
 July 2002

 TCP/IP for the
 iRMX® Operating System

TenAsys Corporation
1600 NW Compton Drive, Suite 104

Beaverton, OR 97006

(503) 748-4720

FAX: (503) 748-4730

www.tenasys.com

 ii

TenAsys, iRMX and INtime are registered trademarks of TenAsys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
is a trademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

July 2002

Copyright 2000-2002 by TenAsys Corporation

All rights reserved.

TCP/IP for the iRMX Operating System iii

Quick Contents

Getting Started and User's Guide
 Chapter 1. Overview of TCP/IP
 Chapter 2. Installing and Starting TCP/IP
 Chapter 3. Using TELNET
 Chapter 4. Using File Transfer Protocols
 Chapter 5. Using NFS

Network Administration
 Chapter 6. Network Services and Daemons
 Chapter 7. Configuring and Administering Network Files
 Chapter 8. Commands for the Network Administrator
 Chapter 9. Tunable Parameters

Reference
 Chapter 10. Files
 Chapter 11. TCP/IP Components
 Chapter 12. Library Functions
 Appendix A. Recommended Reading
 Glossary
 Index

iv

Notational Conventions
This manual uses these conventions:

• All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the H radix character (for example, 0FFH) or a leading 0x (for example, 0x0FF).

• Bit 0 is the low-order bit unless otherwise stated.

• Syntax is printed like this.

• In interactive sessions, computer output is printed like this and
user input appears like this.

• System call names, command names, and processes like jobs or daemons
appear in bold.

Directory names and filenames are shown as seen from the iRMX prompt. To
access files from the DOS prompt on an DOSRMX system, use a backslash (\) in
pathnames rather than the forward slash (/) shown here.

Filenames are shown as they would appear on the iRMX or UNIX operating
systems. On an DOSRMX system using the EDOS file driver, some filenames are
truncated to match the DOS 8.3 character limits. For example, the arpbypass utility
is installed as arpbypas, and its associated help file is arpbypas.hlp. From the iRMX
prompt you can use either the truncated name or the full name to view such
filenames or to invoke utilities.

This manual uses this to indicate command syntax; do not enter these characters as
shown:

[] Surrounds optional items

| Separates one or more items, from which you choose one

italic A variable name. Do not enter as shown; substitute the appropriate
item, such as a command, value, or filename.

✏ Note
Notes indicate important information.

▲▲! CAUTION
Cautions indicate situations that may damage hardware or data.

TCP/IP for the iRMX Operating System Contents v

Contents

Contents ... v

Overview of TCP/IP 1
Connecting to Network Resources.. 1
Using TCP/IP Programs and Utilities ... 3
Administering TCP/IP... 4
Programming with TCP/IP.. 4
Understanding Internet Addresses .. 4

Subnet Addresses ... 6
Special Addresses ... 6

Specifying Domain Names .. 6
Request For Comment (RFC) Reports .. 7

Installing and Starting TCP/IP 9
Before You Begin ... 9

Software Required.. 9
Hardware Required .. 11
Overview of the Setup.. 11

TCP/IP Configuration ... 11
Editing the Hosts File... 12

Using DNS.. 12
Not Using DNS... 12

Configuring TCP/IP as a Loadable Job.. 12
Editing the tcpstart.csd File... 13

Starting and Stopping TCP/IP.. 13
Testing the TCP/IP Setup... 14

Troubleshooting .. 14
General TCP/IP Debugging ... 14

Setting Up a Remote Unix Host for Telnet ... 15
Creating a Terminal Definition for the PC Console... 15
Setting Terminal Characteristics for User Sessions ... 16

vi Contents

Using NFS 19
NFS Concepts ..19
NFS Jobs ..21
NFS Commands ...21
NFS Files ...22
Tuning NFS Performance ..22
NFS Limitations ...22
How NFS Works..23
Starting and Stopping NFS ..24
Sharing File Systems..25
Removing Shared Access from File Systems...28
Attaching NFS Devices..29
Displaying Shared and Mounted File Systems ..31
Reporting RPC Information ...32

Using Telnet 33
Before You Begin ..33
Telnet Modes..33

Starting TELNET..34
Starting in Input Mode...34
Starting in Command Mode...34

Switching Telnet Modes ...35
Using TELNET for a Remote Session ...35

Connecting to the Remote Host ..36
Setting the Terminal Type on a Unix System..37
Terminal Type Strings ...37
Disabling Local Echo on Berkeley Unix Hosts ...38

Entering Commands During the Session ..38
Closing the Remote Connection ...39

Using Telnet for a Local Session ...40
Entering Commands in a Local Session..40
Ending the Local Session..40

File Transfer Protocols 41
Before You Begin ..41
File Transfer Protocol (FTP)..42

FTP Help Information...42
FTP File Transfer Session...43

Connecting to the Remote Host ...43
Using FTP Commands...44
Ending the FTP Session...47
FTP Initialization File ..47

TCP/IP for the iRMX Operating System Contents vii

Network Services and Daemons 49
Ftpd Server .. 50
Telnetd Server ... 51

Configuring Pseudo-terminals for Telnetd... 51

Configuring and Administering Network Files 57
Restricting and Updating Network Databases and Files ... 57

Commands for the Network Administrator 59
Administrative Commands.. 59
Performing Network Tests .. 59

Verifying Network Services... 60
Network Status Test.. 60

Verifying Network Configuration.. 61
Interface Status Test.. 61

Verifying Interface Functionality... 62

Tunable Parameters 65
Determining When to Tune Parameters .. 65
TCP/IP Parameters .. 65

[TCP] .. 65
[UDP].. 66
[RIP].. 66
[IP] .. 66
[ETH0] .. 66
[LO0] .. 67

TCP Job Parameters ... 67
UDP Job Parameters .. 68
Raw IP Job Parameters... 70
IP Job Parameters... 70
DNS Configuration Parameters.. 71
Network Interface Parameters.. 72
Loopback Pseudo-driver Interface Parameters .. 72

NFS Server and Mount Daemon (nfsd) Parameters .. 73
NFS File Driver (nfsfd) Parameters .. 74

Files.. 75
hosts .. 76
protocols.. 78
netrc... 80
services.. 82

viii Contents

TCP/IP Components 85
Protocol Jobs ..86

ip.job ...87
rip.job..88
tcp.job ...89
udp.job ..90

Network Interface Controller (NIC) Jobs ..91
loopback.job..92
edl.job ...93
eepro100.job ...94
ne.job ..95
Tulip.job..96

Library Functions 97
Using Sockets...100

Calling Sequence for Connection-oriented Applications..100
Calling Sequence for Connectionless Applications ..101
Internet Socket Addresses...102
Network and Host Byte Order ..103
Changes From the Standard Socket Interface ...104

Task Priority ..104
Multitasking Considerations ..104

Include Files..105
Example Programs ..105
Compiling ...106
Handling Errors...106
Errno Values for Network Functions..106

Function Reference ..109
accept ..110
bind ...112
bstring ...114
byteorder ...115
connect ..116
ffs ..118
gethostent ..119
gethostid..122
gethostname ..123
getnetent..124
getpeername ..126
getprotoent ..128
getservent ..130
getsockname..132
getsockopt ...134

TCP/IP for the iRMX Operating System Contents ix

inet.. 137
listen ... 139
recv... 141
send .. 144
shutdown .. 146
socket ... 148
socktout .. 151

Recommended Reading 161
TCP/IP... 161
NFS ... 161
Networks ... 162

Glossary... 79

Index .. 87

Tables
Table 11-1. Functions in the Socket Library.. 98
Table 11-2. Functions in the Network Library (continued) ... 99

Figures
Figure 1-1. Hosts Connected on a Network ... 2
Figure 2-1. How TCP/IP Works with iNA 960 Software .. 10
Figure 3-1. Sample NFS Network... 20
Figure 3-2. Defining NFS-shared File Systems .. 27
Figure 3-1. TELNET Modes .. 34

TCP/IP for the iRMX Operating System Chapter 1 1

 Overview of TCP/IP 1

TCP/IP programs are based on a set of protocols called Transmission Control
Protocol/Internet Protocol (TCP/IP). The TCP/IP suite of networking protocols
makes it possible for different brands of computers, running different operating
systems, to supply resources to network users.

This manual describes how to install, use, and maintain TCP/IP networking software
on your iRMX Operating System (OS). This software allows you to communicate
across a network with any other computer running TCP/IP software, regardless of its
operating system.

Connecting to Network Resources
Individual computers on a computer network are called hosts. TCP/IP software lets
you connect to various hosts on a network so that you can use their resources. The
computer you use to make your original connection to the network is the local host.
Any other computer on the network, regardless of its location, is a remote host.

Each host on a network is identified by a number, called an Internet address or IP
address, and an official name. To access a remote host, you must specify its Internet
address, official name, or a valid alias to network software.

The computer and software that originate a network command is the client, because
they request a network service. The computer and software responding to the
request is the server, because they provide the network service. Servers provide
sharable resources; the network gives shared access to many users.

Host configurations and sharable resources vary with individual networks. Check
with your network administrator to determine the layout of your network and the
resources available to you.

Figure 1-1 on page 2 illustrates network connections and possible resources. Print
Servers and File Servers have special responsibilities: they provide network printer
and file storage resources. iRMX systems cannot function as print servers. The host
labeled Gateway acts as a connection, or router, to other networks, whose resources
can also be accessed.

2 Chapter 1 Overview of TCP/IP

W-3402

Gateway

Ethernet Cable

Host

Host

Host

Host

Host

Host

To Other Networks

File Server

Print Server

Figure 1-1. Hosts Connected on a Network

TCP/IP for the iRMX Operating System Chapter 1 3

Using TCP/IP Programs and Utilities
To use TCP/IP programs and utilities, you enter network commands at the iRMX
command line. After you enter a command, TCP/IP software running on the local
host cooperates with TCP/IP software running on the remote host to handle your
transaction.

You can use iRMX TCP/IP programs and utilities in these ways:

• Network File System (NFS) support allows you to access remote devices on
hosts who use iRMX or non-iRMX operating systems.

• The telnet program connects to a remote host that runs a TELNET server.

• File Transfer Protocol (FTP) connects to a host that runs an FTP server and
transfers files between hosts.

The TELNET service provides access to remote hosts on your network and allows
you to use them as if your terminal is directly connected to the remote computers.
While TELNET is running, you can submit commands to control the remote session
and get information about it. To connect to a remote host, you must have the
appropriate authorization and know how to use its OS.

See also: Chapter 3, Using TELNET;
telnet command, Command Reference

FTP transfers files between any two accessible network hosts supporting TCP/IP,
regardless of their OSs. FTP accepts user commands to control the transfer process
and perform additional operations. You don't need to know the OS on the remote
host in order to use FTP. However, you must know the pathnames, filenames, and
names of hosts involved in the transfer.

See also: Chapter 4, Using File Transfer Protocols;
ftp command, Command Reference

TCP/IP includes query commands such as netstat and showmount. The netstat
command symbolically displays the contents of network-related data structures to
show the status of active connections (default), configured interfaces, routing tables,
network statistics, STREAMS buffer allocation failures, and packet traffic. The
showmount command reports information on NFS-shared file systems.

See also: netstat and showmount commands, Command Reference

4 Chapter 1 Overview of TCP/IP

Administering TCP/IP
Chapter 2 describes a minimal configuration needed to start using TCP/IP. There are
other files you can configure and special commands to control and test the
configuration. If you are the network administrator or are configuring your own host
machine, you should understand how to use these files and commands.

For example, one item you can configure is an FTP server. You can set it up so
remote hosts can use FTP to transfer files to and from your local host.

See also: Chapter 2, Installing and Starting TCP/IP;
Chapters 6 through 9

Programming with TCP/IP
The iRMX TCP/IP implementation provides a socket interface to the software, made
popular by Berkeley Unix. You can write applications that make both iRMX system
calls and socket calls, or you can port existing socket applications to this interface.

See also: Chapter 10, TCP/IP Components

Understanding Internet Addresses

To make entries in the configuration files you need to understand the format of
Internet addresses. You will also use either Internet addresses or host names (and
aliases) that represent addresses when communicating with remote systems. If you
already know the format of Internet addresses and names that represent them,
proceed with the installation and configuration instructions in Chapter 2.

The Defense Advanced Research Projects Agency (DARPA) Internet protocol
family is a collection of protocols that utilize the Internet address format. This
family includes the Transmission Control Protocol (TCP), Internet Protocol (IP),
Internet Control Message Protocol (ICMP), and User Datagram Protocol (UDP). A
raw interface is also provided to IP and ICMP.

Internet addresses are also called IP addresses; they use the IP routing protocol. An
IP address is a 4-byte quantity. It is a (net,host) pair, where net identifies a network
and host identifies a host on that network. There are three basic classes of address,
as distinguished by the high-order bits of the address. Class A addresses use an
8-bit net and a 24-bit host; the high-order bit is 0. Class B addresses use a 16-bit net
and a 16-bit host; the high-order bits are 10. Class C addresses use a 24-bit net and
an 8-bit host; the high-order bits are 110.

Because of the size of the host part of an address, the different classes of address
correspond to networks of varying size. The format of the addresses is shown
below, along with the number of hosts possible in each class:

TCP/IP for the iRMX Operating System Chapter 1 5

A

B

C

Byte
1

Byte
2

Byte
3

Byte
4

Host

10 Net Host

110 Net

High-order bits

16,777,214

65534

254

OM03651

Net

Host

0

Class Number of Hosts

The dot notation form of an Internet address consists of one to four numbers
separated by dots (.). Each number can be expressed in decimal, octal (leading 0), or
hexadecimal (leading 0x).

The most common format is a four-part address (a.b.c.d), consisting of four 8-bit
decimal numbers in the range 0-255. This is called dotted-decimal notation. The
four parts are assigned, in order, to the four bytes in the Internet address.

See also: inet function, Chapter 11, for more information about dot notation

You can distinguish between the classes of address by the first number of a dotted-
decimal address. Class A addresses begin with numbers in the range 1-126. (Value
127 is a special case used for the loopback device, described later in this manual.)
Class B addresses begin with numbers in the range 128-191. Class C addresses
begin with numbers in the range 192-223 (there are other special classes of network
in the range 224-255).

Once you know the class of an address, you can tell which part of the address
specifies the network and which specifies the host. For example, in a Class A
address, the first byte is the network number and the last three bytes specify the host.
In the address 89.3.240.9, the network is number 89, and the host is number 3.240.9
on that network. The host address is 89.3.240.9, because it must be specified in
terms of its network. The network address is 89.0.0.0.

See also: hosts and networks files, Chapter 9

✏ Note
iRMX TCP/IP does not currently support IP multicast addressing
(or IP multicasting or multicast addressing).

6 Chapter 1 Overview of TCP/IP

Subnet Addresses
Sites may implement subnet addressing to accommodate a cluster of local networks.
Subnet addressing further divides the local host portion of the address into a subnet
part and a host part. Within the local cluster, each subnet appears to be an individual
network; externally, the entire cluster appears to be a single network. In the example
address 89.3.240.9, you might choose to use one byte of the host part to designate
subnets. In that case, you would interpret the host to be number 240.9 on subnet 3
of network 89.

You enable subnet addressing by specifying a subnet mask for a network interface
and by using the subnet mask when setting up the routes to each subnet.

See also: Tunable Parameters, Chapter 8

Special Addresses
Addresses of all 0s or all 1s are special cases and are not assigned to hosts. The
address 0.0.0.0 means the local host. The address 255.255.255.255 broadcasts to all
hosts on the network to which you are directly connected. An address with the host
part set to all 1s broadcasts to all hosts on a specific network.

In a program, use the local address INADDR_ANY to do wildcard matching on
incoming messages and to mean the local host on outgoing messages. Use the
distinguished address INADDR_BROADCAST to broadcast on the primary network
interface if it supports broadcast. These and other Internet-specific data types are
defined in the include (header) file <netinet/in.h>. This file is normally installed in
the /intel/include directory.

Specifying Domain Names

You often use an alias to specify a host, not an IP address. The :config:hosts file is
one method used to translate between names and addresses. The iRMX TCP/IP
software does not include a Domain Name Service (DNS) server, which is another
method used to translate the names. However, it does include a DNS client. The
client contacts any DNS servers running on other hosts on the network and uses their
name translation services. This section briefly describes the format of domain
names, which is the naming convention generally used for TCP/IP.

The Internet authorities maintain several domains, including:

 arpa used by ARPANET

 com commercial organizations

 edu educational institutions

 mil military groups

TCP/IP for the iRMX Operating System Chapter 1 7

Within the major domains, Internet authorities assign subdomains for use by
organizations. Local authorities in the organizations then assign machine names and
possibly further subdomains.

You specify domain names with dotted notation; myhost.mydept.mycompany.com is
an example. In this name, myhost is the name of the host computer, mydept is a
subdomain assigned by a company, mycompany is a subdomain assigned to that
company, and it is in the com domain because it is a commercial organization. This
is an example of a fully-qualified name, beginning with the host name and ending
with the Internet domain. The name myhost is qualified by its domain
mydept.mycompany.com. Each name must be unique within its domain; there cannot
be two mydept names (of either a host or subdomain) within mycompany.

In a local network you need only a host name to communicate between systems.
However, to communicate by name with hosts on the Internet, you may want to
specify the complete domain names as their official names in your :config:hosts file.

Request For Comment (RFC) Reports
The Internet community uses RFCs to discuss and define TCP/IP. This manual
refers to certain RFCs by number for protocol definitions and details. RFCs are
published by RFC Editor, a group funded by the Internet Society, which is
responsible for the final editorial review of the documents. Their website is at
http://www.rfc-editor.org/.

■■ ■■ ■■

8 Chapter 1 Overview of TCP/IP

TCP/IP for the iRMX Operating System Chapter 2 9

 Installing and Starting TCP/IP 2

The TCP/IP software is installed along with the rest of the iRMX OS under a general
installation. Edit text files to configure the system for your network, following the
TCP/IP software requirements and configuration instructions in this chapter, and
then start the network jobs. This chapter provides additional software requirements
and configuration instructions for TCP/IP. This chapter does not describe the
hardware installation or setup.

See also: Installation and Startup for installation instructions

Before You Begin
During the installation, some new files replace existing files of the same name. The
old files are saved in a different directory. If you install over a previous version of
TCP/IP software, there may be old versions of configuration files that you want to
merge with the new files.

Existing configuration files are preserved during installation, but it is a good
precaution to back up your entire hard drive to tape before beginning the installation.

Software Required
Previous versions of iRMX required that iNA 960 software had to be loaded in order
to provide Ethernet services to the TCP/IP software. That is no longer a requirement,
but it is still possible. The normal arrangement is to use a separate Network Interface
Controller (NIC) driver for the TCP/IP software.

Figure 2-1 on page 10 shows the relationship between TCP/IP software and the iNA
960 software. The two separate stacks are the two sets of network protocols that can
operate simultaneously when you run iNA 960 software, an iRMX network job, and
TCP/IP software. In the center of the figure, note that the EDL NIC driver provides
the direct interface between the TCP/IP NIC driver and the iNA 960 software.

See also: Network User's Guide and Reference for more information about the
layers and multiple subnets in iNA 960 software

See also: Configuring and Administering Network Files, Chapter 6

 Chapter 2 Installing and Starting TCP/IP 10

RMXNET or iNA
applications
(optional)

TCP/IP

applications

TCP/IP jobs

(TCP, UDP, IP, RIP)

Transport layer of
iNA 960

Subnet driver

EDL
NIC driver

NIC driver

RMXNET

itcpkern.job iNA960
software

TCP/IP Stack ISO Stack

Hardware

Hardware

Figure 2-1. How TCP/IP Works with iNA 960 Software

TCP/IP for the iRMX Operating System Chapter 2 11

Hardware Required
TCP/IP can run on any system supported by the required iRMX software.

The NIC must be one supported by the NIC driver software. The current software
includes drivers for the following devices:

Job Network Interface Controller

ne.job NE2000 compatible ISA Ethernet interfaces

eepro100.job Intel Pro/100 PCI Ethernet interfaces

3c59x.job 3COM PCI Ethernet interfaces

rtl8139,job Realtek 8139 PCI Ethernet controller

edl.job iNA Datalink interface driver

slip.job Serial Line IP driver

See also: Tunable Parameters, Chapter 9;
i*.job and clib.job, System Configuration and Administration;
Hardware Environments, Network User's Guide and Reference

Overview of the Setup
To begin using the TCP/IP software:

1. Install the iRMX OS software.

2. Configure the TCP/IP software by editing the :CONFIG:tcp.ini configuration
file.

3. Load the TCP/IP jobs with the sysload command.

4. For servers, optionally start the daemons required to support TCP/IP commands:
ftpd and telnetd.

5. If users will run telnet from a PC console to a UNIX host, set up the remote
UNIX host to support the RMXPC terminal type.

TCP/IP Configuration
TCP/IP is configured as a number of jobs loaded with the sysload command.
Configuring TCP/IP involves editing one or more of these ASCII text files:

• Hosts file

 Chapter 2 Installing and Starting TCP/IP 12

• tcpstart.csd

• tcp.ini

The purpose of each file is explained in more detail later in this manual, but the
instructions here will get you started using TCP/IP.

The files are installed in the :CONFIG: directory. Edit the files while logged in as
the Super user. On a multiuser machine, access to these files should be restricted to
a network administrator.

The network administrator for your organization should assign the name and address
values described here.

See also: Understanding Internet Addresses, Chapter 1

Editing the Hosts File
For any TCP/IP communications you can specify an IP address for a remote host or
obtain the address from one of two places: the :CONFIG:hosts database or the
Domain Name Service (DNS).

✏ Note
The iRMX TCP/IP software does not include named, the DNS
server. However, it does include a DNS client. Another system
running an OS such as Unix must provide the DNS server.

The client contacts any DNS name server running on the network and uses its name
translation services to get the IP address. Regardless of whether you use DNS or
not, you must edit the :CONFIG:hosts file.

See also: gethostent, Chapter 11 for more information on DNS;
:CONFIG:hosts, Chapter 9

Using DNS
TCP/IP applications may use a DNS client to get an IP address associated with a
name from the DNS server on the network. If you choose to use the DNS server,
you need to specify only the local host name in the :config:hosts file. You also need
to edit the DNS section of the tcp.ini file to configure the DNS client.

See also: Tunable Parameters, Chapter 9
gethostent, Chapter 11

Not Using DNS
If you don’t use DNS, add one line to :config:hosts for each system on your
network, including the local host. Each line must have at least these two entries:

TCP/IP for the iRMX Operating System Chapter 2 13

 IP_address official_name

Specify the official name of the host machine, using a fully qualified domain name if
you have one. You can add alias names on the same line after the official name.

 Chapter 2 Installing and Starting TCP/IP 14

Configuring TCP/IP as Loadable Jobs
To configure TCP/IP as loadable jobs (loaded by the sysload command), you need
check the contents of the :config:tcpstart.csd and :config:tcp.ici files.

Editing the tcpstart.csd File
For TCP/IP jobs loaded with the sysload command, edit the :config:tcpstart.csd file.
This file is an esubmit file that sets values and starts jobs needed to run TCP/IP
software.

Configuring the Interfaces

To configure the interfaces you use, edit the :config:tcp.ini file. You must change
the address and mask values to be appropriate for your host and network. The
primary interface is normally called eth0 and the values for this interface are in the
[ETH0] section.

See also: Tunable Parameters, Chapter 9

To configure which NIC driver will be loaded, edit the :config:tcpstart.csd file and
uncomment the appropriate line. Some drivers (such as ne.job) require parameters.

See also: System Administration and Configuration Guide

Starting TCP/IP
To load the TCP/IP jobs, you need to submit a file to start the jobs. (This assumes
that you have already installed a NIC.) You can submit the file yourself at the
iRMX prompt while logged in as super. You can also add the submit command to
the startup files so that the file is submitted automatically every time you boot the
system.

The submit command is:
esubmit :config:tcpstart

In addition to the entries described in the earlier Configuration section,
the tcpstart.csd file also starts the TCP/IP kernel as a set of loadable
jobs. To automatically submit the file every time the system boots,
remove the semicolon character at the start of the line.

