “Yes’ to the “ System in ROM” entry on the ROM screen of the ICU. You
must also make any necessary changes to the ROM screen.

See also: Setting the Memory Address and Size Values, in this chapter

Loading an Application into ROM

When you place an iRMX application system in EPROM/FLASH, a number of
hardware assumptions are made by the iIRM X initialization code regarding memory
layout. These assumptions are:

* TheentireiRMX application system image (minus the ROM Initialization Code)
isin a contiguous section of memory described by a single entry on the MEMS
screen of the ICU definition file.

e The ROM Initialization Code must reside within 64 Kbytes of the top of
ROM/FLASH memory and on a4 Kbyte boundary.

* Volatile System Memory (system RAM) must reside within the first megabyte of
memory, below and directly adjacent to Free Space Memory.

e Thefirst section of the Free Space Manager, defined on the MEMF screen of the
ICU, must be large enough to contain those parts of the application system that
are copied from ROM to RAM.

Preparing an Application to Reside in ROM

122

Y ou can configure a ROM-based iRM X application as afirst-level job. Thisjob
often contains a single initialization task that creates or starts the creation of all other
objects required by the first-level job.

The root task creates the first-level jobs. Each time the root task creates a first-level
job, the root task suspends itself to allow the new job's initialization task to perform
synchronous initialization.

Chapter 9 Developing Applicationsfor ROM



Theroot task creates first-level jobs using this programming loop:

Repeat for each first-level job
Create first-level job
Suspend root task (until resumed by a
first-level job finishing its initialization)
Until finished
End

Synchronous initialization consists of functions that must be performed before some
other first-level job is created. Typically, thisrequires creating objects or making
resources available that subsequent tasks will use. For example, the initialization task
in the EIOS job must ensure that the EIOS is ready before it can allow the root task to
create other first-level jobs that would use EIOS functions.

When the initialization task finishes its synchronousinitialization, it must inform the
root task that it is finished so the task can resume execution and create another first-
level job. Theinitialization task must aways inform the root task that it has
completed its synchronous initialization process by calling therq_end_init_task
system call. Thiscall requires no parameters and causes the root task to resume
execution and create the next first-level job.

|:| Note

You must includetherq_end_init_task system call in the
initialization task of each of your first-level jobs even if they do not
require synchronous initialization; otherwise the root task remains
suspended.

The amount of synchronous initialization depends on your job structure. Y ou must
determine how the pieces of your system interact and how they must synchronize.

Programming Techniques Chapter 9 123



124

Another important factor in initialization is the order in which the root job creates
first-level jobs. Shown below isan example order. The order the root task usesto
create first-level jobs depends on where the jobs are started in relation certain OS
layers. Thisordering depends what parameters you specify with the ICU, not on the
priority of the tasks.

Order Root Job First-Level Job 1/0 User Job
Root Job

System Debugger
Basic I/O System

Extended 1/0 System

1/0 User Jobs

User Jobs

Human Interface

O IN[ofa|dWIN]|F

Shared C Library

See also: Help message for the (SEQ) and (TPUJ) ICU screens, Interactive
Configuration Utility

Chapter 9 Developing Applicationsfor ROM



Methodology for Burning an Application into ROM

When burning an application into ROM, your ROM/Flash programmer should be
capable of handling OMF386 or Intel hex format code. The procedureis:

1. Identify which format your ROM/Flash programmer takes.

2. Thebuilder generates the OMF386 output file. Thisfileis specified in the ROF
entry of the ICU GEN screen. Load the code directly into the ROM/Flash
programmer, splitting the code between multiple devices if necessary.

3. If your ROM/Flash programmer requires hexadecimal format, use the OH386
utility to convert the OMF386 code to OH386 code.

Both OMF386 and hex format contain both code and data. The presence of datain
the input file to the ROM/Flash programmer may cause a warning, which you can
ignore.

Use your Flash/ROM programmer to extract code only within the address range that
will be placed in ROM.

Developing a ROM-based Application System

When devel oping a ROM -based application, you should develop as much of the
application as possible to be a program |oadable under the Human Interface CLI.
Remove all the bugs possible in the loadable version of the job. Use the Soft-Scope
debugger and other iIRM X tools to help debug your system.

In case the target hardware does not support a full-featured iIRMX environment with
aHuman Interface, you can write intelligent stubs that simulate the target hardware.
Then run both the application and its hardware-simulating stubs in aloadable iRM X
environment. This allows you to complete as much of the debugging as possible with
aloadable job instead of a ROM-based jab.

Once your application is ready for ROM/FLASH on the target hardware, you must
use the ICU to configure the iRM X application system containing your application.

Start with the Intel-provided ICU definition file that most closely fits your target
hardware. Thesefiles are located in the /rmx386/icu directory.

If you do not find the appropriate file, you can specify anew definition file using the
ICU. Onceinthe ICU, you must make modifications to the various layer/hardware
screens until your target hardware and software environment are fully described.

See also: Example ICU Session, ICU User’s Guide and Quick Reference

Programming Techniques Chapter 9 125



Overview of the ROM-based Application Example

The following example illustrates how a ROM-based application system is generated.
The example describes the instructions for generating the example M1X486 ROM
application located in the /rmx386/demo/romymix4demo directory. The application
system defined by this example has these attributes:

* RunsonaMIX486 board (MI1X486DX 33, MIX486DX66, or MIX486SX33) ina
Multibus |1 backplane

e Loadsout of FLASH into RAM and executes out of RAM

e Containsasimple Multibus Il message passing program that waits at a specific
port for Multibus |1 messages and replies to them

First, develop the application as an Human Interface-loaded program. This program,
receive.c, does the message passing. After you make any changesto receive.c and it
is fully debugged, the following procedure convertsit to afirst-level job:

1. Addacall torg_end_ init_task tothe program'sinitial task after completing any
required synchronousinitialization. You can leavetherq_end_init_task call in
even if you run the demo application from the Human Interface.

2. Convert the program'sinitial task to a public procedure (already set up asmainin
C programs).

3. Modify the bind process to produce a linkable version of the program instead of
the Single Task Loadable (STL) version.

4. Modify the bind process to suppress all Public symbols except the name of the
program'sinitial task and the name of one of the program's public variables.

Once the application program is ready as afirst-level job, the next step isto configure
the iIRMX OSto run on the target hardware.

Generating the ROM-based Application Example

126

The files used to generate the example ROM application are in the
/rmx386/demo/ronVmix4demo directory. Thesefiles are:

receive.c Receives a message from sendmb2 and returns a new message
sendmb2.c  Sends a message to a port on aMB |1 agent running receive
makefile File used to generate the example

Chapter 9 Developing Applicationsfor ROM



To generate the example:
1. Change the directory to /rmx386/demo/rom/mix4demo.
2. AttheiRMX prompt, type: make <CR>

This creates the Human Interface programs receive and sendmb2, and the user job
module, receive.lnk.

Configuring the iRMX OS

Y ou must configure the iIRMX OS through the ICU to recognize that the target
hardware is a M1X486 board.

|:| Note

In the following ICU screens, enter the valueslisted in bol d.
These values are specific to the example application and should not
be changed.

Setting the Hardware Values

In the following HARD screen, the hardware addresses are specific to the M1X486

board. Because the application does not need a finer time granularity than 10

milliseconds, set the KTR entry to 1. Specify “Yes’ for the EMU entry so the system

includes an NPX Emulator. This Emulator isdormant if a math coprocessor is

present (M1X486DX 33 or M1X486DX66 board) but provides numeric support when

no math coprocessor is present (M1X486SX 33 board).

(HARD) Har dwar e
(BUS) System Bus Type [1=MBl / 2=MBI| / 3=AT] 2
(TP) 8254 Timer Port [ 0- OFFFFH  ODOH

(ClL) Aock Interrupt Level [0-7] O
(CN) Timer Counter Number [0,1,2] O
(CN) dock Interval [0-65535 msec] 10

(KTR) Kernel Tick Ratio [1-65535] 1

(CF) dock Frequency [0-65535 khz] 1250

(TPS) Timer Port Separation [0-OFFH 02H

(EMJ) Emul ate Nuneric Processor [ Yes/ No] YES

(I'F) Initialize On-board Functions [0=No / 1-OFFH 08H
(BIP) Board Initialization Procedure [1-45 Chars]

Programming Techniques Chapter 9

127



Setting the Multibus Il Addresses and Port Separation Values

In the following Multibus 11 screen, the Multibus |1 hardware addresses and port
separations are specific to M1X486 boards. The application uses only aligned buffers
SO N0 message passing transfer/alignment buffers are included.

(MBIT) Mil tibus Il Hardware

(MDP) Message Device Base Port Address [0-OFFFFH] OH

(MDS) Message Device Port Separation [0-OFFH  04H

(MDL) Message Interrupt Level [ Encoded Level] 04H

(MCO) Message Device Duty Cycle for One Cycle DVA  [0-OFFH  052H
(MCT) Message Device Duty Cycle for Two Cycle DVA  [0-OFFH 097H
(MDC) Message Device Duty Cycle for Burst DVA  [0-OFFH 04AH
(DDP) Message Device ADVA Data Port [0-OFFFFH] OH

(GBR) ADMVA Burst Register [0-OFFFFH OH

(GDR) ADVA Del ay Regi ster [0-OFFFFH OH

(Al B) ADVA Base Port Address [ 0- OFFFFH  0200H

(ACI) ADVA Channel for Input [ 0- OFFFFH  02H

(ACO) ADMVA Channel for CQutput [ 0-OFFFFH  03H

(DIB) DVA I nput Buffer Size [ 0- OFFFFFFFFH]  OH

(DOB) DMVA Qutput Buffer Size [ 0- OFFFFFFFFH]  OH

(DDA) DAG Devi ce Used [ Yes/ No] YES

(DBA) DAG Base Port [ 0- OFFFFH  0300H

(WDP) Wat chdog Present [ Yes/ No] NO

(WDM Wat chdog Mooxes [0-OFFH  03H

(WDI') Wat chdog Transmi ssion | nterval [1- OFFFFFFFFH  O3E8H
(WDT) Wat chdog Ti nmeout [ 1- OFFFFFFFFH  03E8H

Setting the Master and Slave Interrupt Values

In the following INT and SLAVE screens, the Master and Slave Interrupt layout is
specific to the M1X 486 board.

(I NT) Interrupts

(MP) 8259A Master Port [0-OFFFFH  OCOH

(MPS) Master PIC Port Separation [0-OFFH  02H
(I'S) Interrupt Slaves [ Yes/ No] YES

( SLAVE) Sl ave Interrupt Levels

Sl ave = Sl ave_nunber, Level _Sensitive, Port, Separ ati on
[0-7] [ Yes/ No] [ 0- OFFFFH] [ 0- OFFH]

[ 1] Slave = 7, NO , 0C4H 02H

[ 2] Slave =

128 Chapter 9 Developing Applicationsfor ROM



Setting the Subsystem Values

In the following SUB screen, include the System Debug Monitor and System
Debugger subsystems only as an aid to debugging. Remove these when configuring
the production system.

The application does not require the services of other subsystems because those
provided by the Kernel, Nucleus, and M essage Passing subsystem meet the
application’s needs.

(SUB) Subsystens

(UDI') Universal Devel opnent Interface [ Yes/ No] NO
(CLB) Shared C Library [ Yes/ No] NO

(H') Human Interface [ Yes/ No] NO

(AL) Application Loader [ Yes/ No] NO
(NET) Networ ki ng [ Yes/ No] NO

(EIO Extended I/O System [ Yes/ No] NO
(BIO) Basic I/0O System [Yes/No] NO
(PGS) Pagi ng Subsystem [Yes/No] NO
(VMD) VMB6 Di spat cher [ Yes/ No] NO

(SDM System Debug Moni tor [ Yes/ No] REQ
(SDB) System Debugger [ Yes/ No] YES

(CE) Os Extension [ Yes/ No] NO

Setting the Memory Address and Size Values

In the following MEM S and MEMF screens, change the memory parameters to
reflect a ROM-based application.

( MEMB) Menmory for System
SYS = | ow [ 0- OFFFFFFFFH], hi gh [ 0- OFFFFFFFFH]

[ 1] sys = OFFF80000H, OFFFFFFEFH
[ 2] sys =
( MEMF) Menory for Free Space Manager

FSM = | ow [ 0- OFFFFFFFFH], hi gh [ 0- OFFFFFFFFH]
[ 1] FSM= 020000H 09FFFFH
[ 2] FSM= 0C0000H 07FFFFFH
[ 3] FSM=

In a ROM/FLASH-based system, the MEMSS entry reflects the physical address of
the ROM/FLASH devices once the system is switched to Protected Virtual Address
Mode. It isassumed to be contiguous, in other words, it isall defined in asingle SYS
entry.

Programming Techniques Chapter 9 129



130

On some boards, the ROM/FLASH is at a different address on reset and then is
switched to its final location through 1/0 output operations. On the M1X486 board,
this address range is fixed and encompasses the two 2 Mbit FLASH sites on the
board.

|:| Note
If you adjust the physical address of ROM/FLASH during the
system initialization process, you must do it in-linein the
custom_initial_hw_setup subroutine. No jumpsor callsare
allowed.

See also: Debugging the ROM Initialization Process, in
this chapter

The FSM sections of the MEMF screen describe the RAM Memory available to the
Free Space Manager. The space in memory between 9FFFFH and O0CO000H is
required by the M1X486 board due to its use of a PC chipset. 1n a ROM/FLASH-
based system, the first FSM section must provide enough RAM storage for system
objects copied from ROM/FLASH to RAM during the system initialization process.
Items that are copied from ROM to RAM are the system GDT, LDT, IDT and four
TSSs. Calculate the minimum size for the first FSM section of memory as:

Size(FSM0)0 = ((Final GDT size * 8) * 2) +
Final IDT size * 8) + 200H

In cases where the application system executes out of RAM, the first FSM memory
section must be large enough to contain the minimum FSM size, calculated above, in
addition to the memory required to hold all code segments that make up the
application system. Refer to the Segment Map (Figure 9-1) portion of the .mp2 file
generated by BL D386 for the application system and add up the segment sizes for all
“ER” type segments listed there.

