RadiSys . 1C-386 Compiler
User’s Guide

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0577-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 0 1999 by RadiSys Corporation

All rights reserved

Quick Contents

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.
Chapter 10.
Chapter 11.
Glossary

Index

Overview

Compiling and Binding
Compiler Controls
Segmentation Memory Models
Listing Files
Processor-specific Facilities
Assembler Header File
Function-calling Conventions
Subsystems

Language Implementation

Messages

iC-386 Compiler User's Guide iii

Notational Conventions
TheiC-386 Compiler User's Guide uses the following notational conventions:

Italics indicate a symbol that is replaced with an identifier, an
expression, or avalue.

monospace type Typeof this style represents syntax, filenames, program
examples, or computer output.

italics

Contents

1 Overview
Software Development With iC-386cccoereienininienreeee e 1
Using the Run-time Libraries.o 2
D= o180 o1 1o SR U 2
107 0111001 oo TH USSP 4
USING the ULITITIES.eieeceieeeeee e 4
Programming for Embedded ROM Systems..........ccccooeveieneneienenene 5
Compiler CapabilitiES........coeieeee e 5
Compatibility With Other Development TOOIS.........ccooerereienenerececeee 6
ADOUL THISIMANUAL ...t 7
Related PUBIICELIONS.........coirieiiieirceeree e 7

2 Compiling and Binding

UsiNg Files and DireCLONESccuvvuevueeeieeeeeesiee et 9
Invoking the IC-386 COMPILENcccevueiereeere e 10
Invocation Syntax 0N IRMX SYyStEMS........ccccvvveeveeenieeieceereeseesee e 10
Invocation Syntax 0N DOS SYyStEMS.......cccvvevecereeeeeeeerie e 11
Sign-on and Sign-off MESSAQES........ccevevireiiie e 12
Files That the Compiler USEScccovvveverireceeesee e 13
WOTK FITES. ...t 14

(O o)1= vt | RSN 14
IES g To =S 14
Using Submit, Batch and Command Fl€es.........ccccevveiveieveevere e 17
Using iIRMX SUbMIit FilES......ccoveieeree e 17
Using DOS Batch Filesfor DOSRMX Systems........ccccevvvvievenesieneenn 18
Using DOS Command Filesin DOSRMX Systems.........ccccvevveevennene 20
Binding OBJECt FIlES......cvoieece e 22
Choosing the FIleStOBiNdccueeeieeieeeeceeeceeeeee e 22
Examples of Bindingccccveieviieneneeieese e 24
BND386 Example on DOS SyStemMS........ccccvvveereeeevereeneeseesennens 24

IN-1INE FUNCHIONS. ...ttt st neene 25
Compiling at Different Optimization LEVEIS........cccovevvevecevevese e 27

iC-386 Compiler User’'s Guide Contents %

Results at Optimization LEVE! 0coeiiieieeieeeee e 27

Resultsat Optimization LEVEl 1cccooiieiieieieee e 31
Results at Optimization LEVEl 2coooeiiiieeeeee e 33
Results at Optimization LEVEl 3ccoiiiiiieeeeee e 35

vi

Compiler Controls

How Controls Affect the Compilation..........ccccceeeverevvveniesie e 39
Whereto USe CONtrOISc.coueiieiiiieece et 40
Alphabetical Reference of CONrolS.........ccecveievereresisie e 44
= LT T [a0 7= o S 45
Fore o [[0ot [T 51
000 (5 =01 o 53
(0001072 PSR R U UP PR 54
Fore] oo [0 oo 0o S 56
(0= =1 =0 0= 0| S 57
(012 o100 [000 (= o0 o 58
EFINE.. et 60
0200101 1 oS 62
== 64
=00 [00T= A (= oo S 65
LD CC 0| 7= = 0 1 R 66
INCIUGE ...ttt et st s neene 69
1= U o 71
1T g TC o1 = 72
TS A 1 = 73
listexpand | NOlISEEXPANG.........ccueruerere i 75
listinclude | NOIIStINCIUAE........cceiiee e 76
10NQGB4 | NOIONGGA ...ttt et st e e seenen 78
MOAA86 | NOMOUABEc.eeueeueeeeeeeeeereeteee e et e ere et ee e e e re e sneenesresneenens 79
MOTUIENAIMEcveieteiee ettt ettt 81
o] o= o [g T0Te o= F O 82
(0] 11 1 41174~ TS 84
PAGEIENGLN ... s 88
07210 1= Yo | 89
(o1 oL A a0 o= o 1 | SN 20
o T a1 10T o g RS 92
=10 018 1 0 94
searchinclude | NOsearchinClUude............cccveveeeiereser e 96
signedchar | NOSIgNEACNENcoveievire e 98
SICHINES | NOSICIINES.....cuvee ettt 99
ST 015 TS 100
SymMbOIS | NOSYMBOIS........ciiieeceicecerer e 102
Contents

LEL =TSSR SRU PP 104
trangdate | NOtrANSIALeoouiie e e 105
1877 0= 1011/ o= USRS 106
VAIPAIBIMIS ...ttt eeeesieesteesteesbeetesae e saeesbe e beeabeeabesaeesbeesbeebeenesanesaeesaeanbeanee 108
XPEF | NOXIES <. e 111

4 Segmentation Memory Models

How the Binder Combines SegmentS........cccccvevevenieveseseseeeeseese e seenens 113
Combining iC-386 Segments With BND386...........cccccevevererenerneenns 114
How Subsystems Extend Segmentation...........ccccceveveveresevesiesennnns 114

Compact Segmentation Memory Modelcccovvveveiieveeiere s 115
Compact MOGE!ooeeieeec e 116

USING NEAN @NA FaFveeeveecece e e 118
Addressing Under the Segmentation Models............ccocvvevvvnievnninnnene 119
Using far and near in Declarations..........ccocvevveececeeieenere e 120
EXampleS USING Farcovveiicercceseeeeees et 121

5 Listing Files

Preprint FIlE... ..ot e 125
IVTBCTOS.... ..ttt ettt et ae e bbb e esae e sae e nae e 126
INCIUAE IS ... e 127
Conditional CompPilationccccererireienere e 128
Propagated DIreCtiVES........cceioirieieree e e 128

PrNE FIE e 129
Print File ContentS........ccoii i 129
Page HEAAEN ..o e 130
Compilation Heading..........ceeiererieeererese e 130
SOUFCE TEXE LISHNG «.eeeneeneeieeeiesie et 131
Remarks, Warnings, and Errors..........ccccoeeieienenenienieeseee e 132
Pseudo-assembly LiStingcccoceoreririiineeeeeeee e 132
Symbol Table and Cross-reference..........ccooeeevereneneneeieese e 133
Compilation SUMMEY........coeieienereeieee e 133

6 Processor-specific Facilities

Making Selectors, Far Pointers, and Near POINters..........cocovvvevvenieresennnn, 138

Using Specia Control FUNCLIONSccovveieieie e 139

Examining and Modifying the FLAGS RegiSter.........ccovvveveveereesereseenn, 140

Examining and Modifying the Input/Output POrts...........ccccceverereresennn, 144

Enabling and Causing INtEITUPLS.eiveereeeeesese s 146

iC-386 Compiler User’'s Guide Contents Vii

INterrupt HaNAIErScoveeeee e e 146

Protected Mode Features of Intel 386 and Higher Processors.................... 148
Manipulating System Address RegiSters.coovveeerererieeieeiereeeenes 148
Manipulating the Machine Status Word............ccoceoevirenieeieeieneeene 150
Accessing Descriptor INformation...........ccoeeeieienenienceeecee e 152
Adjusting Requested Privilege Level ... 158

Manipulating the Control, Test, and Debug Registers of Intel386™, Intel486™, and

PENtIUM” PrOCESSOFS........ooocvevereeeeeseeeesesseessessssesssssssessasssessessssnsssnenes 159

Managing the Features of the Intel486 and Pentium Processors................ 162

Manipulating the NUMEric COProCESSONceveruerrereesieseesresseereeseeseeseeseens 163
LI 147 o 165
CONLIOl WOIQ......cceeieeieiieeeiee e 166
SEAUS WO, 168
Intel387™ Numeric Coprocessor, and Intel486 or Pentium Processor FPU Data

Pointer and INStruction POINLENcccvevineinincsceeeens 172
Saving and Restoring the Numeric Coprocessor Statecceeveuenene 173

7 Assembler Header File

MBCIO SEIECLION.....c.ui ittt e s 175
FIAQ MACTOS.....c.eeeeieseeie ettt sttt e e e e 181
REGISIEr IMBCTOS.......eeeeeiie ittt st e e e e 182
SEgMENE MACIOS.....ceeiiiieitieieeie ettt s saeas 183
TYPE IMIBEIOS. ...ttt e sttt ettt b e bt saee e 185
OPEration MACIOS.ccueeueeeeieieriese ettt sae e sre e eneeeeneas 186

External Declaration MacCroS.........cccoerereieneneeeeeeie e 186

INSEFUCLTION MACTOS.....ceeeieieie et 187

Conditional MBCTOS........cooeeieiiiere ettt 188

Function Definition MaCroSccoerereieienene e 188
QOFUNCEION ...ttt e 189
] 072 =1 USSP UR ORI 190
022 = 0 0 T 1 OSSP 191
7= UL JO OO ORI 192
T o] (] [oTo USRS 193
= o oo USSR 194
= OSSR 195
= 1o | SRSTSRRN 196

8 Function-calling Conventions

PasSiNG ATQUIMENESccueiuiieeeeeeeeeeses e see e se e s seeaeseesaeseesnesresneesenneens 199

FPL Argument PasSiNg........cccceerereeeeieesieseeseseseessessessessesssssesessenses 200

VPL Argument Passing........cccceverereneseneeessseseesessessessesseeseesaesenes 201

Vil Contents

REtUNING @V @AIUB.......eeieieeeee e 202

Saving and Restoring REGISIErSceoiieiee e 203
Cleaning Up the SEACKooeiiiiieeee e 204
9 Subsystems
Dividing a Program into SUDSYStEMS.........cccecvverenene s 206
Segment Combination in SUDSYSLEMS.........ccccvvvireneceeieee e 209
Compact-model SUDSYSIEMS.........ccceveeerrrireceeee e 209
Efficient Data and Code REfErenCes..........occovvvveeveneeniense e 210
Creating Subsystem DEfiNitioNSccoevvvrerenineseceeeeeeree e 211
Open and Closed SUBSYStEMS..........cccvevieverere e 211
Y 1 USROS 212
EXample DEfiNItIONS........ccovevieierese e 217
Creating Three Compact-model RAM Subsystems...........ccccccvevennee. 217
10 Language Implementation
DAt TYPES.....ceieeeeeete ettt sttt ra e e e ae e s ae et e b s anesnnesreen 221
o = Y] 1SS 222
AQOregaLe TYPES...ceeeeieteeie ettt ettt ettt see s 224
RV 0T To B 1Y o= ST 224
iC-386 Support for ANSI C FEaLUIES........ccooeririeereriesee e 225
Lexical Elements and Identifiers.........ccooooeieieiinininieee e 225
PrEPrOCESSING.....ceeeeeeeeeeie sttt ettt e e seeseesaesae 225
Implementation-dependent iC-386 FEatUres..........coceverereerieeniereese e 227
L0102 = o1 = (TSP 227
1410 0 = USSR 227
Floating-point NUMDBDErS........cooioiee e 228
Arrays and POINEErS.........cooo i e 228
Register Variables 229
Structures, Unions, Enumerations, and Bit Fields............c.coceveeenneee 229
Declarators and QUalifiers.........cccoieieiiecieciece e e 230
Statements, Expressions, and RefErenCes..........oeoveeeveverene s 231
Virtual Symbol Table.......cooiiiiee e 231
11 Messages
Fatal Error MESSA0ES.......cceeeeieriesiesiestesteseeeeseessesseseessesseeneessessensesssssesses 234
ErTOr IMESSAgESocueiceeeeteeie et ee et s e steertesee e e sseesse e teeneeeneesnaenreens 239
KoY 1 o S 249
REMEIKS. ..ottt e e e et 254
SUDSYStEM DiagNOSLICS.....cuveveeeeeeerieiee et eneens 255
INternal Error MESSAgES.vcuveeeiereeriesteetesieeseeaesees e srestesseeneesaessenseseessenns 256
iIRMX Condition Codesin Error MESSAgESccveveeereereereereerieseesieseeseenens 256

iC-386 Compiler User’'s Guide Contents

Glossary 271

Index 279

X Contents

Tables

1-1. Assemblers, Compilers, Debuggers, and UtilitieSccevvevecvecrcenceccncneene 19
1-2. Intel 386, Intel486, or Pentium Processor and Tool Publications..................... 20
2-1. IN-1NE FUNCLIONS. ...ttt 38
31 Compiler Controls SUMMEIYccveeeeererieseseseeeeseeseese e sre e eeeeeneeseeseens 53
32 COMPIIEr EXIt SEAEUS....c.veveieeeieiieceecieeeeesees e srese e eee e eesee e e sseeseeeenseseens 75
4-1. iC-386 Segment Definitions for Compact-model Modules..........cceevecveveennne. 128
4-2, Segmentation Models and Default Address SIiZeS.......oovvvvevvvevevecerecieneens 131
5-1. IC-386 Predefined MECrOS.........cov ettt 138
5-2. Controls That Affect the Print File FOrmat...........ccovevvvinnnnininencneeens 141
5-3. Controls That Affect the Source Text Listing........ccoovvivveeerveeveriesene e 144
6-1. Built-in FUNCLIONS 1N I86.N......oiviiiiiieie e 148
6-2. Built-in FUNCLIONS 1N I186.1.....cvoiiiiiiiieieee e 148
6-3. Built-in FUNCLIONS 1N 1286.1N.....c..oiiiiiiiiee e 149
6-4. Built-in FUNCLIONS 1N 1386.1N.....ceoiiiiiiiie e 149
6-5. Built-in FUNCLIONS 1N 1486.1N.....cvoiiiiiiiieeee e 149
6-6. o 1Y = o (0L 154
6-7. Machine StatuS WOrd MECIOSooveererieirieniee et 163
6-8. General Descriptor Access RightS MaCroS.......ccvvveveeerere e seeeeseene e 167
6-9. Segment Descriptor Access RightS MaCroS.........cvvevevereneveseseeeeeeseeseneens 168
6-10. Special Descriptor Access RightS MaCroS........cvvveeeeerene e eeeeeseesee e 169
6-11. Control Register 0 Macros for Intel 386, Intel 486,

aNd Pentium PrOCESSOISc.ciirieiririeiresie st 174
6-12. Numeric Coprocessor Tag Word Macros.........ccceevevereseneeseeneseeseseseesenes 178
6-13. Numeric Coprocessor Control Word MaCros.........ccocvvveeeeeereneseeseesseeneesennens 180
6-14. Intel387 Numeric Coprocessor, and Intel486 or

Pentium Processor FPU Condition Codesccoevvereeneneenieneecsieneniens 183
6-15. Numeric Coprocessor Status Word Macros.........ccoeevveeeereeneneseeseesseeseenennes 185
7-1. Assembler Header Controls for Macro SElectionccoeveevveneenennc e 190
7-2. Assembler Flag Macros Set by Header Controls.........cccevevievvvevececceenei, 195
7-3. Assembler REQISLEr MACIOS.......ccvvviereeeereese e e e eeeee e e e re e e neeneense s 196
7-4. ASM386 Segment Macro Expansion for Compact Memory Moddl 197
7-5. ASM386 Type Macro Expansion for Compact Memory Model 199
7-6. ASM386 External Declaration Macro Expansion for

Compact Memory MOCELocvieieeeerere e 201
8-1. iC-386 FPL and VPL Return Register USE.......ccccvcvvvvvvenieneeeereseese e 216
8-2. iC-386 FPL and VPL Register Preservation..........cccceeeeeveneneseseseseeseeeens 217
o-1. iC-386 Segment Definitions for Compact-model Subsystems..........c.ccccvvenee. 224
9-2. Subsystems and Default AdAress SIZEScovvvvvivvnnece e 225
10-1. Intel386 Processor Scalar Data TYPES.....cocvveiererereeeereesieseesiessesseseeseeneeseens 237

iC-386 Compiler User’'s Guide Contents Xi

Figures

1-1.
2-1.
2-2.
2-3.
2-4,
2-5.
2-6.
2-7.
2-8.
3-1
3-2.
4-1.
4-2.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.

6-8.
6-9

6-10.

6-11.
6-12.
6-13.
6-14.

7-1.
8-1.
9-1.
9-2.

9-3.

Xii

32-hit Protected Mode iRM X Application Development...........
Input and OULPUL FIlES.......cceeeeee e
Controls That Create or Suppress FIles........cocvvvivvvnieieceneenn,
Redirecting Input to aDOS Batch File..........ccccoeovvivvvciicecienn,
Choosing Libraries to Bind with iC-386 Modules......................
Pseudo-assembly Code at Optimization Level O.......ccccvecveeeneee
Part of the Pseudo-assembly Code at Optimization Level 1.......
Part of the Pseudo-assembly Code at Optimization Level 2.......
Part of the Pseudo-assembly Code at Optimization Level 3.......
Effect of iC-386 align Control on Example Structure Type........
Effect of iC-386 noalign Control on Example Structure Type...
Creating a Compact RAM Programcccccevceveresesesieeseenennens
Creating a Compact ROM Programccccevevereseseseeseenennens
FLAGS and EFLAGS REQISLEYooveeriirieirerieeeseieese e
(€T (] D=5 ol 1] o) o) S
Machineg StAtUSWOI........cccoireerirereneee e

Control, Test, and Debug Registers of Intel 386, Intel 486,
and Pentium ProCESSOIS......coovvvrereeeeeeieseesiesieseeseesseeseeneees

Control Register 0 of Intel386, Intel486, and Pentium Processors..................

Numeric Coprocessor Stack of Numeric Data Registers............
Intel 387 Numeric Coprocessor or Intel486 and

Pentium Processor FPU Environment Registers........cooevennen.
Numeric Coprocessor Tag WOord........ccoveveveeeereenieseeseseseeneens
Numeric Coprocessor Control Word.........cocveeeveevievennsesieennns
Numeric Coprocessor Status Wordccceeeeeeevenievesinsesieeneens
Intel 387 Numeric Coprocessor, and Intel 486 or

Pentium Processor FPU Data Pointer and Instruction Pointer
Precedence Levels of Assembler Header Controls.....................
Four Sections of Code for aFunction Callc.ccccvvereeniennnn

Subsystems Example Program Structure...........ccoeeeeeeeecverenennn.

Subsystems Example Program in Regular

Compact Segmentation Memory Modélccocvvveveeenenne.

Subsystems Example Program Using Small-model Subsystems

Contents

15
25
27
31
35
40
43
45
47
61
62

129

130

153

159

162

164

167

170

172
174
176

177
178
179
182

186
193
212
220

221
222

Overview

This chapter provides an overview of the iC-386 compiler and run-time libraries
(referred to as iC-386) and their role in devel oping applications. References
throughout the chapter direct you to more detailed information. This chapter contains
information on:

» Development of an application using an iC-386 compiler and related RadiSys
development tools

» Compiler capabilities
e Compatibility with other trandators and utilities
» Thismanual and related publications

Software Development With iC-386

TheiC-386 compiler supports modular, structured development of applications.
Figure 1-1 shows the development paths using the iC-386 compiler. Some of the
tasks in developing a modular, structured iC-386 application are:

» Compile and debug application modules separately.
e Select appropriate optimizations for the code.

* Use BND386 to bind the compiled modules and libraries to create aloadable
file. Use BLD386 to create a bootloadable file for ICU-configurable iRM XY
systems.

See also: Examples of binding, in Chapter 2
e Use OH386 to prepare the code for programming into ROM.

» For ICU-configurable systems, use the interactive configuration utility (ICU) to
combine an application with the first level or 1/0O layer of an iRMX system.

» Usethe Soft-Scope debugger to debug your application. You can also use an
ICE in-circuit emulator or the iIRMX Bootstrap L oader and the iIRMX System
Debugger.

iC-386 Compiler User'sGuide Chapter 1 1

Using the Run-time Libraries

TheiRMX Operating System (OS) C library and interface library support the entire
ANSI C library definition and provide a useful variety of supplementary functions
and macros. These supplementary library facilities are defined by the IEEE Std
1003.1-1988 Portable Operating System Interface for Computer Environments

(POSIX), the AT& T System V Interface Definition (SVID), or widely used
non-standard libraries.

See also: C Library Reference for description of the iC-386 libraries,

supplementary functions and macros
Library file names, binding, in Chapter 2

Create and Maintain
Libraries With

LiB386 Bound
(o) Modules ||
with Files With
ASM386 @ BND386
OMF386
™~ O oot O
wrie Source J Code i
File With
Text Editor, ic-386 Debug Application
Source > - Software on Target
© >\ code %) with Erecuante
Soft-Scope 32-bit
Debugger IRMX Target Program
(W] System
PLIM-386 7
B
=E
Load for On-target
> 0 Assembly-language
i Debugging Using SDB/SDM
Booistap
Correct Errors Found During Translation Loader
|Correct Errors Found During Debugging 2 i
Combine Into
iRMX [Il Operating Load for On-target
System With Symbolic Debugging With
1cU3ss Bootstap | [Soft-Scope
© Loader Debugger
| 1 rargersyst
i Build q i arget System
Application
v System With
iRMX
T Avpication Load for Cross-hosted
o Syeiem with Symbolic Debugging With
> - Soft-Scope
0 Lev Debugger
or 10 Job LS d
(BLD386 Automatically i
Invoked by Submit File)
Load into Emulation and Analysis
Tools for Cross-hosted Debugging
Dos
""" >
Correct Errors Found During Debugging

[] - tcucomiquasie systems ons.

wase

Figure 1-1. 32-bit Protected Mode iRM X Application Development

Debugging

At logical stagesin the application development, use a source-level symbolic
debugger such as Soft-Scope or an in-circuit emulator to debug and test the

Chapter 1 Overview

application. 1C-386 supports debugging by enabling you to specify the amount of
symbolic information in the object code and to customize the output listing. Use
these controls when compiling modules for debugging:

Thepreprint control creates alisting file of the code after preprocessing but
before tranglation.

Thet ype control includes function and data type definition (t ypedef)
information in the object file for intermodule type checking and for debuggers.

The debug control includes symbolic information in the object file which is used
by symbolic debuggers and emulators.

Thel i ne control includes source-line number information in the object file,
which debuggers use to associate source code with translated code.

The code control generates a pseudo-assembly language listing of the compiled
code.

Theoptinm ze(0) control ensures the most obvious match between the source
text and the generated object code.

The listing selection and format controls customize the contents and appearance
of the output listings.

The debugging information generated by the iC-386 compiler is compatible with
current versions of Soft-Scope and in-circuit emulators capable of loading the
object module format (OMF).

See also: Detailed descriptions of each control, in Chapter 3

iC-386 Compiler User'sGuide Chapter 1 3

Optimizing
Optimized code is more compact and efficient than unoptimized code. The iC-386

compiler has several controlsto adjust the level of optimization performed on your
code. These controls adjust optimization:

Theal i gn | noal i gn control specifies whether to generate aligned STRUCTS
or non-aligned STRUCTS.

Theopt i mi ze control specifiesthe level of optimization the compiler performs
when generating object code. The iC-386 compiler provides four levels of
optimization: 0, 1, 2, and 3; the higher the number, the more extensive the
optimization. Object code generated with a higher level of optimization usually
occupies less space in memory and executes faster than the code generated with
alower level of optimization. However, the compiler takes longer to generate
code at ahigh level of optimization than at alow level.

The conpact control setsthe memory segmentation model.

See also: Memory segmentation model in Chapter 4, examples of code generated

at each optimization level in Chapter 2, and detailed descriptions of
each control in Chapter 3

Using the Utilities

The utilities also support modular application development. A list of all the
publications for the utilitiesisincluded in this chapter. These utilitiesaid in the
software development process:

L1B386 organizes frequently used object modules into libraries.

BND386 binds together object modules from the trandators. The binder
produces a relocatable loadable module or a module for incremental binding.

For ICU-configurable systems, BL D386 locates or builds an executable,
bootl oadable system.

OH386 converts object code into hexadecimal form for programming into ROM.

For ICU-configurable systems, use the Interactive Configuration Utility (ICU) to
generate a submit file that builds the final application system. IniRMX
applications, the submit file automatically invokes BLD386 to assign the

absol ute addresses to the application.

See also: L1B386, BND386, and OH386, Intel386 /7 Family Utilities User's

Guide
BND386, Intel 386 Family System Builder User's Guide

Chapter 1 Overview

Programming for Embedded ROM Systems
This section only applies to |CU-configurable systems.

Use ther omcompiler control to locate constants with code in the object module.
Bind your object modules with startup code. Use the BLD386 utility to assign
absolute addresses to your linked application.

Absolutely located Intel OMF object code is ready to use with the Intel iPPS PROM
programming software. The OH386 utilities convert absolute or OMF386 code into
hexadecimal form for use with non-Intel PROM programming utilities.

See also: ram | romecontrol descriptionin Chapter 3

Compiler Capabilities

TheiC-386 compiler trandates C source files and produces code for the Intel 386,
Intel4860 or Pentium® processors.