✏ Note
Do not place commands that prompt for keyboard input in any of
the configuration files :config:loadinfo, :config:r?init, or
:config:r?init2. Running commands from the :config:r?init2 file
can make booting a little slower.

TCP/IP for the iRMX Operating System Chapter 2 15

Testing the TCP/IP Setup
Test the TCP/IP software and its connection to the network by issuing this
command:

 ping loopback 56 3

This command sends packets on the network to the local machine. It tests both
TCP/IP and the network hardware; TCP/IP must be able to send and receive packets
to display a message similar to this:

PING loopback: 56 data bytes

64 bytes from IP_address: icmp_seq=0. time=0 100th of sec

64 bytes from IP_address: icmp_seq=1. time=0 100th of sec

64 bytes from IP_address: icmp_seq=2. time=0 100th of sec

----loopback PING Statistics----

3 packets transmitted, 3 packets received, 0% packet loss

round-trip (100th of sec) min/avg/max = 0/0/0

Notice the next-to-last line, indicating that all the packets sent were received.

If this command succeeds, test the connection to other hosts on the network. Repeat
the ping command, specifying the remote host's name or address instead of
loopback. To use names, you must configure the name-to-address translation in
the :config:hosts file or from the DNS server as described earlier.

If you enter the ping command without the numeric values, it continues sending
packets until you interrupt it with a <Ctrl-C>.

See also: Network Tests, Chapter 9, for other tests you can perform
ping command, Command Reference

Troubleshooting
Problems can occur at several different levels. For example, TCP/IP may have
failed to install correctly. This in turn causes jobs dependent on TCP/IP to not load
correctly. This section provides some general troubleshooting guidelines and
explains some specific error conditions.

General TCP/IP Debugging
Follow these ordered steps to try and isolate TCP/IP problems:

1. Try to execute some of these commands:

 netstat -i

 netstat -a

 If you get errors then perform steps a through c.

 Chapter 2 Installing and Starting TCP/IP 16

 If these commands execute correctly, you can assume that TCP/IP is loaded and
running. Steps a through c do not apply.

a. Check the messages in :config:r?init2.log, the log file of the :config:r?init2
file. Be sure that r?init2 submitted the file :config:tcpstart.csd and that all
the commands in the submit file ran properly.

b. Check the [ETH0] settings in :config:tcp.ini to be sure they are correct.

c. Check the :config:hosts file to be sure your hostname is there with the
correct IP address.

2. If you are having trouble with telnet try the following:

a. Check the pttydrvnn.log, where nn is the slot number of the client board.

b. Enter initstatus and see if any ttyp_* are available and not locked.

Setting Up a Remote Unix Host for Telnet
Once the ping command succeeds, TCP/IP is set up and ready to support file transfer
via the File Transfer Protocol (FTP). Before you can begin remote login through the
telnet command, however, you may need to do additional setup on the remote Unix
host.

Creating a Terminal Definition for the PC Console
To run any Unix program that supports cursor movement (any program using the
curses library, such as the vi editor) you must set a TERM environment variable that
matches your iRMX terminal. If you make a connection through the telnet
command from any standard terminal, the Unix host should already have a matching
terminal type definition. However, to use telnet from a PC console (:d_cons: or
:con:) you need to define a new terminal name, RMXPC. This procedure modifies
system files on the remote Unix host, which requires root privileges. If necessary,
contact your Unix system administrator for assistance.

To set up the RMXPC terminal definition:

1. Edit the :config:termcap.bsd file and locate the definition for the RMXPC
terminal type. Copy this definition to a file called termcap.rmx and copy it to the
UNIX host.

2. Log into the Unix host as root.

3. Edit the existing termcap file to add the contents of termcap.rmx. (If you are
sure that users will be running only applications that use terminfo, instead of
termcap, you can skip this step. But if there is any doubt, perform this step.)

4. Run this command:

TCP/IP for the iRMX Operating System Chapter 2 17

 tic terminfo.rmx

 If your system does not have a tic command, skip this step.

Setting Terminal Characteristics for User Sessions
When iRMX users remotely log into a Unix host, the telnet command change the
Unix terminal type to the name of the iRMX terminal. If the Unix host is set up to
support that terminal type, and the Unix account does not reset the terminal type,
nothing more is necessary.

However, Unix accounts that are also used for local logins need to set the terminal
type during initialization. This overwrites the telnet terminal setting. Because the
remote iRMX terminals and local Unix terminals are likely to be different, the best
way to handle this is to prompt for the terminal type.

Use this procedure to set up Unix user accounts for users who use the telnet
command. You may need to experiment; the specifics vary for different shells and
versions of Unix. If you need help, ask your Unix system administrator.

1. Check that the Unix host is set up to support the required terminal types and that
the terminal names are the same on the Unix and iRMX OS. The possible
names include:

• Standard terminals, like wyse50

• RMXPC for the PC console, as discussed earlier

2. Edit the initialization file in each user's home directory. For those who use the
Bourne shell, bash, or Korn shell, the file should be $HOME/.profile, and for C
shell users, $HOME/.login.

• Set up handling of the terminal type. If the account will only be used for
logins via telnet, comment out any reference to terminal type, such as:

 setenv TERM

 TERM=wyse50

 export TERM

 Or, if the account will be used for both remote and local logins, set up a
prompt for the terminal type. This simple example for the Bourne shell
.profile produces a prompt:

 echo "TERM=\c"

 read TERM

• Define the interrupt sequence, erase sequence, and tab settings for the
potential terminal types. This Bourne shell example for the RMXPC
terminal sets the interrupt to <Ctrl-C> and erase to , and sets tab
expansion.

 Chapter 2 Installing and Starting TCP/IP 18

 If [$TERM = "RMXPC"]

 then

 stty intr ^C erase ^? -tabs

 fi

See also: Documentation for your Unix system

■■ ■■ ■■

TCP/IP and NFS for the iRMX Operating System Chapter 3 19

 Using NFS 3

Network File System (NFS) support gives you access to remote files across a
network of machines that don't necessarily run the same operating system. NFS is
commonly used on Unix systems and is now supported by the iRMX OS. You can
access any machine on your network that uses NFS files by using the same
commands that access local files. For example, you can use the iRMX dir command
to examine the contents of a remote machine's directory under NFS.

This chapter presents some basic NFS concepts and tells you how to set up NFS in
the iRMX environment. For general information on NFS, consult the recommended
reading list in Appendix A.

NFS Concepts
To use NFS, a server system defines parts of its local file system as shared by NFS.
A client system then attaches (mounts) whatever parts of the server’s file system that
it must access. After attaching (mounting) the directories or files, the client can
access them as if they were local.

In order for a client to access an NFS file or directory, four requirements must be
met:

• TCP/IP must be running as part of the network.

• NFS server and client jobs must be loaded on the respective machines.

• Each server must define any local file systems accessible to remote machines as
NFS-shared resources.

• Each client that accesses an NFS-shared file or directory must attach to (mount)
the resource.

 Chapter 3 Using NFS 20

When these requirements are met, clients can make system calls or issue commands
that access the NFS file or directory.

✏ Note
Throughout this chapter the terms attach and mount are
synonymous. In the iRMX environment, you attach a remote file
system. In the Unix environment, you mount a remote file system.

To help you understand the concept of NFS consider the system shown in
Figure 3-1. This figure shows four separate machines. The machines have logical
names "hosta", "hostb", "hostc", and "hostd". Hosta is a file server that is running a
version of Unix. Hostb also runs a version of Unix. Hostc and hostd both run the
iRMX OS.

Mounted
Directories

NFS-Shared
Directories

OM04168

UNIX OS

hostc

iRMX OS

Mounted
Directories

hostb

UNIX OS

hostd

iRMX OS

NFS-Shared
Directories

hosta

NFS-Shared
Directories

Figure 3-1. Sample NFS Network

Hosta runs an application that must read specific directories on hostb and hostc,
calculate some results, and then write the results into a data base on hostd. In this
situation, hostb, hostc, and hostd have defined the directories that hosta must access
as NFS-shared resources. Hosta has mounted each of the directories. This makes
the directories in hostb, hostc, and hostd seem like local directories to hosta. The
application running on hosta can use simple file I/O calls to open, read, write, and
close the required files on the remote machines.

TCP/IP and NFS for the iRMX Operating System Chapter 3 21

NFS Jobs
The iRMX implementation of NFS includes four loadable jobs. For a machine to
function as an NFS server, it must load pmapd.job, nfsd.job, and mountd.job. For a
machine to function as an NFS client, it must load nfsfd.job. These four jobs enable
you to access NFS files across the network.

See also: NFS in Appendix A for general information on NFS

You can start and stop NFS client and server jobs through the nfsstart.csd and
nfsstop.csd files. Or, you can use the sysload command directly to load or unload
these jobs.

See also: Starting and Stopping NFS Support, later in this chapter

NFS Commands
These commands allow you to work with NFS:

share Lets you define a local directory as NFS-shared. NFS-shared
directories can be attached and accessed by remote NFS
clients.

unshare Lets you remove shared access from a local file. Local files
that do not have shared access (defined as NFS-shared)
cannot be attached by remote NFS clients.

attachdevice Lets you attach a remote NFS-shared file system. Once you
have the file attached, you can access the file as if it were
local. NFS clients use attachdevice.

showmount Lets you see which local files are defined as NFS-shared and
which (if any) remote NFS clients have the file system
attached.

rpcinfo Reports Remote Procedure Call (RPC) information on a given
host. This command lets you see what services are available
on a host.

See also: share, unshare, attachdevice, showmount, and rpcinfo commands,
Command Reference

 Chapter 3 Using NFS 22

NFS Files
These user-visible files facilitate set up and use of NFS:

:config:sharetab.cf Contains entries for each local file system defined as
NFS-shared. Each entry contains the local pathname to the
file system, a symbolic name, and file access options.

:config:nfsstart.csd Contains commands that load NFS client and server jobs,
define local file systems as NFS-shared, and attach files on
remote NFS servers.

:config:nfsstop.csd Contains commands that unload NFS client and server jobs.

See also: Files, Chapter 11;

Tuning NFS Performance
You can tune NFS parameters to better suit your application or system. Tunable
parameters fall into these categories: RPC Client/Server, NFS File Driver, and
NFS/Mount Daemon.

See also: NFS Parameters, Chapter 10

NFS Limitations
Finally, you should be aware of some limitations to NFS on an iRMX machine:

• You can only use normal iRMX system calls (such as BIOS, EIOS, UDI,
Application Loader) or specific commands to access NFS files. No
programmatic access is provided to Remote Procedure Calls (RPC), as exists in
some implementations of NFS.

• While hard and soft links are supported in the standard NFS protocol, the iRMX
NFS does not support either type of link in its file drivers. The iRMX OS does
not support these links.

• iRMX NFS supports only the Unix style authentication of users as defined by
RFC 1057 (Request For Comments). Other security, such as DES style
authentication (Secure RPC), is not supported.

• There is no support for various iRMX volume management commands such as
format and diskverify on remote volumes shared by NFS.

TCP/IP and NFS for the iRMX Operating System Chapter 3 23

How NFS Works
The following points describe in general how NFS works within the iRMX operating
system:

• Hosts that function as NFS servers must have the NFS server jobs loaded, while
hosts that function as NFS clients need the NFS client job loaded.

• An NFS server maintains entries in the :config:sharetab.cf file for each local file
system able to be attached to by NFS clients. These files are defined as NFS-
shared. You can add and remove entries in the :config:sharetab.cf file by using
the share and unshare commands, respectively.

• An NFS client gains access to a remote NFS-shared file system by first
attaching the file system with attachdevice or programatically with appropriate
system calls.

• Before attaching an NFS-shared file, users from an NFS client can use
showmount to see what symbolic name the NFS server uses for a specific file
system. With this information, you can attach the device.

• Each time an NFS client attempts to attach a file system, the NFS server checks
the :config:sharetab.cf file to see if the requested file system has been defined
as NFS-shared. If so, the server uses the access options defined for the file
system and makes the file system available to the requesting NFS client.

• Once an NFS client has attached an NFS-shared file system, the connection
remains until either the NFS job(s) in the client or server stop, or the file system
is detached from the client. Modification of the :config:sharetab.cf file on the
NFS server has no effect on an existing NFS connection.

 Chapter 3 Using NFS 24

Starting and Stopping NFS
You start NFS by submitting the :config:nfsstart.csd file. This file loads either the
NFS client job, the NFS server jobs, or both. An NFS client must load
:config:nfsfd.job. An NFS server must load pmapd.job, nfsd.job, and mountd.job.

See also: Specific NFS jobs, System Configuration and Administration

Here are the relevant sysload commands from :config:nfsstart.csd:

 ; *** Start NFS jobs for client system

 ;sysload -w /rmx386/jobs/nfsd.job

 .

 .

 .

 ; *** Start NFS jobs for server system

 ;sysload -w /rmx386/jobs/pmapd.job

 ;sysload -w /rmx386/jobs/nfsd.job

 ;sysload -w /rmx386/jobs/mountd.job

 .

 .

 .

Depending on whether you want a host to act as an NFS client, NFS server, or both,
you would remove the semicolons for either the client system sysload command, the
server system sysload commands, or both sets.

See also: sysload command, Command Reference;
Specific NFS jobs, System Configuration

✏ Note
Before a client can access a remote file system, the server must
define the file system as NFS-shared and then the client must
attach (or mount) the device.

See also: Sharing File Systems, later in this chapter;
Attaching NFS Devices, later in this chapter

During system initialization, the :config:r?init2 file is executed. This file submits
the :config:nfsstart.csd file using the following command:

 ;esubmit :config:nfsstart.csd

To submit the :config:nfsstart.csd file at the system initialization time, simply
remove the leading semicolon character from this command.

TCP/IP and NFS for the iRMX Operating System Chapter 3 25

To stop NFS, submit the :config:nfsstop.csd file. This file unloads NFS jobs in the
following order:

 ; *** Stop NFS jobs for a server system

 sysload -u mountd.job

 sysload -u nfsd.job

 sysload -u pmapd.job

 ; *** Stop NFS jobs for a client system

 sysload -u nfsfd.job

To unload a particular NFS job, you can use the sysload command with -u option
directly from the command line.

It is important that you shut the jobs down in the order shown in :config:nfsstop.csd
and that no local file systems are attached by remote clients.

✏ Note
Because NFS depends on TCP/IP, always unload the NFS jobs
before stopping TCP/IP.

See also: sysload, showmount, and unshare commands, Command Reference;
Displaying Shared and Mounted File Systems, later in this chapter;
Removing Shared Access from File Systems, later in this chapter

Sharing File Systems
In order for an NFS client to access a remote file system, the remote NFS server
must define the file system as NFS-shared and the client must attach to (or mount)
the file system. This section describes how to define a local file system as
NFS-shared.

See also: Attaching NFS Devices, later in this chapter

The :config:sharetab.cf file contains entries for all NFS-shared file systems. You
add entries to :config:sharetab.cf by using the share command. When you use
share you must provide the local pathname, can optionally provide a symbolic name
by which remote clients can refer to the device, and can optionally provide a set of
access privilege options. The local pathname must exist on the host and not be an
NFS device logical name. If the path does not exist or it is an NFS device logical
name, the share command will fail.

Once a file system has an entry in the :config:sharetab.cf file, a remote client can
attach (mount) the resource. You should not edit :config:sharetab.cf directly;
always use share to add entries to this file.

 Chapter 3 Using NFS 26

See also: share, Command Reference

You can use the :config:nfsstart.csd file to define local file systems as NFS-shared at
system initialization time. In :config:nfsstart.csd the share commands should
appear after starting the NFS server jobs. Here is an example:

 .

 .

 .

 ; *** Define shared resources

 ; Add/modify "share" entries according to your

 ; system needs.

 ;unshare -a

 ;share :sd:

 ;share -d "Work Directory" -s /work :sd:work

 .

 .

 .

You should include the unshare -a command just prior to defining file systems with
the share command. The unshare -a command deletes any existing entries from the
:config:sharetab.cf file. This ensures that no file systems previously defined as
NFS-shared are still defined as such when the system comes up.

See also: Removing Shared Access from File Systems, later in this chapter

As an example, consider a situation where two hosts exist on an NFS network: alpha
and omega. Alpha acts as a file server and has data that users from omega must
access. Consequently, alpha defines some directories to share. Users from omega
can attach the directories and access the data as if it were local. Figure 3-2 shows
the scenario.

TCP/IP and NFS for the iRMX Operating System Chapter 3 27

OM04171

:remotedata:
:remoteapps:

omega

alpha
#PATH
:SD:usr/proj1/data
:SD:usr/proj1/apps

SYMBOLIC
data
apps

OPTIONS
rw
ro

/etc/sharetab.cf

Attachdevice commands

ad
ad

alpha:data
alpha:apps

as
as

remotedata
remoteapps

nfs
nfs

Figure 3-2. Defining NFS-shared File Systems

In this example, the system administrator of alpha could use the following share
commands in :config:nfsstart.csd to make :SD:/usr/proj1/data and
:SD:/usr/proj1/apps available:

 share -o rw -s data :sd:usr/proj1/data

 share -o ro -s apps :sd:usr/proj1/apps

When the system initializes, these local directories are defined as NFS-shared.
Remote NFS clients can then attach and access the file systems as if they were local.

✏ Note
If you do not specify a symbolic name when you issue the share
command, the system converts the supplied pathname into a root
directory path. For example, specifying :sd:usr as the pathname
on a command line without the -s option results in an entry of
/sd/usr in the :config:sharetab.cf file.

 Chapter 3 Using NFS 28

Users from omega could attach the shared file systems with the attachdevice
commands shown in the figure. The attachdevice commands in this example use
symbolic names remotedata and remoteapps. These are the names by which the
client system omega can recognize the shared file systems. Once the file systems are
attached, you could enter dir :remotedata: to see what the remote directory
:alpha::SD:/usr/proj1/data contains.

See also: share, unshare, and attachdevice commands, Command Reference;
:config:sharetab.cf, Chapter 11;
Attaching NFS Devices, later in this chapter

Removing Shared Access from File Systems
You can remove shared access from a local file system by using the unshare
command. This command simply deletes a corresponding entry (or all entries when
you use the -a option) from the :config:sharetab.cf file. Issuing unshare prevents
remote clients from subsequently attaching to the file system. However, it does not
break any existing client/server connections. In other words, if an NFS client has
previously attached an NFS-shared directory, using unshare from the server does
not detach the client. The client can continue to access the remote file system. You
can break the connection by stopping the NFS job(s) on the server or the client, or
by detaching the file system from the client.

See also: unshare and share commands, Command Reference

When issuing the unshare command you can specify either a single local directory
or all local directories. You can specify the full pathname of the directory or its
symbolic name. Restricting a file system with the unshare command makes it
impossible for an NFS client to subsequently attach (or mount) it.

Consider a server with many of its local file systems defined as NFS-shared. As a
system administrator you decide that it becomes necessary to restrict access to these
file systems. Entering the following command from the server prevents remote NFS
clients from being able to attach (or mount) any file system local to the server.

 - unshare -a

TCP/IP and NFS for the iRMX Operating System Chapter 3 29

Attaching NFS Devices
In order for an NFS client to use an NFS-shared file system, the file system must be
defined as NFS-shared and the client must attach it. Access of NFS-shared files
involves file ownership and access rights mapping. You need to keep these
mappings in mind when manipulating NFS files.

See also: Sharing NFS Files, earlier in this chapter;
Accessing NFS Files, System Concepts

You can attach an NFS device in these ways:

• With the attachdevice command. The volume name for the NFS device is the
host name as supplied in the attachdevice command.

• With the rq_a_physical_attach_device (BIOS) or rq_logical_attach_device
(EIOS) system calls

See also: a_physical_attach_device and rq_logical_attach_device, System Call
Reference;
attachdevice command, Command Reference

✏ Note
To access an NFS-shared file system from a Unix NFS client, use
the mount command.

When specifying the file system to attach, you can use the physical or logical name.
The form is either:

 <host:logical_name>

or

 <host:physical_name>

The pathname that showmount returns is the logical name; use it in the
attachdevice command or the system calls.

 Chapter 3 Using NFS 30

You can use the :config:nfsstart.csd file to attach NFS-shared file systems at system
initialization time. In :config:nfsstart.csd the attachdevice commands should
appear after the NFS client job is loaded. Here is an example:

 .

 .

 .

 ; *** Start NFS jobs for client system

 ;sysload -w /rmx386/jobs/nfsfd.job

 ; *** Attach NFS devices

 ; Add/modify "attachdevice" entries according to

 ; your system needs.

 ;attachdevice itcp:/user/guest/data as data nfs

 .

 .

 .

See also: attachdevice command, Command Reference

TCP/IP and NFS for the iRMX Operating System Chapter 3 31

Displaying Shared and Mounted File Systems
On an iRMX NFS server you can determine which local file systems are currently
shared by using the share command with no options. The command displays the
shared local directories as in the following example:

 - share

 :sd:user/bill /bill rw my_directory

 :sd:rmx386 /sd/rmx386 ro rmx_config

See also: share command, Command Reference

Using share with no options shows only the shared resources local to the host.

You can also get information about resources by using the showmount command.
This command displays a list of the shared file systems and which clients have
mounted or attached them.

When you enter the showmount command you can specify a remote server for
which information is displayed, or you can default to the local server.

For example, consider the system shown in Figure 3-2 on page 27. To see the
directories and a list of the clients that have mounted from hosta, enter the following
command:

 - showmount -a hosta

 Client/directory mount list for hosta:

 jimd:/usr1/proj1/data

 sallyz:/usr1/proj1/apps

See also: showmount command, Command Reference

 Chapter 3 Using NFS 32

Reporting RPC Information
Sometimes it is necessary to report a host’s RPC information. For example, you
may need to know which RPC services are registered with the port mapper. You can
report this type of information using the rpcinfo command.

For example, to see which RPC services are registered with the port mapper running
on hostc, use this command. Partial output could be similar to the following:

 - rpcinfo -p hostc

 Get registered programs on hostc ...

 program vers proto port service

 100000 2 tcp 111 rpcbind

 100000 2 udp 111 rpcbind

 100003 2 udp 2049 nfs

 100005 1 tcp 977 mountd

 100005 1 udp 976 mountd

To get the same information about the local host, use the command without
specifying a host name:

 - rpcinfo -p

To see if a particular RPC service is registered on a particular host use the rpcinfo
command and either the transport udp or tcp option. Then supply the host, program
name as it appears in :config:rpc or number, and optionally a version number. For
example, this command reports on the RPC service with program number 100001
and version 2 registered on hostb for the transport udp:

 - rpcinfo -u hostb 100001 2

✏ Note
When port mapper information is requested by a remote machine
running some Unix operating systems, the request must use the
-p option. If the -p option is not present, the iRMX machine will
look for version 3 of the port mapper (not supported by iRMX)
and report that the RPC program is not registered. iRMX supports
only version 2 of the port mapper.

See also: rpcinfo command, Command Reference

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 4 33

 Using Telnet 4

With TELNET you can log in to a remote host as if your terminal were directly
cabled to it. TELNET provides reliable, virtual terminal communication with any
network host that supports the TCP standard, regardless of the host's OS. The
remote host must implement a TELNET server.

Before You Begin
Before you begin a TELNET session on a remote host, you must know:

• A user login name and password on the remote host

• One of the valid names for the remote host: its Internet address, its official host
name, or its alias

You can get valid host names and addresses from your :config:hosts file, or names
can be resolved by a DNS server.

The remote host must have a TELNET server process, telnetd, and be listening for
TELNET requests. If you need additional information or help setting up a remote
host login, see your network administrator.

Telnet Modes
TELNET operates in two modes: input mode and command mode. In input mode,
you log in and enter OS commands, which are processed by the OS on the remote
host. In command mode, you enter TELNET commands, which are processed by the
TELNET program on the local host.

You can start the TELNET program in either mode then switch between modes
during a TELNET session.

 Chapter 4 Using TELNET 34

Figure 3-1 shows how commands are processed in input mode and in
command mode.