The final sum of the equation above plus the application code segmentsisthe fina
minimum size of the FSM(0) section of memory.

When the system initializes (during the ROM Initialization Code and the early stages
of Nucleusinitialization), it removes memory from the FSM(0) memory section
(beginning at the lowest specified memory address) as needed to handle the items
copied from ROM to RAM. FSM(0)'sfinal low address is adjusted upwards
accordingly.

Figure 9-1 lists the Segment Map from the mix4dxro.mp2 file.

Chapter 9 Developing Applicationsfor ROM



SEGVENT NAP
TABLE BIT DPL ACCESS USE BASE LIMT SEGVENT NAMVE

coT
1 0 RW 16 FFFS80000H O00000DBFH GDT:
1 0 RW 16 FFFS80DCOH 0000008FH | DT:

33 1 0 RW 16 0000FAASH 00000003H ?DUMVY_NMODULE. SDVB_ALI AS_SEGVENT3

34 1 0 ER 16 FFFA8754H 0000296EH SDM DASM DASM CODE

35 1 0 RW 16 FFFAOBBOH 000013E5H SDM DASM DASM DATA

44 1 0 ER 16 FFFABOCAH 00000015H SDM DASM CCDE

45 1 0 ER 32 FFFBLADS8H 0000BFC7H NB.SDM || _CODE32

46 1 0 RW 32 0000A3C4AH 00000860H NMB.SDM || _DATA

47 1 0 RW 16 0000FAAOH 00000003H ?DUMMY_MODULE. SDMB_ALI AS_SEGVENT

48 1 0 RW 16 0000FAA4AH 00000003H ?DUMMY_MODULE. SDMB_ALI AS_SEGVENT2

49 1 0 RW 16 FFFAOAE2H 000000CCH SDM DASM SDM DASM DATA

60 1 O RW 32 00000000H 000060CAH NUCDAT. DATA

80 1 0 ER 32 FFF80E50H 0001FC90H NUCDAT. CODE

85 1 0 RW 32 00006464H 000003FFH NUCDAT. STACK

300 1 0 RW 16 0000FAL18H 00000087H ?DUMMY_MCDULE. SHADOW | DT_SEG

302 1 0 RW 32 0000FBSCH 00000007H ?DUMMY_MODULE. CC_120_SEG 5

308 1 0 ER 32 FFFCOA24H 00015AE5H SDBCNF. CODE

309 1 0 RW 32 0000B958H 00001064H SDBCNF. DATA

310 1 0 RW 32 0000B2FCH 00000659H SDBCNF. NEWSTACK

3201 0 ER 32 FFFA3560H 00000139H NTRSTK. STK OVFW

343 1 0 ER 32 FFFBEACS8H 00001F5AH MB. CC_CCDE32

344 1 0 RW 32 0000AC28H 000006D3H MB. CC_DATA

400 1 0 RW 16 0000FAIOH 00000003H ?DUMMY_MODULE. M _ALI AS_SEGVENT

401 1 0 RW 16 0000FA14H 00000003H ?DUMMY_MODULE. M _ALI AS_SEGVENT2

402 1 0 ER 32 FFFABODCH 000069FBH NMB.M || _CODE32

403 1 0 RW 32 00007270H 00001152H NB.M || _DATA

404 1 0 RW 16 000083CAH O00001FFFH MB. STACK

426 1 0 ER 16 FFFAS5B2H 000001A1H SDM DASM SDM DASM CODE

LDT. 1 (LDT1)

1 1 0 RW 16 FFFALF96H 00000DBFH LDT1:

72 1 0 ER 32 FFFA369CH 00004F15H E80387. A?MED

73 1 0 RW 32 00006C84H 000001DAH ES80387. A?MSR

74 1 0 RW 32 00006E60H 0000028FH ES0387. STACK

75 1 0 RW 32 000060CCH 00000394H NUCDAT. JOBDAT

Figure 9-1. Example Segment Map

Programming Techniques Chapter 9 131



79 1 0 RW 32 00006864H 0000001DH NUCDAT. ESCAPE_SS

80 1 0 ER 32 FFFA3538H 00000026H NUCDAT. ENTRY_CODE

90 1 0 ER 16 FFFFFFFOH 00000003H NUCDAT. RESTART_CODE ROM
91 1 0 ER 16 FFFFFOOOH OOOOODCEH NUCDAT. CCDE_ROM

92 1 0 RW 32 00006884H O000003FFH NTRSTK. SE_STACK

93 1 0 RW 16 FFFF7198H O0O000FF57H SDM DASM STACK

94 1 0 RW 32 00007198H 000000D4H M3. DATA

95 1 0 ER 16 FFFBDAAOH 00001024H M3.SDM I _NPX_ CCODE

96 1 0 ER 32 FFFD650CH 0000050FH START. CODE

97 1 0 RW 32 0000COCOH 0000004CH START. DATA

98 1 0 RW 32 0000FA10H FFFFCFFFH START. STACK

99 1 0 RW 32 0000FAACH 0000007FH ?DUMWY_MODULE. CC_120_SEG 1
1001 0 RwW 32 0000FB2CH 0000001FH ?DUMWY_MODULE. CC 120_SEG 2
1011 0 RwW 32 0000FB4CH 0000001FH ?DUMWY_MODULE. CC 120_SEG 3
1021 0 RwW 32 0000FB6CH 0000001FH ?DUMWY_MODULE. CC_120_SEG 4

Figure 9-1. Example Segment Map (continued)

Setting the System Debug Values

132

In the following SDB screen, the System Debugger is entered through a Non-
Maskable Interrupt (NM1) generated across the interconnect space. Set the SLV
entry to OFFH and set the NMI entry on the NUC screen to allow an NMI to trigger
the SDB.

( SDB) Syst em Debugger
(SLV) SDB Interrupt Level [ Encoded Level / NONE = OFFH] OFFH
(ESC) Enabl e Screen Scrolling Control [ Yes/ No] YES

Since the M1X486 board has no on-board serial devices, set the RCI entry to Primary
in the SDM screen so the Remote Console Interface Driver isthe SDM/SDB's /O
device.

(SDV Syst em Debug Console MultiBus Drivers

(D51) 8251 Console Controller Driver [Primary/Secondary/No] NO

(A54) 354 Port A Console Controller Driver [Primary/Secondary/No] NO
(B54) 354 Port B Console Controller Driver [Primary/Secondary/No] NO
(A74) 8274 Port A Console Controller Driver [Primary/Secondary/No] NO
(B74) 8274 Port B Console Controller Driver [Primary/Secondary/No] NO
(Gr9) SBX 279 Console Controller Driver [Primary/ Secondary/No] NO
(A30) 82530 Port A Console Controller Driver [Primary/Secondary/No] NO
(B30) 82530 Port B Console Controller Driver [Primary/Secondary/No] NO
(RCl) Renote Console Interface Driver [Primary/Secondary/No] PRI MARY

Chapter 9 Developing Applicationsfor ROM



PC Drivers

(SR1) Serial Port One [ Primary/ Secondary/ No] NO
(BP1) Serial Port One Base Address [ 0- OFFFFH  03F8H
(SR2) Serial Port Two [ Primary/ Secondary/ No] NO
(BP2) Serial Port Two Base Address [ 0-OFFFFH  02F8H
(CON) Consol e Port [ Primary/ Secondary/ No] NO

With the SDM/SDB present in the configuration, set the Default Hardware Exception
Handler and NMI Exception Mode entries in the NUC screen to enable an NMI

signal to break to the monitor.

(NUC) Nucl eus

(NGE) Number OF CDT Entries [ 440-8190] 500
(NIE) Number OF IDT Entries [0-256] 256

(PV) Paraneter Validation [ Yes/ No] YES
(ROD) Root Object Directory Size [0-3840] 50

(DSH) Default Software Exception Handl er [ Job/ Task/ STask/ User] JOB

(EM Exception Mde [ Never/ Prograni Environ/ Al l] NEVER
(NEH) Name of Ex Handl er Object Mdul e [1-55 Chars]

(DHH) Default Hrdw Exception Handl er [Job/Task/ STask/ Monitor] MONI TOR

(NM) NM Exception Mde [ gnore/ Process] PROCESS

(NEB) NM Enable Byte [0-255] 04H

(LSE) Low GDT/LDT Sl ot Excluded from FSM [440- 8189/ NONE=0]
(HSE) Hi gh GDT/LDT Slot Excluded from FSM [ 440- 8189/ NONE=0]
(RRP) Round Robin Priority Threshol d [0-255] 140

(RRT) Round Robin Time Quota [0-255] 5

(RIE) Report Initialization Errors [ Yes/ No] YES

(MCE) Maxi num Data Chain El ements [ 0- OFFFFH] 080H

(CS) Nucl eus Communi cation Service [ Yes/ No] YES

Setting the Nucleus Communications Values

0
0

In the NCOM screen, set the Nucleus Communications Services entries to standard

values.

( NCOv Nucl eus Communi cati on Service

(PMI) Message Task Priority [0-255] 128

(PDT) Deletion Task Priority [0-255] 128

(DPT) Default Nunber of Port Transactions [0-255] 16
(DHI') Default Host ID [0=None/1-254] O

(VBP) Validate Buffer Paraneters [ Yes/ No] YES

(MST) Max No. of Simultaneous Transactions [0-OFFFFH  040H
(MSM Max No. of Simultaneous Messages [ 0- OFFFFH] 080H
(RFT) Receive Fragnent Fail safe Ti meout [ 0- OFFFFH  0400H
(NTM Number of Trace Messages [0-255] 255

Programming Techniques Chapter 9

133



Setting the System Job Values

In the SY SJ screen, no system jobs are required in this application system so set all
entriesto “No.”

(SYSJ) Syst em Jobs

(PCl) PCl Server Job [ Yes/ No] NO

(DL) MBI Downl oader Job [ Yes/ No] NO
(ATC) ATCS/ 279/ ARC Server Job [ Yes/ No] NO
(A50) ATCS/ 450 Server Job [ Yes/ No] NO
(BS) MSA Boot Server Job [ Yes/ No] NO
(FPI') FPI Server Job [ Yes/ No] NO

(SSK) Sof t Scope Kernel Job [ Yes/ No] NO

Setting the User Job Values

134

Set the TP entry in the USERJ screen so the priority of the first-level job, receive,
dtarts at 155. Even though the job starts after the EIOS, it has no effect since thereis
no BIOS or EIOSin the system. Therefore, the job starts immediately after the SDB
initialization job.

Since the job iswritten in C, the initial task's public name is main. Becauseitis
coded as a far procedure, no Public Variable Name isrequired for the VAR entry of
the USERJ screen. The initial task sets up its own data segment.

( USERJ) User Jobs

(NAM) Job Nane [0-14 Chars] RECEIVE

(SEQ Job Sequence [Before/ After] AFTER

(ODS) hject Directory Size [0-3840] 10

(PM) Pool Mninum [20H OFFFFFFFH  010000H
(PMA) Pool Maxi mum [ 20H OFFFFFFFH  OFFFFFH
(MOB) Maxi num Cbj ects [ 1- OFFFFH  OFFFFH

(MTK) Maxi mum Tasks [1- OFFFFH  OFFFFH

(MPR) Maxi mum Priority [0-255] 129

(EHS) Exception Handl er Entry Point [1-31 Chars]

(EM Exception Mde [ Never/ Prog/Environ/All] NEVER
(PV) Paraneter Validation [ Yes/ No] YES

(TP) Task Priority [0-255] 155

(TSA) Task Entry Point [1-31 Chars] MAIN

(VAR) Public Variable Nanme [0-31 Chars]

(SSA) Stack Segment Address [ SS: SP]  0000: 0000H
(SSl) sStack Size [ 0- OFFFFH  0500H
(NPX) Nurmeric Processor Ext. Used [ Yes/ No] NO

Chapter 9 Developing Applicationsfor ROM



Inthe USERM screen, the builder looks for the first-level job link file, receive.lnk, in
the local directory.

( USERM User Modul es
Modul e = 1-55 characters

[ 11 Modul e = RECEI VE. LNK

[ 2] Mdule =

Setting the RAM and ROM Values

(ROM ROM Code

(SYR) SystemIn ROM [Yes/No] YES

(CPl) Copy ROMInitialization Code to RAM [Yes/No] NO

(EOR) Execute System CQut of Roni Fl ash Yes/ No] NO

(VSS) Vol atile System Menory Starting Address [ 0- OFFFFFFFFH]  OH
(VSE) Vol atile System Menory Endi ng Address [ 0- OFFFFFFFFH]  O1FFFFH
(RBA) Base Address of ROMInit code at reset [O0-OFFFFFFFFH OFFFFFOOOH
(RDA) RAM Destination Address of ROMInit code [O-0OFFFFFFFFH OH
(SRC) Size of ROM Initialization Code [ 0- OFFFFFFFFH]  OH

(CRS) Custom ROM Initialization Source File [1-45 Chars] MXI NI T.INC
(CRO) CustomROM Initialization Qoject File [1-45 Chars] M X41 N. LNK

In this application system, the ROM Initialization Code mode of operationis
RAM-less (CPI=NO). Inthe RAM-less mode, the ROM Initialization Code expects
to be entered using a near jJump placed at the Reset Vector (at FFFFFFFOH). Inthis
case, the ROM I nitiaization Code immediately setsup itsinitial GDT/IDT in
nonvolatile memory before switching the microprocessor into protected mode.

Setting the ROM I nitialization Code mode of operation to RAM-full (CPI=YES)
means that the ROM Initialization Code expects to be entered using a far jump from
some non-iRM X initial program, such as a Flash utility. In this case, the ROM
Initialization Code copiesitself from nonvolatile memory into RAM and sets up its
initial GDT/IDT in RAM before switching the microprocessor into protected mode.
This mode allows nonvolatile memory to be remapped to a new physical address.
The RAM destination address of the ROM Initialization Code (RDA) must be within
the first megabyte.