The executable programs can be targeted for these environments:
* An Intel 386/Intel 486/Pentium processor-based system running the iRMX OS

e A custom-designed Intel 386/1ntel 486/Pentium processor-based system running
theiRMX OS

The iC-386 compiler generates floating-point instructions for the Intel 3875 numeric
coprocessor, and the Intel 486 or Pentium microprocessor floating-point unit.

TheiC-386 compiler conforms to the 1989 American National Standard for
Information Systems - Programming Language C (ANS X 3.159-1989), and provides
some useful extensions enabled by the ext end compiler control.

See also: ext end control description in Chapter 3

iC-386 Compiler User'sGuide Chapter 1 5

Compatibility With Other Development Tools

Table 1-1 shows the compatible Intel assemblers, compilers, debuggers, and utilities.

Table 1-1. Assemblers, Compilers, Debuggers, and Utilities

Tool Name for Each Intel386, Intel486,
Tool or Pentium Processor
assembler ASM386
C compiler iC-386
FORTRAN compiler Fortran-386
PL/M compiler PL/M-386
Soft-Scope debugger
binder BND386
absolute locator BLD386*
librarian LIB386
cross-reference utility MAP386
object-to-hex converter OH386

* For ICU-configurable systems only

TheiC-386 compiler islargely compatible with previous Intel C compilers. The
ext end control enables the compilersto recognizetheal i en, f ar , and near
keywords.

See also: ext end control description in Chapter 3, f ar and near keywordsin
Chapter 4, al i en keyword in Chapter 10

Modules compiled by the iC-386 compiler can refer to object modules created with
Radi Sys assembl ers and other RadiSys compilers. Use only RadiSys compilers or
trandators to ensure compatibility with the memory segmentation model of the
application.

See also: Memory segmentation models in Chapter 4, facilitiesthat aid
interfacing with assembler modules in Chapter 7, function-calling
conventions of iC-386 in Chapter 8

6 Chapter 1 Overview

About This Manual

TheiC-386 Compiler User's Guide describes how to use the iC-386 compiler in the
iRMX and DOS environments. This manual appliesto Versions 4.5 and later of the

iC-386 compiler.

This manual does not teach either programming techniques or the C language.

Related Publications

Table 1-2 identifies additional publications that describe the other development tools
you are most likely to use when programming with iC-386. The table also identifies
the programmer's reference manuals for the processors for which the iC-386 compiler

generates object code.

Table 1-2. Intel386, Intel486, or Pentium Processor and Tool Publications

Title

Contents

ASM386 Macro Assembler Operating
Instructions

ASM386 Assembly Language Reference
Manual

Intel386 Family System Builder User's Guide
Intel386 Family Utilities User's Guide

80386 System Software Writer's Guide

386 DX Microprocessor Programmer's
Reference Manual

387 DX Microprocessor Programmer's
Reference Manual

Pentium Processor User's Manual

assembler operation

assembly language for the Intel386 and
Intel486 processors

utility for building complete systems

utilities for binding, mapping, and
maintaining libraries

advanced programming guidelines

Intel386 DX architecture and assembly
language

Intel387 DX coprocessor architecture and
numerics assembly instructions

Intel Pentium processor operation and use
(3 volume set)

See also:

The Customer Literature Guide for part numbers and to identify other

appropriate user's guides and manuals

iC-386 Compiler User'sGuide

Chapter 1 7

Chapter 1 Overview

Compiling and Binding

This chapter provides the information you need to compile and bind an iC-386
program. If you are an experienced iRM X user and have used other Intel
development tools, the most important information you need isin Invoking the
iC-386 Compiler, and in Binding Object Files. Less experienced devel opers can
obtain information on all of these topics:

* Invoking the compiler - syntax, compiler messages, and the files that the
compiler uses

e Using iIRMX submit files
e Using DOS batch and command files

» Binding object files - general syntax, how to choose the libraries you need, and
examples

e Compiling an example at different optimization levels

See also: Various sample programs in the rmx386\demo\c\intro compiler
directory

Using Files and Directories

TheiRMX OS arranges files and directoriesin a hierarchical structure. You can
reference afile or directory literally, by specifying the entire pathname, or indirectly,
by specifying alogical name. A logical name has the format:

: | ogi cal nane:
Thel ogi cal nane isashort name that represents afull pathname.

See also: Logical names, Command Reference

iC-386 Compiler User'sGuide Chapter 2 9

Invoking the iC-386 Compiler

This section describes the syntax for invoking the iC-386 compiler, the messages that
the compiler displays on the screen, and the files that the compiler uses.

Invocation Syntax on iRMX Systems

10

OniRMX systems, the iC-386 compiler invocation command has the format:

ic386 sfile [controls]

Where:
i c386 isan alias used to invoke the compiler. Caseisnot significant. The
diasis
run86 :lang:ic386
sfile is the name of the primary source file; compilation starts with thisfile.

This source file can cause other filesto be included by using the
#i ncl ude preprocessor directive.

control s arethecompiler controls. Separate consecutive controls with at least
one space. Caseis not significant in controls; however, caseis
significant in some control arguments.

See also: Syntax of individual controlsin Chapter 3

If you do not specify alogical name or pathname for the directory containing the
compiler, theiRM X system searches through alist of directories. The search pathis
set at system configurationtime. The: | ang: directory isincluded in the default
search path.

See also: iRMX directory structure, Installation and Sartup
search path, Command Reference

Thisinvocation line causes the iIRMX system to expand the iC-386 alias and find the
compiler in the directory specified by the iC-386 alias:

- 1¢c386 denp.c

To continue an invocation command on another screen line, type the ampersand
continuation character (&) at the end of each line, press <Enter>, and continue typing
on the next screen line.

Chapter 2 Compiling and Binding

iRMX limits the invocation line to 80 characters. If your screen width isless than 80
characters, an invocation command longer than the screen width automatically wraps
to the next screen line. If you want to force an invocation line to continue on another
screen line, type the ampersand continuation character (&) at the end of the first line,
press <Enter>, and continue typing at the ** prompt on the next screen line.

For example, this command on an iIRMX system invokes the iC-386 compiler to
compile the contents of the file nypr og. ¢ inthe current directory (: $:) and print the
title Exanpl e Pr ogr amon each page of the listing:

- ic386 nmyprog.c &
** title("Exanple Progrant')

Invocation Syntax on DOS Systems
On DOS, the iC-386 compiler invocation has the format:
ic386 sfile [controls]
Where:

sfile is the name of the primary source file; compilation starts with thisfile.
This source file can cause other filesto be included by using the
#i ncl ude preprocessor directive.

control s arethecompiler controls. Separate consecutive controls with at least
one space. Caseis not significant in controls; however, caseis
significant in some control arguments.

See also: Syntax of individual controlsin Chapter 3

DOS limits the invocation line to 128 characters. If your screen width isless than
128 characters, an invocation command longer than the screen width automatically
wraps to the next screen line.

Names of DOS directories and files are limited to eight characters preceding the
optional period, plus athree-character extension. DOS truncates longer names from
theright.

iC-386 Compiler User's Guide Chapter 2 11

Sign-on and Sign-off Messages

12

The compiler writes information to the screen at the beginning and the end of
compilation. On invocation, the compiler displays a message similar to this:

systemid i G386 COWPILER Vx.y
Intel Corporation Proprietary Software

Where:
systemid
identifies your host system.
VX. Yy identifies the version of the compiler.

On normal completion, the compiler displays this message if the diagnostic level isO:
i C-386 COWPI LATI ON COVPLETE. x REMARKS, y WARNI NGS, z ERRORS
Where:

X,y,andz indicate how many remarks, warnings, and non-fatal error messages,
respectively, the compiler generated. If the diagnostic level is1
(default), the message does not identify the number of remarks. If the
not r ansl at e control isin effect, the message does not appear.

See also: di agnosti c and not r ansl at e control descriptionsin
Chapter 3
On abnormal termination, the compiler displays the message:

i C-386 FATAL ERRCR - -
message
COWPI LATI ON TERM NATED

Where:
message describesthe condition causing the fatal error.

The print file lists the error that ended the compilation. If the nopri nt control isin
effect, the compiler does not generate a print file, and the console displays any
diagnostics.

Chapter 2 Compiling and Binding

Files That the Compiler Uses

Output from the compiler usually consists of one object file and zero, one, or two
listing files according to the compiler controlsin effect. Figure 2-1 shows the input
and output for files that the compiler uses. The compiler also uses temporary work
files during the compilation process. For DOSRMX systems, the DOS confi g. sys
file fi | es specification controls the maximum number of files that DOS allows
open at the same time.

See also: preprint andi ncl ude control descriptionsin Chapter 3, for
information on how many files the compiler has open at one time

Theinstallation utility for the compiler identifies necessary changes to your system
configuration.

Input
Primary Subsystem
Source “E:g?se)d Definition
File File(s)
Y VY ¢’
iC-386
Compiler
Y A4 Y
Object Preprint Print
File File File
Output

W-3360

Figure 2-1. Input and Output Files

iC-386 Compiler User's Guide Chapter 2 13

Work Files

The compiler creates and deletes temporary work files during compilation. The
compiler puts the work files either in the root directory of the C: drive or in the
directory specified by the : wor k: DOS environment variable. To specify a RAM
disk or specific directory for the compiler work files, set : wor k: to point to the
specific path location. Using a RAM disk can decrease compilation time. For
example, this command directs the temporary files to the root directory on the d:
drive:

C.> set :work:=d:

Be certain not to enter a space between the equals sign (=) and the DOS path
designation, d: in thisexample. If your host system loses power or some other
abnormal event prevents the compiler from deleting its work files, you can delete the
work files that remain. Such files have a filename consisting of a series of digits and
no extension.

See dso: Y our DOS documentation for information on RAM disks and
environment variables

Object File

By default, the compiler produces an object file. Usethe noobj ect control or the
not r ansl at e control to suppress creation of an object file.

See also: noobj ect and not r ansl at e control descriptionsin Chapter 3

The default name for the object file is the same as the primary source filename with
the. obj extension substituted. By default, the compiler places the object filein the
directory containing the source file. If afile with the same name already exists, the
compiler writes over it. To override the defaults, use the obj ect control.

The object file contains the compiled object module, which is the relocatable code
and data resulting from successful compilation. Compiler controls and preprocessor
directives specify the information content and configuration of the object module.

Listing Files

14

The compiler can produce two listing files: apreprint file and a print file. The
preprint file contains the source text after preprocessing. The print file can contain
the source text and pseudo-assembly language code listings, messages, symbol table
information, and summary information about the compilation.

See also: Preprint and print filesin Chapter 6;
preprint andprint control descriptionsin Chapter 3

Chapter 2 Compiling and Binding

Figure 2-2 summarizes the controls that create or suppress files.

Yes (Default)

Preprocess Preprocess

- Yes
Preprint

preprint
File ?
No
(Default)

Preprint
File

Compile

DCL and Yes

Interactive?

Specify Print
Y
Print
File

Yes (Default)

Object
File

N &
,¢\

Figure 2-2. Controls That Create or Suppress Files

W3361

iC-386 Compiler User's Guide Chapter 2 15

16

The compiler generates the preprint file only when the pr epri nt or notransl ate
control is specified. The default name for the preprint file is the same as the primary
source filename with the . i extension substituted. By default, the compiler places
the preprint file in the directory containing the source file. If afile with the same
name already exists, the compiler writes over it. To override the defaults, use the
preprint control.

The preprint file contains an expanded source text listing. The preprint fileis
especially useful for observing the results of macro expansion, conditional
compilation, and fileinclusion. Compiling the preprint file produces the same results
as compiling the source file, assuming the compiler can expand any macros without
errors.

The compiler generates the print file by default. Usethenopri nt control to
suppress the print file. The default name for the print file is the same as the primary
source filename with the . | st extension substituted. By default, the compiler places
the print file in the directory containing the sourcefile. If afile with the same name
already exists, the compiler writes over it. To override the defaults, use the pri nt
control.

Chapter 2 Compiling and Binding

Using Submit, Batch and Command Files

AniRMX submit file contains one or more commands that the iRM X system
executes sequentially. OniRMX systems, use a submit file to invoke the compiler.

DOS offers two ways to invoke a series of commands automatically: batch files and
command files.

Using iIRMX Submit Files

Using submit files lets you consistently repeat complex commands without having to
retype the entire command sequence each time. Y ou can create a submit file with
any text editor.

To invoke a submit file, use the submit command as follows:
submt fil enane

Thefi | ename can be asimple name for a submit file in the current directory, or it
can be a pathname to a submit file in a different directory.

To save the console output of the submit fileto afile named csave. out , enter:
- submt filename over csave.out echo

Commands in a submit file can contain continuation lines. To continue a command
over two or more lines in a submit file, place an ampersand (&) at the end of each line
to be continued, the same as when typing the command at the system prompt.

Y ou can pass arguments to a command in a submit file by putting parameters as
arguments to the command in the submit file. A parameter in a submit file takes the
form:

Y%munber

Where nunber indicates the position of the argument in the submit command
invoking the submit file.

InthisiRMX example, the parameter %0 containsthe value hel | o.

- submit /intel/gen/bind (hello)

iC-386 Compiler User's Guide Chapter 2 17

Using DOS Batch Files for DOSRMX Systems

18

A DOS batch file contains one or more commands that DOS executes consecutively.
Batch file commands are valid at the DOS command-line prompt and include special
commands that are valid only within abatch file. All batch files must have the . bat
extension.

Y ou can pass argumentsto a DOS batch file. In this example, the 386¢. bat batch
file contains a command invoking the iC-386 compiler. Any primary source file with
the . ¢ extension can be the argument for 386¢. bat . The batch file contains one
line:

C\Iintel\bin\ic386 %.c

DOS replacesthe %4 parameter with the pr ogl argument in thisexample. To
invoke the batch file, type the pathname of the batch file without its. bat extension
followed by the name of the primary source file without its. ¢ extension. For
example:

C. > 386c¢ progl

When 386¢. bat executes, DOS replacesthe %4 parameter by pr og1, resultingin
the command:

C\Intel\bin\ic386 progl.c

DOS batch files have several other useful features, such asi f, got o, for, and cal |
commands.

See also: Y our DOS documentation for explanation of these and other batch file
commands

Consider these characteristics when developing a batch file for the iC-386 compiler:

* Anenhancement available in DOS V 3.30 and successive versions enables one
batch file to call another batch file and enables contral to return to the original
batch file. Usethecal | fil ename command.

In earlier versions of DOS, control passes to the called batch file but does not
return to the calling batch file. Place at most one direct batch file invocation as
thelast linein abatchfile.

» Batch files can contain command labels and control flow commands such asi f
and got 0. For example, in this command the result of program execution from
the previously executed batch file determines at which label the current batch file
continues execution:

if errorlevel n goto I|abel

Chapter 2 Compiling and Binding

The value of n isthe error code that the last program returned. If the error code
isthe same or greater than the value of n, control transfersto the line
immediately after | abel . The label isany alphanumeric string significant up to
eight characters, on its own line, and prepended by a colon.

See also: di agnost i c control description in Chapter 3 for more information
on errorl evel vaues

» Although a batch file can contain multiple DOS commands, each command must
fit on asingle line (128 characters). Y ou cannot use continuation linesin batch
files. To process alonger line, specify acommand to redirect input from afile
containing the remainder of theline. The redirected file can contain continuation
lines.

This example shows how to redirect additional input from another file, how to use
parameters, and how to call another batch filein DOS 3.30. Figure 2-3 showsthe
relationships between the 386¢ 1. bat batch file, the 386c 1. 1t x file of filenames,
and the make_nap. bat batch file. The example demonstrates the use of redirection
and calling a batch file, and is not a functional example of how to compile and bind
an iC-386 program.

Redirect Input to
Get Filenames to

386c¢l.bat Complete 386¢l.ltx
ic386 %1.c Invocation prog0.obj, &
of BND386 ’7
bnd386 %1.0bj, & < %0.Itx< \intel\lib\cifc32.lib
IF ERRORLEVEL 1 GOTO FAIL
CALL make_map %I
ECHO. Success <
£ make_map.bat
GOTO STOP xecute 5
Second))
‘EAIL Batch File \inte\bin\map386 %1.bnd
' if Linking
ECHO. Failure is Successful
and Return
:STOP

W3362

Figure 2-3. Redirecting Input toa DOS Batch File

iC-386 Compiler User's Guide Chapter 2 19

The DOS batch file %0 parameter always represents the name of the batch file itself
(without the . bat extension). In the preceding example, since 386c1. bat and
386¢1. 1t x have identical names except for the extension, 386c1. bat can refer to
386¢1l. 1t x as0% 1t x.

To execute the 386¢ 1. bat batch file and pass pr ogl as an argument, at the DOS
command prompt type:

C. > 386c¢1 progl

When 386¢1. bat executes, it invokes the iC-386 compiler to compile pr og1l. c,
then invokes BND386 to bind the resulting object module, pr ogl. obj , to another
object module and alibrary specified in 386c1. 1t x. If the binding is successful, the
make_map. bat file produces amap file named pr ogl. map.

Using DOS Command Files in DOSRMX Systems

Y ou can invoke the DOS command processor, command. com with input redirected
from afile called acommand file. A DOS command file contains a sequence of
DOS commands and exi t asthe final command. Be certain that a <CR> followsthe
exi t command, not an end-of-file character.

See also: DOS command and exi t commands, in your DOS documentation

For example, the exemakec. cnd command file contains these commands (not a
functional example of how to compile and bind an iC-386 program):

i c386 prog0.c

i c386 progl.c

bnd386 prog0.obj, progl.obj, &
progxs.lib

exit

To sequentially execute the commands in the command file, redirect exenakec. cnd
to command. comby typing, at the DOS prompt:

C. > command < exenmakec. cnd

20 Chapter 2 Compiling and Binding

Consider these characteristics when devel oping a command file for the iC-386
compiler:

e Thismethod of redirecting commands works for acommand file containing a
fixed sequence of commands only. Y ou cannot pass arguments to a command
file.

» Theflow of control isalways sequential, from top to bottom of the command
file. Command files do not allow conditional commands such asi f or got o.

* You can nest command files. If acommand file reinvokes command. comwith a
secondary command file, contral returns to the primary command file when the
secondary command file exits. To invoke a second command file, insert alinein
the first command file such as:

conmand < confil e2.cnd

The secondary command file must contain exi t asitsfinal command followed
by a<CR>. If it does not, control does not return to the primary command file
until you enter exi t at the DOS prompt. Control returnsto the point in the
primary file immediately following the point from which the secondary file was
invoked.

* Unlike batch files, command files can contain continuation lines.

If you invoke a command file with output redirected to afile, the command-line
interpreter records all commands from the first line of the command file through the
command exi t and all console input and output to the file. For example, this
command invokes the exemakec. cnd command file and creates alog file named
exenakec. | og containing arecord of all commands:

C. > conmand < exemakec.cnd > exenmakec. | og

iC-386 Compiler User's Guide Chapter 2 21

Binding Object Files

TheiC-386 compiler supports modular, structured development of applications. You
can compile and debug application modules separately, then bind them together to
create an application. Use the BND386 binder utility for iC-386 modules.

The binder can perform type checking and resolve intermodule references. The
binder can automatically select modules from specified libraries to resolve
references.

Thisisthe general syntax (without device and path designations) for BND386:
bnd386 input_file_list [controls]
Where:

input _file_list isoneor morenamesof linkable files separated by commas.
A linkable fileis generated from a high-level language
trandator or assembler, or is an incrementally linked module.

control s are the binder controls separated by spaces.
See also: BND386, Intel 386 Family System Builder User's Guide

Choosing the Files to Bind

An iC-386 application can consist of many separately transated modules. The
application can call functions from libraries. To create an executable file, you must
use abinder to bind all trandated code and libraries together. TheiRMX OS includes
theci fc32. 1'i b Cinterface library; you can include other libraries.

See also: C Library Reference for more information on the C interface library

TheiRMX C interface library supports only the compact memory segmentation
model.

The library's segmentation model must be compatible with the application's
segmentation model and whether you compiled with the r amor r omcontrol.

See also: conpact , ram and r omcompiler control descriptionsin Chapter 3;
segmentation model for iC-386 in Chapter 4

22 Chapter 2 Compiling and Binding

Figure 2-4 shows how to select libraries for binding with iC-386 modul es.

iC-386
Start
|
Startup Code

Program
Object
Modules

|

Optional
User
Libraries

|

cifc32.1ib

iRMXU

UDI Yes

udiifc32.lib

No

rmxifc32.lib

iC-386
Stop
W3363

Figure 2-4. Choosing Librariesto Bind with iC-386 Modules

iC-386 Compiler User's Guide Chapter 2

23

Examples of Binding

Y ou can bind applications for IRMX systems in several different ways to accomplish
severa different objectives. This section lists examples of binding modules for
different purposes.

See also: Various sample programs in the rmx386\demo\c\intro compiler
directory

BND386 Example on DOS Systems
The demo.c example is cross-compiled to run under the iRMX OS.

See also: makefile sample code in rmx386\demo\c\intro compiler directory for
demo.c example, invocation and binder parameters

The BND386 invocation links the object modules with the startup code and libraries
and creates a loadable file named demo.

First, the binder invocation list must specify the object module for the C startup code
and the application routines, in that order. Next, the binder links in the C interface
library. Last, the binder linksin theiRMX OS interface library.

Ther enaneseg control ensures all library module code segments are named
CODE32, for combining with iC-386 code segments. Ther confi gur e control
causes BND386 to produce a single-task loadable module that can be loaded by the
iRMX loader. Theobj ect control names the executable file deno instead of the
default deno. bnd.

TheiRMX C interface library isincluded with iC-386 for use with applications
written for theiRMX OS. TheiRMX system interface library is part of the iIRMX
os.

The application uses the near version of the common elementary functions library.
Because the application runs in the compact segmentation memory model, function
calsare near calls.

See also: conpact control description in Chapter 3 and segmentation memory
models in Chapter 4 of this manual
C Library Reference for more information on cst art startup code

24 Chapter 2 Compiling and Binding

In-line Functions

int
#pragma
int
#defi ne

The compiler generates in-line machine code by default for several run-time library
functions. The 1989 ANSI C standard specifies that the header file containing the
function declaration can additionally contain a macro definition; the compiler uses
this feature to define in-line versions of some functions. Using the in-line versions of
the functions produces more efficient code. To use the in-line functions, simply
include the appropriate header file.

For example, the st dl i b. h header file contains this declaration for the abs absolute
value function:

abs(int val ue); /* function prototype declaration */
builtin("_abs_"=33) /* tell conpiler about the in-line version */
abs(int value); /* prototype for the in-line version */
abs(x) _abs_(x) /* use the in-line version when the abs() */

/* function is called */

Taking advantage of the in-line versions of the functions is transparent within the
program. A fragment of code such asthis usesthe in-line abs function:

#include <stdlib.h> /* including the appropriate header */
int main (int argc, char * argv[])
{
int i,j;
/* assune that j holds an appropriate value */
i = abs(j); /* uses the in-line function */

}

Y ou can use either of two methods to override the in-line version of the function, and
call the actual function instead: enclose the function name in parentheseswhenit is
called, or use the #undef preprocessing directive to remove the macro definition that
maps the function to the in-line version. This example calls the function but allows
other callsto use thein-line version:

#i ncl ude <stdlib. h>
int main (int argc, char * argv[])
{
int i,j;
/* assune that j holds an appropriate val ue */
i = (abs)(j); /* function call */

iC-386 Compiler User's Guide Chapter 2 25

This example un-defines the macro and thus disables the in-line version for the
remainder of the module;

#i ncl ude <stdlib. h>
#undef abs
int main (int argc, char * argv[])
{
int i,j;
/* assune that j holds an appropriate value */
i = abs(j); /* function call */

}

Table 2-1 lists the iC-386 in-line functions, the header file in which each is defined,
and a brief description of each.

Table 2-1. In-line Functions

Header File Function Description
<string.h> memcpy copies specified number of bytes
memcmp compares specified number of bytes
memset fills memory area with a byte value
strepy? copies a constant string
stremp? compares to a constant string
<stdlib.h> abs absolute value of integer
labs absolute value of long integer
<math.h> fabs absolute value of floating-point
sqrt non-negative square root
log? natural logarithm
log10? base 10 logarithm
cos? cosine of angle in radians
sin? sine of angle in radians
tan? tangent of angle in radians
acos? arc cosine of angle in radians
asin? arc sine of angle in radians
atan? arc tangent of angle in radians
atan22 principal value of arc tangent of angle in radians

1the compiler issues in-line instructions for these functions only if the appropriate arguments are constant
values.
2 This in-line function is provided by the iC-386 compiler only.

26 Chapter 2 Compiling and Binding

|:| Note

In-line functions perform no range or domain checking; this
checking is particularly important for floating-point functions. Use
the library function if your application needs such checking.

Compiling at Different Optimization Levels

Theopt i mi ze control specifies the compiler's optimization level. The compiler has
four optimization levels: 0, 1, 2, and 3, where O provides the least optimization and 3
provides the most optimization. Each level performs all the optimizations of the
lower levels.

The optimiz.c example provides source text that demonstrates optimization at each
level. Figures 2-5 through 2-8 show the significant results of compiling with iC-386
at different optimization levels.