W-3403

TELNET
(Client)

Command Mode

User
Entries

Local Host

TELNET
(Server)

Remote Host

TELNET

Local Host

Input Mode

User
Entries

Figure 3-1. TELNET Modes

Starting TELNET
You can use this command to start TELNET and connect to any other remote host:

• telnet

Starting in Input Mode

To start TELNET in input mode enter telnet hostname at the iRMX prompt,
specifying the name of the remote host to which you want to connect. If TELNET
connects to the host, you are prompted to log in. After you log in, any commands
you enter are processed by the remote host. The input mode prompt is the remote
host's OS prompt. When you exit the remote session, the TELNET program
terminates, and you are returned to the OS prompt on the local host.

Starting in Command Mode
To start TELNET in command mode, enter telnet at the iRMX prompt. The
TELNET program starts and displays the command mode prompt, telnet>. It does
not attempt to connect you to a remote host; in command mode you enter TELNET
commands that are processed by the local host. From the telnet> prompt, you can
use the open command to connect to a remote host in input mode. If you open a
remote session in this way, you will be returned to command mode when you close
the session.

TCP/IP for the iRMX Operating System Chapter 4 35

Switching Telnet Modes
To switch from input mode to command mode, enter the current TELNET escape
character, followed by a carriage-return. The default escape character is ^]
(control]) . You can change the escape character with the TELNET escape
command. The telnet> prompt confirms that you have entered command mode.
You can specify several options on the telnet command line.

To switch back from command mode to input mode, enter a <CR> at the command
mode prompt. At this point you can resume what you were doing before you entered
command mode.

Using TELNET for a Remote Session
When you use TELNET for a remote session, you establish a virtual terminal
connection to the remote host. The remote host gives you the same privileges and
capabilities as it does for users with terminals directly cabled to it. While you are
working on the remote host, your session with the local host is maintained.

The procedure for conducting a remote TELNET session consists of three general
steps:

1. Connecting to the remote host

2. Entering commands during the session

3. Closing the remote connection

 Chapter 4 Using TELNET 36

Connecting to the Remote Host
You can begin a remote session at the iRMX system prompt or at the TELNET
command mode prompt. In either case, the TELNET client process in your local
host activates a TELNET server process in the remote host to service your session.

You specify a remote host by its Internet address, its official name, or an alias name.
To connect to a remote host named host2 at Internet address 128.215.12.21, you
could use either of the command methods shown below to open the connection. You
could use either form of the name in either command:

 From the iRMX Prompt From the TELNET Prompt
 - telnet 128.215.12.21
 - telnet telnet> open host2

If the attempt succeeds, your screen displays a connection message and the remote
host login prompt. The connection message includes information about the
TELNET session, including the current escape character. The output from the above
commands is similar to this:

 Trying 128.215.12.21 ...

Connected to 128.215.12.21.

Character mode is enabled.

Escape character is ^].

UNIX System V Release 3.2 (host2.intel.com)

login:

If all ptty devices are in use and a TELNET request comes in, telnetd will send the
following error back to the client:

 No ptty devices available at this time.

Regardless of the reason, if the connection attempt does not succeed, you are
returned to the telnet> prompt and are requested to log in. This cycle repeats until
you successfully log in or until you close the TELNET session with the ^]quit
command, where ^] is the current escape character.

TCP/IP for the iRMX Operating System Chapter 4 37

Setting the Terminal Type on a Unix System
When you log in to a Unix host, TELNET changes the Unix terminal type to the
name of your iRMX terminal. If the Unix host is set up to support that terminal
type, and your Unix account does not reset the terminal type, you do not need to do
anything more.

Some Unix accounts, however, reset the terminal type during initialization. This
overwrites TELNET's terminal setting. If a terminal prompt appears when you log
in, respond with the name of your iRMX terminal. For example, if you are working
at a Wyse 50 terminal, specify:

 TERM=wyse50

If you are using the PC console as your iRMX terminal, the terminal type is RMXPC.
For ICU-configurable iRMX OS with Multibus II and the iSBX 279 Graphics
Module, the terminal type is i279. If the system does not recognize your terminal
type, see your Unix system administrator.

Sometimes the initialization file automatically sets a predetermined terminal type.
TELNET will not work properly with this setup, unless the terminal type happens to
be the same as your iRMX terminal. If you suspect this has happened, check your
current terminal type:

 echo $TERM

If you need to reset the terminal type, it is best to do it in your initialization file.
Otherwise, the problem will happen again every time you log in. If you need help,
ask your Unix system administrator.

See also: Setting Up a Remote Unix Host for Telnet and Rlogin, Chapter 2, for
initialization file setup

Terminal Type Strings
iRMX supports terminal type lengths of six characters or less. When a TELNET
session begins, the client passes a string representing the terminal type to the server.
If a client with a terminal type of more than six characters tries to connect to a
telnetd/rlogind server running on iRMX, the following warning displays at the
client end:

 Terminal type too long for iRMX, try another

 Chapter 4 Using TELNET 38

Disabling Local Echo on Berkeley Unix Hosts
When you connect to a TELNET server on a Berkeley Unix host, before any other
commands, you need to enter the TELNET localecho command. This is a toggle
that turns local echo off. Use the instructions for entering TELNET commands in
this section.

Entering Commands During the Session
During the remote session, you can enter input mode commands at the remote host's
OS prompt or command mode commands at the TELNET prompt.

At the remote OS prompt, enter any command that is appropriate for that
environment. The local host will pass your commands to the remote host for
processing without interpreting them.

To enter TELNET commands, switch to command mode by entering the escape
character, followed by a space. The system displays the telnet> prompt. At the
prompt, type your command, then press <Enter>. You can enter any of the TELNET
commands in this manner. TELNET processes your command, then returns to input
mode so you can continue your remote session.

This example uses the escape character ^] and the TELNET status command during
a remote host session. The $ is the remote OS's prompt. Unlike the way it is shown
here, the escape character does not appear on your screen when you enter it.

 $ ^]

telnet> status

Connected to host2.intel.com.

Character mode is enabled.

Escape character is ^].

$

TCP/IP for the iRMX Operating System Chapter 4 39

There are several other TELNET commands that let you control options for the
TELNET session. Use the TELNET ? command to list all the commands and their
descriptions:

 telnet> ?

Commands may be abbreviated. Commands are:

close close current connection

logout forcibly logout remote user and close the

 connection

display display operating parameters

mode try to enter line or character mode ('mode ?' for

 more)

telnet connect to a site

open connect to a site

quit exit telnet

send transmit special characters ('send ?' for more)

set set operating parameters ('set ?' for more)

unset unset operating parameters ('unset ?' for more)

status print status information

toggle toggle operating parameters ('toggle ?' for more)

slc change state of special charaters ('slc ?' for

 more)

! invoke a subshellenviron change environment

variables ('environ ?' for more)

? print help information

See also: telnet command, Command Reference

Closing the Remote Connection
To close a connection to a remote host, you can:

• Enter the TELNET quit command

• Use the remote host's logout procedure

• Enter the TELNET close command

The quit command releases your remote connection, stops the TELNET client and
server processes on both hosts, and returns you to the OS prompt on your local host.

The remote host logout procedure and the close command have the same effect as
the quit command if you connected to the remote host from input mode (the iRMX
system prompt). If you connected to the remote host from command mode (the
telnet> prompt), you are returned to the telnet> prompt on your local host.

 Chapter 4 Using TELNET 40

Using Telnet for a Local Session
It is sometimes convenient to use the TELNET program locally without a connection
to a remote host. For example, you might want to use TELNET locally to get
information about its commands or to set up a new configuration (such as defining a
new escape character) before you begin working on a remote host.

Whenever you use TELNET without a connection to a remote host, TELNET is in
command mode and the telnet> prompt is displayed. You can enter only
TELNET commands, not OS commands. To start the TELNET program without a
remote host connection, enter the telnet command without a hostname parameter:

 - telnet

telnet>

Entering Commands in a Local Session
During a local session you can enter any of the TELNET commands except close.
This command is valid only when you are connected to a remote host.

The status command prints information about the current TELNET session. In this
example, it identifies the host's escape character:

 telnet> status

 No connection.

Character mode is enabled.

Escape character is '^]'.

telnet>

Ending the Local Session
To end a local TELNET session, enter the quit command at the telnet> prompt.
The TELNET process ends and you are returned to the iRMX system prompt on
your local host.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 5 41

 File Transfer Protocol 5

TCP/IP for the iRMX OS includes an implementation of the File Transfer Protocol:
FTP. File Transfer Protocol (FTP) is the most powerful file transfer program
available among the standard TCP/IP protocols and is therefore preferred by many
users.

Before You Begin
Before you begin a file transfer session, you must know:

• A user login name and password on the remote host

• One of the valid names of the remote host: its Internet address, its official
name, or its alias

You can get information about valid remote host names from the :config:hosts file,
which lists the Internet address, official name, and aliases for each host on the
network. Alternatively, you can use a DNS server to resolve a name to a network
address.

If you need additional information or help setting up a remote host login, see your
network administrator.

 Chapter 5 Using File Transfer Protocols 42

File Transfer Protocol (FTP)
FTP lets you transfer accessible files between your local host and a remote host that
supports TCP/IP. You don't need to know the remote host's OS to transfer files.
FTP is implemented entirely as a command line interpreter, where the commands are
processed by the FTP client process on the local host.

During an FTP session, you enter commands to the FTP process to control the file
transfer and manage the files and directories on the remote host. For example, you
can issue FTP commands to open and close a remote host connection, delete remote
files, or create new directories on the remote host.

Some FTP commands, such as bell, debug, and help, are processed completely by
the FTP client process on the local host. These commands can be executed with or
without an established connection to an FTP server process on a remote host.
However, most FTP commands require a connection. These commands are
translated by the FTP client process into one or more FTP protocol commands,
which the client sends to the FTP server process on the remote host for processing.
The FTP server, called ftpd, is described later in this manual.

As with TELNET, you can start FTP without making a connection to the remote
host, using this command at the iRMX prompt:

 ftp

or you can start FTP and open the remote connection with the command

 ftp hostname

In either case the FTP client process starts and displays its prompt, ftp>. You can
now enter FTP commands as described in these sections.

See also: ftp command, Command Reference

FTP Help Information
For on-line information about FTP commands, enter ? to list all the commands and
their descriptions. Use ? command_name for a description of a single command.

See also: ftp, Command Reference for descriptions of all FTP commands

TCP/IP for the iRMX Operating System Chapter 5 43

FTP File Transfer Session
An FTP file transfer session consists of three general steps:

1. Connecting to the remote host

2. Using FTP commands

3. Ending the FTP session

Connecting to the Remote Host
In most cases, you begin a file transfer session by entering a command to establish a
connection to a particular remote host. Upon receipt of your command, the FTP
client process on your local host activates an FTP server process on the remote host
to service the session. If you did not invoke FTP with a hostname parameter, you
establish a connection with the open command at the ftp> prompt.

Specify hostname as the Internet address, official name, or alias of the remote host.
To connect to a remote host named host2 at Internet address 128.215.12.21, you
could use either name in either of the command methods shown below:

 From the iRMX Prompt From the FTP Prompt
 - ftp 128.215.12.21

 - ftp ftp> open host2

FTP attempts to connect you to the specified remote host. If the connection is
established, FTP prompts you to log in. The message is similar to this:

 Connected to host2.intel.com.

220 host2.intel.com FTP server (Version 1.2 May 02 1992)

ready.

Name (host2.intel.com:acct):

If the connection cannot be established, you are returned to the ftp> prompt.

When a connection is established, FTP prompts you to begin the remote host's login
procedure. You must use a valid login name and password to gain access to the
remote host. If you need help with logging in, see your system administrator.

When the login is successfully completed, FTP again displays the ftp> prompt.
You can begin entering file transfer commands.

 Chapter 5 Using File Transfer Protocols 44

If the login is not successful, FTP displays a message to that effect and returns you
to the ftp> prompt. At this point you are still connected to the remote host. To log
in, enter:

 ftp> user name

where name is your user name on the remote host. You are then prompted for your
password.

You can automate the FTP login procedure to make it more convenient with a netrc
file.

See also: FTP Initialization File, in this chapter

Using FTP Commands
Two commands commonly used for file transfer, the put and get commands, are
described here. Several other FTP commands can be used to manage files and
directories on both the local and remote hosts during a session. For example:

• The commands dir, ls, and mls provide you with listings of the files and
directories on the remote host.

• The commands lcd and cd enable you to change directories on the local and
remote hosts, respectively.

• The commands mkdir and rmdir enable you to create or delete directories on
the remote host.

See also: ftp command, Command Reference, for descriptions of these FTP
commands

Put Command

To copy a file from your local host to a remote host, enter this at the ftp> prompt:

 put localfile [remotefile]

where localfile is the name of the local file to transfer and remotefile is the
name for the remote copy of the file. If you do not enter a remote filename, FTP
gives it the same name as the local copy.

You can use the send command as an alias for put.

The next example shows how FTP prompts for local and remote filenames when you
enter put with no filename parameters. It also shows the message FTP displays
when the transfer is successful.

TCP/IP for the iRMX Operating System Chapter 5 45

✏ Note
The verbose option must be on, as it is by default, to produce the
display shown in this interactive session.

 ftp> put

(local-file) payroll.1

(remote-file) payroll.2

200 PORT command okay.

150 Opening ASCII mode data connection for payroll.2.

226 Transfer complete.

2103 bytes sent in 0.29 seconds (6.9 Kbytes/s)

ftp>

The put command transfers one file per transaction. To transfer more than one file
in a single transaction, use the mput command.

Get Command

To copy a file from the remote host to your local host, enter this at the ftp> prompt:

 get remotefile [localfile]

where remotefile is the name of the remote file to be transferred and localfile
is the name for the local copy of the file. If you do not enter a local filename, FTP
gives it the same name as the remote copy.

You can use the recv command as an alias for get.

The next example shows how FTP prompts for remote and local filenames when you
enter get with no filename parameters, and the message FTP displays when the
transfer is successful.

 ftp> get

(local-file) personnel.1

(remote-file) personnel.2

200 PORT command okay.

150 Opening ASCII mode data connection for personnel.1 (5909

bytes).

226 Transfer complete.

6123 bytes received in 1 seconds (5.979 Kbytes/s)

ftp>

The get command transfers one file per transaction. To transfer more than one file
in a single transaction, use the mget command.

 Chapter 5 Using File Transfer Protocols 46

Transferring Files Between Systems With Different File Naming Conventions

When you transfer files between hosts with different operating systems, be sure to
specify a name for the new file that conforms to the local file naming conventions.
If you do not specify a destination name on the command line, FTP attempts to use
the source name. If that name is not valid on the local host, the command fails. For
example, you may need to copy a Unix tar file to the DOS file system on iRMX for
PCs. Use a command line like one of these:

 ftp> get bash.tar.Z bash_t.Z
ftp> put bash.tar.Z bash_t.Z

The destination file name, bash_t.Z, conforms to the DOS 8.3 file name convention,
so it can be used with the DOS file drivers.

Transferring Large Files

To transfer large files to a remote Unix host using FTP, you might need to increase
the value of the system parameter ulimit on the remote host. Ulimit is a Unix
System V security feature that enables the network administrator to limit the size of
files that can be created by local users. The default limit on many systems is 2048
512-byte blocks, or 1 MB. File transfer applications such as FTP and TFTP and rcp
must obey the file size limitations imposed by the system on which the file is to be
created. The default value of ulimit for the remote host governs the maximum size
of a file that can be sent.

FTP allows you to change ulimit on a remote Unix host, but you must have root
privileges on the Unix host to increase the value. Users without root privileges can
only check the value or decrease it. If you do decrease the ulimit in a remote
session, you cannot increase it, even to its original value, unless you have root
privileges. If you need to increase ulimit on a host on which you do not have root
privileges, contact your network administrator for assistance.

First you need to establish an FTP connection with the remote host, logging in as
root. Then change the ulimit value for the remote session, using the FTP site
command as follows:

 ftp> site ulimit 16384

200 ULIMIT set to 16384 blocks

ftp> put big1

[File transfer information]

 .

 .

 .

ftp>

TCP/IP for the iRMX Operating System Chapter 5 47

There are other remote commands you can execute with site, depending on the
commands made available by the remote FTP server, ftpd.

See also: ftp and ftpd commands, Command Reference

Ending the FTP Session

To end a file transfer session, enter one of these commands:

• bye, or its alias quit

• close

The bye and quit commands release your connection, stop the FTP client and server
processes in the local and remote hosts, and return you to the iRMX OS prompt on
your local host.

The close command releases your connection to the remote host and returns you to
the ftp> prompt on your local host.

FTP Initialization File

If you set up an FTP initialization file, the FTP process will log you on to a remote
host automatically. Name the file r?netrc and put it in your home directory on the
local host. If the FTP process finds :home:r?netrc at startup, it reads the file to
obtain the information it needs to complete remote host login procedures.

✏ Note
For those familiar with FTP in a Unix environment, on iRMX this
file is named netrc without a beginning . (period or dot) in the
filename. To hide the file on an iRMX system, name it r?netrc.
When any program refers to netrc, the iRMX OS automatically
maps it to r?netrc.

To create netrc, build a file that contains this information about each remote host
where you want to log in automatically:

• The official host name as set with the hostname command; an Internet address
or alias is not acceptable

• Your user login name on the remote host

• Optional: the password to your login on the remote host

Each line of the netrc file describes a different host. There is no limit to the number
of lines the file can contain. The format for each line is:

 machine host login login-name [password password]

 Chapter 5 Using File Transfer Protocols 48

The keywords machine and login must appear in each line, followed by the
official host name and your remote user login name, respectively. Each word on the
line must be separated from other words by a space or tab.

The keyword password and your password are optional. If you do not enter
password information for a remote host in the netrc file, FTP prompts you for it
when you log in to the host. Because the netrc file might contain password
information, make the file readable only by the owner. FTP for the iRMX OS,
unlike other versions, does not enforce owner-only file access. FTP does print a
warning if the netrc file contains account information or passwords.

Below is an example of a record in a netrc file. In this example, tvi386 is the
official name of the remote host and nancy is the login name on that host. Because
the password is omitted, Nancy will be prompted for it during login.

 machine tvi386 login nancy

See also: netrc file, Chapter 10

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 6 49

Network Services and Daemons 6

As network administrator, you determine which services each host on the network
will provide. Many network services involve the interaction of a client process on
one host and a server process on another. By defining the server processes that run
on a particular host, you control the types of access available to remote clients.

An example of this type of network service is FTP, which is implemented by a client
process (ftp) and a server process (ftpd). In general, the client and server share the
same root name, and the server name includes the suffix d, which designates it as a
daemon. A daemon operates in the background. A server daemon operates when it
receives a client request. Virtually all of the networking commands available to the
general user invoke the client process of a client/server pair.

Several additional network services are implemented by network daemons that are
not associated with client processes. These daemons exchange messages with their
counterparts on remote hosts and update local kernel tables or network databases
based upon the information received. By defining the daemon processes that will be
running on a particular host, you control the automatic (by daemon) or manual (by
administrative command) updating of the related network tables.

These sections describe the network services that you can control for each host.
Each section contains a brief description of the service, some guidelines for
determining whether or not the service should be enabled, and instructions for
configuring, enabling, or disabling the service, where applicable. The servers and
daemons are described in alphabetical order.

See also: TCP/IP daemons, Chapter 2;
Stopping and Restarting TCP/IP, Chapter 2

 Chapter 6 Network Services and Daemons 50

Ftpd Server
Ftpd.job is the server process for the File Transfer Protocol (FTP). The client
process is the ftp command. Running ftpd.job on the local machine allows remote
ftp users to connect to this host to transfer files.

To enable FTPD on the local host, edit the startup script :config:tcpstart.csd and
uncomment the line which sysloads the ftpd.job. If you are starting the TCP/IP stack
from the :config:loadinfo file, uncomment the line which sysloads the ftpd.job in
this file. Because FTP is one of the basic networking services provided by the
TCP/IP package, it is very unusual to encounter a network host that is not listening
for FTP requests.

If the local host is currently providing FTP access, the display from a netstat -a
command includes an entry with a local address of *.ftp.

See also: ftpd.job, System Configuration and
 Administration

TCP/IP for the iRMX Operating System Chapter 6 51

Telnetd Server
Telnetd.job is the server process for the TELNET protocol, which defines the
network virtual terminal access to a remote host. The client process is the telnet
command.

To enable TELNETD on the local host, edit the startup script :config:tcpstart.csd and
uncomment the line which sysloads the telnetd.job. If you are starting the TCP/IP
stack from the :config:loadinfo file, uncomment the line which sysloads the
telnetd.job in this file. Because TELNET is one of the basic networking services
provided by the TCP/IP package, it is very unusual to encounter a network host that
is not listening for TELNET requests.

If the local host is currently providing the TELNET service, the display from a
netstat -a command includes an entry with a local address of *.telnet.

Configuring Pseudo-terminals for Telnetd
The telnetd server node needs some additional configuration to set up pseudo-
terminals for the remote client TELNET sessions to access. Like terminals, pseudo-
terminals need to be identified and enabled in the :config:terminals file. Then the
number of supported pseudo-terminals needs to be specified as a parameter to
telnetd.job as follows:

1. Add an entry to the :config:terminal(s) file to initialize each iRMX pseudo-
terminal device for users. List these devices as ptty_0, ptty_1, up through
ptty_n-1 where n is the number of pseudo terminals supported. N can vary from
1 to 16 inclusively. For example:

 ptty_0,,,any

 Also edit the first line of the file, increasing the number by one for each new
entry added. If that number is smaller than the number of entries, the extra
entries are ignored

 For example, ptty_2 in the following file cannot be used because the 3 at the
beginning means the Human Interface initializes only the first three terminals.

 3
 d_cons,,,pc
 ptty_0,,,any
 ptty_1,,,any
 ptty_2,,,any

2. Update the :config:tcpstart.csd and/or the :config:loadinfo files to uncomment
the line which sysloads the /rmx386/jobs/telnetd.job service and specify the

 Chapter 6 Network Services and Daemons 52

number of pseudo-terminals to be supported. The sysload command has the
following form:

Sysload /rmx386/jobs/telnet.job num_pttys=n

 Where

 n is the number of pseudo-terminals to be supported. This number can vary
between 1 and 16 inclusively. If num_pttys is not specified, the telnetd service
assumes 4 pseudo-terminals.

 See also: Configuring terminals, System Configuration and
 Administration;
 telnetd.job, System Configuration and
 Administration

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 7 57

Configuring and Administering
Network Files

As network administrator, you define the operation of several network daemons and
servers by setting up their configuration files. The network configuration files are
described in this chapter.

 Network Configuration File Network Daemon or Job
 :config:tcp.ini TCP/IP jobs

Restricting and Updating Network Databases
and Files

The following list shows files that that maintain information about hosts, networks,
protocols, and available network services. Some of these files enable remote user
access. As network administrator, you should ensure that these files are updated
whenever the topology of the network changes. Only the network administrator
should have permission to modify these files.

 File Purpose
 :config:hosts Lists addresses and names of accessible hosts and
 interfaces on the net
 :config:services Lists names, port numbers, and protocols associated with
 available services
 :home:netrc User-specific file that provides login information to
 FTP servers

See also: Chapter 9 for details about the contents of each file

■■ ■■ ■■

7

 Chapter 7 Configuring and Administering Network Files 58

TCP/IP for the iRMX Operating System Chapter 8 59

Commands for the
Network Administrator

There are several TCP/IP commands that display configuration information and
perform network maintenance. The network administrator uses these commands to
monitor the overall status of the network, monitor and make available remote
resources, test specific interfaces or functions, and configure certain interface
characteristics. This chapter describes the purpose for using such commands.

See also: Command syntax and descriptions, Command Reference

Administrative Commands
These are the network maintenance commands:

netstat Displays information from network data structures so you can identify
network problems. This chapter describes network tests you can
perform with this command.

ping Tests low-level communications between two hosts to determine if
there is a fault between them.

Performing Network Tests
As network administrator, you perform tests to determine whether the network
services and daemons are running as expected, whether the interfaces and routes
have been correctly configured, and whether each interface is functioning properly.