See also: Calculating VVolatile Memory Size, in this chapter

The system copies the OS and its associated application from ROM to RAM as part
of the initialization process (EOR=NO). It defines system RAM memory excluded
from the Free Space Manager in the address space from 0 to 1FFFFH. The system
uses this memory as Volatile System Memory, which is static memory used for stack
and data by the OS layers and application program.

Programming Techniques Chapter 9 135



This Volatile System memory must be below and contiguous to the first FSM section
for Free Space Memory. It must be at least 300H bytes in length since the ROM
Initialization Code uses 300H bytes of memory just below the start of the first FSM
section for its own stack and data area. The OS and/or application can also use this
memory since the ROM Initialization Code will already have completed its work by
the time the OS begins.

Calculating Volatile Memory Size

136

In configuring your application system to be ROM\Flash-based, you must reserve a
certain portion of Volatile System Memory as static data and stack. To identify the
minimum memory requirements for your specific application, you can calculate the
memory requirements based on information in the .mp2 file generated for your
application. The demonstration application generates the mix486dx.mp2 file (Figure
9-1).

Asshown in Figure 9-1, the Segment Map of an .mp2 file lists the base address and
limit of each segment defined in the application system. Using the information in
both the GDT and LDT sections of the Segment Map, you can calculate the amount
of code (MEMYS) and data (VSS and V SE) needed by your application system, as
follows.

1. Find the highest code physical addressin non-volatile ROM. These addresses
start with “FFF”. In mix486dx.mp2, the highest code addressisLDT Slot 96
listed in thisline:

96 1 0 ER 32FFFD650CH 0000050FH START. CODE

2. Add the base address (FFFO650H) and the limit for the code address (50FH) to
obtain their sum (FFFO6A1BH).

3. Obtain the high address in the MEMSS screen, which is FFFFFFEFH in the
example.

4. The sum of the base address and limit (FFFO6A 1BH) must be less than or equal
to the MEM S high address (OFFFFFFEFH), asisthe case in the example.

Now calculate the memory requirements for RAM:

1. Find the highest data physical addressin RAM. These addresses start with
“0000". Asseenin Figure 9-1, the highest data addressislisted isGDT Slot
302:

3021 0 RW 32 0000FB8CH 00000007H ?DUMWY_MODULE. CC_120_SEG 5

2. Add the base address (OFB8CH) and the limit for the data address (7H) to obtain
their sum (FB93H).

Chapter 9 Developing Applicationsfor ROM



3. The sum of the base address and limit must be less than or equal to the VSE high
address (1FFFFH). Finally, adjust the V SE parameter to be equal to the low
address of the MEMF entry minus one.

|:| Note

If you do not allocate enough Volatile System Memory, you will
see the following error message when you generate the system. |If
the segment_name is a data segment, check the VSS and VSE
entries. If the segment_name is a code segment, check the MEM S
entries.

***% WARNI NG 177: SEGVENT ALLOCATED QUTSI DE SPECI FI ED RANGE
SEGMVENT: segnent _nane

Set the base address of the ROM Initialization Code to OFFFFFOO0H using the RBA
entry in the ROM screen. This address must be on a4 Kbyte boundary and be within
64 Kbytes of the system restart vector, which resides at OFFFFFFFOH. The restart
vector does a near jump to this address.

|:| Note
Accessing an address of OFFFFFO00H while in Real Mode is based
on afeature of al Intel Architecture microprocessors. At reset, all
address lines are driven high by the microprocessor and stay that
way until thefirst far jump ismade. The ROM Initialization Code
makes sure the hardware descriptor tables (GDT and IDT) refer to
this high memory address area by the time the first far jumpis
made (immediately after switching to PVAM).

Y ou can verify the size of the ROM Initialization Code by looking at the Segment
Map in the .mp2 file generated by the BLD386 utility. Refer to Figure 9-1, LDT Slot
91

The size of the ROM Initialization Code varies based on the amount of code your
application requires to properly configure your system hardware. In the M1X486
example, the code is approximately 3500 bytesin length.

Since the RAM-less mode of ROM Initiaization is used, this example sets the RDA
and SRC entries to OH.

Programming Techniques Chapter 9 137



138

When the ICU generates the configuration files for a ROM-based system, it creates a
ROM Custom Initialization include file whose nameis

definition file base name.inc.inc. The ICU placesinto it a set of empty ASM 386
macros as well as asmall amount of assembler code. 1n the M1X486 example, the
ICU definition file is mix486dx.bck, so the ROM Custom Initialization include fileis
created as mix486dx.inc. See the commentsin the .inc file for areas where you can
customize the initialization code.

When developing a ROM-based iRM X system, modify this ROM Custom
Initialization include file to use your custom code. Copy the file to a different file
whose pathname you list in the CRS entry. The System Generation submit file
copies the CRS-specified file over the ROM Custom Initialization includefile. It
uses this file when generating the ROM Initialization Code object files. By giving it
adifferent name, you insure your modifications to the ROM Custom Initialization
include file will not be destroyed the next time you run the ICU.

As part of the modifications made to mix486dx.inc to yield mixinit.inc, calls are made
to two near procedures, m x4_i nit andi ni t _486. Specify thelink file containing
these two procedures as mix4in.Ink in the CRO entry of the ROM screen. These calls
are specific to the M1X486 board. The files mixdin.Ink, mix486dx.bck, and
mixinit.inc are located in the /rmx386/demo/rom/mix486 directory.

|:| Note

If you are programming ROM on different target hardware, you
can create your own external procedures. This means you must:

*  Use 16-hit code

»  Name the Code Segment as “code_rom”

* Not use adata segment

* Modify the.incfile to call your procedure
*  Modify the CRO entry of the ROM screen

(' NCL) Includes and Libraries [1-30 Characters]

(UDF) UDI Includes and Libs / RMX386/ UDI /

(H F) Human Interface Includes and Libs / RMX386/ HI /

(EI'F) Extended I/O System I ncludes and Libs / RMX386/ El OS/
(ALF) Application Loader Includes and Libs / RMX386/ LOADER/
(BI'F) Basic |1/0O System Includes and Libs / RMX386/ | OS/
(MNF) Intel Monitor Includes and Libs / RMX386/ SDM

(SDF) System Debugger Includes and Libs / RMX386/ SDB/

(NUF) Nucl eus I ncludes and Libs / RMX386/ NUCLEUS/

(ILF) Interface Libraries / RMX386/ LI B/

Chapter 9 Developing Applicationsfor ROM



(DTF) Devel oprment Tool s Path Nanme : LANG

(VMF) Virtual 8086 Modde includes and |ibs / RMX386/ VNMB6/
(NET) i RMX-NET Files /RVX386/ RMXNET/

(CLF) Shared C Libraries / RMX386/ CLI B/

(I'SL) Intel Support Libraries /1 NTEL/

(SIJM System Jobs Obj ect Modul es / RMX386/ JOBS/

Use the standard iRM X generation screen and directory structure to generate the
application system.

(CGEN) Cenerate File Nanes

(RVB) Renote Boot Translation [ Yes/ No] NO

(RBF) Renote Boot File Nanme [1-55 Chars] /RBOOT32/ RVMX386. 386
(ROF) ROM Code File Nane [1-55 Chars] M X486DX. ROM

(RAF) RAM Code Fil e Nane [1-55 Chars] M X486DX. RAM

The file you specify in the ROF parameter is the OMF386 output of the builder. This
output is your iRMX application system which you can program into ROM/FLASH.

The comment record allows you to tag your definition file, specifying its contents.
Thisrecord is placed in the Nucleus code segment and is available through a pointer
toit in the RQSY SINFO segment cataloged in the root job.

(COWNT) Comments for Build file each line = 1-55 characters - I N QUOTES

[ 1] = "iRW IIl Release 2.2 (Operating System

[ 2] = 'for M X486DX33 and M X486DX66 '

[ 3] = 'Nucleus/SDM SDB in ROM using 28f020 flash devices
[ 4 = 'RAMLESS ROMInit Version

[ 8] =

Programming Techniques Chapter 9 139



Debugging the ROM Initialization Process

To help debug the ROM Initialization process, there are debug write calls at strategic
pointsin the ROM Initialization Code path. The purposeisto send an output
character through an 1/0 port so you can track the progress of ROM Initialization
Code as it executes on your board.

|:| Note

BX register—Y our code must preserve the contents of the BX
register at the beginning of thecust om i nit _real _node macro
and restore this value to the BX register before leaving the
custom. nit_real _nbde macro.

When devel oping your own "DebugOp" code, be aware that the
character to be output is passed to the DebugQp macro using the
AL register.

The file mixinit.inc, derived from mix4ddxro.inc, islisted below. Thisfileidentifies
those sections of the code you must change to support your M1X486 board.

If you wish to have debug characters sent to your output device, you must initialize
and activate your device by placing the appropriate code in DebugQp and
custom.nitial _hw_setup macros.

% defi ne(DebugOp(val )) (%

; Place any debug output/notification instructions here for aid in
; debugging the rominitialization code. Only I/Oinstructions are
; recommended since the sane routine will operate in both real and
; protected node

; Code which prints debug information to COML

nmov dx, O03F8H
nmov al, Yval
out dx, al
; nmov dx, 03FDH
; do_i nput :
; in al, dx
and al, 40H
jz do_i nput

; purge do_i nput

nop
) %

140 Chapter 9 Developing Applicationsfor ROM



% define(customextrn_1) (%

; Place any external procedure declaration here which will be junped TO
; fromcustominitial _hw setup. Since the stack is NOT set up at this

; time, only a junp instruction is allowed if an external procedure is

; to be activated. In this case, a |abel nust be placed after the junp
; instruction in custominitial_hw setup so that the execution flow can
; return there via a junp in the external procedure.

; EXTRN ny_initial _hw setup_proc
)%

% define(customextrn_2) (%

; Place any external procedure declaration here which will be CALLED or
; JUMPED TO from custom.init_real _node and/ or

; custom.init_protected_node. In the case of RAM LESS rom

; initialization, the stack is NOT set up until just before the call to
; custom.init_protected_node; therefore, only a JMP instruction is

; allowed in custominit_real _node if an external procedure is to be

; activated. In this case, a |abel nust be placed after the JMP

; instruction in custominit_real _nmode so that the execution flow

; can return there via a JMP instruction in the external procedure.

; In the case of RAMFULL rominitialization, the stack will be set up
; before custominit_real _node is called. Thus, a CALL instruction is
; allowed in the custom.init_protected_node subroutine in both RAM LESS
; and RAM FULL nodes of rominitialization but is only allowed in

; custominit_real _node in the RAM FULL node of rom.initialization.

; EXTRN ny_custom init_real _node_proc
; EXTRN ny_custom i nit_protected_node_proc

EXTRN mx4_init: near
EXTRN init_486: near
)%

o define(custominitial _hw setup) (%

; Place any board initialization code here which nust be done when the

; systemresets, i.e. before the ROMInitialization code starts to run
nmv cr2, edx

)%

Programming Techniques Chapter 9 141



% define(custom.init_real _node) (%

; Place any board initialization code here which nmust be done

; While the systemis still running in Real Mde, i.e. before the
; ROMInitialization Code switches the processor to Protected

; Mode. If an external procedure must be accessed from

; customrominit, be sure to use a JWP instruction if the rom

; initialization node is RAM LESS

nop
)%

% define(custom.init_protected_node) (%

; Place any board initialization code here which nmust be done

; imrediately after the ROM I nitialization Code has switched the
; systemto Protected Mde

i

chkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkk
i

push ds
push es
push fs
push gs
mov  edx, cr2
push dx
call mx4_init ; m x4_init(cpu_siQg)

call init_486 ; /* enabl e 486
internal cache */
pop gs
pop fs
pop es
pop ds
)%

% define(customclear_rnc) (%

i

; Procedure clear_rnc which is called after switch to protected node
code_rom segnent er usel6 public

i

142 Chapter 9 Developing Applicationsfor ROM



Dummy procedure clear_rnc. The real clear_rnc procedure is

required for Multibus Il systens. Therefore, if your target
systemruns on Miultibus Il, coment out this dummy clear_rnc
procedure by placing a ';' in front of each of its four lines.

public clear_rnc

;clear_rnc proc
; ret
;clear_rnc endp
code_rom ends

)%

% define(nonitor_break_option) (%

Variable used to indicate if the user wishes to break to the

SDM noni t or upon conpl etion of the ROM I nitialization Code and entry
into the nucleus initialization code. Set to OFFH if nmonitor break is
desired, otherw se set to O.

NOTE: Only set MONI TOR BREAK to OFFH i f you have i SDM configured into
the i RMX application system

PUBLI C  MONI TOR_BREAK
MONI TOR_BREAK DB OH
) %
To verify that the iIRMX Nucleus initialization code has been entered, set the SLV

entry in the SDB screen to OFFH (you can change this later if you do not want SDM
configured in your final system).

With the "DebugOp" macro modified and the output device initialized, the following
ASCII characters will appear on aterminal connected to your output device:
1 <====== Sent to output device by initialization code above
2 <====== Sent to output device immediately after call to custom_init_real_mode
macro - will probably be overwritten by the next character if code
switches successfully into protected mode
3 <====== Sent to output device immediately after cal to
custom_init_protected_mode macro

Programming Techniques Chapter 9 143



144

After the series 5,

Sent to output device before microprocessor type is determined

Next 8 characters are the base addressin RAM in reverse order at which
theiRMX GDT will be placed

0 <===== Trandates to 18000H

o O O - @

Sent to output device as delimiter before the iIRMX GDT has been copied
from nonvolatile memory to RAM and expanded

Next 8 characters are the base addressin RAM in reverse order of the
iRMX GDT just prior to loading it using an LGDT instruction; thisisthe
address to which the LGDT instruction will point

0 <===== Trandates to 18000H

o O O - @

Sent to output device immediately after LGDT instruction has been
issued; ROM Initialization Code now running out of theiRMX GDT

Sent to output device immediately after LIDT instruction has been issued;
ROM Initialization Code now running out of theiRMX IDT

Sent to output device immediately after LTR instruction has been issued;
ROM I nitialization Code now running out of atemporary Hardware Task
defined inthe iIRMX GDT

Sent to output device immediately before jumping to the IRMX Hardware
Task; the ROM Initialization Code has just set up the iIRMX Hardware
TSS to reflect the new Free Space Memory base address

6, 7, and 8 appear on the terminal, the flow of control leavesthe

ROM Initialization Code and enters the iIRM X nucleus initialization code.