See also: opt i m ze control description in Chapter 3, which includes an
explanation of each type of optimization
Sample code in rmx386\demo\c\intro compiler directory for optimiz.c
example

Results at Optimization Level O

Figure 2-5 shows the iC-386 pseudo-assembly language code for optimization level
0. Atthislevel, constant-folding occursin statement #10 and operator strength
reduction occurs in statement #15.

iC-386 Compiler User's Guide Chapter 2 27

iC-386 COWPILER Optimzation Level 0 mm dd/yy hh: mmss PAGE 2
ASSEMBLY LI STI NG OF OBJECT CODE

; STATEMENT # 9

mai n PROC NEAR
00000000 55 PUSH EBP
00000001 8BEC MOV EBP, ESP

a.:

; STATEMENT # 10

00000003 8B0504000000 MOV EAX; j
00000009 81C002000000 ADD EAX, 2H
0000000F 890500000000 MOV i, EAX

; STATEMENT # 11
00000015 C7050800000003000000

MoV k, 3H

; STATEMENT # 12
0000001F 8B0508000000 MoV EAX k
00000025 81C003000000 ADD EAX, 3H
0000002B 890504000000 MoV i, EAX

; STATEMENT # 13
00000031 8B0508000000 MoV EAX k
00000037 81C003000000 ADD EAX, 3H
0000003D 890500000000 MoV i, EAX

; STATEMENT # 15
00000043 8B0500000000 MoV EAX; i
00000049 D1EO SAL EAX, 1
0000004B 0F8416000000 JZz @

; STATEMENT # 16
00000051 FF3500000000 PUSH i 1
00000057 E800000000 CALL i square
0000005C 890500000000 MoV i, EAX
00000062 E911000000 JwWP @

i STATEMENT # 17
@:

Figure 2-5. Pseudo-assembly Code at Optimization Level O

28 Chapter 2 Compiling and Binding

00000067
0000006D
00000072

00000078

0000007F

00000085
0000008A

0000008F

00000099

0000009E

000000A8
000000AE

000000B4
000000BA

000000CO
000000C1

0oooooc4

Figure 2-5 Pseudo-assembly Code at Optimization Level 0 (continued)

FF3504000000 PUSH
E800000000 CALL
890500000000 MOV
@3
833D0800000000 CMP
0F840A000000 JZ
E90F000000 JMP
E90A000000 JMP
@:
C7050800000064000000
MOV
@:
| 1:
E900000000 JMP
| 2:
C7050400000064000000
MOV
8B050C000000 MOV
C700C8000000 MOV
8B0504000000 MOV
890500000000 MOV
5D POP
C20800 RET
C70508000000C8000000
MOV
mai n ENDP

iC-386 Compiler User's Guide

; STATEMENT

i ;1
i square
i, EAX

; STATEMENT
k, OH
@

; STATEMENT
11
@

; STATEMENT

; STATEMENT
k, 64H

; STATEMENT
I 2

; STATEMENT
j,64H

; STATEMENT
EAX, a
[EAX] , 0C8H

; STATEMENT
EAX, j
i, EAX

; STATEMENT
EBP
8H

; STATEMENT
k, 0C8H

; STATEMENT

; STATEMENT

Chapter 2

#

#

18

19

20

21

22

24

25

26

27

28

30

31

31

29

MODULE | NFORVATI ON:

i C-386 COWPI LATI ON COWMPLETE

30

CCODE AREA Sl ZE
CONSTANT AREA S| ZE
DATA AREA SI ZE
MAXI MUM STACK SI ZE

0

000000CEH
00000000H
00000010H
00000014H

WARNI NGS

206D
(0]}
16D
20D

0 ERRORS

Figure 2-5. Pseudo-assembly Code at Optimization Level O (continued)

Chapter 2

Compiling and Binding

Results at Optimization Level 1

Figure 2-6 shows the changes in statements #12 through #16 when the invocation
uses optimization level 1. The code area size decreases from 208 bytes at
optimization level 0to 182 bytes at optimization level 1.

i G386 COWPILER

0000001F
00000024
00000026

0000002C

00000032
00000034

0000003A
00000040
00000045
0000004B

00000050
00000056
0000005B

00000061

00000068

0000006E
00000073

Optim zation Level

1

nmi dd/ yy hh: mm ss

ASSEMBLY LI STI NG OF OBJECT CODE

B803000000
D1EO
890504000000

890500000000

D1EO
0F8416000000

FF3500000000
E800000000
890500000000
E911000000

@:

FF3504000000

E800000000

890500000000
@3:

833D0800000000

0F840A000000

E9O0F000000
E90A000000

@

MoV
SHL

SAL
JZz

PUSH
CALL

JWP

PUSH
CALL

cawP
JZz

JwWP
JWP

EAX, 3H
EAX, 1
i, EAX

i, EAX

EAX, 1
@

i

i square
i, EAX
@

i
i square
i, EAX

PAGE

STATEMENT #

STATEMENT #

STATEMENT #

STATEMENT #
1

STATEMENT #

STATEMENT #
1

STATEMENT #

STATEMENT #

STATEMENT #

Figure 2-6. Part of the Pseudo-assembly Code at Optimization Level 1

iC-386 Compiler User's Guide

Chapter 2

2

12

13

15

16

17

18

19

20

21

31

32

00000078

00000082

00000087

C7050800000064000000
MOV
@:
| 1:
E900000000 JMP
| 2:
C7050400000064000000
MOV

k, 64H

j,64H

; STATEMENT # 22

; STATEMENT # 24

; STATEMENT # 25

Figure 2-6. Part of the Pseudo-assembly Code at Optimization Level 1 (continued)

Chapter 2

Compiling and Binding

Results at Optimization Level 2

Figure 2-7 shows the changes in statements #16 through #24 and #30 when the

invocation uses optimization level 2. Labels also change on several instructions. The

code area size decreases from 182 bytes at optimization level 1 to 123 bytes at

optimization level 2.

i G386 COWPILER

0000002F
00000035

00000037

0000003D
00000042

00000047
0000004E

00000050

Optim zation Level 2

FF3500000000 PUSH

EBO6 JMP
@:
FF3504000000 PUSH
a:
E800000000 CALL
A300000000 MOV

833D0800000000 CWP

750A INZ
C7050800000064000000
MOV
| 1:
| 2:

mm dd/yy hh: mmss PAGE
ASSEMBLY LI STI NG OF OBJECT CODE

i

i square
i, EAX

k, OH
11

k, 64H

STATEMENT #

1

STATEMENT #

STATEMENT #

1

STATEMENT #

STATEMENT #

STATEMENT #

STATEMENT #

STATEMENT #

STATEMENT #

Figure 2-7. Part of the Pseudo-assembly Code at Optimization Level 2

iC-386 Compiler User's Guide

Chapter 2

16

17

18

19

20

21

22

24

25

33

0000005A C7050400000064000000

00000064 A10C000000
00000069 Cr00C8000000

0000006F A104000000
00000074 A300000000

00000079 5D
0000007A C20800

mai n

MODULE | NFORVATI ON:

CCDE AREA Sl ZE
CONSTANT AREA S| ZE
DATA AREA SI ZE
MAXI MUM STACK SI ZE

i C-386 COWPI LATI ON COVPLETE.

0

MOV j,64H

; STATEMENT # 26
MOV EAX, a
MOV [EAX] , OC8H

; STATEMENT # 27
MOV EAX, j
MOV i, EAX

; STATEMENT # 28
POP EBP
RET 8H

; STATEMENT # 30

; STATEMENT # 31

ENDP

; STATEMENT # 31
0000007DH 125D
00000000H oD
00000010H 16D
00000014H 20D
WARNI NGS, 0 ERRORS

Figure 2-7. Part of the Pseudo-assembly Code at Optimization Level 2 (continued)

34 Chapter 2

Compiling and Binding

Results at Optimization Level 3

Figure 2-8 shows the change in statement #27 when the invocation uses optimization

level 3. Inthiscase, because a pointer is aliasing a variable, the change introduces an
error. The code area size stays the same from optimization level 2, but one assembly
instruction substitutes for two in statement #27.

iC-386 COWILER Optimzation Level 3 nmi dd/ yy hh: mm ss

ASSEMBLY LI STI NG OF OBJECT CODE

PAGE 2

STATEMENT # 12

0000001A B803000000 MoV EAX, 3H
0000001F D1EO SHL EAX 1
00000021 A304000000 MoV j » EAX
STATEMENT 13
00000026 A300000000 MoV i, EAX
STATEMENT 15
0000002B D1EO SAL EAX 1
0000002D 7408 JZ @
STATEMENT 16
0000002F FF3500000000 PUSH i 1
00000035 EBO6 JMP @
STATEMENT 17
@:
STATEMENT 18
00000037 FF3504000000 PUSH j 1
@a:
0000003D E800000000 CALL i square
00000042 A300000000 MoV i, EAX
STATEMENT 19
00000047 833D0800000000 CWP k, OH
0000004E 750A INZ 1
Figure 2-8. Part of the Pseudo-assembly Code at Optimization Level 3
iC-386 Compiler User's Guide Chapter 2 35

; STATEMENT # 20

; STATEMENT # 21

; STATEMENT # 22
00000050 C7050800000064000000

MOV k, 64H
; STATEMENT # 24
| 1:
; STATEMENT # 25
| 2:
0000005A C7050400000064000000
MOV j,64H
; STATEMENT # 26
00000064 A10C000000 MOV EAX, a
00000069 C700C8000000 MOV [EAX] , OC8H

; STATEMENT # 27
0000006F C7050000000064000000

MOV i, 64H
; STATEMENT # 28
00000079 5D POP EBP
0000007A C20800 RET 8H
; STATEMENT # 30
; STATEMENT # 31
mai n ENDP
; STATEMENT # 31
MODULE | NFORMATI ON:
CODE AREA SI ZE = 0000007DH 125D
CONSTANT AREA SI ZE = 00000000H oD
DATA AREA S| ZE = 00000010H 16D
MAXI MUM STACK S| ZE = 00000014H 20D
i C-386 COVPI LATI ON COVPLETE. 0 WARNI NGS, 0 ERRCRS

Figure 2-8. Part of the Pseudo-assembly Code
at Optimization Level 3 (continued)

36 Chapter 2 Compiling and Binding

When you cast afloating point number to an integer, the compiler rounds the result at
Optimization level 3, instead of truncating it asit does at levels0, 1, and 2. For
example, this code produces different results at different levels:

voi d mai n()

{

float f=3.67;

int i;

i = (int)f;

}

Under optimization levels 0, 1, and 2, the compiler truncates the variablei and setsit
equal to 3. At optimization level 3, the compiler rounds it and setsit to 4.

If you want floating point variables to be truncated when they are cast to an integer,
use an optimization level other than 3.

iC-386 Compiler User's Guide Chapter 2 37

38 Chapter 2 Compiling and Binding

Compiler Controls

The compiler controls specify compiler options such as the location of source text
files, the amount of debugging information in the object module, and the format and
location of the output listings. Y ou need not use any controls when you invoke the
compiler. Most of the controls have default settings. Table 3-1 provides default
settings and a brief description of each control.

This chapter contains these topics:
e How controls affect the compilation
* Whereto use controls

e Alphabetical reference of controls

How Controls Affect the Compilation

Each control affects the compilation in one of three ways:

Source-processing specify the names and locations of input files or define macros

controls at compile time.

Object-file-content determine the internal configuration of the object file.
controls

Listing controls specify the names, locations, and contents of the output listing

files.

iC-386 Compiler User's Guide Chapter 3 39

Where to Use Controls

40

Y ou can use a compiler control once, multiple times, or only on invocation,
depending on which kind of control it is:

Primary controls apply to the entire module. Specify a primary control in the
compiler invocation or in a#pragma preprocessor directive.
A primary control in a#pragma preprocessor directive must
precede the first executable statement or data definition
statement in the source text. A primary control in the
invocation line overrides any contradictory control specified

in a#pragma.
General controls can change freely within amodule. Specify a general control

as often as necessary in the compiler invocation and in
#pragma preprocessor directives anywhere in the source text.

Invocation-only must never appear in a#pragma preprocessor directive.
controls Specify an invocation-only control as often as necessary in the

invocation line.

Caseis not significant in control names, though it can be significant in arguments to
controls. TheiRMX system preserves the case of argumentsto controls. DOS
reguires quotation marks (") around arguments to controls to preserve case.

Table 3-1 lists the controls with descriptions, defaults, precedence, effects, and usage
classes. Some controls optionally use one or more arguments, indicated by [a] .
Some controls require one or more arguments, indicated by a. Certain controls
override other controls, even if stated explicitly. Table 3-1 summarizes such
precedence.

Chapter 3 Compiler Controls

Table 3-1. Compiler Controls Summary

Control Description, Default, and Precedence Effect Usage
align [a] Aligns or suppresses aligning all structures Object General
noalign [a] of a type to specified byte boundaries.
Default: 4-byte boundaries
code Generates or suppresses pseudo-assembly Listing General
nocode object code in the print file. content
Default: nocode.
codesegmenta Names the iC-386 code segment. Object Primary
Default: CODE32.
compact Specifies segment allocation and segment Object Primary
register addressing in object module.
Default: small.
cond Includes or suppresses uncompiled Listing General
nocond conditional code in the print file. content
Default: nocond.
datasegment a Names the iC-386 data segment. Object Primary
Default: DATA.
debug Includes or suppresses debug information in Object Primary
nodebug the object module.
Default: nodebug.
nodebug overrides line.
define a Defines a macro. Source Invocation
diagnostic a Specifies the level of diagnostic messages. Listing Primary
Default: diagnostic level 1. content
eject Inserts form feed in print file. Listing General
format
extend Recognizes or suppresses Intel extensions. Source General
noextend Default: noextend.
fixedparams [a] Specifies the FPL or VPL function-calling Object General
varparams [a] convention.
Default:fixedparams for all functions.
continued
iC-386 Compiler User's Guide Chapter 3 41

Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage
include a Specifies a file to process before the primary Source Invocation
source file

interrupt a Specifies a function to be an interrupt Object General

handler.
line Generates or suppresses source line number Object Primary
noline debug information in the object file.

Default: line if debug or noline if nodebug.
list Includes or suppresses source code in the Listing General
nolist print file. content

Default: list.

nolist overrides cond, listexpand, listinclude.
listexpand Includes or suppresses macro expansion in Listing General
nolistexpand the print file. content

Default: nolistexpand.
listinclude Includes or suppresses text of include files in Listing General
nolistinclude the print file. content

Default: nolistinclude. nolistinclude overrides
listexpand and cond for include files.

long64 Sets the size for objects declared with the Object Primary
nolong64 long data type.
Default: nolong64.
mod486 Uses the Intel486 processor instructions, or ~ Object Primary
nomod486 restricts to the Intel386 processor instruction
set.
Default: nomod486.
modulename a Names object module. Object Primary
Default: sourcename.
object [a] Generates and names or suppresses the Object Primary
noobject object file.

Default: object named sourcename.obj.
noobject overrides all object controls except
as affects the print file.

optimize a Specifies the level of optimization. Object Primary
Default: optimization level 1.

continued

42 Chapter 3 Compiler Controls

Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage
pagelength a Specifies the number of lines per page in the Listing Primary
print file. format
Default: 60
pagewidth a Specifies the number of characters per line in Listing Primary
the print file. format
Default: 120
preprint [a] Generates and names or suppresses the Listing Invocation
nopreprint preprint file. content
Default: nopreprint if translate or preprint
sourcename if notranslate.
print [a] Generates and names or suppresses the Listing Primary
noprint print file. content
Default: print file named sourcename.lst.
noprint overrides all listing controls except
preprint.
ram Puts constants in the data segment or in the Object Primary
rom code segment.
Default: ram (constants in data segment).
searchinclude a Specifies a path to prepend to include files or Source General
nosearchinclude limits the path to the source directory plus
the :include: path.
Default: nosearchinclude.
signedchar Sign-extends or zero-extends char objects Object Primary
nosignedchar when promoted.
Default: signedchar.
subsys a Reads a subsystem specification file. Object Primary
symbols Generates or suppresses the identifier listin Listing Primary
nosymbols the print file. content
Default: nosymbols.
tabwidth a Specifies the number of characters between Listing Primary
tabstops in the print file. format
Default: 4.
title "a" Places a title on each page of the print file. Listing Primary
Default: "modulename”. format
continued
iC-386 Compiler User's Guide Chapter 3 43

Table 3-1. Compiler Controls Summary (continued)

Control Description, Default, and Precedence Effect Usage
translate Compiles or suppresses compilation after Source Invocation
notranslate preprocessing.

Default: translate. notranslate overrides all
object and listing controls. notranslate
implies preprint.

type Generates or suppresses type information in Object Primary
notype the object module.

Default: type.
xref Adds or suppresses identifier cross-reference Listing Primary
noxref information in the print file. content

Default: noxref xref overrides nosymbols

Alphabetical Reference of Controls

The entriesin this section describe in detail the syntax and function of each compiler
control.

Square brackets ([]) enclose optional arguments for controls. If you do not specify
optional arguments for a particular control, do not use an empty pair of parentheses
either.

Some controls use an optional list of arguments. Separate multiple argument
definitions with commas. Brackets surrounding acommaand an ellipsis([, ...])
indicate an optional list with entries separated by commas.

Enclose a control argument in quotation marks (") if the argument contains spaces or
any of these characters:

o= # L % N~ o+ - &][] <>

Enter al other punctuation as shown, for example, pound signs (#) and equals
signs (=).

44 Chapter 3 Compiler Controls

General control align | noalign

align | noalign

Aligns structures on a specified boundary.

Syntax
align [(structure_tag[=size] [,...])]
noalign [(structure_tag [,...])]
#pragma align [(structure_tag[=size] [,...])]
#pragma noalign [(structure_tag [,...])]
Where:

structure_tag
isastructure tag defined in the source text (not a structure identifier).

si ze isthe number of bytes. Thesi ze can be 1 for unaligned (byte
alignment), 2 for alignment to byte addresses evenly divisible by 2, or 4
for alignment to byte addresses evenly divisible by 4.

Abbreviation

[no] al

Default

For iIRMX applications, usenoal i gn. Thedefaultisal i gn. Data structures
supplied for the iIRMX OSs are all unaligned. Usethenoal i gn control for each
structure individually, instead of globally.

The default value for si ze is4 bytesfor iC-386. The compiler attemptsto place
structure components so that they do not cross 4-byte (iC-386) boundaries.

iC-386 Compiler User's Guide Chapter 3 45

align | noalign General control

Discussion

46

Usetheal i gn control to minimize the number of alignment boundaries a structure
component can cross. The compiler allocates memory for an aligned-structure
component on the next alignment boundary if the component would otherwise span
that boundary. If a structure component islarger than the space between alignment
boundaries, the component starts on an alignment boundary and still crosses one or
more boundaries. Usethenoal i gn control or theal i gn control withasi ze of 1 to
allocate structure components on adjacent bytes, leaving no unused bytes.

The processor can require less time to access aligned structures. However, aligned
structures can occupy more space than unaligned structuresin memory. The
compiler attaches no symbol or value to holes. The third example shows a map of
how the compiler allocates memory for an aligned structure. The fourth example
shows a map of how the compiler allocates memory for an unaligned structure.

Bit fields smaller than one byte cannot cross byte boundaries regardless of alignment.
Although an unaligned structure cannot contain any unused bytes, it can contain
undefined bits.

To specify 4-byte alignment (iC-386 default) for all structures, usetheal i gn control
without arguments. To specify byte alignment for all structures, usethe noal i gn
control without arguments. To specify alignment for all structures of a given type,
identify them by st ruct ur e_t ag. Do not specify structure or type definition
identifiers. To ensure alignment, specify the alignment for the structure tag before
defining the actual structure.

Thenot r ansl at e control overridestheal i gn and noal i gn controls. The
noobj ect control overridestheal i gn and noal i gn controls except for their effect
on the print file.

Chapter 3 Compiler Controls

General control align | noalign

Examples

These examples show different uses of the al i gn and noal i gn controls.

1

2.

3.

In this example, only structures of thetypeinar gunent _I i st are unaligned;
all other structuresin the subsegquent source text are aligned on 4-byte boundaries
for iC-386. Use thisin the compiler invocation:

noal i gn (argunent _|ist)
Or use thisin the source text:
#pragma noal i gn (argunent _|ist)

Thisexample aligns all structures of the types in the argument list on the
specified boundaries; all other structures in the subsequent source text are
allocated regardless of word boundaries. Use thisin the compiler invocation:

noal i gn align (argunent_|list)
Or, use thisin the source text:

#pragma noal i gn

#pragma align (argunment _|ist)

This example aligns components of a structure on even-byte boundaries. The
structure is declared as follows:

struct std_struct

{
unsi gned char mla;
unsi gned char mib;
unsi gned | ong mla;
unsi gned nRa;
unsi gned nba: 5;
unsi gned nbb: 7;
unsi gned nbc: 6;
doubl e nBa;

iC-386 Compiler User's Guide Chapter 3 47

align | noalign

General control

To align al structures of a particular type, use atype definition:

typedef struct std_struct

{

unsi gned char mla;
unsi gned char milb;
unsi gned | ong ma;
unsi gned nRa;

unsi gned nba: 5;
unsi gned nbb: 7;
unsi gned nbc: 6;
doubl e nBa;

} std_struct_id;

In either case, specify the st ruct ur e_t ag, not atypeidentifier, intheal i gn

control:

al i

gn (std_struct=2)

Figure 3-1 shows how the iC-386 compiler allocatesast d_st r uct structure,
assuming the nol ong64 control isin effect.

m8a (Continued)

m8a (Continued)

m8a (Continued)

m8a

XXXXXXXXXXXXXXXXXXX

XXXXXXX

mbb ‘ mba

m2a (Continued)

m2a

mda (Continued)

méa

milb mila
S Iy |

20

18

16

14

12

10

byte O

W-3365

Figure 3-1. Effect of iC-386 align Control on Example Structure Type

4. Thisexample aligns the components of the structure in the previous example on
1-byte (unaligned) boundaries. Use this control in the compiler invocation:

48 Chapter 3

Compiler Controls

General control align | noalign

noal i gn (std_struct)

(Theal i gn (std_struct=1) control achievesthe same alignment.)

iC-386 Compiler User's Guide Chapter 3 49

align | noalign

General control

Figure 3-2 shows how the iC-386 compiler allocatesast d_st r uct structure,
assuming the nol ong64 control isin effect.

m8a (Continued)

m8a (Continued)

m8a (Continued)

m8a (Continued)

m8a XXXXXXXXXXX | mbe

mbc mbb mba

m2a (Continued)

m2a

mda (Continued)

mda

20

18

16

14

12

10

2

byte 0

W-3366

Figure 3-2. Effect of iC-386 noalign Control on Example Structure Type

Cross-references
| ong64 | nol

ong64

obj ect | noobject

translate |

50 Chapter 3

notransl ate

Compiler Controls

General control code | nocode

code | nocode

Generates or suppresses pseudo-assembly language code in a listing.

Syntax
[no] code

#pragnma [no] code

Abbreviation

[no]co

Default

nocode

Discussion

Use the code control to produce a pseudo-assembly language listing equivalent to the
object code that the compiler generates. The compiler places thislisting in the print
file following the source text listing. Usethe nocode control (default) to suppress
the pseudo-assembly language listing.

The code control produces a pseudo-assembly listing even if the noobj ect control
is specified (suppressing the object file) but not if the not r ansl at e control is
specified (suppressing code generation). The nopri nt control causes the compiler
to suppress all of the print file, including the pseudo-assembly listing, even if code is

specified.
Use the code control:

e Toview the effects of different levels of optimization set by the opt i mi ze
control

» To view the difference in code the compiler generates under the nrod486 and
nonpd486 controls (iC-386)

e Toview the differencesin pointer types the compiler generates under the
ext end or noext end controls

* Todetect errors when debugging at the assembly-code |evel
See also: Chapter 5 for more information on the print file

iC-386 Compiler User's Guide Chapter 3 51

code | nocode

General control

Cross-references

52

extend | noextend
nod486 | nonpd486

obj ect | noobject
optimze

print | noprint
translate | notranslate

Chapter 3

Compiler Controls

Primary control codesegment

codesegment

Names the code segment.

Syntax
codesegnent (code_segnent _nane)
#pragma codesegnent (code_segnent _nane)

Where:
code_segnent _nane

is the name of the iC-386 code segment in the object module.
Abbreviation

Cs

Default

TheiC-386 compiler uses CODE32 or the subsystem identifier as specified in the
subsystem definition file.

Discussion

Use theiC-386 codesegment control to name the code segment in the object
module. The code segment name is used by the BND386 binder and BLD386
builder. This name also appearsin output from MAP386.

This control is provided for compatibility with C-386, Intel's previous compiler for
Intel 386 processor code.

|:| Note

Do not use the codesegnent control in an invocation that
specifiesthe subsys control. The compiler issues an error or a
warning, depending on whether the subsys control isfound in the
invocation line or in a#pr agma preprocessor directive,
respectively.

Cross-references

dat asegnent
nodul enanme
subsys

iC-386 Compiler User's Guide Chapter 3 53

compact Primary control

compact

Specifies the compact segmentation memory model.

Syntax
compact

#pragma conpact

Abbreviation
cp

Default
For iRMX applications use conpact . The defaultissmal | .