You should run a comprehensive set of tests after the network is first installed.
These tests should include the functional tests of the software loopback interface as
well as the basic assessment of the network configuration. At subsequent times
when the network is brought up, you should run a subset of the initial tests to
determine, at a minimum, that the correct daemons and interfaces are available. You
should also thoroughly test each network interface when it is initially configured.

The tests described here are only suggestions. Your own networking environment
will determine the tests that you select as most useful.

See also: netstat command, Command Reference, for more information about
test results

8

 Chapter 8 Commands for the Network Administrator 60

Verifying Network Services
When the network is first brought up, you can perform the Network Status Test to
verify that the network startup script tcpstart.csd has been properly configured.

Network Status Test
For the Network Status Test, perform these steps:

1. Use the netstat -a command to display all the active network connections and
listening servers.

2. Verify that there is an entry in the netstat -a table for every network server
daemon you have configured.

 See also: Chapter 5 for definitions of network servers

TCP/IP for the iRMX Operating System Chapter 8 61

3. For TCP-based services, verify that the entries in the netstat -a table have these
attributes:

• The protocol is tcp.

• The address part of the local address is wild-carded.

• The port part of the local address shows the service name as defined in the
:config:services file.

• Both the address and port parts of the foreign address are wild-carded.

• The state is LISTEN.

4. For UDP-based services, verify that entries in the netstat -a table have these
attributes:

• The protocol is udp.

• The address part of the local address is wild-carded.

• The port part of the local address shows the service name as defined in the
:config:services file.

• The address part of the foreign address is a name, address, or wildcard.

• The port part of the foreign address is wild-carded.

• The state is empty.

Verifying Network Configuration
You can perform the Interface Status Test, the Interface Configuration Test, and the
Route Configuration Test to verify network configuration.

Interface Status Test
For the Interface Status Test, perform these steps:

1. Use the netstat -i command to display the configured network interfaces.

2. Compare the netstat -i display with the contents of the network configuration
file tcp.ini to verify that all interfaces have been successfully configured.

 Chapter 8 Commands for the Network Administrator 62

3. Ensure these conditions are true for each entry in the netstat -i table:

• The interface name is the same as the one defined in the tcp.ini file. This
name is unique.

• The maximum transfer unit (MTU) for each interface is a positive nonzero
integer that reflects the type of communications medium used: 4096 for the
software loopback interface and 1500 for Ethernet interfaces. If the MTU
is zero, the interface did not initialize properly.

• The network and address fields each contain a name, not an Internet
address. The address field contains the host name assigned to the interface
in the tcp.ini file. The network field contains the network name from the
:config:networks file that matches the network portion of the address
associated with that host name in the :config:hosts file. (If the network
address is displayed, make sure the :config:networks file has an entry for
the address also.)

• The input and output error fields are 0. The input packets field is at least 2.
The output packets field is 0 or a positive integer.

Verifying Interface Functionality
The purpose of this type of network testing is to verify that each configured interface
is functioning properly and that all three of the Transport Layer protocols (tcp, udp,
and raw) are working as expected. Test the software loopback interface first as
described below to determine that the basic streams have been properly constructed.
Then test each network interface in the same manner.

1. To test the tcp transport layer, perform these steps:

• Enter:

 telnet me

 In response to your command, a DNS database or the :config:hosts file is
accessed to obtain the Internet address for the host me, at which point
TELNET displays this message:

 Trying 127.0.0.1

 If this message is n t displayed, check the :config:hosts file to make sure
that the proper name-to-address translation is available.

 As soon as TELNET makes the connection, it displays the connection status
and then the login banner received from the remote host (in this case, the
local host through the loopback connection).

• Log in and then log off to terminate the test.

 The three errors most often encountered when running this test are:

TCP/IP for the iRMX Operating System Chapter 8 63

 – No address translation can be found for the remote host name
 (unknown host).

 – The remote host is not listening for TELNET connections
 (connection refused).

 – The remote host did not respond to the connection request
 (connection timed out).

 The last error can be caused by a hardware problem. It can also occur if the
remote host is down, does not have the network running, or is very busy.

2. To test the udp transport layer, use the command:

 tftp me

3. To test the raw transport layer, use the command:

 ping me 1 10

 This sends ten one-byte ECHO_REQUEST packets to the local host, using the
loopback device. The transmission summary should show no packet loss and
reasonably consistent round trip times for the individual packets.

You can use the netstat command to test the functionality of the udp and tcp
transport layers.

See also: telnet, netstat, and ping commands, Command Reference

■■ ■■ ■■

 Chapter 8 Commands for the Network Administrator 64

TCP/IP for the iRMX Operating System Chapter 9 65

 Tunable Parameters 9

A number of tunable parameters affect the functionality and performance of TCP/IP
software. For each TCP/IP job, there are parameters that define how that job
operates.

Tuning is a tradeoff between allocating enough resources to facilitate networking
operations and keeping the kernel small enough to be manageable. The
recommendations made in this chapter are generally on the small end of the scale.
You will almost certainly need to revise them to meet the needs of your network's
configuration. Start with the values specified and monitor the system closely for a
while to determine what your environment really needs.

Determining When to Tune Parameters
The TCP/IP kernel is installed with default parameters that are adequate for a simple
host configuration, with one network interface and a moderate amount of network
traffic. After you determine your host and network configuration, you should review
the TCP/IP parameters listed in this chapter and reset them as needed.

TCP/IP Parameters
Parameters in the:config:tcp.ini file affect the TCP/IP jobs’ operation, and
performance.

✏ Note
Values not enclosed in single quotes are hexadecimal numbers.

[TCP]
Key Default Value Description
DEFMSS 200 Default maximum segment size
RCVSPACE 4000 Maximum receive space per socket
SNDSPACE 4000 Max send space per socket
CTLBUFS 40 Maximum total control buffers
TRANSBUFS 40 Maximum total transaction buffers
MAXTRANS 10 Maximum simultaneous IP transactions
MAXPORTS 1388 Maximum port ids

 Chapter 9 Tunable Parameters 66

LOWFIXPID 1 Well-known port id range
HIFIXPID 3FF
LOWAUTOPID 400 Ephemeral port id range
HIAUTOPID 1387

[UDP]
Key Default Value Description
CHECKSUM 1 Enable checksum
RCVSPACE 0A000 Maximum receive space per socket
CTLBUFS 40 Maximum total control buffers
TRANSBUFS 40 Maximum total transaction buffers
MAXTRANS 10 Maximum simultaneous IP transactions
MAXPORTS 1388 Maximum port ids
LOWFIXPID 1 Well-known port id range
HIFIXPID 3FF
LOWAUTOPID 400 Ephemeral port id range
HIAUTOPID 1387

[RIP]
Key Default Value Description
CTLBUFS 20 Maximum total control buffers
TRANSBUFS 20 Maximum total transaction buffers
MAXTRANS 8 Maximum simultaneous IP

transactions
MAXPORTS 80 Maximum port ids

[IP]
Key Default Value Description
IFNAMES ’ETH0, LO0' Interface names
BUFHEAPSIZE 200 Tot al receive buffer size in Kbytes
FORWARDING 0 Enable IP forwarding
LOCALSUBNETS 1 Enable local subnets
TTL 8 Default segment time to live
TOS 0 Default type of service
ARPTIMEOUT 20 ARP cache flush timeout in minutes
CTLBUFS 80 Maximum total control buffers
TRANSBUFS 80 Maximum total transaction buffers

[ETH0]
Key Default Value Description
HOST '206.103.53.11

5'
Interface IP address

NETMASK '255.255.255.0' Net mask
DEFROUTE '206.103.53.25

0'
Default route

RCVBUFS 3F Maximum receive buffers

TCP/IP for the iRMX Operating System Chapter 9 67

MAXTRANS 6F Maximum simultaneous transactions

[LO0]
Key Default Value Description
HOST '127.0.0.1' Interface IP address
NETMASK '255.255.0.0' Net mask
RCVBUFS 3F Maximum receive buffers
MAXTRANS 6F Maximum simultaneous transactions

[ROUTE0]
Key Default Value Description
DEST '206.163.82.4' Destination IP address
MASK '255.255.255.0' Net/subnet mask
GATEWAY ‘172.16.1.250’ Gateway IP address
FLAGS ‘GH’ Gateway/Host Flags

TCP Job Parameters
DEFMSS

Default maximum size of segments sent by the TCP job. To avoid fragmentation at
the IP level, set this parameter to the smallest maximum packet size that a sent
packet is likely to encounter in its route to the destination. Once a connection is
established, the source and destination TCPs negotiate an optimum maximum packet
size.

RCVSPACE
Size, in bytes, of the receive buffer area per TCP socket. The receive buffer holds
incoming data until it is received at the socket by the application.

SNDSPACE
Size, in bytes, of the send buffer area per TCP socket. The send buffer holds
outgoing data until it is successfully sent to the destination.

CTLBUFS
Maximum number of control buffers allocated for the TCP job. Control buffers are
used by the TCP job whenever data is sent or received through a TCP socket.

 If insufficient control buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of configured control buffers for the
TCP job should be increased. The default value should be used for most
applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the TCP job. Transaction
buffers are used by the TCP job whenever data is sent or received through a TCP
socket.

 Chapter 9 Tunable Parameters 68

 If insufficient transaction buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of transaction buffers for the TCP job
should be increased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the TCP job and
the IP job. Transactions are used by the TCP job whenever data is sent or received
through a TCP socket.

 If insufficient transactions are available, an ENOBUFS error is returned to the
application. This indicates that the number of transactions for communication
between the TCP job and the IP job should be increased. The default value should
be used for most applications.

MAXPORTS
Maximum number of port ids available to the TCP job. Whenever a TCP socket is
bound (see the bind() system call), a local port id is assigned to the socket. This
parameter specifies the maximum number of unique port ids available.

LOWFIXPID, HIFIXPID
When a TCP socket is bound (see the bind() system call), the user may specify the
local port id that is to be associated with the socket. LOWFIXPID and HIFIXPID:

• Define the range of port id values that may be specified.

• Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWAUTOPID and HIAUTOPID.

LOWAUTOPID, HIAUTOPID
When a TCP socket is bound (see the bind() system call), the user may request that
the TCP job select the local port id that is to be associated with the socket (known as
an ephemeral port id). LOWAUTOPID and HIAUTOPID:

• Define the range of port id values that the TCP job may choose from.

• Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWFIXPID and HIFIXPID.

UDP Job Parameters
CHECKSUM

A value of 0 disables checksum calculation on all segments sent or received by the
UDP job. A value of 1 enables checksum calculation. This parameter should
normally be set to 1.

RCVSPACE
Size of the receive buffer area per UDP socket, in bytes. The receive buffer holds
incoming data until it is received at the socket by the application.

TCP/IP for the iRMX Operating System Chapter 9 69

CTLBUFS
Maximum number of control buffers allocated for the UDP job. Control buffers are
used by the UDP job whenever data is sent or received through a UDP socket.

 If insufficient control buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of configured control buffers for the
UDP job should be increased. The default value should be used for most
applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the UDP job. Transaction
buffers are used by the UDP job whenever data is sent or received through a UDP
socket.

 If insufficient transaction buffers are available, an EBOBUFS error is returned to the
application. This indicates that the number of transaction buffers for the UDP job
should be increased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the UDP job and
the IP job. Transactions are used by the UDP job whenever data is sent or received
through a UDP socket.

 If insufficient transactions are available, an ENOBUFS error is returned to the
application. This indicates that the number of transactions for communication
between the UDP job and the IP job should be increased. The default value should
be used for most applications.

MAXPORTS
Maximum number of port ids available to the UDP job. Whenever a UDP socket is
bound (see the bind() system call), a local port id is assigned to the socket. This
parameter specifies the maximum number of unique port ids available.

LOWFIXPID, HIFIXPID
When a UDP socket is bound (see the bind() system call), the user may specify the
local port id that is to be associated with the socket. LOWFIXPID and HIFIXPID:

• Define the range of port id values that may be specified

• Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWAUTOPID and HIAUTOPID.

LOWAUTOPID, HIAUTOPID
When a UDP socket is bound (see the bind() system call), the user may request that
the UDP job select the local port id that is to be associated with the socket (known as
an ephemeral port id). LOWAUTOPID and HIAUTOPID:

• Define the range of port id values that the UDP job may choose from.

 Chapter 9 Tunable Parameters 70

• Must be within the range of 0 to MAXPORTS, exclusive, and must not overlap
the port id range defined by LOWFIXPID and HIFIXPID.

Raw IP Job Parameters
CTLBUFS

Maximum number of control buffers allocated for the Raw IP job. Control buffers
are used by the Raw IP job whenever data is sent or received through a Raw IP
socket.

 If insufficient control buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of configured control buffers for the
Raw IP job should be increased. The default value should be used for most
applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the Raw IP job. Transaction
buffers are used by the Raw IP job whenever data is sent or received through a
RAW IP socket.

 If insufficient transaction buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of transaction buffers for the Raw IP job
should be increased. The default value should be used for most applications.

MAXTRANS
Maximum number of simultaneous transactions allowed between the Raw IP job and
the IP job. Transactions are used by the Raw IP job whenever data is sent or
received through a Raw IP socket.

 If insufficient transactions are available, an ENOBUFS error is returned to the
application. This indicates that the number of transactions for communication
between the Raw IP job and the IP job should be increased. The default value
should be used for most applications.

MAXPORTS
Maximum total number of Raw IP sockets that may be created.

IP Job Parameters
IFNAMES

A list of interfaces that the IP job may communicate with to send and receive
datagrams. Each interface name in the list must match an interface description
included in the :config:tcp.ini file (e.g., [ETH0]), and also must match the name
associated with a NIC driver loaded in the :config:tcpstart submit file.

TCP/IP for the iRMX Operating System Chapter 9 71

BUFHEAPSIZE
Total buffer space, in Kbytes, available to the IP job for sending and receiving
datagrams. The buffers specified in the interface descriptions (e.g., the RCVBUFS
parameter of the [ETH0] interface description) are allocated from the buffer space
defined here.

FORWARDING
If this host is to forward packets from one network segment to another, set this
parameter to 1. If not, set it to 0.

LOCALSUBNETS
If this host is directly connected to a network that is divided into subnets, set this
parameter to 1. If not, set it to 0.

TTL Default time to live for outgoing datagrams. The TTL is used to limit the life of
TCP segments and prevent packets from endlessly circling the Internet on the way to
some unreachable destination.

TOS Default type of service for outgoing datagrams. This parameter encodes both
precedence and the type of service as defined by the MIL-STD 1777. The upper
three bits of the byte encode the precedence; the lower five bits encode the type
of service.

ARPTIMEOUT
The number of minutes after which a complete ARP table entry will be deleted
from the ARP cache if no ARP packets from the associated host are observed on
the network.

CTLBUFS
Maximum number of control buffers allocated for the IP job. Control buffers are
used by the IP job whenever data is sent or received.

 If insufficient control buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of configured control buffers for the IP
job should be increased. The default value should be used for most applications.

TRANSBUFS
Maximum number of transaction buffers allocated for the IP job. Transaction
buffers are used by the IP job whenever data is sent or received.

 If insufficient transaction buffers are available, an ENOBUFS error is returned to the
application. This indicates that the number of transaction buffers for the IP job
should be increased. The default value should be used for most applications.

DNS Configuration Parameters
DOMAIN

A string containing the name of the local domain.

 Chapter 9 Tunable Parameters 72

SERVER1
A string that contains the IP address of the primary DNS server used by the client

SERVER2
SERVER3

Each of these parameters takes a string containing the IP addresses of secondary
DNS servers. A total of three servers may be configured. If this section is not
defined, or no servers are defined, then DNS name resolution does not occur.

Network Interface Parameters
HOST The IP address associated with this interface.

NETMASK
The net mask for the IP address associated with this interface.

DEFROUTE
The default route. If the destination of a datagram is not on the network attached to
this interface, the default route is used as a destination. The host at the default route
address will then forward the datagram to the desired destination. Only one
interface should configure a default route.

RCVBUFS
The number of buffers allocated to receive datagrams from this interface. These
buffers are allocated from the memory pool defined by the IP job’s BUFHEAPSIZE
configuration parameter.

 Set this parameter to the maximum number of datagrams expected to be received at
one time on this interface.

MAXTRANS
The maximum number of simultaneous transactions between the IP job and this
interface. Each datagram sent or received consumes one transaction. The
transaction is recycled when the send or receive is processed.

 Set this parameter to the sum of the maximum number of incoming datagrams
expected at one time (i.e., the value of the RCVBUFS parameter, above) plus the
maximum expected number of simultaneous sends to this interface.

Loopback Pseudo-driver Interface Parameters
HOST The IP address associated with the loopback interface.

NETMASK
The net mask for the IP address associated with the loopback interface.

TCP/IP for the iRMX Operating System Chapter 9 73

RCVBUFS
The number of buffers allocated to receive datagrams from this interface. These
buffers are allocated from the memory pool defined by the IP job’s BUFHEAPSIZE
configuration parameter.

 Set this parameter to the maximum number of datagrams expected to be received at
one time on this interface.

MAXTRANS
The maximum number of simultaneous transactions between the IP job and this
interface. Each datagram sent or received consumes one transaction. The
transaction is recycled when the send or receive is processed.

 Set tthis parameter to the sum of the maximum number of incoming datagrams
expected at one time (i.e., the value of the RCVBUFS parameter, above) plus the
maximum expected number of simultaneous sends to this interface.

Route Parameters
DEST The IP address of the route destination. This may be a host address or a network

address.

MASK
The net mask for the IP address associated with the destination.

GATEWAY
If the route is through a gateway, this parameter specifies the IP address of the
gateway host. This parameter is not needed for routes to destinations that are
directly connected to the sending host.

FLAGS
The ‘H’ flag indicates that the route is to a host. The absence of the ‘H’ flag
indicates that the route is to a network.

 The ‘G’ flag indicates that the route is through a host, whose IP address is specified
by the GATEWAY parameter, that acts as a gateway to the destination. The
absence of the ‘G’ flag indicates that the route is direct to the destination. A
GATEWAY parameter is not needed for a direct route.

NFS Server and Mount Daemon (nfsd) Parameters
Parameters in the [nfsd] section of stune.ini affect the NFS server and mount daemon
uid/gid mapping, stateless operation, and performance.

 Chapter 9 Tunable Parameters 74

 Parameter Default Description
 DELETE_CONN_TIMEOUT_MIN 5 Delete connection timeout
 DELETE_FH_TIMEOUT_HR 24 Delete file handle timeout
 MAX_CONN 100 Max iRMX connections
 MAX_FH 2000 Max NFS file handles
 SAVE_FH_INTERVAL_SEC 30 Save file handle to disk
 interval
 WORLD_NFS_GID 1 NFS group ID for World
 from clients
 WORLD_NFS_UID 60000 NFS user ID for World
 from clients

DELETE_CONN_TIMEOUT_MIN
The time in minutes that the server allows iRMX connections to remain
attached or open. If this timeout occurs for a given NFS file handle,
the server closes and deletes the connection (the NFS file handle
remains active though). If a client subsequently re-accesses the file
handle, the server re-attaches or opens the connection.

DELETE_FH_TIMEOUT_HR
The time in hours that the server maintains an NFS file handle. In
NFS, there is no concept of “closing” a file handle. The client simply
stops using the file handle. If this timeout occurs for a given NFS file
handle, the server removes the file handle from internal tables. If a
client subsequently re-accesses the file handle, the server returns an
error (the Unix message “stale handle”).

 This timeout does not apply to mount handles. Handles returned on a
mount request are always retained.

MAX_CONN
The maximum number of iRMX connections that the server uses. This
affects BIOS resources and performance.

MAX_FH The maximum number of concurrent NFS file handles the server
allows clients to use. This affects memory usage and performance.

SAVE_FH_INTERVAL_SEC
The interval in seconds that the server waits before saving to disk the
active NFS file handles in use by remote systems. Saving the file
handles allows the NFS server to recover after an inadvertent reset or
power-down. Decreasing this parameter provides better crash recovery
(smaller window). Increasing this parameter provides faster overall
system performance (fewer disk writes). Set this parameter to -1 to
inhibit saving to disk.

TCP/IP for the iRMX Operating System Chapter 9 75

WORLD_NFS_GID
The group ID mapped by the NFS server for remote clients with the
iRMX World user ID. Although this may be different than the group
ID for the NFS file driver (in the [nfsfd] section of stune.ini), it is
recommended that they match.

WORLD_NFS_UID
The user ID mapped by the NFS server for remote clients with the
iRMX World user ID. Although this may be different than the user ID
for the NFS file driver (in the [nfsfd] section of stune.ini), it is
recommended that they match.

NFS File Driver (nfsfd) Parameters
Parameters in the [nfsfd] section of stune.ini affect the NFS file driver uid/gid
mapping and performance.

 Parameter Default Description
 WORLD_NFS_GID 1 NFS group ID for World from servers
 WORLD_NFS_UID 60000 NFS user ID for World from servers

WORLD_NFS_UID
The remote NFS user ID equivalent to the local iRMX World user ID.
It is recommended that you set up a user on the remote system with this
user ID with the name “world”. This will allow files on the remote
system to be listed with the native operating system correctly.
Although setting this parameter to 65535 may appear to be logical, this
can have side-effects on remote hosts. Several Unix systems do not
allow user IDs to be created greater than 60002.

WORLD_NFS_GID
The remote NFS group ID equivalent to the local iRMX World user
ID. The default setting of 1 is typically the “other” group on Unix
systems.

■■ ■■ ■■

 Chapter 9 Tunable Parameters 76

TCP/IP for the iRMX Operating System Chapter 10 77

 Files 10

This chapter describes the format and contents of network files for TCP/IP. All the
files below are installed in the :config: directory except netrc, which must be in each
user's home directory.

File Description
hosts host name database
protocols protocol name database
services network services database
sharetab.cf list of local resources mountable by remote systems
netrc ftp autologin information

hosts Network Name Database

 Chapter 10 Files 78

hosts
The :config:hosts file contains information regarding the known hosts on the
Internet. If the Domain Name Service is being used by the local host, this file will
usually contain entries for the local network interfaces. The file should contain an
entry for each host and each interface accessible through the network. The primary
purpose of the file is to provide the Internet address associated with a symbolic host
name. This allows users to specify a name instead of an address.

For each host there should be a single line in the file with this information:

 Internet_address official_host_name alias ...

Each entry begins in column one of the line. Fields are separated by any number of
blanks and/or tab characters. A pound sign (#) indicates the beginning of a comment
extending to the end of the line.

Specify Internet addresses in the conventional dot notation. The official host name
should be the fully-qualified domain name as stored with a hostname command or
sethostname() function. Alias names are optional; there may be more than one, but
they must all be on the same line. Host names may contain any character or digit
other than space, tab, newline, and pound sign.

See also: Internet addresses, Chapter 1

The extent to which this file is used depends somewhat on the host's configuration.
At a minimum, the :config:hosts file must contain an entry for every interface used
in the network configuration file :config:tcp.ini. For example, if the local host is
configured with the software loopback interface (lo0), the hosts file must contain an
entry defining the Internet address (127.0.0.1), the official name (loopback) and the
aliases (me and localhost) of that interface. The hosts file is the sole source for the
name-to-address translations required to initialize the interface correctly.

After the network is running, the use of the hosts file is dependent upon whether or
not the local host has been configured to use the Domain Name System (DNS). If
DNS has been configured for use by the local host, the networking library functions
gethostbyname and gethostbyaddr will use DNS to obtain the requested information.
If the DNS cannot be accessed, because either the network interface or the name
server is down, both library functions will eventually consult the hosts file to resolve
requests.

If the DNS is not configured for use by the local host, the hosts file must contain the
names and addresses of all local interfaces and remote hosts that will be accessed by
name.

Network Name Database hosts

TCP/IP for the iRMX Operating System Chapter 10 79

No specific order is required for either the entries in the file or the list of aliases in a
specific entry. Because both the file and the alias list are searched sequentially for a
given name, it may be useful to list the most often used names first in order to speed
the process, although the file is rarely long enough to make a noticeable difference.

hosts Network Name Database

 Chapter 10 Files 80

Below is a typical hosts file.