Chapter 9

Developing Applicationsfor ROM



Testing the Application

There are two ways to execute the test application. Y ou can execute the receive
program from the Human I nterface during RAM-based testing or as a user job which
is executed from ROM on the Multibus 11 target.

To run the receive application from the Human Interface on the Multibus |1 target,
attach to the /rmx386/demo/rom/mix4demo directory containing the application and

type:
- receive <CR>

No messages will be displayed and the program will continue to run until terminated
by a Ctrl-C character.

The receive program waits to receive a message at port 0x801 sent by the sendmb?2
application. When it receives the message, it forms a new message and returnsit to
sendmb2.

To run the receive application from ROM, first follow the directionsin this chapter to
generate the application and burn the ROMs. Install the ROMsin the target and then
apply power to the system.

To test whether the receive application is running successfully, regardless of whether
it runs from the Human Interface or from ROM, execute the sendmb?2 program.
From the Human Interface on another Multibus |1 board, attach to the
/rmx386/demo/romVmix4demo directory containing the application and type:

- sendnmb2 slot_id <CR>

Where dot_id isthe dot number of the Multibus Il agent running the receive
application.

The sendmb2 program sends a message to port 0x801 on the Multibus 11 agent
running the receive program.

Thefinal display from the sendmb2 program is:

Attenpting to send 50 nessages to slot X
Messages sent/received [50]
Program terni nated successful ly.

Programming Techniques Chapter 9 145



146 Chapter 9 Developing Applicationsfor ROM



Developing Applications
for Multibus Il

This chapter provides a conceptual explanation for most of the Multibus |1 examples
provided with the iIRMX OS. These examples provide a more complete
understanding of message passing techniques using the IRMX OS.

Code Examples

Each example in the manual includes a brief description of the example. Source code
for each example is provided with theiRMX OS.

D Note

The files dcomext.h and dcomlit.h are common to the examplesin
this chapter.

The source code for the examples are located in the /rmx386/demo/c/mb2/intro
directory. To attach to this directory, type:

- af /rnx386/deno/c/ nb2/intro <CR>

To generate the proper executable 32-bit modules for these examples, run the
generation command (DOS batch file) for your compiler:

Compiler Generation Command
iC-386 demo - make

Microsoft C - mscdemo

Watcom C - watdemo

If each host has its own disk, enter this command on both host'sterminals. If one of
the hosts is diskless, use the file server to generate the example.

Programming Techniques Chapter 10 147



Examples Using Nucleus Communication System

Calls

The examplesin this chapter are presented in an order similar to their usein areal
system. The examples step you through these concepts:

Module

icscan.c

tranport.c

sndrsvp.c

revrsvp.c

sndmsg.c

dcsndmsg.c

revmsg.c

dcrcvmsg.c

sndfrag.c

revfrag.c,
sfrag.c

Use

Scanning the system to determine what boards are in the system. This
example runs independently of all the other modules.

Creating a data transport protocol port to use in message passing.

Sending an RSV P message to another board and waiting for areply.
This module must be run with revrsvp.c or sndfrag.c.

Answering an RSV P message from the receiving board. This module
must be run with sndrsvp.c.

Sending a contiguous buffer. This example must be run with either
rcvmsg.c or dercvmsg.c.

Sending a data chain message. This example must be run with either
rcvmsg.c or dercvmsg.c.

Receiving a contiguous buffer. This example must be run with either
sndmsg.c or desndmsg.c.

Receiving a data chain message. This example must be run with either
sndmsg.c or desndmsg.c.

Sending a fragmented message. This example must be run with
sndrsvp.c.

Receiving a fragmented message.

|:| Note

The examples make certain assumptions about the locations of the
host boards in the Multibus I system that they run on. The
REMHOSTID definition in the sndrsvp.c, sndmsg.c, dcsndmsg.c,
sfrag.c examples assume the processor location board isin dot 0.
Change this definition if you want to change the remote host to any
processor board in the board.

148 Chapter 10 Developing Applicationsfor Multibus |1



Interconnect Space Example - iscan.c

Before passing messages between agents (boards) in your system, you need to
determine what boards are in your system and the message addresses (cardd ot
number for boards on the PSB) for the boards. Writing a board scanner task will
provide you with thisinformation. This task accesses an interconnect register,
allowing you to dynamically determine host 1Ds, board type, and multiple
occurrences (instances) of a board type.

This section presents an example of getting the interconnect information for an entire
system. The example performs the board scan, get the slot number and board type of
each board in the system and places the information into an array of structures called
sys_map. When the board scan is complete, sys_nmap is displayed on the console
screen.

Figure 10-1 presents a board-scanning algorithm. The read statementsin this figure
refer to therg_get_interconnect system call. For amap or template of a particular
board's interconnect registers, refer to the board's hardware reference manual.

FORi = 0 to nunber of slots nminus 1
DG,
Read board(i) vendor ID register;
I F vendor ID <> 0 then
DG,

Read board(i) class and subclass ID registers /*
Det er mi ne
board type */

Wite the board information into the system nmap

END;
ELSE;
Wite "enpty' into the sys_map for the slot number
END;
END;
Get ID of |ocal host
FORi = 0 to nunber of slots nminus 1
DO
Print slot nunbers and board types to consol e screen
END;

Figure 10-1. Board Scanning Algorithm

Programming Techniques Chapter 10 149



In the fourth line of the board scanner algorithm, a vendor ID of O (for PSB hosts
only) indicates that either the board was manufactured by a non-licensed vendor or
the cardslot isempty. If you are also scanning theiLBX |1 bus, replace the O with
OFFFFH.

To run the board scanner example, type:
- icscan <CR>

The source code for this example islocated in the /rmx386/demo/c/mb2/intro
directory.

Creating a Port for Message Passing - tranport.c

Once you have information on what boards are in your system, the next step isto
create a port for message passing and associate a buffer pool withit. This module
creates a buffer pool, releases a number of 400H byte buffersto it, creates a data
transport type port, and then creates a token to use as a reference to the port.

The source code for this example islocated in the /rmx386/demo/c/mb2/intro
directory.

Sending Data Using Send_rsvp

150

Now that you have information on the boards in the system and a data port, you are
ready to send datain message form. The next example illustrates one of the most
common message passing formats, the request/response, typically used between two
iRMX hosts. Two terms, client and server, are used to describe the boards involved
in request/response messages. The client isthe requesting board and the server isthe
responding board.

Figure 10-2 showsthe logical representation of the message-passing model for a
reguest/response transaction. A task on the client board initiates the transaction by
sending an send_rsvp call to awell-known port on the server board (see

Figure 10-3). Because the ports on aremote board cannot be dynamically
determined, this example assumes a port that is created on all boards as a starting
point for message passing. Once you have ahost _i d for aremote board
(REMHOSTID), you combine it with the port _i d (REMPORT) of the well-known
port to create the socket for the destination of a message. When the server board
receives the message, it replies with the send_reply call (see Figure 10-4). The
reguest/response messages continue until the data requested in the original send_rsvp
system call is received by the task on the client board.

See also: send_rsvp, send_reply, System Call Reference

Chapter 10 Developing Applicationsfor Multibus |1



For this example, we assume:
»  The port on the client board has one buffer large enough for the requested data.
»  The port receiving the RSV P message is not being used as a sink port.

Board issuing the RSVP call Board replying to the RSVP call
Client Board —_————— 1 Server Board
‘ Bus Interface Bus Interface ‘
‘ RECEIVE RECEIVE ‘
tocalcPU | ® LT T T D > M
T T @
AV @ o oY A
D AN . SEND : SEND ) |
@ \ | : } i | ‘
: I [ B TR N DR -
> & @ qaske
TASK 1 } ‘
| \
T ———— "
Operations that are transparent to calling tasks
LEGEND

"""" > From Client Board
— From Server Board

< —-

Message Passing Bus

10.

W-0305

Task 1 on the Client board issues a send_rsvp system call. In an RSVP/REPLY transaction,
the board that issues the call is the client; the board that replies is the server.

The Nucleus Communication Service (NCS) turns the information from the send_rsvp system
call into a message then sets the buffer space for the expected reply.

The Message Passing Coprocessor (MPC) sends the message across a message passing bus
to the remote agent specified in the send_rsvp system call.

The CPU on the server board receives a PIC interrupt because a Multibus Il message has been
received.

The NCS on the server board directs the message to the appropriate port (and, therefore, task).

Task 2 responds with a send_reply system call that contains information about the data being
sent.

The NCS on the server board turns the information in the send_reply system call into a
message that is sent by the MPC.

The message travels across the message passing bus, an operation transparent to the
operating systems on both boards.

The MPC on the client board places the message into the buffer that was set up in step 2, and
then sends an interrupt to the CPU, informing it of the completion of the message transaction.

The NCS on the client board directs the message to the correct task using the port ID
(REMPORT). The CPU on the client board is aware of operations in steps 1, 2, 9, and 10.

Figure 10-2. An RSVP/REPLY Transaction between Two iRM X Hosts

Programming Techniques Chapter 10 151



dient

Server

152

Figure 10-3 is an algorithm for the client board in this transaction.

boar d
Call an external procedure called get$dport that returns a
TOKEN for the local port to be used in the RQBSENDSRSVP cal | .

Initialize the socket structure, declared externally.
Set the message size to be zero |ength.

Initialize the global variable rsvp_size to the LI TERAL RSVPB
(128 bytes).

| ssue the RSVP systemcall using the previously initialized
vari abl es.

Use t he RQPRECEI VE$SREPLY systemcall to wait for an answer.

Send the reply nmessage, "This is a send$reply nessage" to the
consol e screen.

Exit fromthe exanple.
Figure 10-3. Algorithm for the Client Board

Figure 10-4 is an algorithm for the server board in this transaction.

boar d

Call an external procedure, get$dport, that returns a TOKEN to
be used in the RQRECEI VE and RQSSENDSREPLY cal | s.

Perf orm an RQSRECEI VE usi ng the TOKEN returned from get $dport.

Perform an RQBSEND$REPLY on successful conpletion of the
RQSRECEI VE.

I|F the data arrives correctly (msg_ptr <> NL)
Return the buffer to the buffer pool.

End server procedure.

Figure 10-4. Algorithm for the Server Board

Chapter 10 Developing Applicationsfor Multibus |1



The send message example must be run with the corresponding receive message
example. To run these examples, first type this command on the host in slot O, or in
the dlot as server defined by the REMHOSTID parameter:

- rcvrsvp <CR>
Then type this command on the host in any dot:
- sndrsvp <CR>

The source code for this example islocated in the /rmx386/demo/c/mb2/intro
directory.

Sending and Receiving Messages

This section presents examples of sending and receiving buffers (messages) either as
contiguous buffers or as data chains. The exampleis presented in two modules, one
that sends a message and one that receivesit. A port's ability to receive messagesin
data chain form is set according to the attributes of the port's associated buffer pool.

The programs for sending messages:

File Action Object

sndmsg.c Send Contiguous buffer
dcsndmsg.c Send Data chain buffer
rcvmsg.c Receive Contiguous buffer
dcrcvmsg.c Receive Data chain buffer

The source code for this example islocated in the /rmx386/demo/c/mb2/intro
directory.

Programming Techniques Chapter 10 153



Receiving a Message

The receive example must be run with the corresponding send message example. To
run areceive example, first type one of these commands on the server inslot O, or in
the dlot as server defined by the REMHOSTID parameter:

- rcvmeg <CR>  for sending a contiguous buffer
or
- dcrcvnmeg <CR> for sending adata chain

After setting the host in slot 0 to receive, run the respective send example on another
host. After receiving the message, the host terminal in slot O displays:

Message received by [rcvmsg|dcrcvimeg] as a
[contiguous buffer|data chain] is as follows:
This is the message sent by [sndnsg|dcsndnsg] as

a [contiguous buffer|data chain].

Sending a Message

The send example must be run with a receive message example. To run asend
example, type one of these commands on the host in any slot other than O:

- sndnsg <CR> for sending a contiguous buffer
or
- dcsndnsg <CR>  for sending adata chain

Sending a Message in Fragments

154

This section presents an example of sending and receiving a message that is broken
into fragments. The example is presented in two modules, one that sends the
fragmented message and one that receivesit. A port's ability to receive messagesin
fragment form is set according to the attributes given to the port at the time of its
creation.

The send fragment example must be run with the send RSV P procedure. To run
these examples, first type this command on the server in dlot 0, or in the dot as server
defined by the REMHOSTID parameter:

- sndfrag <CR>

This procedure breaks the data into fragments and sends them to a processor board.
Then type this command on the host in any dot other than O:

- sndrsvp <CR>

Chapter 10 Developing Applicationsfor Multibus |1



This procedure receives the fragmented data and displaysit on the host terminal from
which the sndr svp command was executed:

This is a reply sent in fragnments.

Receiving a Message in Fragment Form

This section presents an example of sending a message and receiving it in fragment
form. The exampleis presented in two modules. The first module, sfrag, initiates a
transaction which forces receiving in fragment form. The second module, revirag,
receives the message and printsit on the console screen. To run these examples, first
type this command on the server in dot O, or in the slot as server defined by the
REMHOSTID parameter:

- rcvfrag <CR>

Then type this command on the host in any dot other than O:
- sfrag <CR>

The host terminal from which the sf r ag command was executed displays:
This is areply to a fragnented nessage.