Discussion

Use the conpact control to specify the compact segmentation model. The compiler
produces an object module containing a code segment, a data segment, and a separate
stack segment. The binder combines the code segments for all modulesinto asingle
code segment in memory and the data segments for all modules into a single data
segment in memory, and reserves a separate segment in memory for the stack. The
compact segmentation model is efficient in both program size and memory access,
and offers the maximum possible space for the stack.

For Intel 386 processors, each segment can occupy up to 4 gigabytes of memory.

The processor addresses the compact model program's code segment relative to the
CSregister, the data segment relative to the DS register, and the stack segment
relative to the SS register. Depending on whether the r omor r amcontrol isin effect,
the compiler places constants in the code segment or data segment, respectively. All
functions have near pointers and calls. All data pointers are far pointers.

See also: ext end| noext end control description in Chapter 3 for more
information about the f ar and near keywords

54 Chapter 3 Compiler Controls

Primary control compact

If not r ansl at e is specified, the compiler does not generate object code and the
memory model control has no effect. If noobj ect is specified, the effect of the
memory model control on the object code can be seen in the print file, although the
compiler does not produce afinal object file.

See also: Segmentation and the conpact memory model in Chapter 4

Cross-references

extend | noextend

obj ect | noobj ect

ram| rom

translate | notranslate

iC-386 Compiler User's Guide Chapter 3 55

cond | nocond General control

cond | nocond

Includes or suppresses uncompiled conditional codein listing.

Syntax

[no] cond

#pragnma [no] cond

Abbreviation

[no] cd

Default

nocond

Discussion

Use the cond control to include in the program listing code not compiled because of
conditional preprocessor directives. Use the nocond control (default) to suppress
listing of code eliminated by conditional compilation.

Regardless of these controls, the conditional preprocessor directives (#i f , #i f def ,
#i f ndef , #el i f, #el se, and#endi f) delimiting the code appear in the source text
listing in the print file.

Thenol i st, notransl at e, and nopri nt controls override the cond control. If
any of theseisin effect, the compiler does not list any source text. The

nol i sti ncl ude control overrides the cond control for include files. Neither cond
nor nocond has any effect on the preprint file.

See also: Preprint and print filesin Chapter 5

Cross-references

56

list | nolist

listinclude | nolistinclude
print | noprint

translate | notranslate

Chapter 3 Compiler Controls

Primary control datasegment

datasegment
Names the data segment.

Syntax
dat asegnent (data_segnent _nane)
#pragnma dat asegnent (data_segnent _nane)

Where:

dat a_segnent _nane
is the name of the iC-386 data segment in the object module.

Abbreviation
ds

Default

TheiC-386 compiler uses DATA or the subsystem identifier as specified in the
subsystem definition file.

Discussion

Use theiC-386 dat asegment control to name the data segment in the object
module. The data segment name is used by the BND386 binder and BL D386 builder.
This name also appears in output from the MAP386 mapper.

This control is provided for compatibility with Intel's previous compiler for the
Intel 386 processor.

|:| Note

Do not use the dat asegnent control in an invocation that
specifiesthe subsys control. The compiler issues an error or a
warning, depending on whether the subsys control isfound in the
invocation line or in a#pr agma preprocessor directive,
respectively.

Cross-references

codesegnent
nodul enanme
subsys

iC-386 Compiler User's Guide Chapter 3 57

debug |nodebug Primary control

debug | nodebug

Includes or suppresses debug information in the object module.

Syntax
[no] debug
#pragma [no] debug

Abbreviation
[no] db

Default

nodebug

Discussion

Use the debug control to place symbolic debug information used by symbolic
debuggers in the object module. Use the nodebug control (default) to suppress
symbolic debug information. Suppressing symbolic debug information reduces the
size of the object module. Debug information is composed of the name, relative
address, and type of every object and function definition, and the relative address of
each source line both in the source file and in the object file.

Thenoobj ect and not r ansl at e controls override the debug and nodebug
controls.

Choose one of these combinations of the debug or nodebug and t ype or not ype
controlsto aid debugging:

type debug to include all debug and type information (debug implies
I i ne). Thiscombination allows both type checking and
symbolic debugging using the Soft-Scope source-level
debugger.

type debug noline
to include debug and type information, but no source line
numbers. This combination enables linker type checking and
symbolic debugging, but not source-level debugging.

58 Chapter 3 Compiler Controls

Primary control debug | nodebug

t ype nodebug to include type definition information for external and public
symbols only. This combination allows type checking by the
binder. Use this combination to reduce the size of the object
module when you are not using a symbolic debugger.

not ype nodebug tosuppressall debug and type information. This combination
reduces the size of the object module by omitting information
not necessary for execution.

Theopt i mi ze control can further reduce the size of the object module. However,
higher levels of optimization reduce the ability of most symbolic debuggersto
accurately correlate debug information to the source code. Thel i ne control puts
source file and object file line-number information in the object file. Thesynbol s
control putsalisting of al identifiers and their typesinto the print file. The xr ef
control puts a cross-reference listing of al identifiers into the print file.

Cross-references

obj ect | noobj ect
optimze

synbol s | nosynbol s
translate | notranslate
type | notype

xref | noxref

iC-386 Compiler User's Guide Chapter 3 59

define

Invocation control

define
Defines a macro.
Syntax
define (name[=body] [,...])
Where:
name is the name of amacro.
body isthetext (i.e., value) of the macro. If the body contains blanks or

punctuation, surround the entire body with quotation marks (*).

Abbreviation

df

Default

If the definition contains no body, the default value of the macroisi.

Discussion

60

Usethe def i ne control to create an object-like macro at invocation time. The body
of an object-like macro contains no formal parameters. A macro so defined in the
compiler invocation isin effect for the entire module, until the #undef preprocessor
directiveremovesit. An attempt to redefine amacro in a#def i ne preprocessor
directive causes an error.

Available memory limits the number of active macro definitions, including macros
defined in the compiler invocation and macros defined with #def i ne in your source
text. Macros are useful when used with conditional compilation preprocessor
directivesto select source text at compiletime. Do not use the def i ne control for
function-like macros; use the #def i ne preprocessor directive in the source text
instead.

Chapter 3 Compiler Controls

Invocation control define

Examples

In this example, using the def i ne control in the invocation determines the result of
conditional compilation. The invocation contains the control:

define (SYS)
The source text contains the lines;

#if SYS

#defi ne PATHLENGTH 128
#el se

#defi ne PATHLENGTH 45
#endi f

The value of the symbol SYS defaultsto 1. PATHLENGTH gets the value 128.

iC-386 Compiler User's Guide Chapter 3 61

diagnostic Primary control

diagnostic
Specifies the level of diagnostic messages.

Syntax

di agnostic (level)

#pragma di agnostic (level)

Where:

| evel isthevalue0, 1, or 2. The values correspond to all diagnostic

messages, no remarks, and only errors, respectively.

Abbreviation

dn

Default
diagnostic level 1

Discussion

Usethedi agnost i ¢ control to specify the level of diagnostic messages that the
compiler produces. A remark points out a questionable construct, such asusing an
undeclared function name. A warning points out an erroneous construct, such asa
pointer type mismatch. An error points out a construct that is not part of the C
language, such as a syntax error.

Use the different levels of the di agnost i ¢ control:
di agnostic (0) forthe compiler toissue all remarks, warnings, and errors

di agnostic (1) (thedefault) for the compiler to issue warnings and errors but
no remarks

di agnostic (2) for the compiler to issue only error messages

62 Chapter 3 Compiler Controls

Primary control

diagnostic

The compiler's exit statusis equal to the highest level of diagnhostic reported. For
example, if the diagnostic level is 2, the compiler's exit statusis O if the program

contains no errors but could contain remarks or warnings. At level 2, the compiler's
exit statusis non-0 only if the program contains errors, as shown in Table 3-2.

Table 3-2. Compiler Exit Status

Diagnostic
Level Fatal Errors Errors Warnings Remarks Exit Status
2 no no not used not used zero
no yes not used not used nonzero
yes yes or no not used not used nonzero
1 (default) no no no not used zero
no no yes not used nonzero
no yes yes or no not used nonzero
yes yes or no yes or no not used nonzero
0 no no no no zero
no no no yes nonzero
no no yes yes or no nonzero
no yes yes or no yes or no nonzero
yes yes or no yes or no yes or no nonzero

Thenot r ansl at e control causes preprocessing diagnostics to appear at the console.

Thenopri nt control causes the compiler to display all diagnostic messages at the

console.

Cross-references

print | noprint
translate | notranslate

iC-386 Compiler User's Guide

Chapter 3

63

eject General control

eject

Causes form feed.

Syntax
ej ect

#pragma ej ect

Abbreviation

ej

Discussion

Usetheej ect control to cause aform feed in the print file at the point where the
control is specified. If you specify theej ect control on the invocation line, the form
feed occurs before the text of any source fileislisted.

Thenoprint and not r ansl at e controls suppress the print file, causing the ej ect
control to have no effect.

Thepagel engt h, pagew dt h, t abwi dt h, andti t | e controls also affect the
format of the print file.

See also: Chapter 5 for a description of the print file
Theej ect control isageneral control. Useit as often as you like in the compiler
invocation or in#pr agma preprocessor directives.

Cross-references

pagel engt h
pagew dt h
tabwi dt h
title

64 Chapter 3 Compiler Controls

General control extend | noextend

extend | noextend

Recognizes or suppresses Intel C extensions.

Syntax
[no] ext end

#pragma [no] ext end

Abbreviation

[no] ex

Default

noext end

Discussion

Use the ext end control to enable the compiler to recognize the non-ANSI al i en,
far, and near keywordsin the source text, and to allow the dollar sign ($) tobea
non-significant character in identifiersin the source text. Use the noext end control
(default) to suppress recognition of Intel's extensions. These extensions allow
compatibility with earlier versions of Intel C.

See also: fi xedpar ans and var par ans control descriptionsin Chapter 3 for
information on calling convention compatibility with earlier versions of
Intel C;
alien, far andnear keywordsin Chapter 10

Cross-references

fi xedpar ans
ram| rom
var par ans

iC-386 Compiler User's Guide Chapter 3 65

fixedparams General control

fixedparams

Specifies fixed parameter list calling convention.

Syntax
fixedparans [(function [,...])]
#pragma fixedparanms [(function [,...])]
Where:

function isthename of afunction defined in the source text. Function-name
arguments are case-significant.

Abbreviation

fp

Default

Of the two calling convention specifications (f i xedpar ans and var par ans), the
default isfi xedpar ans. If you specify thef i xedpar ams control but do not supply
afuncti on argument, thefi xedpar ans control appliesto all functionsin the
subsequent source text.

Discussion

66

Usethefi xedpar ans control (default) to require the specified functions to use the
fixed parameter list (FPL) calling convention. Most of Intel's non-C compilers
generate object code for function calls using the FPL calling convention. Some
earlier versions of Intel C use the variable parameter list (VPL) calling convention.

A function's calling convention dictates the sequence of instructions that the compiler
generates to manipulate the stack and registers during acall to afunction. The FPL
calling convention is:

1. Thecalling function pushes the arguments onto the stack with the leftmost
argument pushed first before control transfersto the called function.

2. The called function removes the arguments from the stack before returning to the
calling function.

The FPL calling convention uses fewer instructions and therefore occupies less space
in memory and executes more quickly than the VPL calling convention.

Chapter 3 Compiler Controls

General control fixedparams

A calling convention specified without an argument in the compiler invocation
affects functions throughout the entire module. 1f afunction usesacalling
convention other than the one in effect for the compilation, specify the calling
convention before declaring the function.

If FPL isin effect globally, you can use an ellipsisin a prototype or declaration to
declare a VPL function, or use the var par ans control. If VPL isin effect globally,
you must use thef i xedpar ans control in a#pr agma preprocessor directive to
declare an FPL function.

If not r ansl at e is specified, the compiler does not generate object code and the
calling convention control has no effect. If noobj ect is specified, the effect of the
calling convention control on the object code can be seen in the print file, although
the compiler does not produce afinal object file.

|:| Note

An error occursif afunction in the source text explicitly declaresa
variable parameter list and also is named in the f unct i on list for
thefi xedpar anms control. Inthisexample, the ellipsisin the

f vpr s function prototype indicates a VVPL convention for this
function. Specifying thef i xedpar ans (fvprs) control in this
case causes a compilation error:

#i ncl ude <stdarg. h>
fvprs (int a, ...);

See also: FPL and VPL calling conventions in Chapter 8,
ext end| noext end control description for other information on code
compatibility with previous versions of Intel C,
var par ans control description for information on the variable
parameter list calling convention

iC-386 Compiler User's Guide Chapter 3 67

fixedparams General control

Examples

1

2.

This combination of controls specifies the variable parameter list convention
(VPL) for al functions in the source file except those in the argument list. Use
the controls on the invocation line as follows:

var par ans fixedparans (argument_|ist)
Or use the controlsin #pr agma preprocessor directives:

#pragma var par ans
#pragma fixedparans (argunent _|ist)

This control specifies the fixed parameter list convention (FPL) for all functions
in the source file except those in the argument list. Usethe var par ans control
on the invocation line to override the default for the functions in the argument
list:

var parans (argunent _|ist)
Or usethe var par ans control in a#pr agna preprocessor directive:

#pragma varparans (argument _|ist)

Cross-references

extend | noextend

obj ect | noobj ect
translate | notranslate
var par ans

68

Chapter 3 Compiler Controls

Invocation control include

include

Inserts text from specified file.

Syntax
include (filenanme [,...])
Where:

filename isthefile specification (including adirectory name or pathname, if
necessary) to be included and compiled before the primary sourcefile.
You do not haveto enclose af i | enane in quotation marks, even if it
contains a pathname.

Abbreviation

ic

Discussion

Usethei ncl ude control to insert and compile text from files other than the primary
sourcefile. Thesefilesare called include files. The compiler processes include files
in the order specified inthef i | enane list before processing the primary sourcefile.

Usethel i sti ncl ude control to list the contents of the include filesin the source
code listing inthe print file. Usethe sear chi ncl ude control to specify a search
path for include files. Usethe prepri nt control and the not r ansl at e control
together to view the resulting order and names of include files without compilation.

Filesincluded by thei ncl ude control on the invocation line are within the scope of
all macros defined by the def i ne control on the invocation line, regardless of the
order of the controls. Filesincluded by thei ncl ude control on the invocation line
precede the scope of macros defined by the #def i ne preprocessor directive in the
primary sourcefile. If morethan onei ncl ude control occurs in the invocation, the
compiler includes filesin the order specified in the invocation line.

The maximum number of filenamesin an instance of thei ncl ude control is19. The
maximum number of files open simultaneously during compilation is system-
dependent. The maximum nesting level of include filesis 10, unlessthe pr epri nt
control isin effect, in which case the maximum nesting level is 7.

iC-386 Compiler User's Guide Chapter 3 69

include Invocation control

TheiC-386 compiler on DOS has two added facilities for searching for files. The
compiler maps dlashes (/) in filenames to backslashes (\). When a pathname begins
with an environment variable, the compiler uses the value of the environment
variable as the directory path prefix and applies the mappings to al filenames
including prefixes specified with the sear chi ncl ude control.

See also: Example of using thei ncl ude control on DOS in Chapter 3, Chapter 5
for adescription of the print file
Cross-references

l'istinclude
preprint | nopreprint
sear chi ncl ude

70 Chapter 3 Compiler Controls

General control interrupt

interrupt
Specifies afunction to be an interrupt handler.
Syntax
#pragma i nterrupt (function [,...])
Where:

function isthename of afunction defined in the source text.

Abbreviation

in

Discussion

Usethei nt er rupt control to specify afunction in the source text to handle some
condition signaled by an interrupt. An interrupt-handler function must be of type

voi d and can neither take arguments nor return avalue. Theinterrupt designation
must precede the function definition. Thei nt er r upt control causes the compiler to
generate prolog and epilog code to save and restore registers and return from the
interrupt.

Usetherq_set_interrupt iRMX system call to associate an interrupt function with
an interrupt number. Therq_set_interrupt call puts the address of the function into
the Interrupt Descriptor Table (IDT) for you; do not manipulate this table directly
from your code.

Thenot r ansl at e control overridesthei nt er r upt control. The noobj ect
control overridesthei nt er r upt control except for its effect on the print file.

See also: i nterrupt control description, in Chapter 3 of this manual
Interrupts, and rq_set_interrupt, System Call Reference
Cross-references

obj ect | noobject
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 71

line | noline Primary control

line | noline

Generates or suppresses source line number debug information.

Syntax
[no]line

#pragma [no]line

Abbreviation

[no]ln

Default
line when the debug control isin effect

nol i ne when the nodebug control isin effect

Discussion

Usethel i ne control (default) to generate source line number information in the
object file. Usethenol i ne control to suppress this information, reducing the object
file size by as much as 80%. Source line number information is useful when using a
symbolic debugger for source-level debugging.

The nodebug control, the noobj ect control, and the not r ansl| at e control override
thel i ne control.

Cross-references

cond | nocond

i stexpand | noli stexpand
listinclude | nolistinclude
pagel ength

pagew dt h

print| noprint

tabwi dt h

title

translate | notranslate

72 Chapter 3 Compiler Controls

General control list | nolist

list | nolist
Specifies source text listing in the print file.

Syntax
[no]list

#pragma [no]li st

Abbreviation

[no]li

Default

list

Discussion

Usethel i st control (default) to generate alisting of the source text. The compiler
places the source listing in the print file. Usethenol i st control to suppress the
source listing.

Thenoprint and not r ansl at e controls suppress the entire print file, evenif | i st
isspecified. Thenol i st control overrides the cond control and thel i st expand
and| i stincl ude controls.

Several other controls affect the contents of the listing:

» Thecode control causes pseudo-assembly code to appear after the source listing.
* Thecond control causes uncompiled conditional code to appear in the listing.

e Thel i stexpand control causes macros to be expanded in the listing.

e Thelistincl ude control causes text from include files to appear in the listing.

Theej ect, pagewi dt h, pagel engt h, t abwi dt h,andti t| e controls affect the
format of the print file.

See also: Chapter 5 for a description of the print file

iC-386 Compiler User's Guide Chapter 3 73

list | nolist

General control

Cross-references

74

cond | nocond

ej ect

i stexpand | nolistexpand
listinclude | nolistinclude
pagel engt h

pagew dt h

print | noprint

tabwi dt h

title

translate | notranslate

Chapter 3

Compiler Controls

General control listexpand | nolistexpand

listexpand | nolistexpand

Includes or suppresses macro expansion in listing.

Syntax
[no]listexpand

#pragma [no]li stexpand

Abbreviation

[no]le

Default

nol i st expand

Discussion

Usethel i st expand control to show the results of macro expansion in the source
text listing in the print file. Usethenol i st expand control (default) to suppress the
results of macro expansion. Neither control has any effect on the preprint file.

The compiler marks the macro expansion lines in the listing with a plus (+) in the
line-number column. Macro expansions appear only in the listing for compiled code.
If the preprocessor suppresses compilation of conditional code, the listing does not
include the expansion of any macro invocations in the suppressed code.

Use the cond control to list uncompiled conditional code.

Thenol i st, notransl at e, and nopri nt controlsoverridethel i st expand
control. If any of theseisin effect, the compiler does not list any source text. The
nol i sti ncl ude control overridesthel i st expand control for include files.

See also: Chapter 5 for a description of the print file

Cross-references

cond | nocond

list | nolist

listinclude | nolistinclude
print | noprint

translate | notranslate

iC-386 Compiler User's Guide Chapter 3 75

listinclude | nolistinclude General control

listinclude | nolistinclude

Includes or suppresses text from include filesin listing.

Syntax
[no]listinclude

#pragma [no]listinclude

Abbreviation

[no]lc

Default

nol i stincl ude

Discussion

Usethel i sti ncl ude control to list the text of include filesin the source text listing
inthe print file. Usethenol i stincl ude control (default) to suppress the listing of
include files. Neither control has any effect on the preprint file.

The compiler lists filesincluded with thei ncl ude control before the first line of
source listing. The compiler adds the text of filesincluded with the #i ncl ude
preprocessor directive after the line with the #i ncl ude directive. The compiler lists
include filesin the order they are specified.

Thenol i st, notransl at e, and nopri nt controlsoverridethel i sti ncl ude
control.

When thenol i sti ncl ude control isin effect, diagnostic messages for include files
appear in the print file:

» For filesincluded with thei ncl ude control, diagnostic messages precede the
first line of source text.

» For filesincluded with the #i ncl ude preprocessor directive, diagnostic
messages appear on the linesimmediately after the #i ncl ude directive.

The compiler lists diagnostic messages in the order in which the associated
conditions occur. Usethedi agnost i ¢ control to specify the level of messages the
compiler issues.

See also: Chapter 5 for a description of the print file

76 Chapter 3 Compiler Controls

General control listinclude | nolistinclude

Cross-references

di agnostic

i ncl ude

list | nolist

print | noprint
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 77

long64 | nolong64 Primary control

long64 | nolong64

Specifies the size of long objects.

Syntax
[no]l ong64
#pragma [no]l ong64

Abbreviation
[no]l 64

Default

For iRMX applications, use the default nol ong64 unless you are using iRMK calls
that require| ong64.

Discussion

Thenol ong64 control (default) specifies that objects declared with the | ong type
qualifier are 32 bitsin length.

The | ong64 control specifies that objects declared as | ong are 64 bitsin length.
For compatibility, change any | ongs that need to stay 32 bitsto| ong32. Header
files are independent and not affected by the | ong64 control.

Thel ong64 compiler switch may be used with C modules that make iRMK system
calls. Under certain circumstances, however, the compiler may hang when compiling
programswith | ong64 set. C library and POSIX functions do not support | ong64.

If not r ansl at e is specified, the compiler does not generate object code and the

| ong64 and nol ong64 controls have no effect. If noobj ect is specified, the effect
of thel ong64 and nol ong64 controls on the object code can be seen in the print
file, although the compiler does not produce afinal object file.

See also: iC-386 data typesin Chapter 10

Cross-references

obj ect | noobj ect
translate | notranslate

78 Chapter 3 Compiler Controls

Primary control mod486 | nomod486

mod486 | nomod486

Generates Intel 486 processor code or Intel 386 processor code.

Syntax
[no] nrod486

#pragma [no] nod486

Abbreviation

(none)

Default
nonod486

Discussion

Use the iC-386 npd486 control to cause the compiler to generate code for the
Intel486 processor. This codeis particularly suited for fast execution on Intel486
processor-based systems. The code includes code alignment for the CALL
instruction, and different instruction sequences to take advantage of the on-chip
cache. Usethe nonpd486 control (default) to cause the compiler to generate code
for the Intel 386 processor, which also executes on the Intel486 processor.

If not r ansl at e is specified, the compiler does not generate object code and the
instruction set control has no effect. If noobj ect is specified, the effect of the
instruction set control on the object code can be seen in the print file, although the
compiler does not produce afinal object file.

|:| Note

An object module compiled with the mod486 control can execute
on an Intel 386 processor, but may execute more slowly than if
compiled with the nonod486 contral.

Do not execute a nod486-compiled object module that contains
Intel486 processor built-in functions on an Intel 386 processor. The
behavior of such code on an Intel386 processor is unpredictable.

iC-386 Compiler User's Guide Chapter 3

79

mod486 | nomod486 Primary control

Cross-references

obj ect | noobject
translate | notranslate

80 Chapter 3 Compiler Controls

Primary control modulename

modulename
Names the object module.

Syntax
nodul enane (nane)
#pragma nodul enane (nane)
Where:

nane is the name of the abject module (not the abject file).

Abbreviation

m

Default

The compiler uses the source filename without its extension. For example, the
compiler names the object module mai n for the source file mai n. c.

Discussion
Use the nodul enane control to name the object module.

The object module name is used by the binder, and builder. BND386 can rename
object modules. The object module name also appearsin the print file.

Thenot r ansl at e control overrides the nodul ename control. The noobj ect
control overrides the nodul enane control except for its effect on the print file.

|:| Note

A #pr agnma preprocessor directive specifying the nodul enanme
control must precede any #pr agma directives that specify the
subsys control.

Cross-references

obj ect | noobject
translate | notranslate

iC-386 Compiler User's Guide Chapter 3

81

object | noobject Primary control

object | noobject

Generates and names or suppresses object file.

Syntax

object [(filenane)]
noobj ect

#pragma object [(fil enanme)]
#pragnma noobj ect
Where:

filename isthefile specification (including adirectory name or pathname, if
necessary) in which the compiler places the object code.

Abbreviation

[no] oj

Default
obj ect

By default, the compiler places the object file in the directory containing the source
file. The compiler composes the default object filename from the source filename, as
follows:

sour cenane. obj

Where:

sour cenane
isthe filename of the primary source file without its file extension.

For example, by default the compiler creates an object file named nai n. obj for the
source file mai n. c.

82 Chapter 3 Compiler Controls

Primary control object | noobject

Discussion

Usethe obj ect control to specify a non-default name or directory for the object file.
Use the noobj ect control to suppress creation of an object file.

Thenot r ansl at e control suppresses all trandation of source code to object code
and suppresses creation of the object file and the print file. The noobj ect control
does not suppress trandation, and the compiler can produce a print file. The
noobj ect control overrides other object file controls except for their effect on the
print file.