 # :config:hosts

FORMAT:

address official_name alias(es)

 # software loopback interface

127.0.0.1 loopback me localhost

 # add local network interface definitions here

 # add remote definitions here (if desired/needed)

As network administrator, you should be the owner of this file. Modify it and
update it as necessary.

Host Name Database protocols

TCP/IP for the iRMX Operating System Chapter 10 81

protocols
The :config:protocols file contains the official name, protocol number, and aliases of
the protocols with which the ip module directly communicates. The protocols are
standardized throughout the Internet community and are defined in RFC 1060,
Assigned Numbers (Reynolds & Postel).

While the actual protocol numbers are used by the TCP/IP kernel modules, the
number-to-name translation information is used primarily by the netstat command
to display the symbolic name of the protocol instead of its number. There are no
required entries in the protocols file; the information is used to make displays more
readable and meaningful.

For each protocol there should be a single line in the file with this information:

 official_protocol_name protocol_number aliases

The first field on each line should begin in column one. Fields are separated by any
number of blanks and/or tab characters. A comment begins with a pound sign (#)
and continues to the end of the line. A comment can appear on a separate line or at
the end of a line listing network name and address information.

Protocol names can contain any printable character other than a space, tab, newline,
or comment character. The official name and number of the protocol should be as
defined by the RFC 1060. A list of one or more aliases is optional.

Although no specific order is required for entries in the file, entries are generally
maintained in numerical order by protocol number. Below is an example of a
protocols file.

 # :config:protocols

FORMAT:

official_name protocol_number alias(es)

Internet protocols

ip 0 IP # reserved for ip (pseudo-protocol number)

icmp 1 ICMP # internet control message protocol

tcp 6 TCP # transmission control protocol

egp 8 EGP # exterior gateway protocol

igp 9 IGP # any private interior gateway protocol

pup 12 PUP # PARC universal packet protocol

udp 17 UDP # user datagram protocol

protocols Host Name Database

 Chapter 10 Files 82

As network administrator, you should be the owner of this file. Update it, if
necessary, so that its contents always reflect the protocols operating on the local
host. You can add entries if protocols interfacing with ip are added to the local host.
The information for this file should be obtained from the most current relevant RFC.

See also: getprotoent function, Chapter 11

FTP Autologin Information netrc

TCP/IP for the iRMX Operating System Chapter 10 83

netrc
The :home:netrc file contains information used to automatically validate FTP
connections to one or more remote hosts.

✏ Note
Unlike the Unix environment, the iRMX version of this file is
named netrc without a beginning . (period or dot) in the filename.
To hide the file, name it r?netrc. When any program refers to
netrc, the iRMX OS automatically maps it to r?netrc.

When ftp opens a connection to a remote machine, it checks the user's home
directory (:home:) for this file. If the file exists, ftp checks for an entry for the
specified host machine. If such an entry is found, the login name (and optional
password) in that entry is supplied to the FTP server without the user being
prompted. If the normal validation process used by the FTP server succeeds, the
FTP connection is completed without any interactive input by the user. If the file
does not contain password information, the user is not prompted for a login name but
is prompted for a password.

If netrc does not exist for that user, or it exists but contains no entry for the remote
host, the user is prompted for a login name and password.

The netrc file may contain multiple entries, each specifying login information to a
different host name. An entry begins with the keyword machine (or the special
keyword default, described below) and ends with the next occurrence of the word
machine or with the end of the file. Thus a single entry may be on one line or span
multiple lines.

 <machine name | default> login name [password string]

[account string] <[macdef name

string

]> ...

Each entry contains several keyword-value pairs in the format shown above. The
first field on each line should begin in column one. Subsequent fields should be
separated by spaces or tab characters. Comments begin with a pound sign (#) and
can appear on a separate line or at the end of a line listing host and login
information. The angle brackets shown above are not part of the syntax; they
surround multiple items in the same field.

netrc FTP Autologin Information

 Chapter 10 Files 84

The machine keyword identifies the name of a remote host to which autologin is
supported. The name can be either the official host name or an alias. FTP uses the
first entry it finds in netrc that matches the name of the remote host specified on the
ftp command line. The keyword default is a special instance of machine which
matches any host name. Since default matches every host name, any entries
appearing after it in the file are ignored.

The login keyword identifies a login name to be used on the remote machine.

The password keyword, where present, specifies the password to the given login.
The account keyword, where present, specifies a resource access password to be
used when required by the remote host. The account keyword does not apply to a
Unix or iRMX OS and should not be used for such remote systems. Specifying a
password or account is optional. If you include this information, also set the file
permissions so only the owner can read it. FTP for the iRMX OS, unlike other
versions, does not enforce the restriction of access permissions to the owner. FTP
does print a warning if the netrc file contains account information or passwords.

The macdef keyword identifies an FTP macro definition to be used during a
connection to the specified host. The macro name should follow the keyword; the
macro definition should begin on the next line of the file and continue until a blank
line or the end of the file is encountered. Multiple macros can be defined in this
manner, since the next entry does not start until the machine or default keyword
is encountered. The special macro name init causes the associated macro to be
invoked as the last step in the autologin process.

See also: ftp command Command Reference;
FTP Initialization File, Chapter 5

The following example is an empty netrc file. To prevent creation of an
unauthorized netrc file, such as in the Super user's home directory, install an empty
file that only Super can access.

 # netrc

FORMAT:

machine hostname login name

machine hostname login name password passwd

The default permissions of the netrc file are to be readable and writable by the
owner. All owners of a netrc file should modify this file and update it as necessary.

NFS Shared Resources Information sharetab.cf

TCP/IP for the iRMX Operating System Chapter 10 85

services
The :config:services file contains information about the services available through
the transport layer protocols. The services are defined in RFC 1060, Assigned
Numbers (Reynolds & Postel), and are standardized throughout the Internet
community. The service information is used by applications and TCP/IP kernel
modules to identify and validate logical connections. The netstat command uses the
services file to display the symbolic name of the service instead of its number.

The transport layer protocols use ports to identify the endpoints of a logical
connection. Specific application services are associated with certain ports, often
called well-known ports. The server process for the application listens at the
assigned port for incoming connections. The Internet community, through
RFC 1060, coordinates and standardizes the ports assigned to specific services.
Wherever possible, the TCP, UDP, and ISO-TP4 service assignments are
coordinated.

For each service there should be a single line in the services file with this
information:

 official_service_name port_number/protocol_name aliases

The first field on each line should begin in column one. Fields are separated by any
number of blanks and/or tab characters. A comment begins with a pound sign (#)
and continues to the end of the line. A comment can appear on a separate line or at
the end of a line listing service information.

Service names may contain any printable character other than a space, tab, newline,
or comment character. The port number and protocol name are considered a single
field; a slash separates the port and protocol (for example, 512/tcp). A list of one
or more aliases is optional.

Although there is no specific order required for the entries in this file, entries are
generally maintained in numerical order by port number.

sharetab.cf NFS Shared Resources Information

 Chapter 10 Files 86

As network administrator, you should be the owner of this file. Update it, if
necessary, so that its contents always reflect the services available on the local host.
Port numbers 0 through 1023 are reserved for privileged processes, and should be
used only for the service identified by the Assigned Numbers through RFC. Assign
port numbers 1024 and above to custom applications and services unique to the local
networking environment.

See also: getservent function, Chapter 13

This is a typical services file:

 # :config:services

FORMAT:

service port/protocol alias(es)

ports 0 - 512 are privileged ports

netstat 15/tcp

netstat 15/udp

ftp-data 20/tcp

ftp 21/tcp

telnet 23/tcp

smtp 25/tcp mail

nameserver 53/tcp domain named

nameserver 53/udp domain named

tftp 69/udp

rpcbind 111/udp

rpcbind 111/udp

nfsd 2049/udp

finger 79/tcp

hostnames 101/tcp hostname

netbios-ns 137/tcp nb-ns

netbios-dgm 138/udp nb-dgm

netbios-ssn 139/tcp nb-ssn

snmp 161/udp snmp

snmp-trap 162/udp snmptrap

exec 512/tcp rexec

login 513/tcp rlogin

who 513/udp rwho whod

cmd 514/tcp shell rsh rsh

printer 515/tcp spooler

talk 517/udp

ntalk 518/udp

router 520/udp route routed#

ports > 1024 host-specific functions

NFS Shared Resources Information sharetab.cf

TCP/IP for the iRMX Operating System Chapter 10 87

sharetab.cf NFS Shared Resources Information

 Chapter 10 Files 88

sharetab.cf
The sharetab.cf file is the NFS configuration file that defines local file systems as
NFS-shared. Resources listed in this table are made available for attaching (or
mounting) by clients in an NFS network. If a resource does not appear in this table
and you want to allow remote NFS clients access to the resource, then you must
specifically make it available for attaching (or mounting) by issuing the share
command.

The sharetab.cf file is referenced during these occasions:

• When you enter the share command. Entering share causes an entry to be
added to the sharetab.cf file.

• When you enter the unshare command. Entering unshare causes an entry (or
all entries) to be removed from the sharetab.cf file.

• When a remote NFS client attaches (or mounts) a file directory on an NFS
server. The server jobs reference sharetab.cf file to ensure that the requested
file system has an entry (is defined as NFS-shared).

✏ Note
You should never edit the sharetab.cf file directly. Use the share
and unshare commands to add and remove entries.

Each entry in the sharetab.cf file contains lines with the following fields:

 pathname symbolic_name options

The pathname field is the local pathname to the shared resource including a drive
device name like :sd:.

The symbolic_name field is a symbolic name of the local resource that will be
shared. You can specify this symbolic name by using the -s option with the share
command. If you do not specify a symbolic name, share creates one. You should
be aware of file naming conventions that can affect how this symbolic name is
interpreted.

See also: share command, Command Reference

The options field is a comma-separated list of keywords and attributes for the
shared resource. If you do not specify options, share enters rw as the default.

NFS Shared Resources Information sharetab.cf

TCP/IP for the iRMX Operating System Chapter 10 89

Options include:

rw All clients can read and write the shared device
rw=client[:client]...

Substitute host names of clients that will have read and write access to
the shared device. This option overrides the ro option when
combinations of options result in the same client having both ro and
rw options.

ro All clients can only read the shared device.
ro=client[:client] ...

Substitute host names of clients that will have read-only access to the
shared device. This option overrides the rw option when combinations
of options result in the same client having both ro and rw options.

anon=uid Specifies the user identification for unknown (anonymous) users. By
default, unknown users are given the user identification World. If uid
is set to -1, access to unknown users is denied.

root=host[:host] ...
Restricts Super user access to the list of hosts. By default, no host has
Super user access.

The following are example entries in a sharetab.cf file:

 #path symbolic options

 #

 :sd:user/jeff1 jeff rw,ro=hosta,anon=36,root=hosta

 :sd:user/jimd jim ro,rw=hosta,anon=-1

In the previous example, the first entry specifies that the directory :sd:user/jeff1 will
be shared. After attaching the file system, clients will be able to access the directory
by specifying its logical name as specified with the attachdevice command. The
options indicate that all clients will have read/write access. However, users from
hosta are restricted to read-only access. The user identification assigned to unknown
users will be 36. Super user access is allowed only from hosta.

The second entry options declare that all clients will have read-only access. This
access is overruled for hosta, which has read/write privileges. For this second entry
no anonymous users are allowed to access :sd:user/jimd and there is no Super user
access from clients.

See also: Sharing File Systems, Chapter 3
share command, Command Reference

■■ ■■ ■■

sharetab.cf NFS Shared Resources Information

 Chapter 10 Files 90

TCP/IP for the iRMX Operating System Chapter 11 91

 TCP/IP Components 11

This chapter describes the purpose of special files related to the network interface
devices, protocols, and protocol families. These files are installed in the
/rmx386/jobs directory:

File See Description
ip.job IP layer
rip.job Raw IP layer
tcp.job TCP layer
udp.job UDP layer

eepro100.job NIC driver.
edl.job NIC-sytle interface to iNA jobs
loopback.job Loopback pseudo-driver
ne.job NIC driver.
tulip.job NIC driver.

 Chapter 11 TCP/IP Components 92

Protocol Jobs
All network protocols are associated with a specific protocol family, such as the
Internet family inet. Associated with each protocol family is an address format, such
as the Internet format AF_INET. A protocol family provides basic services to the
protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly,
routing, addressing, and basic transport.

A protocol family normally comprises a number of protocols, such as the Internet
protocols tcp and ip. A protocol normally accepts only one type of address format,
as determined by the addressing structure inherent in the design of the protocol
family and network architecture.

A network interface corresponds to a path through which messages can be sent and
received. It can be a hardware device, such as an Ethernet driver, or a pseudo-
device, such as the loopback driver. Network interfaces comprise the lowest layer of
the networking subsystem, interacting with the actual transport hardware. A
network interface may support more than one protocol family and/or address format.
Interface structures and attribute flags are defined in the include file <net/if.h>.

The interface address structure contains information about an address associated
with a particular interface, maintained by an address family. These structures are
linked together so that all addresses for an interface can be located.

Internet Protocol ip

TCP/IP for the iRMX Operating System Chapter 11 93

ip.job
The ip.job implements both the Address Resolution Protocol (ARP) and the Internet
Protocol (IP).

ARP is used to dynamically map between Internet software addresses and Ethernet
hardware addresses.

ARP caches Internet-to-Ethernet address mappings. When the interface requests a
mapping for an address not in the cache, ARP queues the message that requires the
mapping and broadcasts a message on the associated network, requesting the address
mapping. If ARP receives a response, it caches the new mapping and transmits any
pending messages to that host. While waiting for a response, ARP will queue only
one packet; it keeps only the most recently transmitted packet.

ARP watches passively for hosts impersonating the local host (that is, a host that
responds to an ARP mapping request for the local host's address).

IP is the network layer protocol used by the Internet protocol family. It can be
accessed through the higher-level Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) as well as directly through the Raw IP interface.

rip Raw IP Service

 Chapter 11 TCP/IP Components 94

rip.job

Syntax
#include <netinet/in.h>
#include <netinet/raw.h>

The raw ip service provides a direct interface to lower-level IP. It can be used to
implement a new protocol above IP. The ping command uses the raw interface.
Rip.job only receives packets for the protocol specified. Getprotobyname can be
used to determine a particular protocol number.

The IP header and any IP options are left intact by raw on receipt of datagrams.

Transmission Control Protocol tcp

TCP/IP for the iRMX Operating System Chapter 11 95

tcp.job

Syntax
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/tcp.h>

The Transmission Control Protocol (TCP) provides reliable, flow-controlled,
two-way transmission of data. It is a byte-stream protocol used to support the
SOCK_STREAM abstraction. TCP uses the standard Internet address format
augmented by a host-specific collection of port addresses. Thus, each TCP address
is composed of an Internet address specifying the host and network, with a specific
TCP port on the host identifying the peer entity.

udp User Data Protocol

 Chapter 11 TCP/IP Components 96

udp.job

Syntax
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/udp.h>

The User Datagram Protocol (UDP) is a simple, unreliable datagram protocol. UDP
streams are connectionless.

UDP address formats are identical to those used by TCP; UDP provides a port
identifier in addition to the normal Internet address format. Note that the UDP port
space is separate from the TCP port space (that is, a UDP port may not be connected
to a TCP port). If the underlying network interface supports broadcast, UDP can
send broadcast packets by using a reserved broadcast address. The broadcast
address is dependent on the network interface.

TCP/IP for the iRMX Operating System Chapter 11 97

Network Interface Controller (NIC) Jobs
These driver jobs provide an interface between the TCP/IP protocol stack and the
network adapters themselves. At least one of the following NIC jobs must be loaded
in addition to the loopback.job to allow the TCP/IP protocol stack to communicate
with other peers on the network.

loopback Software Loopback Device

 Chapter 11 TCP/IP Components 98

loopback.job
The loopback job provides a NIC-style interface to a software loopback mechanism
that can be used for performance analysis, software testing, or local communication.
The loopback interface is accessible at Internet address 127.0.0.1. By convention,
the interface name is me, loopback, or localhost.

The loopback interface should be the last interface configured, as protocols use the
order of configuration as an indication of priority. The loopback interface should
never be configured first unless no hardware interfaces exist.

INA 960 EDL Interface edl

TCP/IP for the iRMX Operating System Chapter 11 99

edl.job
The file edl.job provides a NIC-style interface to an iNA960 network interface job.
Using this interface allows iRMX-NET and the new TCP/IP protocol stack to use the
same hardware to gain access to the network.

Parameters
ifport=<subsystem id>

This required parameter specifies the subsystem ID of the iNA job. This can be
determined after the iNA job has been loaded by use of the enetinfo command.
Specify the subsystem ID parameter as two hex digits.

ntrans=<transaction pool size>

This parameter specifies the maximum number of transactions available to the EDL
service. The default value is 256.

ncbs=<control buffer pool size>

This parameter specifies the maximum number of transactions available to the EDL
service. The default value is 256.

eepro100 Intel EtherExpressPro 100Plus NIC

 Chapter 11 TCP/IP Components 100

eepro100.job
The file eepro100.job provides an interface to the Intel EtherExpressPro 100 PCI
network adapter card. This NIC is capable of 10 or 100 Mbit operation.

Parameters
ntrans=<transaction pool size>

This parameter specifies the maximum number of transactions available to the EDL
service. The default value is 256.

ncbs=<control buffer pool size>

This parameter specifies the maximum number of transactions available to the EDL
service. The default value is 256.

NE2000 Compatible NIC ne

TCP/IP for the iRMX Operating System Chapter 11 101

ne.job
The file ne.job provides an interface to NE2000 compatible ISA network adapter
cards.

Parameters
irq=<IRQ number>

This required parameter specifies the IRQ number to be used by the card.

base=<base IO address>

This parameter specifies the base address in I/O space used to access the card’s
register set. If the card’s address is in the range 0x280 to 0x360 then the software is
capable of determining the base address automatically.

ntrans=<transaction pool size>

This parameter specifies the maximum number of transactions available to the EDL
service. The default value is 256.

ncbs=<control buffer pool size>

This parameter specifies the maximum number of transactions available to the EDL
service. The default value is 256.

udp User Datagram Protocol

 Chapter 11 TCP/IP Components 102

tulip.job
The file tulip.job provides an interface to a DEC 21143 based PCI network adapter
card. Many of these cards are capable of supporting 10 or 100 Mbit interfaces.

Parameters
ntrans=<transaction pool size>

This parameter specifies the maximum number of transactions available to the EDL
service. The default value is 256.

ncbs=<control buffer pool size>

This parameter specifies the maximum number of transactions available to the EDL
service. The default value is 256.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Chapter 12 103

 Library Functions 12

This chapter describes functions for the network socket libraries listed below.

 C Library Network Library Compiler Model
 ciff3m.lib netiff3m.lib Microsoft Flat
 cifc32.lib netifc32.lib Intel iC386 Compact

See also: Using Non-Intel Tools to Develop iRMX Application in Programming
Techniques for non-Intel compiler version numbers.

The libraries are installed in the /intel/lib directory and facilitate the programmatic
interface to TCP/IP. In the final bind of your application, add one or both libraries
to the list of libraries to be linked to your program.

✏ Note
The socket primitives are embedded in the C library.

 Chapter 12 Library Functions 104

Table 11-1 lists functions from the socket library.

 Table 11-1. Functions in the Socket Library

Name See Description
accept accept accept a connection on a socket
bind bind bind a name to a socket
connect connect initiate a connection on a socket
getpeername getpeername get name of connected peer
getsockname getsockname get socket name
getsockopt getsockopt get options on sockets
listen listen listen for connections on a socket
recv recv receive a message from a socket
recvfrom recv receive a message from a socket
recvmsg recv receive a message from a socket
select select check status of a set of sockets
send send send a message from a socket
sendto send send a message from a socket
sendmsg send send a message from a socket
setsockopt getsockopt set options on sockets
shutdown shutdown shut down part of a connection
socket socket create an endpoint for communication
socktout socktout define a timeout for a socket

TCP/IP for the iRMX Operating System Chapter 12 105

Table 11-2 lists functions from the network library.

Table 11-2. Functions in the Network Library (continued)

Name See Description
bcmp bstring compare binary strings
bcopy bstring copy binary string
bzero bstring put zeros in binary string
endhostent gethostent close resolver connection
endnetent getnetent close networks database
endprotoent getprotoent close the protocols database
endservent getservent close service database
ffs ffs identify set bits
gethostbyaddr gethostent get host entry by address
gethostbyname gethostent get host entry by name
gethostid gethostid get unique id of current host
gethostname gethostname get host name
getnetbyaddr getnetent get network entry by address
getnetbyname getnetent get network entry by name
getnetent getnetent get next network entry
getprotobyname getprotoent get protocol entry by name
getprotobynumber getprotoent get protocol entry
getprotoent getprotoent get next protocol entry
getservbyname getservent get service entry by name
getservbyport getservent get service entry by port
getservent getservent get next service entry
htonl byteorder host to net order (long)
htons byteorder host to net order (short)
inet_addr inet string to Internet address
inet_lnaof inet get locnet part of address
inet_makeaddr inet construct Internet address
inet_netof inet get net part of address
inet_network inet string to network address
inet_ntoa inet Internet address to string
ntohl byteorder net to host order (long)
ntohs byteorder net to host order (short)
sethostent gethostent open resolver connection
sethostid gethostid set unique id of current host
sethostname gethostname set host name
setnetent getnetent open/rewind networks database
setprotoent getprotoent open/rewind protocols database
setservent getservent open/rewind services database

 Chapter 12 Library Functions 106

Using Sockets
The socket compatibility library constitutes a self-contained interface to the transport
level protocols.

A socket is an endpoint for communication between processes. Each socket has
queues for sending and receiving data.

Sockets are typed according to their communications properties, including such
things as whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, and what format is used in naming
message recipients.

See also: socket in this chapter for more information about the types available
and their properties

Each set of communications protocols supports addresses of a certain format. An
address family is the set of addresses for a specific group of protocols. Each socket
has an address chosen from the address family in which the socket was created.

Certain semantics of the basic socket abstractions are protocol-specific. All
protocols are expected to support the basic model for their particular socket type, but
may, in addition, provide nonstandard facilities or extensions to a mechanism. For
example, a protocol supporting the SOCK_STREAM type may allow more than one
byte of out-of-band data to be transmitted per out-of-band (urgent) message.

Use the TCP protocol to support connection-oriented sockets of type
SOCK_STREAM. Use UDP to support connectionless, or datagram, sockets of type
SOCK_DGRAM.

Calling Sequence for Connection-oriented Applications
Applications that communicate using connections are typically divided in two parts,
designated as client and server. The server uses a passive open; it opens a socket,
then listens for requests for service. The client uses an active open; it opens a socket
and requests a connection to a specific server. Once the connection is established,
the client and server send and receive data as necessary. Typically the client closes
the connection, while the server continues to listen for further connection requests.

This is the sequence of calls used by the client:

Client Call Description
socket() Create a SOCK_STREAM socket for connections
bind() Bind the socket to a local address (port A)
connect() Request a connection to a remote socket, specifying a remote IP

address and well-known port B
send(), recv() Send and receive data as determined by the application
shutdown() Close the connection

TCP/IP for the iRMX Operating System Chapter 12 107

This is the sequence of calls used by the server:

Server Call Description
socket() Create a SOCK_STREAM socket (S1) for connections
bind() Bind the socket to well-known port B
listen() Listen for connection requests at port B
accept() Accept the connection on a new socket S2
create_task Create a child task to perform the service
socket() Child task opens SOCK_INHERIT socket so it can receive

socket S2
shutdown() Parent closes S2, specifying the job ID of child task, then

continues to listen at port B (socket S1)
send(), recv() Child sends and receives data with client (port C to port A)
shutdown() Child closes S2 and exits when client breaks connection

Active sockets initiate connections to passive sockets. By default, TCP sockets are
created active; to create a passive socket you must use the listen() function after
binding the socket with the bind() function. Only passive sockets may use the
accept() call to accept incoming connections. Only active sockets may use the
connect() call to initiate connections.