The host terminal in dot O displays:

This was received via fragnentation.
This is the second fragnent.

The Name Server Example

Thisisthe most complex example provided with the iIRMX OS. This example
implements a table that dynamically catalogs the names of all the ports created in a
system. Two tasks, one for remote requests and one for local requests, manage the
name server table.

The remote server task uses both control and data messages to service requests. The
local server services requests through data mailboxes. The name server tableis
implemented as a circular list which is accessed by procedures that insert or delete
port names, get or change socket information, and set up the table for these accesses.

When a client board makes a request to the name server, the request is sent, the
calling task waits for areply, and the name server returns information specific to the
request (e.g., the result of modifying an entry in the table or the socket for aremote
port).

Programming Techniques Chapter 10 155



The example, written in PL/M, for the name server islocated in the
/rmx386/demo/plmymb2/nservr directory. This command makes the directory
containing the name server example the current directory.

- af /rnx386/deno/ pl m nb2/ nservr <CR>
To generate the executable name server, run the makefile by entering:

- make <CR>

|:| Note

If an error is generated after running the makefile, you may need to
modify the file. Edit thisfile and delete the WORD16 switch from
thisline:

PLMFLAGS=$( DEBUG) Set (r_32) word16
The name server can be run as a background job to one of the processors. To start
the name server running as a background job, enter:
- background nservr > nservr.doc <CR>
See also: background command, Command Reference

Two modules demonstrate the use of the name server: nssndmsg and nsrcvmsg,
which execute asapair. Nsrcvmsg must execute first. 1t posts a socket with the
name server under the name receiver. Nssndmsg then executes, sending the name
server alook-up request on the name receiver. Nssndmsg then sends a message to
receiver and nsrcvmsg prints the message:

On the same host in which you invoked nservr as a background process, enter:
- nsrcvnsg <CR>

On another host, enter:
- nssndnsg <CR>

The host terminal displays:
This is a sinple message.

This process can be demonstrated on either host board, but the order of module
execution cannot be changed.

156 Chapter 10 Developing Applicationsfor Multibus |1



The General Examples

The two examples presented in this section are located in the
/rmx386/demo/plmymb2/general directory. The concepts they demonstrate are:

e Example 1. sending and receiving unsolicited messages
» Example2: sending and receiving asynchronous solicited messages
To examine the examples, attach their directory by entering:

- af :rnx:deno/ pl m nb2/ general <CR>

To generate the executable modules for all of these examples, run the makefile by
entering:

- nmake <CR>
If each host hasits own disk, this command must be entered on both host's terminals.

If one of the hostsis diskless, enter this command on the host which is acting as its
fileserver.

|:| Note

The module utils.lit contain default client and server PSB slot
definitions. They can be changed for running the examples. All
PSB dlot numbers are in hexadecimal.

Programming Techniques Chapter 10 157



Example 1: Sending and Receiving Unsolicited Messages

This example demonstrates sending and receiving unsolicited messages. It can be
executed on any Multibus 11 boards running the OS or on any single board running as
both the CPU and the communications board (short-circuit mode). The client and
server boards must be situated in slot CLIENT$PSB$SLOT and
SERVERS$PSB$SL OT, respectively. These dats are defined in utils.lit, located in
this exampl€e's directory.

In this example, the client is defined as host 4 and the server as host 2.

Execution of Client and Server Programs

This table shows the various steps the client and server programs perform during the
execution of example one.

Table 10-1. Flow of Program Execution for Example 1

Steps Program Action
1 client Enable in-line exception handling
server Enable in-line exception handling
2 client Create port object; associate port with a default remote socket
server Create port object; associate port with a default remote socket
3 client Prompt user for message

Encrypt message
Send message asynchronously to server
Wait for response from board in slot SERVER$PSB$SLOT

4 server Receive message and display in encrypted form
Decrypt message and display in decrypted form
Send decrypted message back to client board

5 client Display decrypted message
Prompt user for another message

This cycle repeats steps 3 through 5 until six messages have been sent and received.
The programs then terminate.

158 Chapter 10 Developing Applicationsfor Multibus |1



Running Example 1
To run this example, first enter this command on the host in dlot 4:
- clnt32 <CR>
The terminal displays:
Enter any string of characters:
Second, enter this command on the host in slot 2:
- srvr32 <CR>

The server will wait for input from the host in ot 4. For example, your message on
host 4 can be;

My exciting nmessage! <CR>

When host 0 receives the message, it first displays the encrypted version, then the
decrypted version.

Message received is: [encrypted version is displayed]
Converted nessage: M exciting nessage!

The server then sends the converted message back to the client, which displays the
message and prompts for the next input.
Message received is: M exciting nessage!

Enter any string of characters:

After six messages, both programs terminate.

Programming Techniques Chapter 10 159



Example 2: Sending Asynchronous Solicited Messages

This example demonstrates sending asynchronous solicited messages and using
buffer pools. It can be executed on any Multibus |1 boards running the OS or on any
single board running as both the CPU and the communications board (short-circuit
mode). The client and server boards must be situated in slot CLIENT$PSB$SLOT
and SERVER$PSB$SLOT, respectively. These slots are defined in utils.lit, located
in this example's directory.

In this example, the client is defined as host 4 and the server as host 2.

Execution of Client and Server Programs

This table shows the various steps the client and server programs perform during the
execution of example two.

Table 10-2. Flow of Program Execution for Example 2

Steps Program Action
1 client Enable in-line exception handling
server Enable in-line exception handling
2 client Create port object; associate port with a default remote socket
server Create port object; associate port with a default remote socket
3 client Create buffer pool; associate pool with the port created earlier
server Create buffer pool; associate pool with the port created earlier
4 client Create buffers and release them to the pool
server Create buffers and release them to the pool
5 client Prompt user for message
Encrypt message and send message asynchronously to server
Wait for asynchronous send transmission message
6 client Wait for response from board in slot SERVER$PSBS$SLOT
server Receive encrypted msg from board in slot CLIENT$PSB$SLOT
Move message from buffer pool buffer to application buffer
Release the buffer back to the buffer pool
Decrypt message and display decrypted form
Send decrypted message synchronously to client board
7 client Release buffer back to buffer pool; display decrypted message
Prompt user for another message

This cycle repeats steps 5 through 7 until eight messages have been sent and received.
The programs then terminate.

160 Chapter 10

Developing Applicationsfor Multibus |1




Running Example 2
To run this example, first enter this command on the host in dlot 4:
- solclnt32 <CR>
The terminal displays:
Enter any string of characters:
Second, enter this command on the host in slot 2:
- solsrvr32 <CR>

The server will wait for input from the host in ot 4. For example, your message on
host 4 can be;

- M exciting nessage! <CR>

When host 0 receives the message, it first displays the encrypted version, then the
decrypted version.

Message received is: [encrypted version is displayed]
Converted nessage is: M exciting nessage!

The server then sends the converted message back to the client which displays the
message and prompts for the next input.

Message received is: M exciting nessage!
Enter any string of characters:

After eight messages, both programs terminate.

Programming Techniques Chapter 10 161



162 Chapter 10 Developing Applicationsfor Multibus |1



Developing Applications in
Assembly Language

This chapter provides information on invoking system calls from assembly language.
It also provides an example of an interrupt handler and an OS extension interface.

Filesreferred to in this chapter are located in the /rmx386/demo/asmintro directory.

Invoking System Calls from Assembly Language

To invoke system calls from assembly language programs, the assembly language
programs must obey the Fixed Parameter List (FPL) procedure-calling protocol used
by C and PL/M. For example, if your ASM 386 program uses the SendM essage
system call, then you must call the RgSendM essage interface procedure from your
assembly language code.

In general, to call aC or PL/M procedure, do this:
1. Push all the parameters onto the stack.

Push the parametersin the order they are listed in the system call reference
manuals; that is, starting with the leftmost parameter and working towards the
right.

Push long pointers (complete addresses consisting of a selector and an offset)
selector (as a 16-bit value) first, then the offset (as a 32-bit value for PL/M 32-bit
mode).

2. Cdl the procedure.

The CALL instruction also places the return address of your calling procedure
onto the stack. This enables control to return to your program after the system
call completes.

Programming Techniques Chapter 11 163



Some system calls return values. 1n assembly language, the returned values are
availablein registersaslisted in Table 11-1.

Table11-1. RegistersContaining Returned System Call Values

Type 32-bit Register
BYTE AL

WORD AX

DWORD EAX

INTEGER AX

POINTER DX:EAX
SELECTOR AX

Thefilereg.inc (used by the interrupt handler example) contains macro definitions
used to produce common source code for iIRMX Il and I11. These macro definitions
define the register values shown in Table 11-1. The interrupt handler description on
page 167 shows how to invoke these definitions.

When writing assembly language routines that call iC-386 or PL/M-386 interface
procedures, use the compact model with ASM near calls.

If some of your application code iswritten in either C or PL/M, your assembly
language code should use the same interface procedures as those used by your code.
However, if your application is written entirely in assembly language, using the
compact interface library and coding your application to make NEAR calls will
produce size and performance advantages.

See also: Using Compact and Large Memory Models, Chapter 7

164 Chapter 11 Developing Applicationsin Assembly L anguage



Thislisting of reg.inc shows definitions for common sourced code.

: macro definitions for common sourced code
% F (%W EQ 3) THEN (%

%def i ne (ax) (eax)
Y%def i ne (bx) (ebx)
Y%def i ne (cx) (ecx)
%def i ne (dx) (edx)
%def i ne (si) (esi)
%ef i ne (di) (edi)
Y%def i ne (bp) (ebp)
Y%def i ne (sp) (esp)
Y%def i ne (rmov16) (movzx)
Y%def i ne (pusha) (pushad)
%def i ne (popa) (popad)
Y%def i ne (pushf) (pushf d)
%def i ne (popf) (popf d)
%def i ne (iret) (iretd)
%def i ne (dw) (dd)
%def i ne (dd) (dp)

) ELSE (%
%def i ne (ax) (ax)
%def i ne (bx) (bx)
Y%def i ne (cx) (cx)
Y%def i ne (dx) (dx)
Y%def i ne (si) (si)
%ef i ne (di) (di)
%def i ne (bp) (bp)
%def i ne (sp) (sp)
Y%def i ne (rmov16) (mov)
%def i ne (pusha) (pusha)
%def i ne (popa) (popa)
Y%def i ne (pushf) (pushf)
Y%def i ne (popf) (popf)
Y%def i ne (iret) (iret)
%def i ne (dw) (dw)
%ef i ne (dd) (dd)

) Fl %

Programming Techniques Chapter 11 165



This example shows how to call iIRMX system calls from assembly language. The
exampl e assumes that the compact segmentation model is used.

DATA segnment RW PUBLI C
seg_tok DW?
excep Dw ?
DATA ENDS

CODE segnent ER PUBLIC
extrn rqcreatesegnent: near
my_prog PROC near

Get addressability to paraneters

bush ebp
nmov ebp, esp

; Save caller's DS and obtain | ocal DS
push ax

push ds

mov ax, data

nov ds, ax

Typi cal ASM st atenents

seg_tok = rqg$create$segnent (400H, @xcep);

’m)vzx ax, 400H

push eax

push ds

push of fset excep
call rgcr eat esegnent
nov seg_t ok, ax

| F except <> E$OK THEN GOTO error;

cnp excep, O
jnz error

Typi cal ASM st atenment s
rry_pr;)g ENDP

CODE ENDS
END

166 Chapter 11 Developing Applicationsin Assembly L anguage



Interrupt Handler Example

The assembly language application, inthand.asm, provides an example of an interrupt
handler. Theincludefile, reg.inc, used by this application provides macro definitions
used for various versions of theiRMX OS. The proper definitions are invoked using
one of these ASM invocation lines (from makefile):

asnB6 .obl .Isl
asn286 .obl2 .ls2
asm886 .obj .Ist

Generating the Interrupt Handler Example

The inthand.asm file contains the assembly |anguage code for the interrupt handler.
To examine the example, attach to the directory by entering:

- af /rnx386/denpb/asnintro <CR>

The inthand.asm file contains the assembly |anguage code for the interrupt handler.
To generate the object file from inthand.asm, run the makefile utility by entering:

- make <CR>

OS Extension Example

This assembly language code provides a listing of the recommended interface to an
OS extension.

Once a call gate has been reserved for use as an OS extension (either using the ICU
inthe iIRMX 11l OS, or using the rmx.ini configuration), it can be bound to an
application using therge_set_os_extension system call. Other applications can
access the OS extensions using assembly language interface procedures described
below.

Programming Techniques Chapter 11 167



168

This ASM module is a sample interface to Call Gate 441, which is one of the
user-accessible gates. The OS Extension procedure tied to the gate has this FAR

externa interface:

out $char: PROCEDURE(val ue, status$p) EXTERNAL;

GATE 441 equ 441
$GENONLY

% DEFI NE( CALL_G( ARG) )
(DB 9AH

DD 0, %ARG8)

Name Interface

Code Segnent ER PUBLI C
Publ i ¢ Qut char

CQut char Proc Near

; PLM CALL - CALL OQUT$CHAR (VALUE, @BTATUS);
Figure11-1. OS Extension Codein Assembly L anguage

Chapter 11 Developing Applicationsin Assembly L anguage



; STACK FRAME AFTER PUSHI NG EBP

; ESP -> | OLD EBP |  [EBP]

; | I

; | OFFSET OF RET. ADD. | [EBP + 4]

; | I

; | OFFSET OF STATUS | [EBP + 8]

; | I

; | SEGMVENT OF STATUS | [EBP + 12]

; | I

; | VALUE ( PARAMETER) | [EBP + 16]
push ebp

nov ebp, esp

push dword ptr ss:[ebp + 16] ; val ue

push dword ptr ss:[ebp + 12] ; selector of status_p
push dword ptr ss:[ebp + 8] ; offset of status_p

%al | _g( GATE_441)

; CALL gate_441 - Invoke entry procedure through the call gate

I es edi, pword ptr ss:[ebp + 8] ; Load status_p in es:ed
nov cx,es:[edi] ;. Load condition code

;o in cx
j cxz done ;I f CX=0, then no error

; Error processing code |F CX <> 0

done
pop ebp
ret 12

Qut char Endp

Code Ends
End

Figure11-1. OSExtension Codein Assembly Language (continued)

[y

Programming Techniques Chapter 11 169



170 Chapter 11 Developing Applicationsin Assembly L anguage



Developing Applications in PL/M 1 2

This chapter contains specific information about using PL/M to create application
code. It discusses:

e Making callsto the operating system

» Usinginclude filesand libraries

e Linking or binding object modules

* A multitasking demo program that uses iIRMX system calls
e A <Ctrl-C> handler example

Y ou should already be familiar with these concepts as well as the PL/M language and
PL/M segmentation models.