To place a pseudo-assembly language version of the object code in the print file, use
the code control.

Cross-references

code | nocode
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 83

optimize Primary control

optimize
Specifies the level of optimization.

Syntax
(level)
#pragma optimze (level)
Where:

| evel is0, 1,2, or 3. The values correspond to the levels of optimization,
with 0 being the lowest level (least optimization) and 3 being the
highest level (most optimization).

Abbreviation

ot

Default

optimization level 1

Discussion

Usetheopt i mi ze control to improve the space usage and execution efficiency of a
program. Uselevel 0 when debugging to ensure the closest match between aline of
source text and the generated object code for that line. Each optimization level
performs all the optimizations of al lower levels.

Theopt i mi ze control isaprimary control. Useit in the compiler invocation or in a
#pr agnma preprocessor directive. A primary control in a#pr agma preprocessor
directive must precede the first line of data definition or executable source text. A
primary control in the invocation overrides any contradictory control in a#pr agma
preprocessor directive.

See also: conpact , debug| nodebug, | i ne| nol i ne, andt ype| not ype
control descriptions for other ways to optimize code size
Folding of Constant Expressions at All Levels

The compiler recognizes operations involving constant operands and removes or
combines them to save memory space or execution time. Addition with O,
multiplication by 1, and operations on two or more constants fall into this category.
For example, the expression a+2+3 becomes a+5.

84 Chapter 3 Compiler Controls

Primary control optimize

Reducing Operator Strength at All Levels

The compiler substitutes quick operations for longer ones, such as shifting left by 1
instead of multiplying by 2. The substituted instruction requires less space and
executes faster. The addition of identical subexpressions can also generate |eft shift
instructions.

Eliminating Common Subexpressions at Levels 1, 2, and 3

If an expression reappears in the same block of source text, the compiler generates
object code to reuse rather than recompute the value of the expression. It generates
code to save intermediate results during expression evaluation in registers and on the
stack for later use. The compiler also recognizes commutative forms of
subexpressions. For example, in this block of code the compiler generates code to
compute the value of c*d/ 3 for the first expression and to save and retrieve it for the
second expression:

a=>b+ c*d/3;
c = e + d*c/3;

Optimizing the Machine Code of Short Jumps and Moves at Levels 2 and 3
The compiler saves space in the abject code by using shorter forms for identical
machine instructions.

Eliminating Superfluous Branches at Levels 2 and 3

The compiler combines consecutive or multiple branches into a single branch.

Reusing Duplicate Code at Levels 2 and 3

Duplicate code can be identical code at the ends of two converging paths, or it can be
machine instructions immediately preceding aloop identical to those ending the loop.
In the first case, the compiler inserts code on only one path and inserts ajump to that
path in the other path. In the second case, the compiler generates a branch to reuse
the code generated at the beginning of the loop.

Removing Unreachable Code at Levels 2 and 3

The compiler eliminates code that can never be executed. The optimization that
removes the unreachable code takes a second pass through the generated object code
and finds areas that can never be reached due to the control structures created in the
first pass.

iC-386 Compiler User's Guide Chapter 3 85

optimize Primary control

Reversing Branch Conditions at Levels 2 and 3

The compiler optimizes the evaluation of Boolean expressions, so only the shorter of
two mutually exclusive conditionsis evaluated. For example, thisi f statement on
the left has the execution order of its branches reversed:

if (la) if (a)
{ {

/* (block 1) */ /* (block 2) */
} /* becones */ }
el se el se
{ {

/* (block 2) */ /* (block 1) */

} }

Optimizing Indeterminate Storage Operations at Level 3

The indeterminate storage operations involve pointer indirection. When code assigns
apointer to refer to avariable, it creates an aias for that variable. A variable
referenced by a pointer has two aliases: the pointer and the name of the variable
itself. Use optimization level 3 when the compiler need not insert code to guard
against aliasing.

The compiler performsthislevel 3 optimization as follows:

» When the code assigns an expression to a variable, the compiler generates code
to evaluate the expression and assign the result to the variable. The result also
remains in the register used in evaluating the expression.

* When the code subsequently uses the same alias to access the variable, the
compiler does not generate code to access the variable; instead it inserts a
reference to the register.

e The compiler refers to the same register each time the code uses the alias. Run-
time performance isimproved because accessing the register executes faster than
accessing the variable in memory.

86 Chapter 3 Compiler Controls

Primary control

optimize

This optimization can introduce errors when the code uses multiply-aliased variables.

The compiler does not insert code to check for intermediate referencesto avariable
using adifferent alias. If the code modifies avariable using adifferent dias, the

value in the variable is not necessarily the same as the value in the register referenced
by the compiler. For example, in this code under optimization level 3,y erroneousy
acquiresthe value 1 instead of 2. If the optimization level islessthan 3, the compiler

codes the assignment correctly:

int x,vy;
int *a = &;
X = 1;
*a = 2;

y =X

/*
/*
/*
/*

*a is aliasing x
put a value in x
X now has val ue 2
trouble at |evel

3!

*/
*/
*/
*/

Using the Numeric Coprocessor for Floating-point-to-integer Conversions at

Level 3

Unsafe conversions of floating-point types to integral types can occur at optimization
level 3. The 1989 ANSI C standard specifies that these conversions must use
truncation. At optimization level 3, the numeric coprocessor controls the method

used in rounding. After RESET, the rounding mode of the numeric coprocessor is
round-to-nearest. Therefore, at optimization level 3, the conversion of floating-point

typesto integral types usually uses rounding, contrary to the standard. At lower
optimization levels, these conversions use truncation, which is according to the

standard.

Cross-references

code | nocode
conpact
debug | nodebug

type | notype

iC-386 Compiler User's Guide

Chapter 3

87

pagelength Primary control

pagelength
Specifies lines per page in the print file.
Syntax

pagel ength control (lines)

#pragma pagel ength (lines)

Where:
l'i nes isthe length of apageinlines. Thisvalue canrange from 10 to
32767.
Abbreviation
pl
Default
60 lines per page
Discussion

Use the pagel engt h control to specify the maximum number of lines printed on a
page of the print file before aform feed is printed. The number of lines on a page
includes the page headings.

Thenopri nt and not r ansl at e controls suppress the print file, causing the
pagel engt h control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

ej ect

print | noprint

title

translate | notranslate

88 Chapter 3 Compiler Controls

Primary control pagewidth

pagewidth
Specifies line length in the print file.

Syntax
pagew dt h control (chars)
#pragma pagew dth (chars)
Where:
chars isthe line length in number of characters. Thisvalue rangesfrom 72
through 132.
Abbreviation

pw

Default

120 characters

Discussion

Use the pagewi dt h control to specify the maximum length, in characters, of linesin
the print file.

Thenoprint and not r ansl at e controls suppress the print file, causing the
pagew dt h control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

pagel ength

print | noprint

tabwi dt h

translate | notranslate

iC-386 Compiler User's Guide Chapter 3 89

preprint | nopreprint Invocation control

preprint | nopreprint

Generates or suppresses a preprocessed source text listing file.

Syntax
preprint [(filenane)]
nopr epri nt
Where:

filename isthefile specification (including adirectory name or pathname, if
necessary) in which the compiler places the preprint information.

Abbreviation
[no] pp

Default

nopr epri nt
when thet r ansl at e control isin effect.

preprint whenthenotransl at e control isin effect.

By default, the compiler placesthe in the directory containing the source file. The
compiler composes the default preprint filename from the source filename as follows:

sourcenane. i

Where:

sour cenane
isthe filename of the primary source file without its file extension.

For example, by default the compiler creates a preprint file named prot 0. i for the
sourcefileproto. c.

Discussion

Usetheprepri nt control to create afile containing the text of the source after .
Usethenopr epri nt control (default) to suppress creation of a preprint file.
Preprocessing includes file inclusion, macro expansion, and elimination of
conditional code. The preprint file is the intermediate source text after preprocessing
and before compilation.

The preprint fileis especially useful for observing the results of macro expansion,
conditional compilation, and the order of include files. If the preprint file contains no

0 Chapter 3 Compiler Controls

Invocation control preprint | nopreprint

errors, compiling the preprint file produces the same results as compiling the and any
filesincluded in the compiler invocation.

Thepreprint control creates afile different from the print file. Theej ect,
pagel engt h, pagewi dt h, t abwi dt h, andti t | e controls have no effect on the
preprint file.

When the pr epri nt control isin effect, the maximum nesting level of include files
is7.

See also: Chapter 5 for a description of the print and preprint files

Cross-reference

print | noprint

iC-386 Compiler User's Guide Chapter 3 i

print | noprint Primary control

print | noprint

Generates or suppresses the print file.

Syntax

print [(filenane)]
nopri nt

#pragma print (filenane)
#pragnma nopri nt
Where:

filename isthefile specification (including adirectory name or pathname, if
necessary) in which the compiler places the print information.

Abbreviation
pr

Default
print

By default the compiler places the print file in the directory containing the source
file. The compiler composes the default print filename from the source filename, as
follows:

sour cenane. | st

Where:

sour cenane
isthe filename of the primary source file without its file extension.

For example, the compiler creates a print file named mai n. | st for the sourcefile
mai n. c.

Discussion

Usethepri nt control to produce atext file of information about the source and
object code. Usethe nopri nt control to suppressthe print file. Thenopri nt
control causes the compiler to display diagnostic messages only at the console.

92 Chapter 3 Compiler Controls

Primary control print | noprint

Thenopri nt control overrides all other listing controls except the pr epri nt
control. Thenotransl at e control overridesthe pri nt control. The nopri nt
control causes diagnostic messages to appear at the console.

Thepri nt control creates aprint file different from the preprint file.

Thel i st expand| nol i st expand and | i sti ncl ude| nol i sti ncl ude qualifiers
and the code| nocode, cond| nocond, di agnostic,list]|nolist,

I i st expand| nol i stexpand, i stinclude| nolistinclude,

synbol s| nosynbol s, and xr ef | noxr ef controls affect the contents of the print
file. Thepagewi dt h, pagel engt h, t abwi dt h, andti t| e controls affect the
format of the print file.

See also: Chapter 5 for a description of the print file

Cross-references

code | nocode

cond | nocond

di agnostic

ej ect

list | nolist

i stexpand | noli stexpand
listinclude | nolistinclude
pagel engt h

pagew dt h

preprint | nopreprint
synbol s | nosynbol s

tabwi dt h

title

translate | notranslate
xref | noxref

iC-386 Compiler User's Guide Chapter 3 93

ram | rom Primary control

ram | rom

Specifies the placement of constants in the object module.

Syntax

ram control
rom control

#pragma ram

#pragma rom

Abbreviation

(none)

Default

ram

Discussion

94

Use ther amcontrol (default) to place constants in the data segment in memory.
When ther amcontrol isin effect, the compiler initializes to zero all static variables
not explicitly initialized in the source text.

Use the r omcontrol to place constants in the code segment in memory. When the
r omcontrol isin effect, the compiler does not initialize any static variables not
explicitly initialized in the source text. Also, the compiler produces warning
messages for al static variables the code explicitly initializes.

Constants can be defined in the code or defined by the compiler. Constants include
the values of string literals, floating-point literals, and static variables declared with
theconst attribute specifier.

Ther omor r amcontrol does affect the value of the _ROM_ predefined macro.
See also: Predefined macrosin Chapter 5

The conpact control determines the segmentation model for the object code. The
segmentation model determines how many code and data segments are present in the
object code.

Thenot r ansl at e control overridesthe r amand r omcontrols. The noobj ect
control overrides the r amand r omcontrols except for their effect on the print file.

See also: Segmentation in Chapter 4

Chapter 3 Compiler Controls

Primary control

ram | rom

Cross-references

conpact
obj ect | noobject
translate | notranslate

iC-386 Compiler User's Guide

Chapter 3

95

searchinclude | nosearchinclude General control

searchinclude | nosearchinclude

Specifies search paths for include files.

Syntax

searchinclude (pathprefix [,...])
nosear chi ncl ude

#pragnma searchinclude (pathprefix [,...])
#pragma nosear chi ncl ude

Where:

pat hprefi x
isastring of characters that the compiler prepends to the filename
argument of an instance of thei ncl ude or subsys control, or to the
file argument of an #i ncl ude preprocessor directive. If the path prefix
contains special characters such as the slash (/), enclose the
pat hpr ef i x in quotation marks ().

Abbreviation

[no] si

Default

96

nosear chi ncl ude

The three default path prefixes are derived from the directory containing the primary
sourcefile, the: i ncl ude: logical name from the iRMX OS, or the: i ncl ude:
environment variable from DOS, and the null prefix (current directory). The
compiler always uses the path prefix inthe : i ncl ude: logical name from the iIRM X
OSor the: i ncl ude: environment variable from DOS after the list specified by the
sear chi ncl ude control.

The: i ncl ude: logical nameis/intel/gen/inc oniRMX systems. The submit
fileis/intel / gen/inc/ bi nd. csd. Attachthelibrary as: i ncl ude: explicitly
using the iRM X attachfile command.

Chapter 3 Compiler Controls

General control searchinclude | nosearchinclude

Discussion

Usethe sear chi ncl ude control to specify alist of possible path prefixes for
include files. Usethenosear chi ncl ude control (default) to limit the compiler to
the three default search path prefixes. Each pat hpr ef i x argument isastring that,
when concatenated to afilename, specifies the relative or absolute path of afile
(including a device name and directory name, if necessary). The compiler tries each
prefix in the order in which they are specified, until alegal filenameisfound. If a
legal filename is not found, the compiler issues an error.

The DOS: i ncl ude: environment variable can specify a path prefix to the name of
adirectory containing include files.

Include files are files specified with the i ncl ude control or the subsys control in
the compiler invocation or with the #i ncl ude preprocessor directive in the source
text.

When the compiler searches for afile specified in thei ncl ude control, or when it
searches for a source file specified in an #i ncl ude preprocessor directive, the
compiler tests the prefixesin this order:

1. Thesource directory prefix
2. Thedirectories specified by the sear chi ncl ude list

3. Thedirectory or directories specified by the: i ncl ude: logical name for the
iRMX OS or environment variable for DOS, if defined

4. Thenull prefix, that is, the current directory

TheiC-386 compiler on DOS has two added facilities for searching for files. The
compiler maps dlashes (/) in filenames to backslashes (\). When a pathname begins
with an environment variable, the compiler uses the value of the environment
variable as the directory path prefix and applies the mappings to al filenames
including prefixes specified with the sear chi ncl ude control.

Cross-references

i ncl ude
subsys

iC-386 Compiler User's Guide Chapter 3 97

signedchar | nosignedchar Primary control

signedchar | nosignedchar

Sign-extends or zero-extends char objects when promoted.

Syntax
[no] si gnedchar

#pragma [no] si gnedchar

Abbreviation

[no] sc

Default

si gnedchar

Discussion

Usethesi gnedchar control (default) to specify that objects declared to be the char
datatype are treated asif they were declared asthe si gned char datatype. The
compiler sign-extends these objects when they are converted to a data type that
occupies more memory.

Use the nosi gnedchar control to specify that objects declared asthe char datatype
aretreated asif they were declared asthe unsi gned char datatype. The compiler
zero-extends these objects when they are converted to a data type that occupies more
memory.

If not r ansl at e is specified, the compiler does not generate object code and the

si gnedchar and nosi gnedchar controls have no effect. If noobj ect is specified,
the effect of the si gnedchar and nosi gnedchar controls on the object code can be
seen in the print file, although the compiler does not produce a final object file.

Thesi gnedchar control does not affect the interpretation of objects specifically
declared as either si gned char or unsi gned char datatypes.
Cross-references

obj ect | noobj ect
translate | notranslate

98 Chapter 3 Compiler Controls

Primary control srclines | nosrclines

srclines | nosrclines

Generates or suppresses debug information (iC-386 only).

Syntax
[no]srclines

#pragma [no]srclines
Abbreviation
[no] sl

Default
srclines when the debug and line controls are in effect

nosrclines when the nodebug or noline control isin effect

Discussion

UsetheiC-386 sr cl i nes control (default) to cause the compiler to add source file
name and source line offset information to the abject file. Usethenosr cl i nes
control to suppress this information, reducing the object file size by as much as 80%.
This source file name and offset information is used by some symbolic debuggers for
source-level debugging. Other debuggers, such as Soft-Scope |11, do not require this
information.

This control also modifies the amount of object code line offset information
generated by thel i ne control. Whensr cl i nes isin effect, object code offset
information is generated for every linein the source file (and include files), beginning
with the first line of the source file. When nosr cl i nes isin effect, the compiler
starts emitting object code offset information only when the first executable
statement is encountered; non-executabl e statements preceding the first executable
statement, such as the definitions and declarations typically contained in header files,
do not cause object code offsets to be emitted.

Thenol i ne control, the nodebug control, the noobj ect control, and the
not r ansl at e control overridethesrcl i nes control.

Cross-references

debug | nodebug

line | noline

obj ect | noobject
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 99

subsys Primary control

subsys
Reads a subsystem specification.
Syntax
subsys (filename [,...])
#pragma subsys (filenane [,...])
Where:

filename isthefile specification (including a device name and directory name or
pathname, if necessary) in which the compiler finds the subsystem
definition.

Abbreviation

(none)

Default

(none)

Discussion

Use the subsys control to cause the compiler to read one or more files for subsystem
definitions. The compiler searches for the named files the same way that it searches
for source files surrounded by quotation marksin the #i ncl ude preprocessor
directive.

See also: sear chi ncl ude control description for the search method,
defining subsystemsin Chapter 9

The compiler preserves case distinction in identifiersin expor t s lists. The compiler
alwaysignores dollar signs ($) in identifiers, even if the ext end control isnot in
effect. The compiler ignoresvalid PL/M controls unrelated to segmentation, such as
$!1 Fand $1 NCLUDE. The compiler ignores lines whose first character is not a dollar
sign ($).

A subsystem can export only function and variable names with file scope. The
compiler implicitly modifies declarations of exported symbols, if necessary, by
inserting the f ar keyword in the appropriate place. The modifications occur even if
the ext end control is not in effect.

100 Chapter 3 Compiler Controls

Primary control subsys

If not r ansl at e is specified, the compiler does not generate object code and the
subsys control has no effect. If noobj ect is specified, the effect of the subsys
control on the object code can be seen in the print file, although the compiler does not
produce afinal object file.

|:| Notes
A #pr agnma preprocessor directive specifying the nodul enanme
control must precede any #pr agma directives that specify the
subsys control.

Do not use the codesegnent or dat asegnent controlsin an
invocation that specifiesthe subsys control. The compiler issues
an error or awarning message, depending on whether the subsys
control isfound in theinvocation line or in a#pr agma
preprocessor directive.

See also: Subsystemsin Chapter 9, ext end| noext end control in Chapter 3,
segmentation memory models and the f ar keyword in Chapter 4

Cross-references

codesegment

dat asegment

extend | noextend

nodul ename

obj ect | noobject

searchi ncl ude | nosearchincl ude
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 101

symbols | nosymbols Primary control

symbols | nosymbols

Generates or suppresses identifier list in print file.

Syntax
[no] synbol s
#pragma [no] synbol s

Abbreviation

[no] sb

Default

nosynbol s

Discussion

Use the synbol s control to includein the print file atable of al identifiers and their
attributes from the source text. Use the nosynbol s control (default) to suppressthe
table.

Thenoprint and not r ansl at e controls override synbol s. Thexr ef control
causes the compiler to generate a cross-referenced symbol table even if the
nosymbol s control is specified.

See also: Chapter 5 for a description of the print file

Cross-references

print | noprint
translate | notranslate
xref | noxref

102 Chapter 3 Compiler Controls

Primary control tabwidth

tabwidth
Specifies characters per tab stop in the print file.

Syntax
tabwi dth control (width)
#pragnma tabwi dth (w dth)
Where:

wi dt h isavaluefrom 1 to 80. Thisvalueisthe number of characters from tab
stop to tab stop in the print file.

Abbreviation

tw

Default
4 characters per tab stop

Discussion

Usethet abwi dt h control to specify the number of characters between tab stopsin
the print file.

Thenoprint and not r ansl at e controls suppress the print file, causing the
t abwi dt h control to have no effect.

Cross-references
ej ect
pagel ength
pagew dt h
print | noprint
title
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 103

title Primary control

title
Specifies the print file title.

Syntax
title control ("string")
#pragma title ("string")
Where:

string isthetitle.

Abbreviation

tt

Default

The compiler uses the object module name.

Discussion

Usethetit | e control to specify the print filetitle. The compiler placesthe title at
the top of each page of the print file.

To specify no title, use at least one blank in the title string. Do not use the null string.

A title can be up to 60 characterslong. A narrow page width can restrict atitle to
fewer than 60 characters. In such cases, the compiler truncates the title from the
right.

Thenoprint and not r ansl at e controls suppressthe print file, causingthetitl e
control to have no effect.

See also: Chapter 5 for a description of the print file

Cross-references

ej ect pagew dt h

nodul enane print | noprint

obj ect | noobj ect t abwi dt h

pagel ength translate | notranslate

104 Chapter 3 Compiler Controls

Invocation control translate | notranslate

translate | notranslate

Compiles or suppresses compilation after preprocessing.

Syntax

[no]transl ate

Abbreviation

[no]tl

Default

transl ate

Discussion

Usethet r ansl at e control (default) to cause the compilation to continue after
preprocessing. Trandation includes parsing the input, checking for errors, generating
code, and producing an object module. Usethe not r ansl at e control to cause
compilation to cease after preprocessing.

Thenot r ansl at e control impliesthe pr epri nt control. Thenot ransl at e
control overrides all other object and listing controls except for their effect on the
print file. Thenot r ansl at e control causes preprocessing diagnostic messages to
appear at the console.

Cross-references

obj ect | noobj ect
preprint | nopreprint

iC-386 Compiler User's Guide Chapter 3 105

type | notype Primary control

type | notype

Generates or suppresses type information in the object module.

Syntax

[no] type
#pragnma [no]type

Default

type

Abbreviation

ty

Discussion

Usethet ype control (default) to include type information for public and external
symbols in the object module. Use the not ype control to suppress generation of type
information. Suppressing type information reduces the size of the object module.

Type information can be useful to other tools in the application development process.
The binder uses type information to perform type checking across modules. A
debugger or an emulator uses type information to display symbol attributes.

Thenoobj ect and not r ans| at e controls causet ype and not ype to have no
effect.

See also: debug control description for information on combining controls that
affect the size of the object module, such asthel i ne control

Theopt i mi ze control can further reduce the size of the object module. However,
higher levels of optimization reduce the ability of most symbolic debuggersto
accurately correlate debug information to the source code. Thel i ne control puts
source line number information into the object file. The synbol s control puts a
listing of all identifiers and their types into the print file. The xr ef control puts a
cross-reference listing of all identifiersinto the print file.

106 Chapter 3 Compiler Controls

Primary control type | notype

Cross-references

debug | nodebug

obj ect | noobject
optimze

synmbol s | nosynbol s
translate | notranslate
xref | noxref

iC-386 Compiler User's Guide Chapter 3 107

varparams General control

varparams
Specifies variable parameter list calling convention.
Syntax
varparans control [(function [,...])]
#pragma varparans [(function [,...])]
Where:

function isthe name of afunction defined in the source text. Caseis significant
in function-name arguments.

Abbreviation

vp

Default

The defaultisf i xedpar ans. If you specify var par ans but do not supply a
functi on argument, the var par ans control appliesto al functionsin the
subsequent source text.

Discussion

108

Use thevar par ans control to require the specified functions to use the variable
parameter list (VPL) calling convention. Most of Intel's non-C compilers generate
object code for function calls using the fixed parameter list (FPL) calling convention.
Some earlier versions of Intel C use the variable parameter list calling convention.

A function's calling convention dictates the sequence of instructions that the compiler
generates to manipulate the stack and registers during acall to afunction. Thisisthe
VPL calling convention:

1. Thecalling function pushes the arguments onto the stack with the rightmost
argument pushed first before control transfersto the called function.

2. The calling function removes the arguments from the stack after control returns
from the called function.

The VPL calling convention provides more flexibility than the FPL calling
convention. Usethe VPL calling convention for functions that take a variable
number of parameters.

See also: FPL and VPL calling conventions, f i xedpar ans control description

Chapter 3 Compiler Controls

General control varparams

A calling convention specified without an argument in the compiler invocation
affects functions throughout the entire module. 1f afunction usesacalling
convention other than the one in effect for the compilation, specify the calling
convention before declaring the function.

If FPL isin effect globally, you can use an ellipsisin a prototype or declaration to
declare a VPL function, or use the var par ans control. If VPL isin effect globally,
you must use thef i xedpar ans control in a#pr agma preprocessor directive to
declare an FPL function.

If not r ansl at e is specified, the compiler does not generate object code and the
calling convention control has no effect. If noobj ect is specified, the effect of the
calling convention control on the object code can be seen in the print file, although
the compiler does not produce afinal object file.

|:| Note

An error occursif afunction in the source text explicitly declaresa
variable parameter list and also is named in the f unct i on list for
thefi xedpar anms control. Inthisexample, the ellipsisin the

f vpr s function prototype indicates a VVPL convention for this
function. Specifying thef i xedpar ans (f vpr s) contral in this
case causes an error:

#i ncl ude <stdarg. h>

fvprs (int a, ...);

Thevar par ams and f i xedpar ans controls are general controls. Use them freely
in the compiler invocation or in #pr agma preprocessor directives. If you specify
both controls without arguments in the invocation, the compiler acts on the most
recently encountered control. These controls only affect the subsequent source text
and remain in effect until the compiler encounters a contrary control or the end of the
source text.