Passive sockets may underspecify their location to match incoming connection
requests from multiple hosts. This technique, termed wildcard addressing, allows a
single server to provide service to clients on multiple hosts. To establish a socket
that listens for all network addresses, bind the Internet address INADDR_ANY.
You may specify the TCP port in this bind() call; if the port is not specified the
system will assign one.

Once a connection has been established, the socket's address is fixed by the peer
entity's location. The address assigned to the socket is the address associated with
the network interface through which packets are being transmitted and received.
Normally, this address corresponds to the peer entity's network.

Calling Sequence for Connectionless Applications
A connectionless application may also be established as a client and server.
However, there is no calling sequence that establishes this division of duties. This is
the typical sequence of calls for both parties:

Call Description
socket() Create a SOCK_DGRAM socket for UDP
bind() Bind the socket to a local address
sendto(), recvfrom() Send and receive data as determined by the application
shutdown() Close the connection

However, you can use the connect() call to fix the destination for future packets, in
which case you can use recv() and send() calls with the SOCK_DGRAM socket.

 Chapter 12 Library Functions 108

Internet Socket Addresses
An Internet address is defined as a discriminated union:

 struct in_addr {

 union {

 struct { uchar s_b1, s_b2, s_b3, s_b4; } S_un_b;

 struct { unsigned short s_w1, s_w2; } S_un_w;

 unsigned long S_addr;

 } S_un;

 #define s_addr S_un.S_addr

 #define s_imp S_un.S_un_w.s_w2

 #define s_net S_un.S_un_b.s_b1

 #define s_host S_un.S_un_b.s_b2

 #define s_lh S_un.S_un_b.s_b3

 #define s_impno S_un.S_un_b.s_b4

 };

In the Internet address family, sockets use this address structure:

struct sockaddr_in {

 uchar sin_len;

 uchar sin_family;

 unsigned short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

 };

✏ Note
The structure above is more correctly called a name than an
address. For example, this is the name that you bind the socket to
in a bind() call, and the name returned by getsockname() and
getpeername(), where the peer uses the Internet address family.
The structure is more than just the address; it contains the address
family and port number along with the Internet address. However,
much of the literature refers to this structure (and the more general
struct sockaddr) as an address.

See also: <netinet/in.h>

Network and Host Byte Order
Two methods used to store data on different computers are little-endian (the least
significant byte of multibyte data is stored in the lowest memory) and big-endian
(the most significant byte is stored in the lowest memory).

TCP/IP for the iRMX Operating System Chapter 12 109

Within these categories there may also be variation. For example, a certain machine
may store words in one order, but swap bytes within the words. Whatever method is
used is called host byte order; it is specific to the local host.

The Internet standard for binary data to be sent across the network is big-endian.
The most significant byte of an integer is sent first. This is network standard byte
order. It may or may not be the same as the byte order used on the local machine.

To write portable code, translate any binary data from host to network order before
sending it. Translate from network to host order after receiving the data. This does
not apply to data messages you send between applications; the applications
themselves should use data in the same format. It does apply to items that will be
used by the protocols on the remote machine.

For example, in the bind() and connect() calls you specify a port value as part of
the local or remote socket address (sin_port in the sockaddr_in structure).
Convert this unsigned short value from host to network order with htons(), before
placing it in the structure. If your application uses such data (for example, doing a
printf of a port value obtained from an address), convert from network to host order.

See also: byteorder() function, in this chapter

This code fragment shows how to convert the port value properly:

 #include <netinet/in.h>

int s;

struct sockaddr_in sin;

sin.sin_len = sizeof sin

sin.sin_family = AF_INET;

sin.sin_port = htons (1200);

sin.sin_addr.s_addr = inet_addr ("128.215.18.2");

bind (s, &sin, sizeof sin)

This stores the local address in a structure whose elements appear in memory in this
order:

Value Description
0x10 Length of sock_addre_in structure
AF_INET Address family
0xb004 port 1200 = 0x4b0, swapped to network byte order
0x80d71202 Internet address 128.215.18.2

 Chapter 12 Library Functions 110

Changes From the Standard Socket Interface
This implementation of the socket library has these differences from the standard
socket interface:

• In the standard socket interface, you can only specify whether socket calls are
blocking or non-blocking. This library provides the socktout() call that allows
you to define the maximum time to wait for completion of a socket call. The
timeout resolution is 10 ms.

• The address family AF_UNIX is not supported.

• The socketpair() call is not implemented.

• The SIGPIPE and SIGPOLL signals are not supported.

▲▲! CAUTION
The socket descriptors are not equivalent to the file descriptors
used in the C stdio interface. Never use the close() function on a
socket descriptor. You also cannot use such routines as read(),
fread(), write(), and fwrite(), among others, to read and write
data to socket connections.

Task Priority
User applications that bind to net3c.lib should run at a priority between 131 and 254.
If you use rq_create_task, be sure to create the new task with a priority in this
range. When applications launch from the CLI, there should not be a problem,
because the typical user priority falls in this range: 141 for Super user and 142 for
other users.

Multitasking Considerations
You must ensure that only one iRMX job accesses a connection. Connections may
be shared between individual tasks within a single job.

Connections may be inherited by other child jobs if you specify this in the
shutdown() and socket() calls. Since socket descriptors are not file descriptors,
and under iRMX are not automatically inherited by child jobs as in Unix, these
routines provide a means to imitate this functionality under iRMX.

▲▲! CAUTION
Never delete a task while it is executing a socket call. This will
cause a general-protection trap in the TCP/IP job, with
unpredictable results. Killing the job, on the other hand, is all

TCP/IP for the iRMX Operating System Chapter 12 111

right. If a task is hung in a read call, and you want to kill it, first
close the connection and wait until the task returns.

Only one task should operate on a socket until a connection is established. After the
connection has been established, any number of tasks may use the socket
simultaneously. A shutdown() may be performed at any time. All tasks executing
a call on the socket at that time will return immediately with errno set to EBADF.

Include Files
The descriptions of library functions show which files must be included for each
function. The include directory is /intel/include.

To use socket functions, these include files are generally needed:

 <sys/types.h>

<sys/errno.h>

<sys/socket.h>

Functions that use an argument of type struct sockaddr and use a socket in the
DARPA Internet domain (AF_INET) may use the Internet view of the sockaddr
structure, defined in <netinet/in.h> as sockaddr_in.

Example Programs
Example programs are installed under the /rmx386/demo/c/tcpip directory,
including:

tcpclient.c creating a TCP socket as a client
tcpserver.c creating a TCP socket as a server

Compiling and Linking
Libraries are provided for the Intel 386 compact model compilers, and for the 32-bit
flat model code produced by the Microsoft C/C++ compiler. Use the standard
settings for compiling an iRMX application.

The following libraries are linked with your application to provide the sockets calls:

 netifc32.lib (Intel 386 compilers)
netiff3m.lib (Microsoft C/C++ compiler)

Link the library ahead of the C library.

 Chapter 12 Library Functions 112

Handling Errors
Most socket calls have one or more error returns. Error conditions are indicated by
impossible return values (usually -1); individual descriptions specify details.

Unless otherwise noted, function return codes and values are of type integer. An
error number is also made available in the external variable errno, which is not
cleared on successful calls. Thus, you should test errno only after an error occurs.

Link to cstart.obj and cifc32.lib (or the third party compiler equivalent) if your
application makes calls to the socket library and you use Intel 32-bit development
tools. You must use in-line exception handling or socket calls will fail, often with
the command aborted by EH error. To prevent this, add this code to the
beginning of main() in your program:

 EXCEPTIONSTRUCT info;

unsigned short rq_status:

info.exceptionmode = 0:

rqsetexceptionhandler ((EXCEPTIONSTRUCT far *) &info.

&rq_status);

Always test the return status of iRMX system calls, and take action if there is an
error.

See also: Using Interface Libraries in Programming Techniques and System Call
Reference for shared C libraries to link to when not using Intel 32-bit
application development tools.

Errno Values for Network Functions
This list describes errors specific to networking as given in <sys/errno.h>.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn't necessarily expect to be able to use PUP (PARC Universal Packet) Internet
addresses with ARPA Internet protocols.

EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an operation
in progress.

EBADF Bad file
The socket descriptor is invalid.

TCP/IP for the iRMX Operating System Chapter 12 113

ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNREFUSED Connection refused
No connection could be made; the target machine actively refused it. This usually
results from trying to connect to a service that is inactive on the foreign host.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer
executing a shutdown call.

EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

EHOSTDOWN Host down
The specified host is not running.

EHOSTUNREACH Host unreachable
There is no route to the host.

EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect) was attempted
on a non-blocking object.

EISCONN Socket is already connected
A connect request was made on an already connected socket, or a sendto or
sendmsg request on a connected socket specified a destination other than the
connected party.

EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt or setsockopt call.

ENOTCONN Socket is not connected
A request to send or receive data was disallowed because the socket is not
connected.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

 Chapter 12 Library Functions 114

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation
for it exists.

EPOWERFAIL Power failure
The connection was lost due to a power-fail/recovery cycle.

EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type
requested. For example, you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut
down with a previous shutdown call.

ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after
a period of time. The timeout period is dependent on the communication protocol.

EUNATCH Protocol driver not attached
The TCP/IP kernel has not been loaded.

EWOULDBLOCK Operation would block
An operation that would cause a process to block was attempted on an object in non-
blocking mode.

Function Reference
This section provides a reference to the functions from the network and socket
libraries. Each function reference page provides a brief description of the function,
its syntax, any additional information, and related error messages. Functions are
ordered alphabetically for quick reference.

Socket Library accept

TCP/IP for the iRMX Operating System Chapter 12 115

accept
Accepts a connection on a socket.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int accept(s, addr, addrlen)
int s;
struct sockaddr *addr;
int *addrlen;

Parameters
s A socket of type SOCK_STREAM, created with the socket() call,

bound to an address with bind(), and currently listening for
connections with listen().

addr Points to a structure that accept() fills in with the address of the
connected peer. The format of the returned address is determined by
the domain in which the communication occurs.

addrlen Initialize to the number of bytes in the buffer referenced by addr. On
return, addrlen will contain the actual length in bytes of the returned
address.

Return Value
If the call succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket, created by this call. The call returns -1 on an error.

Additional Information
Accept() gets the first connection request from the queue of pending connections
and creates a new socket with the same properties as s. The call accepts the
connection on the new socket and returns a file descriptor for that socket. You
cannot accept more connections on the new socket; the original socket s remains
open.

If no pending connections are present on the queue accept() blocks the caller until a
connection request arrives.

See also: bind(), connect(), listen(), and socket() functions, in this chapter

accept Socket Library

 Chapter 12 Library Functions 116

Errors
[EBADF]

The descriptor is invalid.
[EFAULT]

The addr parameter is not in a writable part of the user address space.
[EINVAL]

One of these has occurred:
• The number of bytes allocated for an incoming argument is not sufficient to store

the value of that argument.
• The function was issued in the wrong sequence on the transport endpoint

referenced by s.
• The transport endpoint referred to by s is not in the idle state.
• The specified options were in an incorrect format or contained illegal

information.
• The amount of user data specified was not within the bounds allowed by the

transport provider.

[EIO] One of these has occurred:
• An asynchronous event has occurred on this transport endpoint and requires

immediate attention.
• A system error has occurred during execution of this function.
• An unspecified I/O error has occurred.

[ENOTSOCK]
The descriptor references a file, not a socket.

[EOPNOTSUPP]
The referenced socket is not of type SOCK_STREAM.

[EUNATCH]
The TCP/IP kernel has not been loaded.

[EWOULDBLOCK]
The socket is marked non-blocking and no connections are present to be accepted.

Socket Library bind

TCP/IP for the iRMX Operating System Chapter 12 117

bind
Assigns a name to an unnamed socket. When a socket is created with socket() it
exists in a name space (address family) but has no name assigned. A name must be
bound to the socket before the socket can be used.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int bind(s, name, namelen)
int s, namelen;
struct sockaddr *name;

Parameters
s The socket to be bound.

name Points to the structure containing the name. The rules used in name
binding vary between communication domains. In the AF_INET
domain, a name consists of the address family (AF_INET), a port ID,
and an IP address.

 See also: Internet Socket Addresses, in this chapter

namelen The length of the name.

Return Value
Zero if the call is successful or -1 if an error occurs.

Errors
[EADDRINUSE]

The specified address is already in use.
[EADDRNOTAVAIL]

The specified address is not available from the local machine.
[EBADF]

S is not a valid descriptor.
[EFAULT]

The name parameter is not in a valid part of the user address space.
[EINVAL]

The socket is already bound to an address.

bind Socket Library

 Chapter 12 Library Functions 118

[EIO] An unspecified I/O error has occurred.
[ENOTSOCK]

S is not a socket.
[EUNATCH]

The TCP/IP kernel has not been loaded.

Network Library bstring

TCP/IP for the iRMX Operating System Chapter 12 119

bstring
The bcmp(), bcopy(), and bzero() functions execute binary string operations.
They operate on variable length strings of bytes but do not check for null bytes as
the routines in string do.

Syntax
#include <sys/types.h>
#include <strings.h>

int bcmp(b1, b2, length)
char *b1, *b2;
int length;

int bcopy(b1, b2, length)
char *b1, *b2;
unsigned int length;

void bzero(b, length)
char *b;
int length;

Additional Information
Bcmp() compares the first length bytes of strings b1 and b2, returning 0 if they
are identical, non-zero otherwise. Both strings are assumed to be at least length
bytes long.

Bcopy() copies the first length bytes from string b1 to string b2. Bcopy() always
returns 0.

Bzero() places 0s in the first length bytes of string b.

✏ Note
The bcopy() function takes its two char * parameters in the
reverse order from strcpy() and memcpy().

byteorder Network Library

 Chapter 12 Library Functions 120

byteorder
The htonl(), htons(), ntohl(), and ntohs() functions convert short (16-bit) and
long (32-bit) quantities between network byte order and host byte order.

Syntax
#include <sys/types.h>
#include <sys/endian.h>

unsigned long htonl(hostlong)
unsigned long hostlong;

unsigned short htons(hostshort)
unsigned short hostshort;

unsigned long ntohl(netlong)
unsigned long netlong;

unsigned short ntohs(netshort)
unsigned short netshort;

Additional Information
These routines are most often used in conjunction with Internet addresses and ports
as returned by gethostent() and getservent(). The conversion involves reversing
the order of the bytes in the short or long value.

See also: gethostent() and getservent() functions, in this chapter

Socket Library connect

TCP/IP for the iRMX Operating System Chapter 12 121

connect
Initiates a connection on a socket. If the socket type is SOCK_DGRAM, this call
permanently specifies the peer to which datagrams are to be sent. If the type is
SOCK_STREAM, this call attempts to make a connection to another socket.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int connect(s, name, namelen)
int s, namelen;
struct sockaddr *name;

Parameters
s The local socket

name The remote socket, specified as an address in the communications
space of the socket. Each communications space interprets the name
parameter in its own way.

namelen The length of the name parameter, in bytes.

Return Value
Zero if the call is successful or -1 if an error occurs.

Errors
[EADDRINUSE]

Unused.
[EADDRNOTAVAIL]

The specified address is not available on this machine.
[EAFNOSUPPORT]

Unused.
[EBADF]

S is not a valid descriptor.
[ECONNREFUSED]

The attempt to connect was forcefully rejected.
[EFAULT]

The name parameter specifies an area outside the process address space.

connect Socket Library

 Chapter 12 Library Functions 122

[EINVAL]
One of these has occurred:
• The function was issued in the wrong sequence.
• The specified protocol options were in an incorrect format or contained illegal

information.
• The amount of user data specified was not within the bounds allowed by the

transport provider.
• The number of bytes allocated for an incoming argument is not sufficient to store

the value of that argument.
• A previous call to connect() with this socket as a parameter resulted in an error.

You must delete this socket and create a new socket for each call to connect().

[EIO] An unspecified I/O error has occurred.
[EISCONN]

The socket is already connected.
[ENETUNREACH]

The network isn't reachable from this host.
[ENOTSOCK]

S is a descriptor for a file, not a socket.
[EOPNOTSUPP]

This function is not supported by the underlying transport provider.
[ETIMEDOUT]

Connection establishment timed out without establishing a connection.
[EUNATCH]

The TCP/IP kernel has not been loaded.
[EWOULDBLOCK]

The socket is non-blocking and the connection cannot be completed immediately.

Network Library ffs

TCP/IP for the iRMX Operating System Chapter 12 123

ffs
Identifies the first set bit in a value.

Syntax
#include <strings.h>

int ffs(mask)
long mask;

Additional Information
This function returns the index of the first (low order) set bit in the argument. Bits
are numbered starting at one. If no bits were set (mask was 0) a 0 will be returned.

gethostent Network Library

 Chapter 12 Library Functions 124

gethostent
The gethostbyaddr(), gethostbyname(), sethostent(), endhostent(),
_gethtbyaddr(), _gethtbyname(), _sethtent(), _gethtent(), and _endhtent()
functions set and return entries that identify the network host.

Syntax
#include <netdb.h>

struct hostent *gethostbyaddr(addr, len, type)
char *addr;
int len, type;

struct hostent *gethostbyname(name)
char *name;

void sethostent(stayopen)
int stayopen;

void endhostent()

struct hostent *_gethtbyaddr(addr, len, type)
char *addr;
int len, type;

struct hostent *_gethtbyname(name)
char *name;

void _sethtent(stayopen)
int stayopen;

struct hostent * _gethtent()

void _endhtent()

Additional Information
Network host information can be obtained from either of two places, the hosts
database or the Domain Name Service (DNS). The iRMX TCP/IP software does not
include named, the DNS name server. However, it does include a DNS client. The
client contacts any DNS name servers running on other hosts on the network and
uses their name translation services.

Network Library gethostent

TCP/IP for the iRMX Operating System Chapter 12 125

The DNS tunable parameters determine how the two sources are accessed for
requested information. If no DNS configuration is set, host information is retrieved
from the host’s database hosts. If the DNS configuration is set, the host database is
searched first; if the search does not succeed, an attempt is made to retrieve the
information from a DNS name server on the network.

A set of functions is also provided to explicitly retrieve information from the hosts
database. All information obtained from the hosts database is contained in a static
area, so it must be copied if it is to be saved. Only Internet addresses are
understood.

The gethostbyname() and _gethtbyname() functions retrieve a specific entry by
host name. Gethostbyname() uses the NONAMESERVER environment variable
to determine the source; _gethtbyname() always searches from the hosts database.

The gethostbyaddr() and _gethtbyaddr() functions retrieve a specific entry by
Internet address. Gethostbyaddr() uses the NONAMESERVER environment
variable to determine the source; _gethtbyaddr() always searches from the hosts
database. The Internet address used in both calls should be in host order. The
network type should be AF_INET, as defined in the system include file sys/socket.h.
The len argument is the length, in bytes, of the address.

To retrieve a sequential series of host entries from the hosts database, it is more
efficient to use the _sethtent(), _gethtent(), and _endhtent() functions. However,
the sethostent(), gethostent(), and endhostent() functions have the same basic
behavior described below.

You must pair the calls to _sethtent() and _endhtent().

The _sethtent() function opens or rewinds (sets the file pointer to 0) the hosts
database. If passed a 0 value for the argument stayopen, _sethtent() opens the
:config:hosts file. Subsequent calls to the _gethtent() function return the next entry
in the hosts database until end of file, opening it if necessary. The _endhtent()
function closes the database.

gethostent Network Library

 Chapter 12 Library Functions 126

If passed a non-zero value for the argument stayopen, _sethtent() rewinds the
:config:hosts file or opens it, if it is not already open. Subsequent calls to the
_gethtent() function return the next entry in the hosts database until end of file,
opening it if necessary. The hosts database remains open until the application
executes exit(). Calling _endhtent() does not close the database.

The host entry has this structure:

struct hostent {

 char * h_name;

 char ** h_aliases;

 int h_addrtype;

 int h_length;

 char ** h_addr_list;

#define h_addr h_addr_list[0]

};

Where:

h_name The official name of the host.

h_aliases A list of alternate names for the host. The list is terminated by a null
string.

h_addrtype
The type of host address; AF_INET is the only type supported.

h_length The length, in bytes, of the host address.
h_addr_list

A list of addresses for the host. The first entry in the list can be
retrieved by the defined name h_addr as well as by its position in the
list. The list is terminated by a 0 address. All host addresses are
returned in network byte order.

See also: hosts file, Chapter 11, and the system include file <sys/socket.h>

Errors
A null pointer is returned by gethostbyaddr(), gethostbyname(), _gethtbyaddr(),
_gethtbyname(), and _gethtent() on an EOF or on an error.

Network Library gethostid

TCP/IP for the iRMX Operating System Chapter 12 127

gethostid
The gethostid() and sethostid() functions get or set the unique 32-bit identifier of
the local host.

Syntax
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>

unsigned long gethostid()

int sethostid(hostid)
unsigned long hostid;

Return Value
For a successful call, gethostid() returns the host ID and sethostid() returns 0. If
an error occurs, both calls return -1.

Additional Information
Sethostid() establishes a 32-bit identifier for the current processor which is intended
to be unique among all Internet systems in existence. This is normally an Internet
address for the local machine's primary network interface. This call is normally
performed at boot time. Only the Super user can set host identifier.

Gethostid() returns the 32-bit identifier for the current processor.

See also: hostid command, Command Reference;
gethostname() function, in this chapter

Errors
[EADDRNOTAVAIL]

 The specified host ID is invalid.

[EPERM] Only the Super user is allowed to set the host identifier.

[EUNATCH] The TCP/IP kernel has not been loaded.

gethostname Network Library

 Chapter 12 Library Functions 128

gethostname
The gethostname() and sethostname() functions get and set the local host name.

Syntax
#include <arpa/inet.h>

int gethostname(name, len)
char *name;
int len;

int sethostname(name, len)
char *name;
int len;

Additional Information
Gethostname() retrieves the host name and places it in the character string pointed
to by the argument name. The len is the maximum number of characters of the
name that can be returned; it should be set to the size of name. If the host name is
longer than len, it will be truncated; it will be null terminated only if the name is
shorter than len.

Sethostname() sets the host name to the argument name. Only the Super user can
set the host name.

Errors
Both functions return 0 on success and -1 on failure; errno may be one of these:

[EFAULT]
The name was a null pointer.

[EINVAL]
The len was less than one.

[EPERM]
Only the Super user can set the host name.

[EUNATCH]
The TCP/IP kernel has not been loaded.

See also: uname and hostname commands, Command Reference

Network Library getnetent

TCP/IP for the iRMX Operating System Chapter 12 129

getnetent
The getnetbyaddr(), getnetbyname(), setnetent(), getnetent(), and endnetent()
functions return information about a network entry from the :config:networks
database.

Syntax
#include <netdb.h>

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
int net, type;

void setnetent(stayopen)
int stayopen;

struct netent *getnetent()

void endnetent()

Additional Information
A specific entry can be retrieved by the network name with getnetbyname(), or by
its Internet address with getnetbyaddr(). Both functions sequentially search the
database for the specified entry. The network address used in the getnetbyaddr()
call should be in host order; the network type should be AF_INET, as defined in the
system include file <sys/socket.h>.

All returned information is contained in a static area, so it must be copied if it is to
be saved. Only Internet network numbers are understood.

To retrieve a sequential series of network entries, it is more efficient to use the
setnetent(), getnetent(), and endnetent() functions. You must pair the calls to
setnetent() and endnetent().

The setnetent() function opens or rewinds (sets the file pointer to 0) the networks
database. If passed a 0 value for the argument stayopen, setnetent() opens the
:config:networks file. Subsequent calls to the getnetent() function return the next
entry in the networks database until end of file, opening it if necessary. The
endnetent() function closes the database.

getnetent Network Library

 Chapter 12 Library Functions 130

If passed a non-zero value for the argument stayopen, setnetent() rewinds the
:config:networks file or opens it, if it is not already open. Subsequent calls to the
getnetent() function return the next entry in the networks database until end of file,
opening it if necessary. The networks database remains open until the application
executes exit(). Calling endnetent() does not close the database.

The network entry has this structure:

struct netent {

 char * n_name;

 char ** n_aliases;

 int n_addrtype;

 unsigned long n_net;

};

Where:

n_name The official name of the network.

n_aliases A list of alternate names for the network. The list is terminated by a
null string.

n_addrtype
The type of network address; AF_INET is the only type supported.

n_net The network number in host order.