See also: PL/M-386 Programmer's Guide,
I ntroducing the iRMX Operating Systems

Y ou can compile, bind, and run the demo program from the Human Interface, or you
can use the code and this discussion purely as an example of how to perform certain
operationsin PL/M under the OS.

Invoking System Calls from PL/M

Invoking iIRMX system callsisjust like calling any PL/M procedure. Because you
do not define the system calls in your programs, they must be external procedures.
Therefore, include external declarations for each system call you invoke.

See also: Binding Y our Code to Interface Libraries

Programming Techniques Chapter 12 171



Including External Declaration Files

172

When you call a procedure that is not defined in your current program module (a
separately compiled portion of code), declare that procedure to be external. The
binder can then satisfy the referencesto that procedure asit links the program
modules together. A program in one module can then call a procedure in another
module.

Include files are supplied with the IRMX OS. These files are placed permanently in
one location and provide the external procedure declarations for all iRMX system
calls. The declarations are written once, placed in an include file, and then used in
place of repeating the actual declaration in each module.

For example, to use the PL/M include file nuclus.ext, place this statement at the
beginning of your PL/M source code. This statement declares all the Nucleus system
callsto be external.

$i ncl ude(/rnmx386/inc/ nucl us. ext)

See also: Header files, System Calls, for alist of external declaration include files
for PL/M which are supplied with iRMX

Because each include file contains external declarations for many system calls,
including a particular file will probably result in external declarations for several
system calls your program does not invoke. These extra external declarations pose
no problems for the compilers and cause no error conditions.

Chapter 12 Developing Applicationsin PL/M



Binding Your Code to Interface Libraries

After you have written your programs and inserted include statements for the
necessary system calls, compile the code and bind it to the appropriate iIRM X
interface library.

Interface libraries supplied with the iIRMX OS provide a standard interface to the
system calls. The interface libraries contain procedures that correspond to iRM X
system calls. These procedures have the same names and use the same parameters as
the system calls. The interface procedure performs operations to invoke the actual
system call. For example, iIRMX interface procedures make callsto call gates when
accessing system calls.

After compiling the program code, satisfy the external references to the system calls
by using BND386, which binds the compiled code to the appropriate interface
libraries. There are several interface librariesto choose from. The library you
choose depends on the system calls and the segmentation model used.

See also: Interface Libraries, System Call Reference, for the general iIRMX
libraries and the UDI libraries

Using the UDI calls exclusively enables an application to be easily transported
between Intel OSs. To help you choose which library to bind your program to,
consider this:

e If your code includes only UDI system calls or if it usesthe 1/O support provided
by the language, bind your program only to the UDI library.

» |If your code does not invoke UDI system calls, or you do not plan to include the
language's I/0 support, bind the code just to the iIRMX library.

» If your code invokes both UDI and other iRMX system calls, bind the code to
both of the libraries for the segmentation model you chose.

Programming Techniques Chapter 12 173



PL/M Multitasking Example

The PL/M example program is called exampl32. In addition to studying this program
and its discussion, you can use the files as a starting point in devel oping your
application code. This could save you time when creating the source module, adding
include statements, or producing code that attaches the console, etc.

These sections provide:
e Anoverview of the demo program
»  Thelocation of the code in the standard iRM X directory structure

e Information on how to build and run the program

Example Overview

The multitasking example demonstrates some iRM X programming concepts by
printing prompts to the console screen and accepting input from the user. To
accomplish this, the program uses two tasks: theinitial task and a second task called
Task2. The main program code contains the initial task and it creates Task2.

The function of the initial task in the main program code is this:

e Set up the programming environment by creating objects, the second task, etc.
*  Prompt the user for and capture keyboard input

»  Passthe captured input to Task2

»  Exit with an error after receiving three user-supplied keystrokes

The function of Task2 isto receive user-supplied keystrokes from the initial task and
process them. The processing consists of printing the received keystroke to the
screen once every second.

Because the job uses two tasks, each task can perform its function separately from the
other task. Communication and data passing between the initial task and Task2 are
handled using some basic iRM X programming techniques.

174 Chapter 12 Developing Applicationsin PL/M



Location of Multitasking Example Code
Thefilesfor the multitasking example are in the /rmx386/demo/plm/intro directory.

Before attempting to understand this example, produce hard copies of the source code
or be able to view them from a console screen.

These files are the source files for the examples:

makefile File to generate 32 bit example

demo.plm Main program code containing the initial task
task2.plm Second task code

crbpool.plm Buffer pool code

except.plm Exception handling code

strng.plm String manipulation utility

condec.plm Decimal conversion utility

Compiling and Binding the Multitasking Example Code

In addition to the example source code files, thereis afile you can use to compile and
bind the example. The file makefile compiles and binds the source files using
PL/M-386 and BND386 and creates two 32-bit executable programs named
exampl32 and tskcom32.

|:| Note

The example, tskcom32, isthe PL/M version of the task
communication example described in Chapter 5, Debugging
Applications.

Before running makefile, first attach to the directory where the examples are
kept. Then run the makefile utility:

- af /rmk386/denmo/plmintro <CR>
- make <CR>

Now run the example by entering:

- tskconmB2 <CR>

Programming Techniques Chapter 12 175



The make command executes makefile. Thisinitiates the compilation and binding of
all the job's source code files.

|:| Note

If you wish to generate the example as another user, create a new
directory, copy the exampl€e'sfiles to the new directory, move to
that directory and invoke makefile. Generating the example from
another directory enables you to alter source code, while keeping
the original version intact.

Running the Multitasking Example

176

Y ou should now have afile called exampl 32 that you can execute. To run the
example, type its name as follows:

- exanpl 32 <CR>
After typing the filename, the example prompts you with this message:
i RMX PL/ M Exanpl e, VX.y

Wel cone to the PL/ M Deno Progranmn

At the pronmpt you will be given 60 seconds to hit any key.
If you do not hit a key the dempb will continue anyway.
You may hit an "E" if you wish to exit the program

You now have <xx> seconds left to hit a key.

At this point, the example is executing code in the prompt$and$wait procedure from
the file demo.plm. The example is counting down from 60, waiting for you to press a
key to begin the demo. The string <xx> in the previous screen is the decrementing
count. To continue, press akey. After pressing any key, the example clears the
screen and prompts you with this message:

Pl ease hit a key which will be forwarded to task2 for
processi ng.

Assuming you enter the letter X for the first keystroke, the main program, containing
theinitial IRMX task, reads the X from the terminal and passesit onto Task2. Task2
wakes up and prints out this message to the screen:

TASK2 PROCESSI NG
Pl ease hit a key which will be forwarded to task2 for
processi ng

Chapter 12 Developing Applicationsin PL/M



The X characters that Task2 prints to the screen continue to appear at the rate of one
per second. The character will repeat indefinitely until you enter another keystroke.
Also, notice that the prompt to enter another keystroke is buried in the middle of
Task2's processing message and the string of lettersthat it displays. A close
examination of the initial task and Task2 show the synchronization used to time the
output of these tasks. The tasks use a semaphore to achieve task communication.

Entering the next two keystrokes concludes the example. This output assumes you
enter the characters Y and Z:

TASK2 PROCESSI NG Y

Pl ease hit a key which will be forwarded to task2 for
processi ng

TASK2 PROCESSI NG Z

Thi s concludes the PL/M Deno Program
This denp now exits by generating an internal error.

| NTERNAL ERROR AT # 340 STATUS = 0023: E$SUPPORT

After you enter the final keystroke, the initial task recognizes that you have entered
three characters. This signalsthe code to end the program. Notice that the initial
task ends the program before Task2 can begin printing the third character to the
console screen.

Programming Techniques Chapter 12 177



Programming Concepts lllustrated by the
Multitasking Demo

This example demonstrates the use of iRM X system calls from a PL/M program. For
simplicity, in the discussions of these calls, the iIRMX system call prefix (rq) is
usually dropped. The example illustrates nine common iIRMX programming

178

concepts as listed below.
In-line exception processing

Using literal files

Getting and setting terminal
attributes

Creating tasks

Catal oging objects

Using response pointers
during inter-task
communication

Using buffer pools

Performing screen
input/output

Performing simultaneous
input/output

Chapter 12

The processing of all errors resulting from iRMX
system callsin your application code rather than
using the default exception handler, which deletes
tasks that get errors.

Using separate files that contain PL/M data structure
definitions and literal definitions needed to make
system calls. Providing separate literal filesrelieves
you from repeating data structure and literal
definitions throughout modul es.

Using iRM X system callsto get the current terminal
attributes. After getting and altering the attributes,
you can use another iRMX system call to set them.

Using an iIRMX system call to create additional
tasks from an existing task.

Describing to the system where key objects the job
usesreside. Tasks can easily share cataloged
objects.

Instructing server tasks where to respond with
information that signals the completion of a request
task. Response pointers allow server tasks to keep
track of which request tasks they are responding to.

Creating areas of memory for ajob that tasks can
use as a common memory resource. Once a buffer
pool and its buffers have been created, the system
can use the memory by simply requesting and
releasing buffers.

Reading and writing data to the physical terminal
screen.

Tasks performing 1/0O operations independent of one
another. For example, one task may wait for
terminal input while another task processes data and
writesit to the terminal.

Developing Applicationsin PL/M



In-line Exception Processing

In-line exception processing provides away for your application to handle errors
generated from system calls. 'Y ou can process them in-line, use the default exception
handler, or assign your own exception handler. The example in this section shows
how to process exceptionsin-line. In order to do this, first create your own in-line
exception handler routine, and then, explicitly pass control to your exception handler
routine instead of to the default exception handler routines.

To get the OS to pass control to your routine instead of a default routine, reset the
value of the current task's exception mode and code your tasks to call your exception
handler routine.

The example uses a procedure called set $except i on in the file except.plmto reset
the exception mode to avalue of zero. A value of zero tells the OS never to pass
control to default exception handler routines. If you examine the beginning code of
both theinitial task and Task2, you will see that the very first executable statement is
acall totheset $except i on procedure as follows:

CALL set $excepti on( NOSEXCEPTI ONS) ;

This call passes a zero value parameter (NOSEXCEPTI ONS supplied from aliteral file)
to the procedure. When set $except i on executes, it calls

get $except i on$handl er , which returns exception handler information to the data
structure addressed by except $i nf o.

The procedure then replaces the exception mode with zero using this statement:
except $i nf 0. rode = except $node;

The procedure then calls set$exception$handler to reset the exception handler
information with the altered data addressed by except $i nf o.

See also: set_exception_handler and rq_set_exception_handler system calls,
System Call Reference

The technique of setting the exception mode to zero is not always desirable. You
should understand managing exceptions before deciding on a specific technique.

See also: Exception handlers, Chapter 3,
Exceptional condition management, System Concepts

Programming Techniques Chapter 12 179



Since (with exception mode set to 0) the OS will no longer pass control to exception
handler routines, your tasks must check for individual errors or provide your own in-
line exception handler routine. This example uses a procedure called er r or $check
in the file except.plm as the inline exception handler routine. Notice that in the
source code for the initial task and Task2, acall to er r or $check follows every
system call. This code isfrom task2.pim.

CALL rg$s$open (co$conn, WRI TESONLY, 0, @tatus);
CALL error$check(510, st atus);
mai | $box = rg$l ookup$obj ect (CALLER, @3,' MBX'),

I NFI NI TESWAI T, @tatus);
CALL error$check(520, st atus);
pool $t kn = r g$l ookup$obj ect (CALLER, @6, ' BUFFER ),

I NFI NI TESWAI T, @tatus);
CALL error$check(530, st atus);

Each time a system call is made, a subsequent call is madeto er r or $check; passing
it aline number and aword containing the status from the previous system call. The

routineer r or $check teststhe value of st at us and returnsto the calling task if it is
zero (no error occurred). If the value of st at us isnot zero (an error occurred), then

error$check builds an error message, printsit to the screen, and exits the job.

The line numbers passed as the first parameter in callsto er r or $check have no
implicit meaning. These numbers are arbitrary numbers that can be associated with a
system call. Thistechnique enables you to easily find a system call that generates an
error.

Use of Literal Files

Within the iIRMX directory structure are find Intel-supplied literal files. Thesefiles
are located in the directory /rmx386/inc and have afile extension of .lit. Literal files
provide many data structure definitions used by iRM X system calls and useful literal
definitions for PL/M code. Use include statements to include those literal files that
apply to acodefile.

These PL/M statements are from the initial task's code in the file demo.plm. These
statements show how to include six literd files.

$include(/rnmx386/inc/error.lit)
$i ncl ude(/rnmx386/inc/common.lit)
$i ncl ude(/rnmx386/inc/nstexh.lit)
$include(/rnmk386/inc/tscrn.lit)
$i nclude(/rnx386/inc/iaiors.lit)
$include(/rnmx386/inc/io.lit)

180 Chapter 12 Developing Applicationsin PL/M



Table 12-1 shows which Intel-supplied literal files are useful for various types of

system calls.