See also: ext end| noext end control for other information on code compatibility
with previous versions of Intel C; fi xedpar ans control for
information on the fixed parameter list calling convention

iC-386 Compiler User's Guide Chapter 3 109

varparams General control

Examples

1. Thiscombination of qualifiers specifies convention (VPL) for al functionsin
the source file except those in the argument list. Use the qualifiers on the
invocation line as follows:

var par ans fixedparans (argument_|ist)
Or use the controlsin #pr agma preprocessor directives:

#pragma var par ans
#pragma fixedparans (argunent _|ist)

2. Thiscontrol specifies fixed parameter list convention (FPL) for al functionsin
the source file except those in the argument list. Usethe var par ans control on
the invocation line to override the default for the function in the argument list:

var parans (argunent _|ist)
Or usethe var par ans control in a#pr agna preprocessor directive:

#pragma varparans (argument _|ist)

Cross-references

extend | noextend

fi xedpar ans

obj ect | noobj ect
translate | notranslate

110 Chapter 3 Compiler Controls

Primary control xref | noxref

xref | noxref
Specifies symbol table cross-reference in listing.

Syntax
[no] xr ef

#pragma [no] xr ef

Abbreviation

[no] xr

Default

noxr ef

Discussion

Usethe xr ef control to add cross-reference information to the symbol table listing in
the print file. Usethenoxr ef control (default) to suppress the cross-reference
information.

Thenoprint and not r ansl at e controls override the xr ef control. Thexr ef and
synbol s controls are similar, except that the xr ef control adds a cross-reference
listing of identifiers from the source program. The xr ef control causes the compiler
to generate a cross-referenced symbol table even if the nosynbol s control is
specified.

The print file lists the cross-reference line numbers on the far right under the
"Attributes' column in the symbol table listing. The "Attributes’ column describes
the data or function type. A number with an asterisk (*) indicates the line where the
object or function is declared. A number without an asterisk indicates aline where
the object or function is accessed. The cross-reference line numbers refer to the line
numbers in the source text listing in the print file.

See also: Symbol table and print file in Chapter 5

Cross-references

print | noprint
synbol s | nosynbol s
translate | notranslate

iC-386 Compiler User's Guide Chapter 3 111

112 Chapter 3 Compiler Controls

Segmentation Memory Models

This chapter discusses how segmentation memory models manage code, data, and
stacks for the Intel 386 segmented architecture. This chapter contains these topics:

e How the binder combines the compiler-created segments
» Characterigtics of the compact memory model
e How touseand interpret thef ar and near keywords

Use the compact segmentation memory model for iRMX applications.

How the Binder Combines Segments

Segmentation divides a program into units that contain the program's code, data, and
stack. Segmentation makes references to memory locations more efficient. The
compiler placesinformation defining segment attributes and content into each object
module. The binder combines the compiler's segments according to their definitions,
thereby implementing the segmentation memory model.

A segment represents a contiguous set of memory locations, but does not necessarily
have a fixed address or fixed size until placed in memory for execution. The

BL D386 system builder or operating system loader assigns a fixed addressto a
segment and establishesits size. The maximum size of an Intel 386 processor
segment is 4 gigabytes.

iC-386 Compiler User's Guide Chapter 4 113

Combining iC-386 Segments With BND386

The BND386 binder combines segments from the input object modules if they have
these characteristics:

e The same segment name

* Thesamekind of contents, i.e., code or data

e The same privilege level

» Compatible granularity, default operand, and address size
e Compatible accessrights

e Compatible combine-types

e A combined length no greater than 4 gigabytes

TheiC-386 compiler placesin each object module these segment definition
characteristics for each compiler-created segment:

* The segment name

e Whether the segment is code or data

e Privilegelevel 3

e Bytegranularity and 32-bit operand and address size

* Segment access rights: non-conforming, not present, and not expand-down for
all segments; and whether code is readable or datais writeable

e The combine-type
* Thesize of the segment
See also: Intel 386 processor segment characteristics in Chapter 6

How Subsystems Extend Segmentation

114

A subsystem is a collection of modules that use the same segmentation model. A
program can be made up of one or more subsystems. Subsystems allow collections
of program modules that are compiled with different ssgmentation controls to be
combined into the same program.

See also: Use and syntax of subsystemsin Chapter 9

Chapter 4 Segmentation Memory Models

Compact Segmentation Memory Model

The segmentation memory model determines the number of segments and the
contents of those segments in the compiler-created object module. The binder uses
the segments from each compiled object module to create the bound object module.
The conpact compiler control determines the segmentation model that the compiler
uses to create an object module.

|:| Note

TheiRMX OS supports the compact segmentation memory model.
There are four components of object code;
» Code (executable instructions)
» Data(global and static variables)

» Stack (function-activation records, automatic variables, and any
compiler-generated temporary storage not explicitly declared in the source
module)

e Constants (statically allocated constant objects, character strings and
floating-point literals, and other compiler-generated constant values)

The compiler creates a code segment for executable instructions, a data segment for
global and static variables, and a stack segment for stack activity. Ther amandr om
controls determine whether the compiler puts the constants with the code segment or
the data segment. If you specify the r omcontrol during compilation, the compiler
places the constants in the code segment. If you specify the r amcontrol during
compilation or accept the default, the compiler places the constants in the data
segment.

iC-386 Compiler User's Guide Chapter 4 115

Compact Model

116

The BND386 binder combines compiler-generated segments that have the same
name, compatible combine-types, and the same access attributes.

A program using the compact segmentation memory model contains three segments:
CODE32 (iC-386), DATA, and STACK. The CS, DS, and SS registers contain the
selectors for the CODE32, DATA, and STACK segments, respectively. For iC-386, the
ES register contains the same value as the DS register.

Table 4-1 shows the compiler segment definitions for a module compiled with the
compact control. When you specify the r omcontrol, the compiler places the
congtants in the modul €'s code segment. When you specify the r amcontrol, the
iC-386 compiler places the constants in the modul€'s data segment.

Table4-1. iC-386 Segment Definitions for Compact-model Modules

Description Name Combine-type Access
code segment CODE32 normal execute-read
data segment DATA normal read-write
stack segment STACK stack read-write

The resulting bound compact model module contains one code segment up to 4
gigabytes long, one data segment up to 4 gigabytes long, and one stack segment up to
4 gigabyteslong.

The compact segmentation memory model is efficient in program size, and offers the
maximum possible space for stack activity. Using the compact segmentation
memory model restricts your program to 12 gigabytes of memory, but hasafull 4
gigabytesfor stack activity, and allows access to multiple data segments.

Since all the executable instructions fall within one segment, function pointers are
near by default (the offset-only address format). Since data (constants, program
variables, or temporary variables) can be in different segments (code, data, or stack),
datapointersaref ar by default (the segment-sel ector-and-offset address format).

See also: Near and far address formats in Chapter 4

Because all data pointersaref ar pointers by default, a compact model program can
dynamically allocate one or more additional data segments up to 4 gigabytes long.

Figures 4-1 and 4-2 show the process of binding a compact RAM and a compact
ROM program from two modules. The relative sizes of the final segments are not to
scale. The order of modulesin the binder input list affects the order of segmentsin
the output file.

Chapter 4 Segmentation Memory Models

Source Code

main.c setup.c
\ \L |
iC-386
| |
main.obj Compiled Code setup.obj
Y Y
BND386
\4
From _ CODE32 From STACK
main.obj main.obj
and and
setup.obj setup.obj <ss
<-CS DATA
4 Gigabytes Max.
With Constants
<-DS
W-3367
Figure4-1. Creatinga Compact RAM Program
iC-386 Compiler User's Guide Chapter 4 117

Source Code
main.c setup.c
\ \L \
iC-386
| |
main.obj Compiled Code setup.obj
Y Y
BND386
\4
From CODE32 From STACK
main.obj main.obj
and DATA and
setup.obj setup.obj <ss
<-DS

4 Gigabytes Max.

With Constants

<-CSs

W-3368

Figure 4-2. Creatinga Compact ROM Program

118 Chapter 4 Segmentation Memory Models

Using near and far

Thenear andf ar keywords are type qualifiersthat allow programs to override the
default address size generated for a data or code reference, which is determined by
the segmentation memory model. Y ou must compile programs that use the near and
f ar keywords with the ext end control.

See also: ext end control in Chapter 3
Table 4-2 shows the default address sizes for the conpact memory model.

Table 4-2. Segmentation Models and Default Address Sizes

Segmentation Model Code Reference Data Reference
compact RAM offset selector and offset
compact ROM offset selector and offset

Thenear type qualifier causes the compiler to generate an offset-only address. An
offset-only address occupies less space and results in quicker execution than a
selector-and-offset address. An offset-only address can reference memory only
within its segment. Thef ar type qualifier causes the compiler to generate a
segment-sel ector-and-offset address. A selector-and-offset address can reference all
addressable memory.

Usethef ar type qudifier:

To cdl alibrary Some libraries require access through a sel ector-and-off set
that requires a call.

selector-and-of fset

call

Torefertocodeor In multiple subsystem applications, non-local references can
datain asubsystem require the far type qualifier.

See also:Using multiple subsystems within an
application in Chapter 9

To call afunction Functions at different privilege levels are alwaysin different
at adifferent segments. A call to aninterrupt handler isafar call.
privilege level or

handle an interrupt

iC-386 Compiler User's Guide Chapter 4 119

Usethe near type qualifier:

To discard the Casting a pointer to near discards the selector. Reference
selector portion of through an offset-only pointer is more efficient.
an address

To override the For efficient data references, override the default far
default data address references to data that occur when the DS register already has
size the correct selector.

To override the For efficient code references, override the default far
default code references to code that occur when the CS register already has
address size the correct selector.

Addressing Under the Segmentation Models

120

In compact model programs, the CS register contains the code segment selector, the
DSregister contains the data segment selector, and the SSregister contains the stack
segment selector.

A reference to a selector-and-offset object requires aload to a segment register. In
iC-386, the FS and GS registers are typically used to de-reference selector-and-of fset
addresses, and the ES register is expected to contain the same value asthe DS
register.

A variable or afunction is near if the segmentation model assigns offset-only
addresses by default, or if the variable or function is declared with the near type
qualifier. A variable or afunction isfar if the segmentation model assigns
selector-and-offset addresses by default, or if the variable or function is declared with
thef ar type qualifier.

In acall to anear function, the processor uses the segment selector in the CS register
with the offset-only address of the function to form the address of the function. Ina
reference to a near variable, the processor uses the segment selector inthe DS
register with the offset-only address of the variable to form the address of the
variable.

Inacall to afar function, the processor loads the segment selector portion of the
addressinto the CS register, and then uses the CS register with the offset portion of
the function's address to form the address of the function. In areferenceto afar
variable, the processor |oads the segment selector portion of the address into the FS
or GSregister (Intel386 CPU) if neither contains the necessary selector. Then the
processor uses either the FS or GS register with the offset portion of the variable's
address to form the address of the variable.

Chapter 4 Segmentation Memory Models

Using far and near in Declarations

Thenear andf ar type qualifiers can occur anywherein alist of declaration
specifiers. Declaration specifiersinclude storage-class specifiers and type specifiers.
Declaration specifiers can also occur after an asterisk (*) in a pointer declarator.

See also: Chapter 10 for the way iC-386 extends the syntax of declarators

Y ou can declare any variable or function with either the near or f ar type qualifier to
indicate whether it is declared in the same segment from which it isreferenced or in a
different one. Y ou can specify whether a pointer variable contains a near or afar
address.

For example, these declarations override the default addresses in a module where all
addresses are near by default:

int far m /* mis a local integer that */

/* is referenced fromsonme */

/* other segment */

extern int far n; /* nis an integer in sone */
/* other segment */

/* being referenced here */

int far * m_ptr; /* m_ptr is a local pointer */

/* to an integer like mor */
/* nin a different segment */

extern int far * far nmptr;/* nmptr is a pointer in */
/* some other segnent to an */
/* ‘integer like n or min a */

/* different segnent */
extern int * far k_ptr; /* K_ptr is a pointer in */
/* some other segnent to a */
/* local integer in this */
/* segnent */

iC-386 Compiler User's Guide Chapter 4 121

Examples Using far

122

All of the examples that follow assume the compilation uses the conpact control. In
these examples, each single letter in an identifier stands for atype or atype qualifier.
Theidentifiers are spelled so that if you read each letter in the identifier from left to
right, the types the letters stand for create a description of the example declaration.
Interpret the phrase "far something" to be the same as "something in a different
segment”. These are the identifiers and types in the examples:

i i nt

F far

f function returning
p pointer to

1. Thisexample declarestwo integers. Theintegeri isin the current data segment,
referenced through the DS register. Theinteger Fi isin adifferent data
segment, and a reference causes aload to a segment register. The addressof i ,
& , isanear address (offset-only). The address of Fi , or &Fi , isafar address
(selector-and-offset). If the ext er n storage class specifier did not exist in the
declaration of Fi , referencesto Fi would use near addresses, but the address of
Fi would still be afar address.

extern int i; /* Where "i" is read as "int" */
externint far Fi; /* Wiere "Fi" is read as "far int" */

2. Thisexample declarestwo functions. Callstofi arenear calls, and callsto Ff i
arefar calls. Theaddressof fi, or & i , isanear address. The addressof Ffi ,
or &f i ,isafar address. If theext er n storage class specifier did not exist in
the declaration of Ff i , callsto Ff i would still be far calls.

extern int fi(); /* Where "fi" is read as */
/* "function returning int" */
extern int far Ffi(); /* Where "Ffi" is read as */

/* "far function returning int" */

3. Thisexample declaresfour pointer variables. The addressesof pi and pFi are

near addresses, and the addresses of Fpi and FpFi arefar addresses. The values
of pi and Fpi are near addresses (near pointers), and those of pFi and FpFi are
far addresses (far pointers). Referenceto Fpi , FpFi , *pFi , or *FpFi causesa
load to a segment register.

extern int * pi;
extern int * far Fpi;
extern int far * pFi ;

extern int far * far FpFi;

Chapter 4 Segmentation Memory Models

4. Thisexample declares four functions that return pointers. Callstof pi and f pFi
are near calls. Callsto Ff pi and Ff pFi arefar calls. Bothf pi and Ff pi return
near pointers, and f pFi and Ff pFi return far pointers.

extern int * fpi();
extern int * far Ffpi();
extern int far * fpFi ();

extern int far * far FfpFi();

Reading the last identifier from left to right, the type of Ff pFi isread "far
function returning pointer to far int." Reading the declarator inside-out
(right-to-l€eft), which is the standard way of reading complex C declarators, gives
"function returning far pointer to far int," asfollows:

Element I nterpretation

Ff pFi () "function returning"
* far "“far pointer to"

int far “far int"

Such an inside-out interpretation isillogical because a function's return value
must be in aregister, not in memory (as afar pointer would be). Adding
parentheses and writing the same declaration as follows preserves inside-out
interpretation and matches the left-to-right reading of the lettersin Ff pFi :

extern int far * (far FfpFi)();

Element I nterpretation

int far “far int"

* "pointer to"

(far FfpFi)() "“far function returning”

The last declaration uses a non-standard type qualifier syntax explained in
Chapter 10.

5. Thisexample declares four variables whose values point to a function. Such
functions can be called indirectly. Referencetopfi or pFfi usesthe DS
register. Referenceto Fpfi or FpFfi causesaload into a segment register.
Callsthrough pfi or Fpfi arenear calls. CallsthroughpFfi or FpFfi arefar

cals.
extern int (* pfi)();
extern int (* far Fpfi)();
extern int far (* pFfi)();

extern int far (* far FpFfi)();

iC-386 Compiler User's Guide Chapter 4 123

124

6. Thisexample declares eight pointers to functions that return pointers. Three
different kinds of memory references can occur: referencing the pointer to a
function, calling the function, and referencing the value indirectly specified by
the return value of the function. Reference to Fpf pi , FpFf pi , Fpf pFi , and
FpFf pFi al cause aload into a segment register; these functions are declared
with thef ar type qualifier in the third column. Callsto pFf pi , FpFf pi ,
pFf pFi , and FpFf pFi arefar calls; these functions are declared with the f ar
type qualifier in the second column. The values returned by pf pFi , Fpf pFi ,
pFf pFi , and FpFf pFi arefar pointers; these functions are declared with the
f ar type quaifier in the first column.

extern int

extern
extern
extern
extern
extern
extern

extern

Chapter 4

nt
nt
nt
nt
nt
nt

nt

far
far
far

far

*

*

far

far

far

far

(*
(* far
(*
(* far
(*
(* far
(*

(* far

pfpi)();
Fpfpi)();
pFfpi) ();
FpFfpi) ();
pfpFi) ();
FpfpFi)();
pFfpFi) ();
FpFfpFi) () ;

Segmentation Memory Models

Listing Files

TheiC-386 compiler provides listing information in two optional listing files: the
preprint file and the print file. These two files embody two phasesin compiling. The
preprint file contains the source text after textual preprocessing, such as including
files and expanding macros. The print file contains information about the results of
compiling, that is, using the source text to create object code. The term compiling
often refers to both the preprocessing and compiling phases as one.

By default, the compiler does not generate a preprint file; use the pr epri nt control
to produce a preprint listing file. By default, the DOS- and iRMX system-hosted
compilers generate a print file; use the nopr i nt control to suppress the print file.

See also: preprint andnoprint controlsin Chapter 3

Preprint File

This section describes the preprint file generated by the preprocessing phase of the
compiler. The preprint file contains the preprocessor output, which is used as input
for the compiling phase. Compiling the preprint file produces the same results as
compiling the source file, assuming the compiler can expand any macros without
errors.

The compiler preprocesses the source text to produce the preprint text:

» Expands macros by substituting the body, or textual value, of each macro for
each occurrence of its name.

e Inserts source text from files specified with thei ncl ude compiler control or the
#i ncl ude preprocessor directive; insertsthe #1 i ne preprocessor directive to
bracket sections of included source text in the preprint file.

» Eliminates parts of the source text based on the #i f , #i f def , #i f ndef , #el se,
#el i f, and#endi f conditional compilation directives.

» Propagates the preprocessor directives#l i ne, #error, and #pr agna fromthe
source text to the preprocessed source text.

iC-386 Compiler User's Guide Chapter 5 125

Macros

Usethe def i ne control or the #def i ne preprocessor directive to define a textual
value for amacro name. The preprocessor substitutes the textual value everywhere
the macro name appears in the subsequent source text.

TheiC-386 compiler provides several predefined macros for your convenience.
Table 5-1 shows these macros and their values.

See also: Using the def i ne control to define macros; | ong64 | nol ong64,
nonod287, mod486 | nonod486, opti m ze, r om and r amcontrol
descriptions in Chapter 3; segmentation memory models and addressing
formatsin Chapter 4

Table5-1. iC-386 Predefined M acr os

Name Value
__DATE_ _ Date of compilation (if available)
__FILE_ _ Current source filename
_ _LINE_ _ Current source line number
__STDC_ _ Conformance to ANSI C standard:
1 indicates conformance
__TIME_ _ Time of compilation (if available)
ARCHITECTURE Intel386 for iC-386 compiler and nomod486

control (default)
Intel486 for iC-386 compiler and mod486 control

_FAR_CODE_ Default address size for function pointers and default
range for function calls:
0 (near) for the compact segmentation model

continued

126 Chapter 5 Listing Files

Table5-1.

iC-386 Predefined M acr os (continued)

Name Value
FAR_DATA_ Default address size for data pointers:
1 (far) for all ROM and compact RAM segmentation
models
LONG64_ Default type size for long data types in iC-386:
1 for 8-byte long data types if using long64 control
0 for 4-byte long data types if using nolong64 control
OPTIMIZE_ Current optimization level as set by optimize control:
0,1,2,0r3
ROM_ Placement of constants with code or data:
1 if using rom control
0 if using ram control
Include Files

Usethei ncl ude control in the compiler invocation or the #i ncl ude preprocessor

directive in the source text to specify an include file. The preprocessor inserts the
contents of afile included with thei ncl ude control before the first line of the source
file. The preprocessor inserts the contents of afile included with the #i ncl ude

preprocessor directive into the source text in place of the line containing the

#i ncl ude directive.
See dso: i ncl ude

Paired occurrences of the #1 i ne preprocessor directive bracket the included text.

control in Chapter 3

The compiler insertsthe #1 i ne directive in the preprint listing file at the beginning

of the included text and another #! i ne directive at the end of the included text.

iC-386 Compiler User's Guide

Chapter 5

127

Conditional Compilation

Conditional preprocessor directives delimit sections of source text to be compiled
only if certain conditions are met. The preprocessor evaluates the conditions and

determines which sections of source text are kept. The source text that is not kept
does not appear in the preprint file unlessthe cond control isin effect.

See also: cond|nocond control in Chapter 3

The conditional directives are #i f, #el se, #el i f, #endi f , #i f def , and #i f ndef .
The#i f directive can take a special def i ned operator.

Propagated Directives

The preprocessor propagates the directives #l i ne, #er r or , and #pr agnma from the
source text to the preprint file to ensure that the preprint text is equivalent to the
source text after preprocessing.

See also: Individual directive descriptionsin Chapter 11, list of controlsthat a
#pr agna directive can use in Chapter 3

128 Chapter 5 Listing Files

Print File

This section describes the print file generated by the compiling phase of the compiler.
The print file contains information about the source text read into the compiler and
the object code generated by the compiler. These controls (and the equivalent DCL -
style qualifiers) affect the format and contents of the print file:

code | nocode i stexpand | nolistexpand pagel engt h
cond | nocond listinclude | nolistinclude pagew dt h
di agnostic nodul enane tabwi dt h
ej ect synmbol s | nosynbol s title

list | nolist xref | noxref

Table 5-2 shows the compiler controls that affect the entire print file format.

Table5-2. Controls That Affect the Print File Format

Control Effect

eject specifies a form feed (new page)

pagelength determines number of lines per page
pagewidth determines number of characters per line
tabwidth determines number of characters per tab stop

Print File Contents
The print file contains these sections:

page header identifies the compiler and the object module name and gives
the date and time of compilation.

compilation heading identifies the host OS, the compiler, the object module name,
and describes the parameters with which the compiler was
invoked.

source text listing isthe listing of the C program.

remark, warning, and error messages
are generated by the compiler and are listed with the source
text.

pseudo-assembly listing
isalisting of the assembly language object code produced by
the compiler. The code does not contain all the assembler
directives necessary for a complete assembly language
program.

iC-386 Compiler User's Guide Chapter 5 129

symbol table and cross-reference
provide symbolic information and cross-reference information.

compilation summary
tabulates the size of the output module, the number of
diagnostic messages, and the completion status (successful
termination or fatal error) of the compilation.

Page Header

Each page of the output listing file begins with a page header. The page header
describes the compiler, identifies the module compiled, and shows the date and page
number.

This page header shows the iC-386 compiler compiling the module MAI N on the 25th
of January, 1991. Thisexample shows the header from the first page of the print file.

iC-386 COWILER MAIN 01/25/91 10:28:20 PACGE 1

Page numbers range from 1 to 999, then start over at 0.

Compilation Heading

The compilation heading is on the first page of the print file. The compilation
heading gives the name of the object module, the pathname of the object module file,
and the compiler controls specified in the compiler invocation. It aso identifiesthe
compiler version and host system.

For example, to invoke the compiler on a DOS host system:

C:\ CEXAMPLE> i ¢c386 main.c conpact define(NPAPER) &
>> include(prags. h) &
>> gsear chincl ude(\intel\include\,includes\)

The compiler processes the mai n. ¢ source file and puts the object module into the
file mai n. obj . The compilation heading shows the host OS, the compiler version,
the module name, and the controls used on invocation:

systemid i G386 COWPILER Vx.y, COWPILATION OF MODULE MAI N
OBJECT MODULE PLACED | N mai n. obj
COWPI LER | NVOKED BY: \ | NTEL\ bi n\|1 C386. EXE mai n. ¢ comnpact
def i ne(NPAPER)

i ncl ude(prags. h)
sear chi ncl ude(\intel\include\,includes\)

130 Chapter 5 Listing Files

If the invocation includes the nodul enane control and uses the noobj ect control to
suppress the object file, the invocation looks like:

C:\ CEXAMPLE> i ¢c386 main.c conpact define(NPAPER) &
>> include(prags. h) &

>> sear chincl ude(\intel\include\,includes\) &

>> modul ename(NewNane) &

>> noobj ect

The resulting compilation heading shows the different module name in the first line,
and shows the lack of object filein the second line:

systemid i G386 COWPILER Vx.y, COWPILATI ON OF MODULE NEWNAME
NO OBJECT MODULE PRODUCED
COWPI LER | NVOKED BY: \ | NTEL\ bi n\|1 C386. EXE mai n. ¢ comnpact
def i ne(NPAPER)
i ncl ude(prags. h)
sear chi ncl ude(\intel\include\,includes\)
nmodul ename(NewNane) noobj ect

Source Text Listing

The source text listing contains a formatted image of the source text. It also givesthe
statement number, block nesting level, and include nesting level of each source text
statement. If asource lineistoo long to fit on oneling, it continues on as many
following lines as are needed. Continued lines contain a hyphen (-) in column 17,
followed by the source text.