See also: networks file, Chapter 9, and the system include file <sys/socket.h>

Errors
A null pointer is returned by getnetbyaddr(), getnetbyname(), and getnetent() on
an EOF or on an error.

Socket Library getpeername

TCP/IP for the iRMX Operating System Chapter 12 131

getpeername
Returns the socket name of the connected remote socket.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

Parameters
s The local socket.

name A pointer to the space where the call returns a name.

namelen Initialize this to indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned, in bytes.

Return Value
Zero if the call is successful or -1 if an error occurs.

Additional Information
A socket name in the AF_INET family contains the length, address family, a port
number, and the IP address.

See also: bind() and getsockname() functions, in this chapter

Errors
[EBADF]

The argument s is not a valid descriptor.
[EFAULT]

The name parameter points to memory not in a valid part of the process address
space.

[EINVAL]
The namelen parameter is too small.

 [ENOBUFS]
Insufficient resources were available in the system to perform the operation.

getpeername Network Library

 Chapter 12 Library Functions 132

[ENOTCONN]
The socket is not connected.

[ENOTSOCK]
The argument s is a file, not a socket.

[EUNATCH]
The TCP/IP kernel has not been loaded.

Network Library getprotoent

TCP/IP for the iRMX Operating System Chapter 12 133

getprotoent
The getprotobyname(), getprotobynumber(), setprotoent(), getprotoent(), and
endprotoent() functions return an entry from the :config:protocols database file.

Syntax
#include <netdb.h>

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

void setprotoent(stayopen)
int stayopen;

struct protoent *getprotoent()

void endprotoent()

Additional Information
All returned information is contained in a static area, so it must be copied if it is to
be saved. Only Internet protocols are understood.

A specific entry can be retrieved by the protocol name with getprotobyname(), or
by its number with getprotobynumber(). Both functions sequentially search the
database for the specified entry. The protocol number used in the
getprotobynumber() call should be in host order.

To retrieve a sequential series of protocol entries, it is more efficient to use the
setprotoent(), getprotoent(), and endprotoent() functions. You must pair the
calls to setprotoent() and endprotoent().

The setprotoent() function opens or rewinds (sets the file pointer to 0) the protocols
database. If passed a 0 value for the argument stayopen, setprotoent() opens the
:config:protocols file. Subsequent calls to the getprotoent() function return the
next entry in the protocols database until end of file, opening it if necessary. The
endprotoent() function closes the database.

getprotoent Network Library

 Chapter 12 Library Functions 134

If passed a non-zero value for the argument stayopen, setprotoent() rewinds the
:config:protocols file or opens it, if it is not already open. Subsequent calls to the
getprotoent() function return the next entry in the protocols database until end of
file, opening it if necessary. The protocols database remains open until the
application executes exit(). Calling endprotoent() does not close the database.

The returned protocol entry has this structure:

struct protoent {

 char * p_name;

 char ** p_aliases;

 unsigned long p_proto

};

Where:

p_name The official name of the protocol.

p_aliases A list of alternate names for the protocol. The list is terminated by a
null string.

p_proto The protocol number in host byte order.

so: protocols file, Chapter 9

Errors
A null pointer is returned by getprotobynumber(), getprotobyname(), and
getprotoent() on an EOF or on an error.

Network Library getservent

TCP/IP for the iRMX Operating System Chapter 12 135

getservent
The getservbyport(), getservbyname(), setservent(), getservent(), and
endservent() functions set or return an entry from the :config:services database file.

Syntax
#include <netdb.h>

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port;
char *proto;

void setservent(stayopen)
int stayopen;

struct servent *getservent()

void endservent()

Additional Information
All returned information is contained in a static area, so it must be copied if it is to
be saved. Only Internet services are understood.

A specific entry can be retrieved by the service name with getservbyname(), or by
its port with getservbyport(). Both functions sequentially search the database for
the specified entry. The port number used in the getservbyport() call must be in
network order. Use the htons() function to convert the port number from host byte
order to network byte order.

See also: htons() function, in this chapter

To retrieve a sequential series of service entries, it is more efficient to use the
setservent(), getservent(), and endservent() functions. You must pair the calls to
setservent() and endservent().

Setservent() opens or rewinds the services database. If passed a non-zero value for
the argument stayopen, setservent() will set a flag to prevent the database from
being closed until endservent() is called.

Endservent() closes the services database.

getservent Network Library

 Chapter 12 Library Functions 136

Getservent() returns the next entry in the services database, opening it if necessary.
If preceded by a call to setservent() with the stayopen flag set, it can be called
successively to retrieve, in order, all of the database entries. When getservent() is
called without a previous call to setservent(), it opens the database, retrieves the
first entry, and closes the database.

The returned service entry has this structure:

struct servent {

 char * s_name;

 char ** s_aliases;

 int s_port;

 char * s_proto;

};

Where:

s_name The official name of the service.

s_aliases A list of alternate names for the service. The list is terminated by a null
string.

s_port The port number at which the service can be reached, in network byte
order.

s_proto The name of the protocol to be used when contacting the service.

See also: protocols and services files, Chapter 9

Errors
A null pointer is returned by getservbyaddr(), getservbyname() and getservent()
on an EOF or on an error.

Socket Library getsockname

TCP/IP for the iRMX Operating System Chapter 12 137

getsockname
Returns the current name for the specified socket.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

Parameters
s A local socket.

name A pointer to the space where the call returns a name.

namelen Initialize this to indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned, in bytes.

Return Value
Zero if the call is successful or -1 if an error occurs.

Additional Information
A socket name in the AF_INET family contains the length, address family, a port
number, and the IP address.

See also: bind() and getpeername() functions, in this chapter

Errors
[EBADF]

The argument s is not a valid descriptor.
[ENOTSOCK]

The argument s is a file, not a socket.
[ENOBUFS]

Insufficient resources were available in the system to perform the operation.
[EFAULT]

The name parameter points to memory not in a valid part of the process address
space.

getsockname Socket Library

 Chapter 12 Library Functions 138

[EADDRNOTAVAIL]
Socket not bound.

[EUNATCH]
The TCP/IP kernel has not been loaded.

See also: bind() function, in this chapter

Socket Library getsockopt

TCP/IP for the iRMX Operating System Chapter 12 139

getsockopt
The getsockopt() and setsockopt() functions return or set options associated with a
socket.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

int setsockopt(s, level, optname, optval, optlen)
int s, level, optname, optlen;
char *optval;

Parameters
s The socket whose options will be set or returned.

level The level at which the option is maintained. At the socket level,
specify SOL_SOCKET. To manipulate options at any other level,
specify the protocol number of the appropriate protocol controlling the
option. For example, if the option is to be interpreted by the TCP
protocol, set level to the protocol number of TCP (IPPROTO_TCP).

 See also: getprotoent() function, in this chapter

optname Specify the name of the option to set or return.

optval For setsockopt(), specify the value of the option. For getsockopt(),
the value is returned in this buffer.

optlen Specify the length of the optval buffer, in bytes. For getsockopt(),
optlen is a pointer; the value it points to is modified on return to
indicate the actual size of the optval parameter.

Return Value
Getsockopt() returns 0 if the call succeeds and the specified option is set;
otherwise, the return is -1. Setsockopt() returns 0 if the call succeeds or -1 if it
fails.

getsockopt Socket Library

 Chapter 12 Library Functions 140

Additional Information
Options may exist at multiple protocol levels; they are always present at the
uppermost, or socket, level. To manipulate socket options, you must specify the
level at which the option resides and the name of the option. If no option value is to
be supplied or returned, optval may be set to 0.

The following options are supported:

level optname Description

SOL_SOCKET SO_ATMARK Report if at OOB mark
 SO_BROADCAST Permit sending of broadcast msgs
 SO_DONTROUTE Just use interface addresses
 SO_KEEPALIVE Keep connections alive
 SO_LINGER Linger on close if data present
 SO_OOBINLINE Leave received OOB data in-line
 SO_RCVLOWAT Receive low-water mark
 SO_SNDLOWAT Send low-water mark
 SO_REUSEADDR Allow local address reuse
 SO_RCVBUF Size of socket receive buffer
 SO_SNDBUF Size of socket send buffer
 SO_REUSEPORT Allow local port reuse

IPPROTO_TCP TCP_MAXSEG Get TCP maximum segment size
 TCP_NODELAY Don’t delay send to coalesce packets
 TCP_NOOPT Don’t use TCP options
 TCP_NOPUSH Don’t push last block of write

IPPROTO_IP IP_TOS Type of service
 IP_TTL Segment time to live
 IP_HDRINCL Application (RAW IP) supplies IP header

Optname and any specified options are passed without interpretation to the
appropriate protocol module for interpretation. Options at other protocol levels vary
in format and name.

See also: socket() and getprotoent() function, in this chapter;
protocols, Chapter 9

Socket Library getsockopt

TCP/IP for the iRMX Operating System Chapter 12 141

Errors
[EBADF]

The argument s is not a valid descriptor.
[ENOTSOCK]

The argument s is a file, not a socket.
[ENOPROTOOPT]

The option is unknown at the level specified.
[EFAULT]

The options are not in a valid part of the process address space.
[ENOBUFS]

No buffer space is available.
[EINVAL]

Invalid option specified.
[EPROTO]

Invalid level specified.
[EUNATCH]

The TCP/IP kernel has not been loaded.

inet Network Library

 Chapter 12 Library Functions 142

inet
The inet_addr(), inet_lnaof(), inet_makeaddr(), inet_netof(), inet_network(),
and inet_ntoa() functions manipulate Internet addresses.

Syntax
#include <sys/types.h>
#include <netinet/in.h>

unsigned long inet_addr(cp)
char *cp;

int inet_lnaof(in)
struct in_addr in;

struct in_addr inet_makeaddr(net, host)
int net, host;

int inet_netof(in)
struct in_addr in;

unsigned long inet_network(cp)
char *cp;

char *inet_ntoa(in)
struct in_addr in;

Additional Information
The functions inet_addr() and inet_network() convert dot notation character
strings to the equivalent Internet address and network number, respectively. The
function inet_ntoa() performs the reverse operation, converting an Internet address
to the equivalent dot notation character string.

The function inet_makeaddr() constructs an Internet address from a network
number and host address. The functions inet_netof() and inet_lnaof() return the
network and local network portions, respectively, of the Internet number passed as
an argument.

All functions correctly handle Class A, B, and C Internet addresses; Internet
addresses are returned in network byte order.

The dot notation form of an Internet address consists of one to four numbers
separated by dots (periods). Each number can be expressed in decimal, octal
(leading 0), or hexadecimal (leading 0x).

Network Library inet

TCP/IP for the iRMX Operating System Chapter 12 143

A four-part address (a.b.c.d) consists of four 8-bit numbers, each in the range 0- 255.
The four parts are assigned, in order, to the four bytes in the long Internet address.
This is the most commonly used format.

A three-part address (a.b.c) consists of two 8-bit numbers followed by a 16-bit
number. The first two parts are assigned in order to the leftmost two bytes of the
long Internet address; the third part is placed in the rightmost two bytes. This format
is often used for specifying Class B network addresses as 128.net.host.

A two-part address (a.b) consists of a single 8-bit number followed a 24-bit number.
The first part is assigned to the leftmost byte of the long Internet address; the second
part is placed in the rightmost three bytes. This format is often used for specifying
Class A addresses as net.host.

A one-part address is converted to a 32-bit quantity and stored directly in the long
Internet address without any byte rearrangement.

See also: gethostent() and getnetent() functions, in this chapter;
hosts and networks, Chapter 9

Errors
The value -1 is returned by inet_addr() and inet_network() for malformed
requests.

listen Socket Library

 Chapter 12 Library Functions 144

listen
Listens for connection requests on a socket.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int listen(s, backlog)
int s, backlog;

Parameters
s An unconnected socket of type SOCK_STREAM, which has been

bound to a name with bind().

backlog The maximum number of incoming connection requests that can be
queued. If a connection request arrives with the queue full, the client
will receive an error with an indication of ECONNREFUSED.

 ✏ Note
 This parameter is ignored.

Return Value
Zero if the call is successful or -1 if an error occurs.

Additional Information
For a server application to accept connections, it must first create a socket with
socket(), then specify a backlog for incoming connection requests with listen(). To
complete a connection, accept connection requests with accept().

A listen(s,0) call succeeds and sets a connection queue length of 0. This causes all
connect() attempts to the listening port to fail, with the error ECONNREFUSED. A
listen(s,1) call accepts only a single connection with no pending requests allowed.

See also: accept(), connect(), and socket() functions, in this chapter

Socket Library listen

TCP/IP for the iRMX Operating System Chapter 12 145

Errors
[EBADF]

The argument s is not a valid descriptor.
[ENOTSOCK]

The argument s is not a socket.
[EOPNOTSUPP]

The socket is not of a type that supports the operation listen().
[EUNATCH]

The TCP/IP kernel has not been loaded.

recv Socket Library

 Chapter 12 Library Functions 146

recv
The recv(), recvfrom(), and recvmsg() functions receive a message from a socket.
You can use the recv() call only on a connected socket, while recvfrom() and
recvmsg() can receive data on a socket whether it is in a connected state or not.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int recv(s, buf, len, flags)
int s, len, flags;
char *buf;

int recvfrom(s, buf, len, flags, from, fromlen)
int s, len, flags;
char *buf;
struct sockaddr *from;
int *fromlen;

int recvmsg(s, msg, flags)
int s, flags;
struct msghdr msg[];

Parameters
s The socket to receive the message from.

buf A pointer to a buffer where the received message will be placed.

len The length in bytes of the buffer indicated by buf.

flags You may set flags to one of the following:

 0 No special handling.

 MSG_PEEK Peek at the incoming data present on the socket;
 the data is returned but not consumed, so that
 subsequent receive operation will see the same
 data.

✏ Note
This parameter is not currently
supported.

Socket Library recv

TCP/IP for the iRMX Operating System Chapter 12 147

 MSG_WAITALL Wait for all data requested.

from If from is non-zero, the source address of the message is filled in.

fromlen Initialize to the size of the buffer associated with from. Fromlen is
modified on return to indicate the actual size of the address stored
there.

msg The recvmsg() call uses a msghdr structure to minimize the number
of directly supplied parameters. This structure has this form, as
defined in <sys/socket.h>:

struct msghdr {

 caddr_t msg_name; /* optional address */

 int msg_namelen; /* size of address */

 struct iovec *msg_iov; /* scatter/gather array */

 int msg_iovlen; /* # elements in msg_iov */

 caddr_t msg_accrights; /* access rights sent/received */

 int msg_accrightslen;

};

Here msg_name and msg_namelen specify the destination address if the socket is
unconnected; msg_name may be given as a null pointer if no names are desired or
required.

Return Value
The number of bytes received in the message, or -1 if an error occurs.

If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from. If no messages are
available at the socket, the receive call waits for a message to arrive, unless the
socket is non-blocking. In this case a value of -1 is returned with errno set to
EWOULDBLOCK.

See also: send() and socktout() functions, in this chapter

Errors
[EBADF]

The argument s is an invalid descriptor.
[EFAULT]

The data was specified to be received into a non-existent or protected part of the
process address space.

[EINTR]
The receive was interrupted by delivery of a signal before any data was available for
the receive.

recv Socket Library

 Chapter 12 Library Functions 148

[EINVAL]
Invalid flags, len or fromlen parameters specified; the number of bytes allocated
for the incoming protocol address or options is not sufficient to store the
information.

[ENOTSOCK]
The argument s is not a socket.

[EOPNOTSUPP]
This function is not supported by the underlying transport provider.

[EPIPE]
A broken connection exists or a peer has closed the connection.

[EUNATCH]
The TCP/IP kernel has not been loaded.

[EWOULDBLOCK]
The socket is marked non-blocking and the receive operation would block.

Socket Library select

TCP/IP for the iRMX Operating System Chapter 12 149

select
The select() function checks the sockets specified in the sets of descriptors supplied
as parameters to see if any of the sockets are ready for receiving or sending, or have
out of band data pending. On return, the descriptor sets are replaced with subsets
consisting of those sockets of each set that are ready for the associated operation.
Only one thread may select on a particular aspect of a socket at a time. For example,
one thread may select on only receiving and another thread may simultaneously
select on only sending on the same socket, but both threads may not select on
receiving on the same socket at the same time. If this is attempted, only one thread
will succeed and an EALREADY error will be returned to any other threads.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int select(nfds, recvfds, sendfds, oobfds, timeout)
int nfds;
fd_set *readfds, *writefds, *oobfds;
unsigned short timeout;

Parameters
nfds The number of socket descriptors represented by each of the supplied

descriptor sets. The first nfds descriptors of each set (i.e., sockets 0
through nfds -1) are checked.

recvfds A pointer to a set of socket descriptors to be checked to see if any of
them are ready for receiving. On return, it contains a set of ready
socket descriptors. A null value causes select() to skip the descriptor
set.

sendfds A pointer to a set of socket descriptors to be checked to see if any of
them are ready for sending. On return, it contains a set of ready socket
descriptors. A null value causes select() to skip the descriptor set.

oobfds A pointer to a set of socket descriptors to be checked to see if any of
them have out of band data pending. On return, it contains a set of
ready socket descriptors. A null value causes select() to skip the
descriptor set.

timeout The timeout period in 10-ms units. Setting timeout to 0xffff causes
select() to wait until one or more of the sockets specified by the
descriptor sets are ready. Setting timeout to 0 causes select() to

select Socket Library

 Chapter 12 Library Functions 150

return immediately with the current status of the sockets specified by
the descriptor sets. Setting timeout to any value in between specifies
the maximum amount of time to wait for any socket specified by the
descriptor sets to become ready.

Return Value
The total number of ready sockets contained in the descriptor sets, or -1 if an error
occurs. If the timeout expires before any sockets become ready, 0 is returned. If
select() returns an error, the socket descriptor sets are unmodified.

See also: recv(), send() and socktout() functions, in this chapter

Additional Information
A set of macros is supplied to ease manipulation of sets of socket descriptors.

FD_SET(s, &fds) Adds socket s to descriptor set fds

FD_CLR(s, &fds) Removes socket s from descriptor set fds

FD_ISSET(s, &fds) Returns nonzero if socket s is in set fds; zero if not

FD_ZERO(&fds) Clears descriptor set fds

An additional macro is supplied for compatibility with other implementations to
convert a timeout specified as a number of seconds and microseconds in a timeval
structure to the equivalent number of 10 ms ticks required by the select() function.
A null pointer translates to a timeout value that causes select() to wait indefinitely.
A timeval structure that specifies a timeout of more than 655.35 seconds produces an
undefined result.

TV_TICKS(&tv) Converts timeout in timeval structure tv to 10 ms ticks

Errors
[EALREADY]

Another thread is currently performing a select() on at least one of the sockets
referenced by recvfds, sendfds or oobfds.

 [EBADF]
At least one of the sockets referenced by recvfds, sendfds or oobfds is an
invalid descriptor.

Socket Library select

TCP/IP for the iRMX Operating System Chapter 12 151

[EINVAL]
Invalid nfds parameter specified; the recvfds, sendfds and oobfds pointer
parameters are all null.

[ENOTSOCK]
At least one of the descriptors referenced by recvfds, sendfds or oobfds is not
a socket.

[EUNATCH]
The TCP/IP kernel has not been loaded.

send Socket Library

 Chapter 12 Library Functions 152

send
The send(), sendto(), and sendmsg() functions send a message from one socket to
another. Send() may be used only when the socket is in a connected state, while
sendto() and sendmsg() may be used at any time.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int send(s, buf, len, flags)
int s, len, flags;
char *buf;

int sendto(s, buf, len, flags, to, tolen)
int s, len, flags, tolen;
char *buf;
struct sockaddr *to;

int sendmsg(s, msg, flags)
int s, flags;
struct msghdr msg[];

Parameters
s The local socket.

buf Points to the buffer holding the message to be sent.

len The length of the message in bytes, for send() and sendto().

flags May be set to MSG_OOB, to send out-of-band data on sockets that
support this notion (for example, SOCK_STREAM). The underlying
protocol must also support out-of-band data. The BSD
MSG_DONTROUTE flag is not supported. You may set the flag to
one of the following:

 0 No special handling.

 MSG_OOB Process out of band data

to The address of the target socket.

tolen The length in bytes of the to argument.

msg Points to a structure holding the message and information about it.

Socket Library send

TCP/IP for the iRMX Operating System Chapter 12 153

The msghdr structure is as follows:

struct msghdr {

 caddr_t msg_name; /* optional address */

 int msg_namelen; /* size of address */

 struct iovec *msg_iov; /* scatter/gather array */

 int msg_iovlen; /* # elements in msg_iov */

 caddr_t msg_accrights; /* access rights sent/received */

 int msg_accrightslen;

};

Here msg_name and msg_namelen specify the destination address if the socket is
unconnected; msg_name may be given as a null pointer if no names are desired or
required.

Return Value
The number of characters sent, or -1 if an error occurs.

Additional Information
No indication of failure to deliver is implicit in a send(). Return values of -1
indicate some locally detected errors.

If no message space is available at the socket to hold the message to be transmitted,
send() normally blocks, unless the socket has been placed in non-blocking I/O
mode.

Errors
[EBADF]

 s is a invalid descriptor.
[EFAULT]

An invalid user space address was specified for a parameter.
[ENOTSOCK]

The argument s is not a socket.
[EOPNOTSUPP]

This function is not supported by the underlying transport provider.
[EUNATCH]

The TCP/IP kernel has not been loaded.
[EPIPE]

A broken connection exists or a peer has closed the connection.

shutdown Socket Library

 Chapter 12 Library Functions 154

shutdown
Shuts down all or part of a full-duplex connection.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int shutdown(s, how)
int s, how;

Parameters
s A connected socket.

how Specifies what part(s) of the connection to shut down:

Value Description
0 Disallow further receives (not currently implemented)
1 Disallow further sends (not currently implemented)
2 Disallow further receives and sends
job-ID Transfer the socket to the specified iRMX job.

Additional Information
This call closes the socket when you disallow both receive and send functions. This
can occur with a how of 2, or with subsequent calls specifying a how of 1 and a how
of 0.

There is an extension to this call which allows the transfer of a socket to another
iRMX job. If the how parameter is the job ID of a valid iRMX job, the connection
remains and is transferred along with the socket to the specified job. To inherit the
socket, the other job must specify SOCK_INHERIT as the type parameter in a
socket() call.

The task that bequeaths a socket (using the inherit-style shutdown) will block in the
shutdown() call until the task in job-ID inherits it (calls socket() with
SOCK_INHERIT). If the bequeathing task creates the inheriting task, it must do so
prior to calling shutdown().

See also: connect() and socket() functions, in this chapter

Return Value
Zero if the call is successful or -1 if an error occurs.

Socket Library shutdown

TCP/IP for the iRMX Operating System Chapter 12 155

Errors
[EBADF]

s is not a valid descriptor.
[EINVAL]

Invalid value specified for how.
[ENOTSOCK]

s is not a socket.
[EUNATCH]

The TCP/IP kernel has not been loaded.

socket Socket Library

 Chapter 12 Library Functions 156

socket
Creates an endpoint for communication.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int socket(af, type, protocol)
int af, type, protocol;

Parameters
af An address format for interpreting addresses specified in later

operations:

Value Format
AF_INET Internet addresses

type Specifies the semantics of communication; one of these:

Value Meaning
SOCK_STREAM The socket will be used for connections.
SOCK_DGRAM The socket will be used for datagrams.
SOCK_RAW The socket gives direct access to the IP layer.
SOCK_INHERIT This iRMX job blocks, waiting to inherit another

job's open socket

protocol The protocol to be used with the socket. For a socket of type
SOCK_STREAM or SOCK_DGRAM, specify 0 to get the default
protocol, IPPROTO_TCP and IPPROTO_UDP, respectively. A
SOCK_RAW socket can use IPPROTO_ICMP or IPPROTO_RAW.
Specify 0 for a SOCK_INHERIT socket. If you include
<netinet/in.h>, these values are defined:

Literal Value Meaning
IPPROTO_IP 0 dummy for IP
IPPROTO_ICMP 1 Internet control message protocol
IPPROTO_GGP 3 gateway-gateway protocol
IPPROTO_TCP 6 transmission control protocol
IPPROTO_EGP 8 exterior gateway protocol
IPPROTO_PUP 12 PARC universal packet protocol
IPPROTO_UDP 17 user datagram protocol
IPPROTO_IDP 22 Xerox XNS IDP
IPPROTO_RAW 255 raw IP packet

See also: services and protocols files, Chapter 9

Socket Library socket

TCP/IP for the iRMX Operating System Chapter 12 157

Return Value
A descriptor referencing the socket, or -1 if an error occurs.