Table12-1. PL/M Literal Filesfor Usewith iRMX System Calls

Nucleus System Call Literal File
create$job nstexh.lit
get$exception$handler nstexh.lit
get$task$tokens ngttok.lit
get$type ngttyp.lit
set$exception$handler nstexh.lit
BIOS System Call Literal File

a$get$connection$status
a$get$file$status

iagtcs.lit, io.lit
iagtfs.lit, iotyp.lit, io.lit

asopen io.lit
a$physical$attach$device io.lit
a$seek io.lit
a$special tscrn.lit
EIOS System Call Literal File

create$io$job
e$create$io$job
exit$io$job
get$logical$device$status
get$logical$attach$device
s$get$connectionPstatus
s$get$file$status

nstexh.lit, iexioj.lit
nstexh.lit

iexioj.lit

io.lit

io.lit

isgtcs.lit, io.lit
isgtfs.lit, ifltyp.lit, io.lit

s$open io.lit

s$seek io.lit

s$special isiors.lit, tscrn.lit
Human Interface System Call Literal File
c$get$output$connection hgtocn.lit
c$get$output$pathname hgtocn.lit
message passing calls nmesgs.lit
buffer pool calls nbpool.lit

Programming Techniques

Chapter 12

181



182

Aside from the literal files shown in Table 12-1, two other important literal files
exist: common.lit and iaiors.lit. The file common.lit contains many literal
declarations commonly used in PL/M programming. Y ou should include thisfilein
all your PL/M programs. Thefileiaiors.lit contains the structure for the 1/0 Result
Segment (IORS) returned in most BIOS system calls. Y ou should include thisfilein
all your PL/M programs that make BIOS system calls.

Chapter 12 Developing Applicationsin PL/M



Resource and Stack Size Guidelines

This appendix discusses guidelines for using memory to support iRM X object types.
It also discusses stack size requirements and calculations.

Resource Requirements

The Nucleus obtains memory from the calling job's memory pool when creating
objects or borrowing memory. When a job borrows memory from its parent, the
Nucleus uses three 16-byte paragraphsin addition to the amount it uses for object
creation. Table A-1 liststhe memory requirements of theiRMX OS.

Table A-1. NucleusMemory Requirements

Object Number of 16-byte Paragraphs Required

job 3 + object directory

object directory 1 per entry in the directory

task 5 + 6 (if the task uses the NPX) + stacksize/16 (if the Nucleus
allocates the stack)

mailbox 2 + size of high performance queue/4

semaphore 2

region 2

segment 1 + segsize/16

extension 2

composite 3 + number of positions available for components/8

Programming Techniques Appendix A 183



The BIOS obtains memory from the calling job's memory pool when creating objects.
These values are shown in Table A-2.

Table A-2. BIOS Memory Requirements

Object Number of 16-byte Paragraphs Required

1/0 Result 4 (5 for an internal IORS that the operating system creates
Segment when attaching a device)

Connection to 6

named file

Connection to 4

physical file

User object 3 (minimum)

RAM Requirements

This information hel ps estimate the amount of RAM needed to use the EIOS. The
descriptions that follow state explicitly from which pool the RAM istaken. Usethis
information when deciding how large to make the memory pools of the jobsin your
application.

Attaching a Logical Device

Each time one of your tasks usestherq_logical_attach_device system call, the EIOS
uses 98 bytes of RAM from your job's pool and 64 bytes of RAM from the pool of
the EIOS job created during the configuration process. This RAM isin addition to
the RAM required by the BIOS for a device connection.

Both quantities of RAM are eventually returned to the memory pools from which
they originated, but they are returned at different times. The memory taken from the
EIOS poal isreturned only when the device is detached. In contrast, the memory
taken from your job's pool isreturned as soon therq_logical _attach device system
call finishes running.

184 Appendix A Resour ce and Stack Size Guidelines



Creating an 1/0 Job

Whenever one of your tasks creates an /O job, the EIOS uses 176 bytes of RAM
from the pool of thisnew I/O job. Thisisin addition to the RAM used by the
Nucleusto create the job. All of this memory returnsto the pool of the parent job
after the 1/0 job has been deleted.

In addition to the memory requirement, rg_create io job andrge create io_job
also require five entries in the object directory of the 1/O job being created.

See also: Configuration, Programming Concepts for DOS and Windows,
Memory Screens, ICU User's Guide and Quick Reference

Opening a Connection

When atask opens afile connection using therq_s open system call, the EIOS uses
some RAM from the pool of the calling job to create objects. The amount of RAM
required depends on whether the connection is opened for buffered 1/0 or
nonbuffered 1/0O.

» |If the connection is not buffered, the EIOS uses 64 bytes of RAM.

e |f the connection is buffered, use this expression to compute the RAM size. This
amount is a function of the buffer size in bytes (S) and the number of buffers (N):

nunber _of _bytes = 80 + 5N + N(S + 64)

Regardless of whether the connection is buffered or not, all RAM returns to the
memory pool when the connection is closed or deleted.

Other RAM Requirements

For system calls other than those discussed above, the EIOS has varying memory
requirements. However, when you make an EIOS call, the call requires no more
than:

e 300 bytes of your job's memory pool
* 400 bytes of the calling task's stack

This RAM returnsto your job's pool as soon as each system call finishes.

Programming Techniques Appendix A 185



Object Counts

Y ou can assume that the EIOS creates no more than 10 objects during the execution
of any system call.

Except in afew cases, all of these objects are deleted before the system call has
finished running. The few exceptions are the system callsthat explicitly create
objects at the request of your application tasks, such astherg_s attach_file system
call (which creates afile connection) and the rg_logical _attach_device system call
(which creates a device connection).

Stack Size Limitations

Y ou must know the stack size limitations depending on your application. Three
primary cases are listed below and are explained in these sections:

* Tasksthat create iIRMX jaobs or tasks
e Interrupt handlers

* Tasksto beloaded by the Application Loader or tasks to be invoked by the
Human Interface

To use thisinformation, you should already be familiar with the System Debugger
(SDB), and should know which system calls are provided by the various layers of the
OS. You also should know the difference between maskable and nonmaskable
interrupts.

Stack Size Limitation for Interrupt Handlers

186

Interrupt handlers, invoked by maskable or nonmaskable interrupts, use the stack of
the interrupted task. The OS assumes a maximum of 256 bytes of stack for interrupt
handlers. Exceeding this maximum causes stack overflow errors.

To stay within the 256 byte limitation, restrict the number of local variables that the
interrupt handler stores on the stack. For interrupt handlers serving maskable
interrupts, you can use up to 20 bytes of stack for local variables. For handlers
serving nonmaskable interrupts, use no more than 10 bytes. The balance of the

256 bytesis consumed by the rq_signal_interrupt system call and by storing the
registers on the stack.

See also: Interrupts, System Concepts

Appendix A Resour ce and Stack Size Guidelines



Stack Guidelines for Creating Tasks and Jobs

When you create atask by invoking therg_create task system call, you must
specify the size of the task's stack. Since every new job has an initial task created
simultaneoudly with the job, you must also designate a stack size when you create a
job.

Specifying a stack size that istoo small causes the task to overflow its stack. If the
stack overflows, the hardware will detect the error and cause the Nucleus to invoke
an exception handler. The exception handler either deletes the offending task or
activates SDM. Specifying a stack size that istoo large wastes memory. Ideally, you
should specify a stack size that is only dlightly larger (500 to 1000 bytes) than what is
actually required. This also minimizes problems resulting from unforeseen
situations.

These sectionsiillustrate arithmetic and empirical techniques for estimating atask's
stack size. For best results, start with the arithmetic technique and then use the
empirical technique to adjust your origina estimate.

If your programs are recursive, do not rely solely on either of these techniques. Stack
usage in recursive routines varies because of run-time events and should be tracked
carefully.

Stack Guidelines for Tasks to be Loaded or Invoked

If you are creating a task which will be loaded by the Application Loader or invoked
by the Human Interface, you must specify the size of the task's stack during the bind
process. These techniques will help you estimate stack size requirements.

Arithmetic Technique for Estimating Stack Size

The arithmetic technique slightly overestimates atask's stack size. Estimate the stack
sizeby:

»  Accommodating the needs of two interrupt handlers: one for maskable interrupts
and one for nonmaskable interrupts.

» Allocating enough stack to satisfy the requirements of the most demanding OS
layer to satisfy the requirements of all system calls used by your task.

«  Fulfilling requirements of the task's code (for example, the stack used to pass
parameters to procedures or to hold local variablesin reentrant procedures).

Programming Techniques Appendix A 187



Estimate the size of atask's stack by adding the amount of memory required to
accommodate these factors. This section explains how to compute these values.

See also: Stack Size Limitation for Interrupt Handlers

Table A-3 shows the stack size required by atask to support the system calls of each
layer. These figuresinclude the 256 bytes required by the interrupt handlers.

Table A-3. Stack Requirementsfor Interruptsand System Calls

Layer Number of Bytes Required
uDI 6000

Human Interface 5000

C libraries 5000

Application Loader 2000

Extended 1/0O System 2000

Basic I/0 System 1200

Nucleus 800

Computing Stack Size

188

To compute stack size, add these numbers:

e The number of bytesrequired for interrupts and system calls, according to the
most demanding layer you intend to use.

»  Theamount of stack required by the task's code. Thisamount is determined by
looking at the information about the STACK segment in the .mp1 map file
thatBND386 produces. This usage isthe result of calling local procedures and
using the stack for local variables when your code is reentrant.

This sum is a conservative, but reasonable, estimate of atask's stack size
requirements. For more accuracy, use the sum as a starting point for the empirical

method.

Appendix A

Resour ce and Stack Size Guidelines



Empirical Technique

This technique starts with a larger-than-needed stack and uses SDM to determine
how much of the stack isunused. Once you have found out how much stack is
unused, you can modify your task-creation and job-creation system calls to create
smaller stacks.

To use this technique, change your program code to break to the monitor at the
beginning and at the end of the program. Use the convention appropriate to your
application for breaking to the monitor.

WhencodinginC, usethevoi d causeinterrupt (unsigned char 3);
Statement.

*  When coding in PL/M, use the CAUSES$I NTERRUPT( 3) statement.
*  Whenusing ASM, use| NT3.

*  When using the Human Interface to load the application, use the debug
command.

When SDM first receives control, fill the unused portion of the stack with a value that
would not normally appear there. For example, use the SDM's s command to fill the
remaining stack with avalue of OCCH.

Continue running the program. When SDM receives control at the end of the
program, examine the stack and see how much of it still contains the value you filled
in earlier. That portion was unused throughout the entire execution of the program.

Use this technique to estimate stack usage; the value you determine usually will not
be exact because atypical run of the program may not take the deepest path (use the
most stack) through the program. Also, atypical run may not encounter interrupts on
these paths.

Programming Techniques Appendix A 189



190 Appendix A Resour ce and Stack Size Guidelines



Index

A

a gpecid call, 44
a specid call, 44
a writecal, 30, 38
alignment
with iC-386 compiler, 60
alphonse.pimfile, 63
application development, see also resource
requirements
assemblers, 3
binary compatibility withiRMX 11, 80
debugging tools, 6
design concepts, 15
functional partitioning, 23
memory separation, 23
optimizing controls, 4
outline, 7
porting code to 32 bits, 79
privilege, 23
utilities, 5
ASM example, see examples, ASM code
ASM language
advantages of compact model, 164
assembler invocation line examples, 167
caling conventions for PL/M interface
procedures, 164
compact model example, 166
demo files, location, 163
incrementing an index, 86
interrupt handlers, 86
macro defs for common sourced code,
listing, 165
mixed code, ASM and PL/M, 164
parameter passing, 166
porting code to 32 bits, 85
returning pointers, 86
segmentation model calling conventions,
164

Programming Techniques

system calls, 163
system calls
from ASM source code, 166
assemblers, 3

B

binary compatibility withiRMX 11, 80
BIOS memory requirements, 184
BLD386 utility, 5

BND386 utility, 5, 54

board-scanning algorithm, 149

buffer pools, 32, 36

buffer poals, 33

build settings, MSVC, 56

C

C
binding code, 54
condition codes, 54
debug switches, 62
debugging, 62
interface libraries, 54
iRMX-provided elements, 55
C demonstration program, 15
C example
cataloging objects, 25
inter-task communication, 28
IORS processing, 26
task creation, 22
type checking, 22
Cinterfacelibrary, 62
c_format_exception cal, 42
catalog_object call, 25
cataloging objects, 21
clibjobfile, 17
code blocks, displaying, 69
commands

Index

191



debug, 189 code blocks, displaying, 73

common sourced code, macro defs listing, ASM code display, 69
code, 165 code listing, PL/M, 65
common.lit file, 182 corrected program description, 64
compact/large models deadlock, 75
exception handler restrictions, 105 disassembled code
RAM compiler control, 105 changing, 74
restrictions, 105 displaying, 72
ROM includefiles, 65
compiler control, 105 job tree screen output, 75
selecting size, 104 mailbox display, 76
compiler controls objects, viewing, 75
noalign control, 4 re-entering the SDM monitor, 72
nodebug control, 4 register contents, 69
optimize control, 4 running tasks, 77
segmentation control, 4 running the code, 67
compilers SDM commands, 67
features, 4 single line execution, 70
iC-386, 3 stack contents, examining, 76
non-Intel, 3 tokens, displaying, 75
PL/M-386, 3 definition files, 9
supported, 3 delete_segment cdll, 27, 44
condec.pim file, 175 delete_segment call, 44
connection, RAM needed to open, 185 demo.cfile, 15
crbpool.c file, 15, 33 demo.cfile
crbpool.plm file, 175 system calls, 16
create buffer call, 32 demo.plm file, 175, 176
create buffer_pooal call, 32 development tools, 2
create buffer_pooal call, 32 directories
create_mailbox call, 30 /rmx386/inc, 172
creste_segment call, 32, 34 dx SDM command, 68
create_segment call, 32,34
create task call, 24 E

creating objects, 21
end_init_task cal, 123

D environmental conditions, see C, condition
codes
data chain messages, 153 error conditions, see C, condition codes
dcomext.h file, 147 exampl32 example, 176
dcomlit.n file, 147 example code summary, 2
dcrevmsg.cfile, 148, 153 examples
desndmsg.c file, 148, 153 ASM interrupt handler, 167
ddt SDM command, 71 debug PL/M, 63
debug session debugging, 67
approaches, 67 breskpoints, 68
breakpoints, 68 developing for different environments, 9
changing disassembled code, 72 device driver, PL/M, 89