Statement numbers range from 1 to 99999. Error, warning, and remark messages,
when present, refer to the statement numbersin the source text listing. Statement
numbers do not always correspond to the sequence of linesin the source text: source
text lines that end in a backslash (\) are continuations of the previousline. Thelisting
statement numbers do not increment for continuation lines.

The block nesting level describes how many source text block control constructs
surround the statement. It ranges from 0O (for a statement outside of any function
definition) to 99. WhenitsvaueisO, thisfield is blank.

Theinclude nesting level describes how many #i ncl ude preprocessor directives or
instances of thei ncl ude control the preprocessor encountered to get to this
statement in the source text. For the input source file, the nesting depth is 0, and this
fieldisblank. Each nested #i ncl ude preprocessor directive or i ncl ude control
increments the include nesting level. The include nesting level column has avalue
only if thel i sti ncl ude control isin effect. The maximum nesting of include files
depends on the number of files open simultaneously during compilation and can vary
with the OS.

iC-386 Compiler User's Guide Chapter 5 131

In addition to the format controls shown in Table 5-2, Table 5-3 shows the compiler
controls that affect the source text listing portion of the print file.

See also: Limitations on the number of nested include filesin Chapter 11, control
descriptionsin Chapter 3

Table5-3. Controls That Affect the Source Text Listing

Control Effect

cond | nocond Generates or suppresses uncompiled conditional code.
diagnostic Determines class of messages that appear.

list | nolist Generates or suppresses source text listing.

listexpand | nolistexpand Generates or suppresses macro expansion listing.

listinclude | nolistinclude Generates or suppresses text of include files.

Remarks, Warnings, and Errors

Compiler messages indicate errors (including fatal errors), warnings, and remarks.
The source text listing contains these messages. The compiler prints each message
on a separate lineimmediately following the offending statement. If the offending
statement is not printed, the compiler prints the messages in the listing as the
compiler generates them.

Usethedi agnost i ¢ control to suppress generation of lower-level messages.

See also: di agnost i ¢ control in Chapter 3

Pseudo-assembly Listing

132

The pseudo-assembly listing is an assembly language equivalent to the object code
produced in compilation. It contains alocation counter, a source statement number,
and the equivalent assembly code. The location counter is a hexadecimal value that
represents an offset address relative to the start of the object code.

The assembler cannot assembl e the pseudo-assembly language listing; it isnot a
complete program. It describes the object code produced by the compiler and is
useful for noticing program variations, such as those that result from changing
optimization levels.

Use the code or nocode control to generate or suppress the pseudo-assembly listing.

See also: code | nocode control in Chapter 3

Chapter 5 Listing Files

Symbol Table and Cross-reference

The symbol table lists all objects and their attributes from the compiled code. The
table includes the name, type, size, and address of each object. The table can
optionally include source text cross-reference information. The compiler generates
the table in alphabetical order by identifier. A source module can declare a unique
identifier more than once, but each object, even if named by a duplicate identifier,
appears as a separate entry in the symbol table.

Use the synbol s or nosynbol s control to generate or suppress the symbol table.
Usethe synbol s and xr ef controlstogether to generate additional cross-reference
information.

See also: Control descriptionsin Chapter 3

Compilation Summary

Thefinal line of the compilation summary in the print file isidentical to the sign-off
message displayed on the screen when the compilation is complete. Before thisfina
line, the compiler listsinformation about the compiled object module.

If the compilation completes normally (without errors), the compilation summary is
similar to:

MODULE | NFORMATI ON:

CODE AREA Sl ZE = 0000028BH 651D
CONSTANT AREA SI ZE = 000002A7H 679D
DATA AREA Sl ZE = 00000000H 0D
MAXI MUM STACK SI ZE = 0000001AH 26D
i G386 COWPI LATI ON COWPLETE. 0 WARNI NGS, 0 ERRORS

If the compilation ends with afatal error, thislineis displayed on the console:

COWPI LATI ON TERM NATED

iC-386 Compiler User's Guide Chapter 5 133

134 Chapter 5 Listing Files

Processor-specific Facilities

This chapter describes the functions, macros, and data types availablein thei 86. h,
i 186. h,i 286. h,i 386. h, andi 486. h header files. These facilities enable the
program to manipulate the unique characteristics of the Intel 386, Intel486, and
Pentium family of processors. This chapter contains these topics:

Making selectors, far pointers, and near pointers

Using special control functions

Examining and modifying the flags register

Examining and modifying the I/O ports

Enabling and causing interrupts, with guidelines for creating interrupt handlers

Manipulating the protected mode features of the Intel 386, Intel486, and Pentium
processors

Manipulating the special contral, test, and debug registersin the Intel 386,
Intel486, and Pentium processors

Managing the data cache and paging trandation lookaside buffer using specia
Intel486 and Pentium processor instructions

Manipulating the Intel 387 numeric coprocessor, and the Intel 486 and Pentium
floating-point units

The functions and macros take the place of assembly language routines you usually
need to write, saving coding time. The functions and macros also improve run-time
performance, because the compiler generates in-line instructions instead of
generating calls to your assembly language routines.

Header files define the functions, macros, and data types. The header files are
designed so that your code includes only the file named for the target processor, and
your application has access to all appropriate features.

iC-386 Compiler User's Guide Chapter 6 135

Tables 6-1 through 6-5 list the function names in the header files. All the functions
are discussed in this chapter. The function names are available only if your code
includes the appropriate header file, and if your code does not redeclare the function
names.

Thei 86. h header file defines functions, macros, and data types that apply to the
entire line of 1ntel 386/1ntel 486/Pentium processors, the Intel 387 coprocessor, and the
I ntel 486/Pentium processor floating-point unit. Two functions are not defined for
Intel 386, Intel 486, and Pentium processors, as noted.

Table 6-1. Built-in Functionsin i86.h

Function Function Function
buildptr halt outword
causeinterrupt inbyte restorerealstatus?
disable initrealmathunit saverealstatus?
enable inword setflags
getflags lockset setrealmode
getrealerror outbyte
1 Not for Intel386, Intel486, or Pentium processors. See the i386.h header file for substitute
definitions.

Thei 186. h header file usesthe #i ncl ude preprocessor directive to include the
contents of thei 86. h header file. Thei 186. h header file contains functions that
apply to 186 and higher processors.

Table 6-2. Built-in Functionsin i186.h

Function Function Function

blockinbyte blockoutbyte blockinword

blockoutword

Thei 286. h header file usesthe #i ncl ude preprocessor directive to include the
contents of thei 186. h header file, which similarly includes the contents of the

i 86. h header file. Thei 286. h header file contains functions, macros, and data
types that apply to 286 and higher processorsin protected mode.

136 Chapter 6 Processor -specific Facilities

Table 6-3. Built-in Functionsin i286.h

Function

Function

Function

adjustrpl
cleartaskswitchedflag
getaccessrights
getlocaltable
getmachinestatus

getsegmentlimit

gettaskregister
restoreglobaltable
restoreinterrupttable
saveglobaltable
saveinterrupttable
segmentreadable

segmentwritable
setlocaltable
setmachinestatus
settaskregister

waitforinterrupt

Thei 386. h header file usesthe #i ncl ude preprocessor directive to include the
contents of thei 286. h header file, which enables access to the functions and macros
inthei 86. h header file, aswell. Thei 386. h header file contains functions and
macros that apply to the Intel 386, Intel486, and Pentium processors in protected

mode.
Table 6-4. Built-in Functionsin i386.h
Function Function Function
blockinhword gettestregister saverealstatus?

blockouthword inhword setcontrolregister
getcontrolregister outhword setdebugregister
getdebugregister restorerealstatus?! settestregister

1 These functions are defined differently from those in the i86.h header file.

Thei 486. h header file usesthe #i ncl ude preprocessor directive to include the
contents of thei 386. h header file, which enables access to the functions and macros
inthei 286. h, andi 86. h header files, aswell. Thei 486. h header file contains
functions and macros that apply to Intel486 and Pentium processorsin protected

mode.
Table 6-5. Built-in Functionsin i486.h
Function Function Function
byteswap invalidatetlbentry wbinvalidatedatacache
invalidatedatacache

The header files are include files, not libraries; use the #i ncl ude preprocessor
directive or thei ncl ude control to include one of the headers when compiling. Do
not bind to the header files.

iC-386 Compiler User's Guide Chapter 6 137

Making Selectors, Far Pointers, and Near Pointers

Thesel ect or datatype and thebui | dpt r function, defined in thei 86. h header
file, construct far pointers (segment-sel ector-and-offset) and extract the selector
portion from far pointers.

A value of typesel ect or refersto the 16-bit selector portion of afar pointer. This
datatype is compatible with PL/M SELECTOR datatype. Thesel ect or typeis
similar tothevoi d * type for type checking:

e The compiler implicitly converts avalue of type sel ect or to any pointer type,
and vice versa. An explicit cast is unnecessary. When the compiler converts a
far pointer tothe sel ect or type, the compiler discards the offset portion of the
far pointer. When the compiler converts a selector to afar pointer type, the
compiler supplies an offset of zero.

» Conversion between the sel ect or type and any integral type requires an
explicit cast. When the compiler converts a selector to an integral type, it
zero-extendsto fill, or it truncates high-order bits to shorten. When the compiler
converts an integral valueto the sel ect or type, it sign-extends signed values
and zero-extends unsigned valuesto fill, or it truncates high-order bits to shorten.

Thebui | dpt r function takes two arguments: a selector and an offset. The function
returns afar pointer. Thisisthe prototype for bui | dptr:

void far * buildptr (selector sel,
voi d near * offset);

The offset argument can be 0, and the value that bui | dpt r returnsis equivalent to
casting a selector to afar pointer type, as these expressions show:

(void far *) sel
/* is the same as */
bui l dptr (sel, 0)

Implicit conversion from afar pointer to a near pointer (offset-only) resultsin a
warning message. To retrieve the offset portion from afar pointer, explicitly cast to
anear pointer, as this expression shows:

(void near *) farptr

138 Chapter 6 Processor -specific Facilities

Using Special Control Functions

Thel ockset and hal t functionsinthei 86. h header file provide special control
over processing.

See also: Enabling and Causing Interruptsin this chapter for information on
functions that control the processor interrupt mechanisms

Thel ockset function takes two arguments: a pointer to a byte and a byte value.
The function generates an exchange instruction (XCHG) with aLOCK prefix. This
isthe prototype for | ockset :

unsi gned char | ockset (unsigned char * |ockptr,
unsi gned char newbyt eval ue) ;

The exchange operation puts newbyt eval ue into the byte pointed to by | ockpt r
and returns the value previously pointed to by | ockpt r. The LOCK prefix ensures
that the processor has exclusive use of any shared memory during the exchange
operation.

Thehal t function enables interrupts, and halts the processor. It generates a set
interrupt instruction (STI) to enable interrupts, followed by a halt instruction (HLT).
Thisisthe prototype for hal t :

void halt (void);

iC-386 Compiler User's Guide Chapter 6 139

Examining and Modifying the FLAGS Register

Theget fl ags and set f | ags functionsin thei 86. h header file provide access to
the FLAGS register for 86 processors, or the EFLAGS register for Intel 386, I ntel486,
and Pentium processors. In Intel 386, Intel486 and Pentium processors, the EFLAGS
register contains the FLAGS register in itslow-order 16 bits. Table 6-6 lists several
macrosin thei 86. h, i 286. h,i 386. h, andi 486. h header filesthat isolate
individual flags from the FLAGS and EFLAGS registers.

|:| Note

In this section, the text refers to a 16-bit word and a 32-bit word,
according to other Intel 386, Intel 486 and Pentium processor
documentation. In C programming literature, aword is the amount
of storage reserved for an integer, which is 32 hits for i C-386.

Theget f | ags function takes no arguments, and returns a 32-bit unsigned integer for
iC-386. Useit to retrieve the value of the EFLAGSregister. Thisisthe prototype for
getfl ags:

unsigned int getflags (void);

Theset f | ags function takes as an argument a 32-bit unsigned integer for iC-386.
Useit to set the value of the EFLAGS register. Thisisthe prototype for set f | ags:

voi d setflags (unsigned int wordval ue);

The FLAGS register contains the processor flags reflecting the execution and results
of various operations. Figure 6-1 shows the format of the 86 FLAGS and I ntel 386,
Intel486, or Pentium EFLAGS register.

140 Chapter 6 Processor -specific Facilities

i386" and i486" Processors:
Carry Flag
Parity Flag
Auxiliary Carry Flag
Zero Flag
Sign Flag
Trap Flag
Interrupt Enable Flag
Direction Flag
Overflow Flag

i386, 1486 Processors:
1/O Privilege Level
Nested Task Flag

i386 and i486 Processors:
Resume Flag
Virtual Mode

i486 Processor:
Alignment Check

Pentium™ Processor:
Virtual Interrupt Flag
Virtual Interrupt Pending

ID-Flag
1
1] o|weviradvmlre]]| 10pL [oF]o] e [1F[sF[zF i [ar] i [pe]ii[c]
31 15 8 0,
Flags Register

EFlags Register
(i386, 1486, and Pentium Processors)

:# Reserved by Intel,
Must be Zeros W-3369

Figure6-1. FLAGS and EFLAGS Register

Table 6-6 lists the names of the macrosin thei 86. h, i 286. h,i 386. h, andi 486. h
header files and describes the meaning of the corresponding fields of the flags
register. These macro names must be uppercase in the source text.

iC-386 Compiler User's Guide Chapter 6 141

Table 6-6. Flag Macros

Name

Value

Meaning

FLAG_CARRY

FLAG_AUXCARRY

FLAG_PARITY

FLAG_ZERO

FLAG_SIGN

FLAG_TRAP

FLAG_INTERRUPT

FLAG_DIRECTION

FLAG_OVERFLOW

FLAG_IOPL

FLAG_NESTED

0x0001

0x0010

0x0004

0x0040

0x0080

0x0100

0x0200

0x0400

0x0800

0x3000

0x4000

This flag is set when a subtraction causes a
borrow into, or an addition causes a carry out
of, the high-order bit of the result.

This flag is set when a subtraction causes a
borrow into, or an addition causes a carry out
of, the low-order 4 bits of the result.

This flag is set when the modulo 2 sum of the
low-order 8 bits of the result of an operation is
0 (even parity).

This flag is set when the result of an operation
is 0.
This flag is set when the high-order bit of the

result of an operation is set, that is, when a
signed value is negative.

This flag controls the generation of single-step
interrupts. When this flag is set, an internal
single-step interrupt occurs after each
instruction is executed.

This flag, when set, enables the processor to
recognize external interrupts.

This flag, when set, makes string operations
process characters progressing from higher to
lower addresses.

This flag is set when an operation results in a
carry into but not a carry out of the high-order
bit of the result, or a carry out of but not a
carry into the high-order bit of the result (e.g.,
signed overflow).

These two bits define the current task's I/O
privilege level, controlling the task's right to
execute certain 1/O instructions.

This flag is set when the processor executes a
task switch. The flag indicates that the back-
link field of the task state segment is valid.

Chapter 6

continued

Processor -specific Facilities

Table 6-6. Flag Macros (continued)

Name Value Meaning

FLAG_RESUME 0x10000 This flag, when set, disables debug exceptions
so that an instruction can be restarted after a
debug exception without immediately causing
another debug exception.

FLAG_VM 0x20000 This flag, when set, indicates that the current
task is a virtual 86 program.

FLAG_ALIGNCHECK1 0x40000 This flag, when set, causes interrupt 17,
generating a fault for a memory reference to a
mis-aligned address, such as a word at an odd
address. This flag is ignored if the privilege
level is less than 3.

1 For Intel486 and Pentium processors only.

Use the functions and flag macros to set or clear particular flags.

See also: Sample code in rmx386\demo\c\intro compiler directory for example
programs that test the carry bit, and disable and restore interrupts;
Enabling and Causing Interrupts in this chapter

iC-386 Compiler User's Guide Chapter 6 143

Examining and Modifying the Input/Output Ports

Thefunctionsi nbyt e, i nwor d, out byt e, and out wor d inthei 86. h header file,
and i nhwor d and out hwor d inthei 386. h header file perform reading from and
writing to processor 1/0 ports. The functionsbl ocki nbyt e, bl ocki nwor d,

bl ockout byt e, and bl ockout wor d inthei 186. h header file, and

bl ocki nhwor d and bl ockout hwor d inthei 386. h header file perform block
reading from and block writing to processor /O ports.

|:| Note

In this section, the text refers to a 16-bit word and a 32-bit word,
according to Intel 386, Intel486, and Pentium processor
documentation. In C programming literature, aword is the amount
of storage reserved for an integer, which is 32 hits for i C-386.

Thei nbyt e, i nwor d, and i nhwor d functions take the hardware input port number
asan argument. Thei nbyt e function returns an 8-bit byte. Thei nwor d function
returns a 32-bit word for Intel 386, Intel 486, and Pentium processors. Thei nhwor d
function returns a 16-bit word for Intel 386, Intel486, and Pentium processors. These
are the function prototypes.

unsi gned char inbyte (unsigned short port);
unsi gned int inword (unsigned short port);
unsi gned short inhword (unsigned short port);

The out byt e, out wor d, and out hwor d functions take two arguments. the
hardware output port number and the value to send to the port. Theout byt e
function sends an 8-hit byte to an output port. The out wor d function sends a 32-bit
word for Intel 386, Intel486, and Pentium processors. The out hwor d function sends
a 16-bit word for Intel 386, Intel 486, and Pentium processors. These are the function

prototypes:

voi d outbyte (unsigned short port,
unsi gned char byteval ue);

voi d outword (unsigned short port,
unsi gned int wor d_or _dwor dval ue) ;

voi d out hword (unsigned short port,
unsi gned short wordval ue);

144 Chapter 6 Processor -specific Facilities

Thebl ocki nbyt e, bl ocki nwor d, and bl ocki nhwor d functions take three
arguments: the hardware input port number, a pointer to the initial byte in the
destination, and the byte, word, or double word count. The bl ocki nbyt e function
reads 8-bit bytes from an input port. The bl ocki nwor d function reads 32-bit words
for Intel 386, Intel486, and Pentium processors. The bl ocki nhwor d function reads
16-bit words for Intel 386, Intel486, and Pentium processors. These are the function
prototypes:

voi d bl ocki nbyte (unsigned short port,
unsi gned char * destinationptr,
unsi gned int byt ecount) ;

voi d bl ocki nword (unsigned short port,
unsigned int * destinationptr,
unsi gned int wor d_or _dwor dcount) ;

voi d bl ocki nhword (unsigned short port,
unsi gned short * destinationptr,
unsi gned int wor dcount) ;

Thebl ockout byt e, bl ockout wor d, and bl ockout hwor d functions take three
arguments: the hardware port number, a pointer to the initial byte in the source
location, and a byte, word, or double word count. The bl ockout byt e function
copies 8-hit bytes from alocation in memory to an output port. The bl ockout wor d
function copies 32-bit words for Intel 386, Intel486, and Pentium processors. The

bl ockout hwor d function copies 16-bit words for Intel 386 and I ntel486 processors.
These are the function prototypes:

voi d bl ockout byte (unsigned short port,
unsi gned char const * sourceptr,
unsi gned i nt byt ecount);
voi d bl ockoutword (unsigned short port,
unsi gned int const * sourceptr,
unsi gned i nt wor d_or _dwor dcount) ;
voi d bl ockout hword (unsi gned short port,
unsi gned short const * sourceptr,
unsi gned int wor dcount) ;

iC-386 Compiler User's Guide Chapter 6 145

Enabling and Causing Interrupts

Theenabl e, di sabl e, causei nterrupt, andhal t functionsinthei 86. h header
file provide control over the interrupt process.

The enabl e function generates a set interrupt instruction (STI). STI setsthe
interrupt enable flag. Thisisthe prototype for enabl e:

void enable (void);

Thedi sabl e function generates a clear interrupt instruction (CLI). CLI clearsthe
interrupt enable flag. Thisisthe prototype for di sabl e:

voi d disable (void);

Thecausei nt errupt function generates an interrupt instruction (INT). It takesthe
interrupt number as an argument. The interrupt number must be a constant in the
range O through 255. Thisisthe prototype for causei nt er r upt :

voi d causei nterrupt (unsigned char interruptnunber);

Thehal t function enables interrupts and halts the processor. It generates an ST
instruction followed by a halt instruction (HLT). Thisisthe prototype for hal t :

void halt (void);

Interrupt Handlers

Processors executing in protected mode require an interrupt descriptor table (IDT).
Thistable can be anywhere in memory. The interrupt descriptor table register
(IDTR) is a system register that holds the address of the IDT.

The entriesinthe IDT are task, trap, or interrupt gates. A gateisaspecia
control-transfer descriptor which acts like a sophisticated interrupt vector. It contains
the address of the handler and some accessinformation. Its positioninthe IDT
determines which interrupt it handles. Figure 6-2 showsthe format of agate. The
special descriptorsfor atask state segment (TSS) and the local descriptor table
(LDT) share the four-hit type field but differ in other fields from the gate descriptor.

See also: Descriptors, in System Concepts

146 Chapter 6 Processor -specific Facilities

Processor

Special Descriptor (Gate, LDT, TSS) =6—— — 0100 for 286 Call Gate

— 0101 for Task Gate

Descriptor Privilege Level— — 0110 for 286 Interrupt Gate

— 0111 for 286 Trap Gate

r— 1100 for i386, i486 Call Gate

— 1110 for i386, i486 Interrupt Gate
— 1111 for i386, i486 Trap Gate

Present +

Unused for Task, Trap
and Interrupt Gates

Offset 31..16 for i386" /1486 Word Count for Call
W Gates

T T
plopio] ;e [ofofo] | |, |

Selector Offset 15. .0

31

15 0

OMO04423

Figure 6-2. Gate Descriptor

High-priority hardware interrupts often use an interrupt gate for automatically
disabling interrupts upon invocation. Software-invoked interrupts often use trap
gates since trap gates do not disable the maskable hardware interrupts. Sometimes
low-priority interrupts (for example, atimer) use atrap gate to enable other devices
of higher priority to interrupt the handler of the lower priority interrupt. Task gates
cause atask switch, which includes saving al of the processor registers and isolating
the address space and privilege level of the handler. A task resumes execution on
each invocation instead of starting from the initial entry point.

To make an iC-386 function into an interrupt handler, usethei nt er r upt control.
This control causes the compiler to generate prolog and epilog code for an interrupt
handler to save and restore registers.

The easiest way to associate an iC-386 interrupt handler with a processor interrupt is
to use the Nucleus system call rq_set_interrupt.

See also: i nt errupt control description, in Chapter 3 of this manual;
rq_set_interrupt, System Call Reference

iC-386 Compiler User's Guide Chapter 6 147

Protected Mode Features of Intel386 and Higher
Processors

See also: The System Concepts manual for a description of the protected mode
features of the Intel 386, Intel486, and Pentium processors available to
iRMX applications

Manipulating System Address Registers

The system address registers are the task register (TR), the global descriptor table
register (GDTR), the interrupt descriptor table register (IDTR), and the local
descriptor table register (LDTR).