Additional Information
Sockets of type SOCK_STREAM are sequenced, reliable, two-way connection-
based byte streams with an out-of-band data transmission mechanism. They are
similar to Unix pipes. A stream socket must be in a connected state before any data
may be sent or received on it. A connection to another socket is created with a
connect() call. Once connected, data may be transferred using some variant of the
send() and recv() calls. When a session has been completed a shutdown() must
be performed. Out-of-band data may also be transmitted and received.

The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated. If a piece of data for which the peer protocol has
buffer space cannot be successfully transmitted within a reasonable length of time,
the connection is considered broken. Such calls indicate an error with -1 returns and
with ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets viable by forcing transmissions approximately every minute,
in the absence of other activity. An error is then indicated if no response can be
elicited on an otherwise idle connection for an extended period (e.g., five minutes).

SOCK_DGRAM sockets allow you to send and receive datagrams. A datagram is a
connectionless, unreliable message with a fixed maximum length, typically small.

See also: send() and recv() functions, in this chapter

A SOCK_RAW socket gives direct access to the IP layer.

If SOCK_INHERIT is specified as the type parameter, the current job will block in
the socket() call until another job closes a socket using the current job's ID number
as the how parameter to the shutdown() call. The result is that the job which
specifies SOCK_INHERIT in its socket() call actually inherits an open socket from
another iRMX job. This is a non-standard extension to the iRMX implementation of
TCP/IP.

See also: shutdown() function, in this chapter

All sockets are, by default, SO_LINGER. If the socket promises reliable delivery of
data, the system will block the process on a shutdown attempt until it is able to
transmit the data or until it decides it is unable to deliver the information.

socket Socket Library

 Chapter 12 Library Functions 158

Errors
[EAFNOSUPPORT]

The specified address family is not supported in this version of the system.
[EINVAL]

An unknown error occurred.

[EIO] TCP/IP is not configured into the iRMX system.
 [ENOBUFS]

Unused.
[EPROTONOSUPPORT]

Unused.
[ESOCKTNOSUPPORT]

The specified socket type is not supported in this address family.
[EUNATCH]

The TCP/IP kernel has not been loaded.

Socket Library socktout

TCP/IP for the iRMX Operating System Chapter 12 159

socktout
Defines a maximum time to wait for completion of any subsequent calls on the
socket.

Syntax
#include <sys/types.h>
#include <sys/socket.h>

int socktout(s, val)
int s;
unsigned int val;

Parameters
s The socket.

val The timeout period in 10-ms units. Setting val to 0xffff disables the
timeouts.

Return Value
Zero if the call is successful or -1 if an error occurs.

Additional Information
After reaching the timeout limit, the timed-out socket call returns with the return
value -1, and errno is set to EWOULDBLOCK. The socktout() call is a
nonstandard extension to the iRMX implementation of TCP/IP. Since the iRMX
environment does not have the alarm function built into Unix, this call serves as a
substitute measure.

An example of using this function is when you want to receive a datagram. Since
UDP is unreliable service, the datagram might be sent but never received. If this
occurred, your recvfrom() call would block forever unless you had first issued a
socktout() call.

See also: accept(), connect(), recv(), and send() functions, in this chapter

socktout Socket Library

 Chapter 12 Library Functions 160

Errors
[E2BIG]

val is too big.
[EBADF]

s is not a valid descriptor.
[EUNATCH]

The TCP/IP kernel has not been loaded.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Glossary 159

Glossary

alias A symbolic name for a domain, host, or user.

ARP Address Resolution Protocol. An Internet protocol which runs
on Ethernets and Token Rings which maps Internet addresses to
MAC addresses.

ARPA Advanced Research Projects Agency. The former name of what
is now called DARPA.

ARPANET A wide area network developed in the 1960s by the Advanced
Research Projects Agency. The ARPANET links government,
commercial, and academic installations around the world.

BIOS The Basic I/O System layer of the iRMX OS. This is different
from the ROM BIOS stored in ROM on a DOS system.

bps Bits per second. A measure of data transmission speed.

broadcast A technique by which a single system on a network can send
information to all other systems on the network using a single
operation.

BSD Berkeley Software Distribution. An enhanced Unix operating
system that was designed at the University of California at
Berkeley. Local network support is one of the enhancements
provided by BSD-based systems.

canonical The standard or regular name or expression, not the alias.

client process A process activated by a user when issuing a networking
command. The client process sends a request for service to a
process on the remote host. If the request is honored, a
connection is established between the local client and the remote
server process.

connection The path between two protocol modules that provides reliable
stream delivery service. In TCP/IP Internet, a connection
extends from a TCP module on one machine to a TCP module on
the other.

 Glossary

160

connectionless service Characteristic of the packet delivery service offered by most
hardware and Internet Protocol (IP). The connectionless service
treats each packet or datagram as a separate entity that contains
source and destination addresses. Usually, connectionless
service can drop packets or deliver them out of sequence.

DARPA Department of Defense Advanced Research Projects Agency.
The government agency that funded the ARPANET and later
started the Internet.

datagram The unit transmitted between a pair of internet modules. The
Internet Protocol provides for transmitting blocks of data, called
datagrams, from sources to destinations. The Internet Protocol
does not provide a reliable communication facility. There are no
acknowledgments either end-to-end or hop-by-hop. There is no
error control for data, only a header checksum. There are no
retransmissions. There is no flow control. See IP.

DDN Defense Data Network. Comprises the MILNET and several
other networks.

decimal address See dotted decimal

default route A routing table entry which is used to direct any data addressed
to any network numbers not explicitly listed in the routing table.

domain A grouping of hosts according to affiliation. For example, most
universities belong to the EDU domain of educational
institutions.

DNS The Domain Name System is a mechanism used in the Internet
for translating names of host computers into addresses. The
DNS also allows host computers not directly on the Internet to
have registered names in the same style.

dotted decimal An Internet address that uses the base-10 number system, with
the parts of the address separated by periods (dots).

EGP External Gateway Protocol. A protocol which distributes routing
information to the routers and gateways which interconnect
networks.

EIOS The Extended I/O System.

TCP/IP for the iRMX Operating System Glossary

161

Ethernet A network standard for the hardware and Data Link levels.
There are two types of Ethernet: Digital/Intel/Xerox (DIX) and
IEEE 802.3.

frame A self-contained package of data at the link layer.

FTP File Transfer Protocol. A TCP/IP protocol used for transferring
files between hosts on the network.

gateway A special-purpose dedicated computer that attaches to two or
more networks and routes packets from one network to the other.
In particular, an Internet gateway routes IP datagrams among the
networks it connects. Gateways route packets to other gateways
until they can be delivered to the final destination directly across
one physical network. This definition is more commonly used in
TCP/IP literature for a gateway. However, a more strict
definition is that a gateway not only routes between networks but
can translate between network protocols as it routes.

globbing Determines how local filenames are processed by the shell in
FTP. With globbing disabled, names specified on the command
line are treated literally. With globbing enabled, each local file
or pathname is processed for the shell metacharacters
* ? [] ~ { }. Globbing is always enabled for references to remote
files.

header The portion of a packet, preceding the actual data, containing
source and destination addresses and error-checking fields.

host An individual computer on a network.

host name A text name that can be used to identify a network host.

host number The part of an internet address that designates which node on the
(sub)network is being addressed.

ICMP Internet Control Message Protocol. A protocol used by the
Internet Protocol to report errors, give limited routing advice, and
provide simple low-level services.

ICU Interactive Configuration Utility. A screen-oriented utility
provided by the iRMX III OS to help build the OS desired.

IEEE Institute of Electrical and Electronics Engineers.

 Glossary

162

IGP Interior Gateway Protocol. The generic term applied� to any
protocol used to propagate how reachable a network is and the
routing information within an autonomous� system. Although
there is no Internet standard IGP,� RIP is among the most
popular.

internet Short for internetwork, meaning any connection of two or more
local or wide-area networks.

Internet The global collection of interconnected regional and wide-area
networks that use IP as the network layer protocol.

Internet address A unique address that identifies a host on a TCP/IP network.
The Internet address or IP address, consists of four decimal
numbers separated by periods (129.84.3.71, for example). Each
number has a value between 0 and 255 and represents eight bits
of the complete 32-bit address. The Internet address is
independent of the hardware to which it is assigned.

Internet Protocol (IP) The network layer protocol for the Internet. It is the datagram
protocol defined by RFC 791.

InterNIC An organization that provides network users with information
about services provided by the network. It is the primary
repository for RFCs and Internet drafts.

IP See Internet Protocol.

IP address The 32-bit address assigned to hosts that want to participate in
the Internet using TCP/IP.

IP datagram The basic unit of information passed across the Internet. An IP
datagram is to the Internet as a hardware packet is to a physical
network. It contains a source and destination address along with
data.

ISO International Standards Organization. It developed the OSI
(Open Systems Interconnection) reference model for networking.

LAN Local Area Network. A collection of computers, typically
connected by a single transmission cable, joined together for the
purpose of sharing resources and facilitating communication. A
LAN is limited to a small area such as a single building or a set
of closely grouped buildings.

TCP/IP for the iRMX Operating System Glossary

163

local host The computer from which the user originates a networking
command.

MAC Medium (or Media) Access Control. For broadcast networks, it
is the method which devices use to determine which device has
access to the line at any given time.

MAC address The hardware-level address, such as an Ethernet address.

MTU The maximum transfer unit for a given interface. This is the
largest number of bytes of data that can be transferred in a single
packet. For example, the maximum frame size for Ethernet is
1526 bytes, including header information. The MTU is 1500.

network number The part of an internet address that designates the network to
which the addressed node belongs.

NFS Network File Support. NFS enables hosts to share their local
resources with remote hosts (clients) in a manner that hides the
heterogeneous nature of a network. For example, a server
running the iRMX OS may share a specific directory with a
client machine running the Unix OS. The client can access the
directory using commands and calls that appear to be directed at
local resources.

nslookup A tool that queries a name server for information about hosts on
the network.

octet Eight bits. Since data is sent across the network as individual
bits, the logical 8-bit groups are sometimes called octets instead
of bytes.

octal address An Internet address that uses the base-8 number system.

out-of-band An urgent data message. TCP attempts to expedite out-of-band
data by notifying the application of its urgency. Normal
(in-band) data is received after any out-of-band data.

packet A single unit of data and control information that is transmitted
over the network. The length of a packet varies. A single
message may be transmitted in one packet or a series of packets.

point-to-point network A network configuration that consists of two computers
connected by a single communications line.

 Glossary

164

port A number associated with a particular service. The port number
is part of the address bound to a socket. As the Internet address
defines a particular host, the port (combined with the protocol)
defines the destination on that host. Certain well-known ports
are reserved for certain services; for example, 21 for FTP and 23
for TELNET. In general, port numbers greater than 1024 are
available for definition by a local application. However, some
port numbers in this range have become standardized for certain
services through common usage.

POSIX Portable Operating System Interface. An operating system
procedure call interface, based on Unix.

protocol A formal description of message formats and the rules two
computers must follow to exchange those messages. Protocols
can describe low-level details of machine-to-machine interfaces
(e.g., the order in which bits and bytes are sent across a wire) or
high-level exchanges between allocation programs (e.g., the way
in which two programs transfer a file across the Internet).

RawEDL The raw External Data Link layer of iNA software. This
interface allows non-OSI protocols such as TCP/IP to use iNA.

RFC The Internet's Request for Comments documents series. The
RFCs are working notes of the Internet research and
development community. A document in this series may be on
any topic related to computer communication, and may be
anything from a meeting report to the specification of a standard.

router A computer that attaches to two or more networks and routes
packets from one network to the other. A router may understand
more than one address protocol but does not translate from one
protocol to another.

RPC Remote Procedure Call. A procedure-oriented interface to
remote services used to implement the client-server model of
distributed computing.

server A computer that shares its resources, such as printers and files,
with other computers on the network.

TCP/IP for the iRMX Operating System Glossary

165

server process The remote host process that services the request made by the
client process. The server is started up at network boot time as a
background process that listens for incoming service requests.
When it receives a request, it establishes a connection with the
requesting client, spawns a child process, and goes back to
listening for more incoming requests.

socket A communication endpoint. A socket is identified by an address
derived from a host's Internet address concatenated with a TCP
port number.

Streams This emulates the STREAMS mechanism on Unix systems. It
constructs a series of protocol drivers and code modules to
sequentially act on data passing through them. The series of
drivers is called a stream, and can act on data flowing in either
direction. Upstream is the stream head, put in place below a user
process. Downstream is the stream end, a device driver
(interface to a hardware device) or pseudo-device driver
(interface to other software rather than directly to hardware).
With the stream in place, a user process such as FTP makes use
of the network hardware without needing to be aware of the
protocols managing the data in between.

subnet A portion of a network, which may be a physically independent
network. A subnet shares a network address with other portions
of the network and is distinguished by a subnet number. A
subnet is to a network what a network is to an internet.

subnet number A part of the internet address which designates a subnet. It is
ignored for the purposes of internet routing, but is used for
intranet routing.

TCP Transmission Control Protocol. A transport layer protocol for
the Internet. It is a connection-oriented, stream protocol defined
by RFC 793.

TCP/IP Transmission Control Protocol/Internet Protocol. A set of
computer networking protocols and applications that enables two
or more hosts to communicate. TCP/IP includes a suite of
protocols besides TCP and IP; it has been widely adopted as a
networking standard.

TELNET A TCP/IP protocol used for remote login between hosts.

 Glossary

166

TFTP Trivial File Transfer Protocol. A Department of Defense
standard for transferring files between hosts. TFTP lacks the
error-checking and user-authentication facilities offered by FTP.

UDP User Datagram Protocol. A transport layer protocol for the
Internet, defined by RFC 768. It is a datagram protocol that adds
a level of reliability to IP datagrams.

■■ ■■ ■■

TCP/IP for the iRMX Operating System Index 169

Index

/etc/sharetab.cf file, 88
:config:ftpusers file, 57
:config:hosts file, 12, 57, 62, 78
:config:hosts.equiv file, 57
:config:inetinit.cf file, 57

verifying configuration of, 61
:config:networks file, 57
:config:nfsstart.csd file, 15
:config:nfsstop.csd file, 15, 25
:config:protocols file, 57, 81
:config:services file, 57
:\config:tcpstart.csd file, 16
:config:tcpstart.csd file, 14
:home:netrc file, 83
:home:rhosts file, 57

B
bcmp(), 119
bcopy(), 119
big-endian, 108
binary string operations, 119
bind(), 103, 106, 107, 108, 109
bits, set, 123
books

network, 160
TCP/IP, 159

broadcast address, 6
and UDP, 96

byte order, 109, 120, 133, 135
bzero(), 119

C
client, 1

process, 49
using sockets, 106

close(), 110

commands
TCP/IP administrative, 59

config:inetinit.cf file, 78
configuration

verifying network, 61
configuration files, 77

config

nfsstop.csd, 25
config

nfsstop.csd, 25
:config:hosts, 12, 78
:config:protocols, 81
:config:services, 85
netrc, 83

Configuration files
/etc/sharetab.cf, 88

connect(), 106, 109, 121
connections

accepting, 115
closing, 154
inheriting, 110, 154, 157
queuing requests for, 144
requesting, 121
sharing by tasks, 110
to remote host, 36, 43
waiting for, 144

create_task call, 107

D
daemons and services, 49
datagram, 157

protocol, 96
socket calls, 107

DELETE_CONN_TIMEOUT_MIN parameter,
74

DELETE_FH_TIMEOUT_HR parameter, 74
devices, attaching NFS, 29
domain name, 6, 78

 Index 170

domain name service (DNS), 6, 12
dot notation, 5, 142

E
endhostent(), 124
endnetent(), 129
endpoint, 106, 156
endprotoent(), 133
endservent(), 135
errno, 111

testing, 112
values, 112

errors
general-protection, 111
handling, 112
returned by network functions, 112

escape character
telnet, 35, 36

Ethernet
adapter card, see NIC

example programs, 111

F
ffs(), 123
file descriptors, 110
File Transfer Protocol, see FTP
files, sharing NFS, 25
ftp

automatic login, 83
FTP, 3

? command, 42
automatic login, 47
client, 49
commands, 42
commands, accessing on-line help, 42
connecting to hosts, 43
disabling, 50
file size limitations, 46
get command, 45
macros, 84
naming conventions when transferring files,

46
netrc file, 84
open command, 43
put command, 44
quitting, 47
remote connection, 43

server, 49, 50
starting, 42
transferring files, 44, 45
transferring large files, 46
using, 41

ftpd server, 49, 50
ftpusers file, 57
full-duplex, 154

G
gethostbyaddr(), 124
gethostbyname(), 124
gethostid(), 127
gethostname(), 128
getnetbyaddr(), 129
getnetbyname(), 129
getnetent(), 129
getpeername(), 103, 108, 131
getprotobyname(), 133
getprotobynumber(), 133
getprotoent(), 133
getservbyname(), 135
getservbyport(), 135
getservent(), 135
getsockname(), 103, 108, 137
getsockopt(), 139

H
hardware requirements, 11
host

address, 5, 124
byte order, 109, 120, 133
local, 1
local ID, 127
local name of, 125, 128
official name of, 1, 7
remote, 1

host name, 124, 128
mapping to Internet address, 78

hostid command, 3, 16
hostname command, 3, 16
hosts file, 12, 57, 78
hosts.equiv file, 57
htonl(), 120
htons(), 109, 120

TCP/IP for the iRMX Operating System Index 171

I
ICMP (Internet Control Message Protocol), 4,

156
inet_addr(), 142
inet_lnaof(), 142
inet_makeaddr(), 142
inet_netof(), 142
inet_network(), 142
inet_ntoa(), 142
inheriting sockets, 110, 154, 157
Interface

EDL, 99
interfaces

verifying functionality of, 62
Internet address, 4, 5, 6

classes of, 5
converting formats of, 142
dot notation, 5
get or set local, 127
mapping to host name, 78
structure of, 108

IP, 93
address, see Internet address

IPPROTO_ICMP, 156
IPPROTO_RAW, 156
IPPROTO_TCP, 139, 156
IPPROTO_UDP, 156

J
job

inherits socket, 154
sharing connections, 110
TCP/IP kernel, 14

L
library functions, 105
Link layer jobs, 97
listen(), 107, 144
little-endian, 108
logging in

to remote host, 36, 43, 47
logical names

for devices, 29
loopback, 78, 98

M
macro, defining in netrc file, 84
MAX_CONN Parameter, 74
MAX_FH parameter, 74
maximum transfer unit, see MTU
message

receiving, 146
sending, 152

MSG_DONTROUTE flag, 152
msghdr structure, 147, 153
MTU

checking, 62
multitasking, 110

N
name

domain, 6
host, 78

name server, 33, 41
net3c.lib library, 105
netrc file, 47, 57, 83
netstat command, 50, 59

-a option, 51, 60
-i option, 61

network
address, 5, 129
books about, 160
byte order, 109, 120, 135
configuration files, 57
daemons and servers

telnetd, 51
databases, 57
interface adapter (NIA), see NIC
library functions, 105
name, 129
services, 49
testing the TCP/IP, 59
verifying configuration of, 61
verifying TCP/IP services, 60

Network Information Center, 7
networks file, 57
NFS

attaching devices, 29
concepts, 19
disabling, 21, 25
enabling, 21, 25
nfsd parameters, 73

 Index 172

nfsfd parameters, 75
overview, 19
removing shared access from file systems,

28
requirements, 19
RPC information, reporting, 32
shared and mounted file systems,

displaying, 31
starting, 25
tuning, 22

NIC (network interface controller), 11
nslookup command, 33
ntohl(), 120
ntohs(), 120

O
options, for socket, 139
OVL286 (80286 overlay generator), 144

P
passive open, 106
password

restricting access to, 48, 84
ping command, 63, 94
port, 95, 96

changing byte order of, 109
numbers, 85, 135
well-known, 85

prompt
ftp, 42
telnet, 34

protocols, 1
family, 92
file, 57, 81
name and number, 133
name database, 81, 133
translating numbers to names, 81

Q
query commands

hostid, 3
hostname, 3

R
r?netrc file, 47, 83
raw

interface, 94
testing transport layer, 63

rcp, file size limitations, 46
recv(), 106, 107, 146, 149
recvfrom(), 107, 146, 149
recvmsg(), 146, 149
remote login, 36, 43, 47
remote Unix host for telnet, setting up, 16
Request for Comments, see RFC
RFC, 7

1060, Assigned Numbers, 81, 85
where to obtain, 7

rhosts file, 57
RPC information, reporting, 32
rpcinfo command, 32

S
SAVE_FH_INTERVAL_SEC parameter, 74
security

controlling access to files, 12
password information, 48, 84

select(), 110
send(), 106, 107, 152
sendmsg(), 152
sendto(), 107, 152
server, 1

process, 49
using sockets, 107

services and daemons, 49
services file, 57, 85, 135
set bits, 123
sethostent(), 124
sethostid(), 127
sethostname(), 128
setnetent(), 129
setprotoent(), 133
setservent(), 135
setsockopt(), 139
shared access, removing from file systems, 28
shared and mounted file systems, displaying, 31
sharetab.cf file, 88
sharing file systems, 25
shutdown(), 106, 154
site commands, 46

TCP/IP for the iRMX Operating System Index 173

slipd, 57
slipd.cf file, 57
SO_LINGER, 157
SOCK_DGRAM socket, 107, 121

creating, 156
SOCK_INHERIT type, 154, 156
SOCK_RAW socket

creating, 156
SOCK_STREAM socket, 106, 115, 121

creating, 156
sockaddr_in structure, 108, 111
socket, 4

calls made by client, 106, 112
calls made by server, 107
connection-oriented calls, 106, 107
creating, 156
datagram calls, 107
definition of, 106
descriptor, 110, 157
inheriting, 110, 154, 157
name of local, 137
name of remote, 131
naming, 117
nonstandard implementation, 110, 159
options for, 139

socket(), 106, 107, 156
socket3c.lib library, 104, 112
socketpair(), 110
socktout(), 110, 159
SOL_SOCKET level, 139
startup script, see tcpstart.csd
strings

binary, 119
subnet mask, 6
system calls, 4

T
task

deleting, 111
tcp driver, 95
TCP/IP, 95

books about, 159
configuring

sysloadable job, 14
installing, 9
kernel job, 49
protocols, 1
required hardware, 11

testing, 61
testing setup, 15
troubleshooting, 15

tcplisten daemon, 49
tcpstart.csd file, 14, 16, 49, 50, 51
telnet, 33, 51

close command, 39
command mode, 33, 34, 38, 40
commands, 39, 40
connecting to hosts, 36
disabling, 51
escape character, 35, 36
input mode, 33, 34
open command, 34
prompt, 34
quit command, 39
quitting a session, 36
remote connection, 36
remote Unix host, setting up, 16
status command, 39

TELNET, 3
telnetd server, 51
terminal

characteristics for user sessions, setting, 17
creating a definition for the PC console, 16
setting the type on Unix, 37

tests
network, 59

TFTP (Trivial File Transfer Protocol)
file size limitations, 46

timeout, 159
TLI, 4
Transmission Control Protocol, see TCP
troubleshooting, 15

U
UDP (User Datagram Protocol), 96

testing, 61
udp driver, 96
ulimit command, 46
User Datagram Protocol, see UDP

W
well-known ports, 85
WORLD_NFS_GID parameter, 75
WORLD_NFS_UID parameter, 75

Your Manual Title Goes Here 1-174