192 Index



interrupt handler, 167

synchronizing tasks with mailboxes, 64
examples, ASM code

compact model, 166

interrupt handler, 167

invocation lines, 167

pushing parameters onto the stack, 166

system calls, source code, 166
except.cfile, 15, 42
except.plmfile, 175, 179
exception handler

restrictions, memory model, 105
exception handlers

32-bit and 16-hit, 40
exception processing, 40, 42

PL/M, 179, 180
external procedures

calsinPL/M, 172

F

flat model
advantages, 112
disadvantages, 112
execution model, 116
overview, 111
paging, 113
porting compact/large, 119
subsystem, 114
system calls, 118
flat.jobfile, 115, 116
fragmented messages, 154
FTP (File Transfer Protocol), 12

G

gaston.pim file, 63
get_exception_handler, 42
get_exception_handler call
in PL/M example, 179
get_priority cal, 24

H
header files, C, 57

Programming Techniques

1/0Ojob creation, 185
iaorslit file, 182
iC-386
#include statement, 53
aignment, 60
header files, 53
icscan.c file, 148, 149
ICU, 9
includefiles
PL/M, 172,180
includefiles, C, 57
init.pimfile, 63
Interactive Configuration Utility (ICU), 9
interconnect space example, 149
interface libraries
PL/M, 173
interrupt handler, 48
interrupt handlers
example, ASM code, 167
porting to 32 bits, 86
interrupt processing, 46
interrupt task, 49
interrupts
stack size, 186
inter-task communication, 28
inthand.asm file, 167
inthand.c file, 46
inttask.c file, 46
IORS (Input/Output Result/Request Segment)
processing, 26

L

large model, See compact\large model
LIB386 utility, 5
libraries

Cinterface, 62

system cdl interface, 62

uDlI, 62
literd files

PL/M, 180, 181
loading the stack, ASM example, 166
logical device, RAM needed, 184
lookup_object call, 180

Index 193



M

mailboxes, 76
makefile, 15
MAP386 utility, 5
measure.csd file, 51
memory model, See segmentation model
memory requirements
BIOS, 184
EIOS object counts, 186
EIOS system calls, 185
logical device, 184
nucleus, 183
RAM, 184
stack size limitations, 186
stacks, 187, 188, 189
Microsoft C tools, 55
migrating existing code, see porting code
MSvVC
build settings, 56
Multibus development, 9
Multibus 11
data chain message, 153
fragmented messages, 154, 155
receiving buffers, 154
sending buffers, 154
Multibus 11
board scanner, 149
client board algorithm, 152
examples, 147
general examples, 157
name server, 155
port creation example, 150
sending data, 150
server board algorithm, 152
multiple buffering, 50

N

n SDM command, 70

name server example, 155

noalign compiler control, 4
NOALIGN macro, 60

nodebug compiler control, 4
non-Intel C compiler support, 55
nservr file, 156

nucleus memory requirements, 183

194 Index

nuclus.ext file, 172

O

object counts, EIOS number, 186
optimizing application code, 4

P

paging.job file, 114
parameter passing
ASM example, 166
performance gain, 81
PL/M example
demonstration program, 174
exception handlers, 180
includefiles, 172, 180
literd files, 180
running the demo program, 175
PL/M language
demonstration program, 174
exception processing, 179
external procedure calls, 172
get$exceptionhandler call, 179
includefiles, 172, 180
interface libraries, 173
literal files, 180, 181
lookup$object call, 180
set$exception$handler call, 179
plm code examples, 63
porting code to 32 hits
ASM code differences
incrementing an index, 86
interrupt handlers, example, 86
register usage, 85
returning pointers, 86
C code differences, 84
C code differences, 84
device driver example, 89
no switch method, 82
performance gain, 81
PL/M code differences
CMPB function, 83
FINDB function, 83
OFFSET, reserved word, 83

WORD_16 variablesto WORD_32,

83



porting application, 81
WORD16 switch method, 82

programmer errors, see C, condition codes

R

RAM compiler controls, 105
RAM required
I/0Ojobs, 185
RAM requirements, 184
ramdrv.org file, 109
ramdrv.p38 file, 108
revfrag.cfile, 148
rcevmsg.c file, 148, 153
revrsvp example, 153
revrsvp.c file, 148
Read-only Memory, See ROM
receive.c file, 126
receive_message cal, 44
receive_message cal, 27, 44
receiving buffers example, 154
reg.incfile, 164
register contents, examining, 69
register usage
clearing registers, 85
incrementing an index, 86
returning pointers, 86
release_buffer call, 34
release_buffer call, 30, 32, 36
release_buffer call, 32, 34, 36
reset_interrupt call, 41
resources requirements, 183
response pointers, 28
rmx.ini file, 167
rmx_c.h file, 84
rmx_def.h file, 42
rmx_err.h file, 54
rmx_err.h file, 54
rmxerr.h file, 54
ROM
configuring the OS, 127
debugging, 140
developing an application, 125
example application, 126
ICU configuration, 122
placing an application into, 125
segment map, 130

Programming Techniques

testing an application, 122
ROM compiler controls, 105
rq_a specia cal, 44
rq_a writecdl, 38
rq_a writecdl, 30
rq_c_format_exception call, 42
rq_create_buffer call, 32
rq_create_buffer_pool call, 32
rq_create io_job call, 185
rq_create_ mailbox call, 30
rq_create_segment call, 34
rq_create_segment call, 32
rq_create task call, 187
rq_delete segment call, 44
rq_end_init_task call, 123
rq_get_exception_handler call, 42

in PL/M example, 179
rq_logical_attach devicecall, 184
rq_lookup_object call, 180
rq_receive_message cal, 27, 44
rq_release_buffer cal, 32, 36
rq_release_buffer cal, 34
rq_reset_interrupt call, 41
rq_s specia cal, 44
rq_send_messagecall, 163
rq_send_unitscal, 30
rq_set_exception_handler call

in PL/M example, 179
rq_signal_interrupt call, 186
rq_wait_iocal, 30
rq_wait_iorscal, 30
rq_wait_iorscal, 27
rqe_create io_jobcall, 185
rqe_set_os extensioncal, 167
RUNSG utility, 7

S

s specid cal, 44
screen 1/0, 38
sdhiii file, 67
SDM commands
vu, 76
segmentation compiler controls, 4

segmentation model, Seeflat model. See

compact\large model
segmentation models

Index



caling conventions, ASM language, 164
compact
advantages, ASM code, 164
ASM example, 166
send_message call, 163
send_reply call, 150
send_rsvp cal, 150
send_unitscall, 30
sending buffers example, 154
sendmb2.c file, 126
set_exception_handler call
in PL/M example, 179
sfrag.cfile, 148
sndfrag.cfile, 148
sndmsg.c file, 148, 153
sndrsvp example, 153
sndrsvp.cfile, 148
Soft-Scopellll, 6
stack contents, examining, 76
stack size, see also memory requirements
computing, 188
estimating, 187
estimating, 189
limitations, 186
requirements for interrupts, 187
tasksand jobs, 187
strng.plm file, 175
subsystems
advantages of, 106
closed, 106
configurations, 107
creating closed, 107
creating open, 109
open, 107
overview, 105
synchronousinitialization, 123
system call interface library, 62

196 Index

System Debugger (SDB), 6

T

target environments, 9
task creation, 24
task creation, 22
task synchronization, 28
task synchronization examples, 64
task2.cfile, 15
task2.cfile, 24
task2.pim file, 175
terminal attributes, C, 44
tools, development, 2
transport.c file, 148
transport.c file, 150
type definitions
example, 85
NATIVE_WORD, 85

U
UDI library, 62

Vv

vj SDM command, 75
vo SDM command, 75

W
wait_jocal, 30

X

x SDM command, 69



	iRMX® Programming Techniques
	Quick Contents
	Notational Conventions

	Contents
	Chapter 1: iRMX Application Development Environment
	Examples Provided with the Operating System
	Application Development Tools
	Assemblers
	Intel Compilers
	Application Building Utilities
	Debugging Tools

	Application Development Process

	Chapter 2: Target Environment Development
	Generating Target Files
	Generating a Target File Example

	Chapter 3: Designing an Application
	Application Categories
	Measurement
	Process Control
	Data Acquisition

	Design Concepts
	C Multitasking Demo Program
	Demo Code Location
	Running the Multitasking Demo
	Programming Concepts

	Creating and Cataloging Objects
	Operations on Objects
	Creating Tasks

	Processing Input/Output Result Segments (IORS)
	Processing an IORS Code Example

	Using a Response Pointer During Inter-task Communication
	Task Synchronization/Data Passing Code Example

	Using Buffer Pools
	Creating Buffer Pools Code Example
	Using Buffer Pools Code Example

	Methods of Screen Input/Output
	Screen Input/Output Code Example

	In-line Exception Processing
	Writing Your Own Exception Handler
	Exception Handler Control Flow
	Exception Processing Code Example

	Getting and Setting Terminal Attributes
	Getting/Setting Terminal Attributes Code Example

	Interrupt Processing
	Interrupt Handlers
	Interrupt Servicing
	Interrupt Latency


	Chapter 4: C Compiler-specific Information
	Using the iC-386 Compiler to Develop iRMX Applications
	Using the C Language Header Files
	Binding Your Code to Interface Libraries
	Condition and Error Codes

	Using Non-Intel Tools to Develop iRMX Applications
	Using Microsoft C /C++ Development Tools

	Using Header Files
	Existing iC-386 Applications
	Built-in functions
	Calling Conventions
	Structure Data Alignment
	Alignment with iC-386
	Supported Memory Models

	Using Cstart Startup Code
	Stack Size

	Using Interface Libraries
	Debugging with the Soft-Scope Debugger
	Summary of Debug Switches


	Chapter 5: Debugging Applications
	Example Application Program
	Include Files
	Compiling and Running the Code

	Debugging the Program
	Debugging Approach #1
	Debugging Approach #2

	Viewing System Objects
	Alternative Debugging Techniques

	Chapter 6: Porting Applications
	Porting Code from 16-Bits to 32-Bits
	Using Existing 16-Bit Code
	Advantages of 32-Bit Application Code
	Porting Entire Applications to 32-Bits

	Porting 16-Bit PL/M Code to 32 Bits
	Differences Between PL/M-386 and Previous PL/M Code

	Porting 16-Bit C Code to 32 Bits
	Using the rmx_c.h Header file
	Using the NATIVE_WORD Type Definition

	Porting 16-Bit ASM Code to 32 Bits
	Example: Porting a Device Driver
	xtstdn.lit

	Migrating Code to a PC-Bus Platform
	Using a Numeric Processor Extension (NPX)

	Segmentation Considerations

	Chapter 7: Using Compact and Large Memory Models
	Choosing a Memory Model
	32-Bit Applications
	16-Bit Applications
	Porting Applications
	Using ROM and RAM Compiler Controls

	Subsystems
	Subsystem Advantages
	Closed Subsystems
	Open Subsystems
	Subsystem Configurations
	Creating a Closed Subsystem
	Creating an Open Subsystem


	Chapter 8: Using the Flat Memory Model
	Flat Model Overview
	Flat Model Advantages and Disadvantages

	Executing Flat Model Applications on iRMX
	Using Flat Model With Paging Support

	Paging Subsystem
	The Paging Job

	Flat Model Support Code
	Conversion of Flat Model Pointers in System Calls
	The Flat Model Job

	Execution Model
	System Calls
	Existing System Calls

	Using the Flat Model System Calls
	Virtual Memory
	Porting Compact/Large to Flat

	Debugging Support

	Chapter 9: Developing Applications for ROM 
	Testing a System
	Loading an Application into ROM

	Preparing an Application to Reside in ROM
	Methodology for Burning an Application into ROM
	Developing a ROM-based Application System
	Overview of the ROM-based Application Example
	Generating the ROM-based Application Example
	Configuring the iRMX OS
	Debugging the ROM Initialization Process

	Testing the Application

	Chapter 10: Developing Applications for Multibus II
	Code Examples
	Examples Using Nucleus Communication System Calls
	Interconnect Space Example - iscan.c
	Creating a Port for Message Passing - tranport.c
	Sending Data Using Send_rsvp
	Sending and Receiving Messages
	Receiving a Message
	Sending a Message

	Sending a Message in Fragments
	Receiving a Message in Fragment Form
	The Name Server Example
	The General Examples
	Example 1:  Sending and Receiving Unsolicited Messages
	Example 2:  Sending Asynchronous Solicited Messages


	Chapter 11: Developing Applications in Assembly Language
	Invoking System Calls from Assembly Language
	Interrupt Handler Example
	Generating the Interrupt Handler Example

	OS Extension Example

	Chapter 12: Developing Applications in PL/M
	Invoking System Calls from PL/M
	Including External Declaration Files
	Binding Your Code to Interface Libraries
	PL/M Multitasking Example
	Example Overview
	Location of Multitasking Example Code
	Compiling and Binding the Multitasking Example Code
	Running the Multitasking Example

	Programming Concepts Illustrated by the Multitasking Demo
	In-line Exception Processing
	Use of Literal Files


	Appendix A: Resource and Stack Size Guidelines
	Resource Requirements
	RAM Requirements
	Attaching a Logical Device
	Creating an I/O Job
	Opening a Connection
	Other RAM Requirements

	Object Counts
	Stack Size Limitations
	Stack Size Limitation for Interrupt Handlers
	Stack Guidelines for Creating Tasks and Jobs
	Stack Guidelines for Tasks to be Loaded or Invoked
	Arithmetic Technique for Estimating Stack Size
	Empirical Technique


	Index