Theget t askr egi st er function returns the contents of the TR. Thisisthe
prototype for get t askr egi st er:

sel ector gettaskregister (void);

Theset t askr egi st er function loads a selector into the TR. Only protected mode
code at privilege level 0 can execute this function. It takes the selector value asits
argument. Thisisthe prototype for set t askr egi st er:

voi d settaskregi ster (selector sel);

Thedescri pt or _t abl e_r eg structure type describes the register value returned by
thesavegl obal t abl e and savei nt er r upt t abl e functions. Thisisthe structure

definition:
#if _LONGB4_
typedef unsigned int base_addr;
#el se
typedef unsigned | ong base_addr;
#endi f

#pragma NOALI GN("descri ptor_table_reg")

struct descriptor_table_reg

{

unsi gned short linit;
base_addr base;

}s

148 Chapter 6 Processor -specific Facilities

Thesavegl obal t abl e function copies the contents of the GDTR into a specific
6-byte location of type descri pt or _t abl e_r eg. The function takes a pointer to
this destination as an argument. Thisisthe prototype for savegl! obal t abl e:

voi d savegl obal tabl e
(struct descriptor_table_reg * destinationptr);

Ther est or egl obal t abl e function loads a value of type

descri ptor_t abl e_reg intothe GDTR. Only protected mode code at privilege
level 0 can execute thisfunction. The function takes a pointer to the

descri ptor _t abl e_r eg 6-byte area as an argument. Thisisthe prototype for
rest or egl obal t abl e:

voi d restoregl obal table
(struct descriptor_table_reg const * sourceptr);

Thesavei nt er rupt t abl e function copies the contents of the IDTR into a specific
6-byte location of type descri pt or _t abl e_r eg. The function takes a pointer to
this destination as an argument. Thisisthe prototype for savei nt er r upt t abl e:

voi d savei nterrupttable
(struct descriptor_table reg * destinationptr);

Ther est orei nterruptt abl e function loads a value of type
descriptor_tabl e_reg intothe IDTR. Only protected mode code at privilege
level 0 can execute thisfunction. The function takes a pointer to the

descri ptor _t abl e_r eg 6-byte area as an argument. Thisisthe prototype for
restoreinterrupttable:

voi d restoreinterrupttable
(struct descriptor_table_reg const * sourceptr);

Theget | ocal t abl e function returns the contents of the LDTR. Thisisthe
prototype for get | ocal t abl e:

sel ector getlocaltable (void);

Theset | ocal t abl e function loads avalue of typesel ect or intothe LDTR.
Only protected mode code at privilege level 0 can execute this function. It takesthe
selector value as an argument. Thisisthe prototype for set | ocal t abl e:

voi d setlocaltable (selector sel);

iC-386 Compiler User's Guide Chapter 6 149

Manipulating the Machine Status Word

The machine status word (M SW) contains four bits that indicate the status and
configuration of the processor. In the Intel 386, Intel486, and Pentium processors, the
machine status word is the lower word in control register 0 (CR0). Figure 6-3 shows
the format of the machine status word.

i386™ and i486™ Processors: Protected Mode Enable

Paging Monitor Coprocessor ———————————————————
486 Processor: Emulate Coprocessor ———————————————
Cache Disable Task Switched ——————

Not Write Through i386 Processor:

. Extension Type
Write Protect ———————————

Alignment Mask —————— {486 Processor:

Numerics Exception

’PG‘CD|NW‘ e = SEEAM|E WP = .E.EE‘NE‘ET‘TS‘EM‘MP‘PE‘
31 15 8
L |

Machine Status Word
L]

CRO
(i386, 1486, and Pentium™ Processors)

i# Reserved by Intel, Must be Zeros
W-3371

Figure 6-3. Machine StatusWord

The get machi nest at us function returns the contents of the machine status word.
Thisisthe prototype for get machi nest at us:

unsi gned short getnmachi nestatus (void);

The set machi nest at us function loads a value into the machine statusword. The
compiler generates a short jump to the next instruction to clear the instruction
prefetch queue. Only code at privilege level 0 can execute this function. The
function takes the value for the machine status word as an argument. Thisisthe
prototype for set nachi nest at us:

voi d set machi nestatus (unsigned short wordval ue);

150 Chapter 6 Processor -specific Facilities

Thecl ear t askswi t chedf | ag function clears the task flag in the machine status
word. Only code at privilege level 0 can execute this function. Thisisthe prototype

for cl eart askswi t chedf | ag:

voi d cl eartaskswi tchedflag (void);

Four macrosisolate particular fields in the machine status word. Table 6-7 lists the
names of the machine status word macrosin thei 286. h header file and describes the
meaning of the corresponding fields of the machine status word. These macro names

must be uppercase in the source text.

Table 6-7. Machine StatusWord Macros

Name

Value

Meaning

MSW_PROTECTION_ENABLE

MSW_MONITOR_COPROCESSOR

MSW_EMULATE_COPROCESSOR!

MSW_TASK_SWITCHED

0x0001

0x0002

0x0004

0x0008

This bit, when set, places the
processor into protected mode
and cannot be cleared except
by RESET.

This bit, when set, makes WAIT
instructions cause interrupt
number 7 if the task-switched
flag is set.

This bit, when set, makes ESC
instructions cause interrupt
number 7 to enable
coprocessor emulation.

This bit, when set, makes the
next coprocessor instruction
cause interrupt number 7 so
software can test whether the
coprocessor context belongs to
the current task.

1 Not meaningful for Intel486 or Pentium processors.

iC-386 Compiler User's Guide

Chapter 6 151

Accessing Descriptor Information

A segment descriptor contains several attributes in its access rights byte. Figure 6-4
shows the format of an Intel 386 and I ntel486 segment descriptor.

Present
Available —————— Descriptor Privilege Level
Data: 16-bit Stack=0 ——— —————— Segment Descriptor = 1
32-hit Stack = 1 (Special System Descriptor = 0)
———— Data=0
Code: 16-bit Operand=0 —— —— Code=1

32-bit Operand =1 Data: Normal =0

Expanddown = 1
Code:Normal =0

Conforming = 1
Granularity: Byte=0 ——

Data: Read Only = 0
4K Bytes=1 ——| ala: ~ead Uny

Read/Write = 1

Code: Execute Only =0
Execute/Read = 1

Accessed

Base 31..24 ‘ ‘ ‘ ‘0 ‘ ‘Lirpit 2‘1.9..‘16 P‘ DFL‘ l‘ ‘Type‘ ‘
Il Il 1

| Base 23..16 |

|
Base 15..0 Limit 15..0
31 15 0

0OSD751

Figure 6-4. Segment Descriptor

Theget segnent | i nmt function setsthe zero flag and returns the limit of the
segment indicated by the selector argument if the following conditions are met (or
clears the zero flag and returns an undefined value otherwise):

* The selector argument is non-null.
» The selector denotes a descriptor within the bounds of the GDT or the LDT.

» |If the descriptor isfor a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

e |f thedescriptor isfor a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

152 Chapter 6 Processor -specific Facilities

» |f thedescriptor isfor a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’ s requested privilege level.

» |If the descriptor isfor a conforming code segment, its descriptor privilege level
can be any value.

Theget segnment | i mi t function takes the selector value as an argument. The
prototypeis as follows:

Unsigned int getsegmentlint (selector sel);

The segmentreadable function returns a 1 if the segment indicated by the selector
argument is readable (or returns a 0 otherwise). A segment isreadableif the
following conditions are met:

e The selector argument is non-null.
* The selector denotes a descriptor within the bounds of the GDT or the LDT.
» |If the segment descriptor is for a code segment, the execute/read bit must be 1.

» |f the descriptor isfor a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

» |If thedescriptor isfor a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

» |If the descriptor isfor a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’ s requested privilege level.

» |If thedescriptor isfor aconforming code segment, its descriptor privilege level
can be any value.

The segment r eadabl e function takes a selector value as an argument. The
prototypeisasfollows:

i nt segnentreadabl e (selector sel);

Thesegment wri t abl e function returns 1 if the segment indicated by the selector
argument iswritable (or returns a 0 otherwise). A segment iswritableif the
following conditions are met:

» The selector argument is non-null.
» The selector denotes a descriptor within the bounds of the GDT or the LDT.
* The segment descriptor denotes a data segment.

iC-386 Compiler User's Guide Chapter 6 153

e The descriptor’s read/write bit must be 1.

» Thedescriptor privilege level of the segment must be greater than or equal to the
current privilege level.

Thesegment wri t abl e function takes a selector value as an argument. The
prototypeis as follows:

int segnentwritable (selector sel)

Theget accessri ght s function returns the access rights of the segment indicated
by the selector argument and sets the zero flag if the following conditions are met (or
clearsthe zero flag and returns an undefined value otherwise):

e The selector argument is non-null.
* The selector denotes a descriptor within the bounds of the GDT or the LDT.

» |f thedescriptor isfor a data segment, its descriptor privilege level must be
greater than or equal to the current privilege level.

» |If the descriptor isfor a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the current privilege level.

» |f thedescriptor isfor a nonconforming code segment, its descriptor privilege
level must be greater than or equal to the selector’ s requested privilege level.

» |If the descriptor isfor a confirming code segment, its descriptor privilege level
can be any value.

Theget accessri ght s function takes a selector value as an argument. The return
valueisfour bytes with the access rights in the byte above the low-order byte. The
prototype for getaccessrightsis as follows:

unsi gned int getaccessrights (selector sel);

A segment descriptor and a special descriptor have several fieldsin common: the

present bit, the descriptor privilege level, and the segment or special descriptor bit.
Figure 6-5 shows the format of a special descriptor, such as a gate, local descriptor
table (LDT), or task state segment (TSS).

154 Chapter 6 Processor -specific Facilities

r— 0001 for 286 Available TSS
— 0010 for LDT

— 0011 for 286 Busy TSS

— 0100 for 286 Call Gate

— 0101 for Task Gate
Special Descriptor (Gate, LDT, TSS) =0 — 0110 for 286 Interrupt Gate
— 0111 for 286 Trap Gate
Descriptor Privilege Level—— — 1001 for i386/i486 Available TSS
I— 1011 for i386/i486 Busy TSS
Present— I— 1100 for i386/i486 Call Gate

— 1110 for i386/i486 Interrupt Gate
— 1111 for i386/i486 Trap Gate

Unused for Task, Trap
and Interrupt Gates

Word Count for Call

Processor Gates

Offset 31. .16 for i386" /i48§T

PlopLio] Type [ofofo]
Selector Offset15..0
31 15 0 OM04422

Figure 6-5. Special Descriptor

Table 6-8 lists the name s of the macros in the 1286.h header file that isolate
information for all descriptors (segment and special) and describes the meaning of the
corresponding fields of the access byte. Refer to Figure 6-4 for the format of a
segment descriptor. These macro names must be uppercase in the source text.

Table 6-8. General Descriptor Access Rights Macros

Name Value Meaning

AR_SEGMENT 0x1000 This bit is 1 for a segment descriptor and 0
for a special descriptor, such as a gate.

AR_PRIV_MASK 0x6000 These two bits indicate the descriptor
privilege level of the segment.

AR_PRESENT 0x8000 This bit indicates whether or not the
segment is present in memory.

AR_PRIVILEGE(x)! Isolates the descriptor privilege level in the
low-order bits of a word.

AR_PRIV_SHIFT 13 Used by AR_PRIVILEGE to shift the

descriptor privilege level bits.

“The macro definition is as follows:
#define AR_PRIVILEGE(X) (((X & AR_PRIV_MASK) >> AR_PRIV_SHIFT)

iC-386 Compiler User's Guide Chapter 6 155

Table 6-9 lists the names of the macrosin the i286.h header file that isolate
information for segment descriptors and describes the meaning of the corresponding
fields of the segment descriptor access byte. Refer to Figure 6-4 for the format of a
segment descriptor. These macro names must be uppercase in the source text.

Table 6-9. Segment Descriptor Access Rights Macros

Name

Value

Meaning

AR_ACCESSED

AR_WRITABLE

AR_READABLE

AR_EXPAND_DOWN

AR_CONFORMING

AR_EXECUTABLE

0x0100

0x0200

0x0200

0x0400

0x0400

0x0800

If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bhit is 0, this bit is set to
1 when the segment is accessed or the
selector for the segment is loaded into a
selector register.

If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is 1 for
a writable data segment and O for a read-
only data segment.

If the AR_SEGMENT bit is 21 and the
AR_EXECUTABLE bit is 1, this bit is 1 for
a readable code segment and for an
execute-only code segment.

If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 0, this bit is 1 for
an expand-down data segment and O for a
non-expand-down data segment.

If the AR_SEGMENT bit is 1 and the
AR_EXECUTABLE bit is 1, this bit is 1 for
conforming code segment and O- for a
non-conforming code segment.

If the AR_SEGMENT bit is 1, this bitis 1
for a code segment and - for a data
segment.

156 Chapter 6

Processor -specific Facilities

Table 6-10 lists the names of the macros in the i286.h header file that isolate
information for special descriptors and describes the meaning of the corresponding
fields of the segment descriptor access byte. These macro names must be uppercase

in the source text.

Table 6-10. Special Descriptor Access Rights Macros

Name

Value

Meaning

AR_CALL_GATE

AR_TSS

AR_TASK_GATE

AR_BUSY

AR_INTR_GATE

AR_GATE_MASK
AR_TRAP_GATE

AR_GATE

AR_386_TYPE

AR_GATE_TYPE(x)'

0x0000

0x0100

0x0100

0x0200

0x0200

0x0300
0x0300

0x0400

0x0800

If the AR_SEGMENT bit is 0 and the
AR_GATE bitis 1, the low-order type bits
are 00 for a call gate.

If the AR_SEGMENT bit is 0-and the
AR_GATE bit is 0, this bit is 1 for an
available task state segment.

If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 1, the low-order type bits
are 01 for a task gate.

If the AR_SEGMENT bit is 0 and the
AR_GATE bit is 0, this bit is 1 for a busy
task state segment.

If the AR_SEGMENT bit is 0 and the
AR_GATE bitis 1, the low-order type bits
are 10 for an interrupt gate.

These two bits indicate the gate type.

If the AR_SEGMENT bit is 0 and the
AR_GATE bitis 1, the low-order type bits
are 11 for a trap gate.

If the AR_SEGMENT bit is O, this bitis 1
for a gate and 0 for other special
descriptors.

If the AR_SEGMENT bit is O, this bitis 1
for an i386(TM) processor call, interrupt,
or trap gate and O for a 286 processor call,
interrupt, or trap gate.

Isolates the gate type in the high-order
byte of a word.

“The macro definition is as follows:

#define AR_GATE_TYPE(X) ((x) & AR_GATE_MASK)

iC-386 Compiler User's Guide

Chapter 6 157

Adjusting Requested Privilege Level

A selector for a processor segment has a two-bit field called requested privilege level
(RPL) Thisfield normally contains the descriptor privilege level of the referring or
calling code segment (referring code segment if the target is a data segment, calling
code segment if the target is a code segment). Through adjustment, the RPL field can
represent the descriptor privilege level of the original calling segment in a series of
nested calls. Figure 6-6 shows the format of a selector.

Requested Privilege Level

Table Indicator: GDT =0, LDT = 17

Index Into Table TI RI‘DL
|

15 8 0
0sD286

Figure 6-6. Selector

Adjusting the RPL field of the selector of acalled segment ensures that nested code
segment access occur at alevel no more privileged than the level of the original
calling segment.

Theadj ustrpl function isthe operating system software, but can execute at any
privilege level. the function takes a selector value as an argument (the selector of the
called segment). The prototype for adj ust r pl isasfollows:

sel ector adjustrpl (selector sel);

Theadj ustrpl function compares its argument with the selector for the code
segment that called the routing that invoked adj ust r pl . The adjustrpl function
adjusts the selector argument and sets or clears the zero flag in the flags register as
follows:

If the RPL of the argument is more privileged than the RPL of the calling segment,
the function sets the zero flag, adjusts the RPL of the selector argument to the lesser
privilege level, and returns the adjusted selector.

If the RPL of the argument is the same or less privileged than the RPL of the calling
segment, the function clears the zero flag and returns the selector argument
unchanged.

158 Chapter 6 Processor -specific Facilities

Manipulating the Control, Test, and Debug Registers

of Intel386™, Intel486™, and Pentium® Processors

Thei 386. h header file contains functions that enable iC-386 programs to examine
and set the contents of the control, test, and debug registers. Only code executing at

privilege level 0 can access these registers. Figure 6-7 shows the special registers
accessiblein the Intel 386, Intel 486, and Pentium processors.

D Note

Applications accessing these registers cannot be debugged using

the Soft-Scope or iIRMX SDM debuggers.

CR4

CR3

CR2

CR1

CRO

DR7

DR6

DR5

DR4

DR3

DR2

DR1

DRO

TR7

TR6

TR5

TR4

TR3

TR2

TR1

TRO

Control Registers

Pentium O Extensions
1

Page Directory‘ Base Register

Page Fault Lipear Address

Reserved, Ipaccessihle

‘ MSW

31

15

Debug Registers

Cor‘llrol

Status

Reserved, Ipaccessible

Reserved, I‘naccessible

Breakpoint 3 L‘inear Address

Breakpoint 2 L‘inear Address

Breakpoint 1 L‘inear Address

Breakpoint 0 L‘inear Address

31

15

Test Registers

LB Te‘st Data

TLB Test Fommand

Cache Test Control (1486 0 Processor)
|

Cache Test Status (i486 Processor)
1

Cache Test Data (i486 Processor)
1

Reserved, Ipaccessible

Reserved, I‘naccessible

Reserved, Ipaccessible

31

15

0

W-3372

Figure 6-7. Control, Test, and Debug Registers
of Intel386, I ntel 486, and Pentium Processor s

iC-386 Compiler User's Guide

Chapter 6

159

160

Thegetcontrol regi ster, gettestregister,andget debugregi ster
functions return the 32-bit contents of the specified register. The functions take the
register number as an argument. The register number must be a constant. The
functions prototypes are:

unsi gned int getcontrolregister (const unsigned char nunber);
unsi gned int gettestregister (const unsi gned char nunber);
unsi gned i nt getdebugregister (const unsi gned char nunber);

Thesetcontrol regi ster, settestregister,andset debugregi ster
functions load a 32-bit value into the specified register. The functions take the
register number and the 32-bit value as arguments. These are their prototypes:

voi d setcontrol regi ster (const unsigned char nunber,

unsi gned i nt val ue) ;
voi d settestregister (const unsigned char nunber,
unsi gned i nt val ue) ;

voi d setdebugregi ster (const unsigned char nunber,
unsi gned int val ue) ;

Control register 0 (CRO) contains the machine status word in its low-order 16 bits.
Figure 6-8 shows the format of control register O.

See also: Manipulating the Machine Status Word in this chapter

i386™ and 486" Processors: Protected Mode Enable

Paging Monitor Coprocessor ————————————————————
486 Processor: Emulate Coprocessor —————————————————
Cache Disable Task Switched ———

Not Write Through {386 Processor:

i Extension Type
Write Protect

Alignment Mask i486 Processor:

Numerics Exception

kskﬂwﬂi:i i :
31 15 8
L |
Machine Status Word
L]
CRO
(i386, 1486, and Pentium™ Processors)

22 |nelerfrsfeme]pe]

% Reserved by Intel, Must be Zeros
W-3373

Figure 6-8. Control Register 0 of Intel386, I ntel486, and Pentium Processor s

Chapter 6 Processor -specific Facilities

Table 6-11 lists the names of the macrosin thei 386. h header file and describes the
meaning of the corresponding fields in the high-order 16 bits of the CRO control
register. These macro names must be uppercase in the source text.

Table6-11. Control Register 0 Macrosfor Intel 386, | ntel 486,
and Pentium Processor s

Name Value Meaning

CRO_EXTENSION_TYPE 0x0010 This bitis 1 if the Intel387 coprocessor,
Intel486 processor, or the Pentium
processor is present, and O if the Intel287
coprocessor is present.

CRO_PAGING_ENABLED 0x8000 This bitis 1 if paging is enabled, or O if
paging is disabled.

iC-386 Compiler User's Guide Chapter 6 161

Managing the Features of the Intel486 and Pentium
Processors

Thei 486. h header file contains functions that enable iC-386 programsto
mani pul ate the unique features of the Intel486 and Pentium processors.

The Intel 386, Intel 486, and Pentium processors execute memory read and write
operations from low-order to high-order addresses. Thisorder is called little endian.
The byt eswap function reverses the order of bytesin a 32-bit word, converting little
endian format to big endian format. This featureis useful for transferring data
between the Intel 486 or Pentium processor and foreign processors or peripherals.
The function takes a 32-hit word as its argument, and returns the swapped 32-bit
value. Thisisthe function prototype:

unsi gned int byteswap (unsigned int val ue);

The Intel 486 and Pentium processors also contain on-chip caches and provide
instructions to manipulate those caches. Thei nval i dat edat acache function
flushes the internal data cache. Its prototypeis:

voi d inval i dat edat acache (void);
Thewbi nval i dat edat acache function flushes the internal data cache and directs

any external cache to write back its contents and flush itself. Thisisthe function
prototype:

voi d wbi nval i dat edat acache (void);

The trandlation lookaside buffer (TLB) is a cache used for page table entries. The

i nval i dat et | bent ry function marks a single entry in the trandation |ookaside
buffer (TLB) invalid. The function takes an address of a memory location as an
argument; the argument must have the address operator (&) precedingit. If the TLB
contains a valid entry which maps the argument address, that entry is marked invalid.
Thisisthe function prototype:

void invalidatetl bentry (void far * nenoryaddress);

162 Chapter 6 Processor -specific Facilities

Manipulating the Numeric Coprocessor

Thei 86. h header file contains several functions, macros, and data types that enable
iC-386 programs to manipulate a numeric coprocessor, a true software emulator, or
the Intel 486 or Pentium processors floating-point unit.

See also: 80387 Programmer's Reference Manual or ASM386 Assembly
Language Reference

This section uses the term numeric coprocessor to indicate a coprocessor, emulator,
or on-chip unit.

The numeric coprocessor uses 8 numeric data registers, a control word register, a
status word register, atag word register, an instruction pointer and a data pointer.
The coprocessor treats the numeric data registers asif they were a stack. Figure 6-9
shows the numeric data register set. Figure 6-10 shows the environment registers for
the Intel 387 coprocessor, and the Intel 486 and Pentium processor FPU.

Sign —‘ Exponent—‘ Significand —‘

ST(7)

ST(6)

ST(5)

ST(4)

ST(3)

ST(2)

ST(1)

ST(0)

79 78 64 63 0

W-3374

Figure 6-9. Numeric Coprocessor Stack of Numeric Data Registers

Data Pointer [— —

Instruction Pointer —

Reserved Tag Word
Reserved Status Word
Reserved Control Word
31 15 0

W-3375

Figure 6-10. Intel387 Numeric Coprocessor or Intel486 and
Pentium Processor FPU Environment Registers

iC-386 Compiler User's Guide Chapter 6 163

Theset r eal node function sets the fields of the control word.
Theget real error function retrieves the value of the status word.

The numeric coprocessor's environment consists of the contents of the control word,
status word, tag word, instruction pointer, and data pointer. The numeric
coprocessor's state consists of the contents of al the registers.

See also: Control word and the set r eal node function; status word and the
get real error function; Saving and Restoring the Numeric
Coprocessor State for data types and functions relative to the numeric
data registers, environment, and state, in this chapter

164 Chapter 6 Processor -specific Facilities

Tag Word

The tag word contains a 2-hit field for each numeric data register. Thetag fields
indicate the kind of value in the register and whether or not the register contains a
valid value. Figure 6-11 shows the tag word and the possible values for each tag.

[s1o[s1o[ste] s [T st st [s10 |

15 8 0
For Each Tag: 00 = Valid

01 = Zero (True)

10 = Special

11 = Empty

W-3376

Figure 6-11. Numeric Coprocessor Tag Word

Table 6-12 lists the names of the tag word macrosin thei 86. h header file that
isolate a tag from the tag word. These macro names must be uppercase in the source

text.
Table 6-12. Numeric Coprocessor Tag Word Macros

Name Value Meaning

187_TAG_MASK 0x0003 Each tag is 2 bits.

187_TAG(x,y)* Isolates the tag for the yth numeric register in
the low-order bits of a word.

187_TAG_SHIFT 2 Used by 187_TAG to shift the appropriate tag
into position.

1 This is the macro definition:

#define 187 _TAG X,y) (((x).tag >> (187 _TAGSHFT * (y))) &
| 87_TAG_MASK)

Control Word

The control word contains exception mask bits and three sets of control bits. The
mask bits correspond to the flags in the status word (refer to Figure 6-13 for the
format of the status word). Figure 6-12 shows the format of the control word.

iC-386 Compiler User's Guide Chapter 6 165

Infinity Control for

8087 and i287™ Coprocessors
Rounding Control

Precision Control

Interrupt Enable Mask for
8087 Coprocessor

Exception Masks:
(1 = Exception is Masked)

Precision Mask

Underflow Mask

Overflow Mask
———— Zero Divide Mask
Denormalized Operand Mask
Invalid Operation Mask

[[e[re e [| [vlumfovizufou]m]

15 8 0
Reserved by Intel, PC Values: 00 = 24-Bit Significand (Single Precision)
Must be Zeros 01 = Reserved

10 = 53-Bit Significand (Double Precision)
11 = 64-Bit Significand (Extended Precision)

RC Values: 00 = Round to Nearest or Even

01 = Round Down (Toward -,)

10 = Round Up (Toward +,)

11 = Chop (Truncate Toward Zero)
IC Values: 0 = Projective Closure Signed ©'s)
(8087/i287) 1= Affine Closure (Unsigned ©'s)

W-3377

Figure 6-12. Numeric Coprocessor Control Word

Theset r eal node function loads a value into the control word. The function takes
the value asits argument. Thisisthe prototype for set r eal node:

voi d setreal nbde (unsigned short node);

Table 6-13 lists the names of the macrosin thei 86. h header file that isolate
information from the control word. These macro names must be uppercase in the
source text.

166 Chapter 6 Processor -specific Facilities

Table 6-13. Numeric Coprocessor Control Word Macros

Name Value Meaning
187_INVALID_OPERATION 0x0001 This bit masks or unmasks the IE
bit in the status word.
187_DENORMALIZED_OPERAND 0x0002 This bit masks or unmasks the DE
bit in the status word.
187_ZERO_DIVIDE 0x0004 This bit masks or unmasks the ZE
bit in the status word.
187_OVERFLOW 0x0008 This bit masks or unmasks the OE
bit in the status word.
187_UNDERFLOW 0x0010 This bit masks or unmasks the UE
bit in the status word.
187_PRECISION 0x0020 This bit masks or unmasks the PE
bit in the status word.
187_CONTROL_PRECISION 0x0300 These two bits control whether a
24-bit, 53-bit, or 64-bit significand
is used.
187_PRECISION_24 BIT 0x0000 The precision bits are 00 for 24-bit
significand (single) precision.
187_PRECISION_53 BIT 0x0200 The precision bits are 10 for 53-bit
significand (double) precision.
187_PRECISION_64_BIT 0x0300 The precision bits are 11 for 64-bit
significand (extended) precision.
187_CONTROL_ROUNDING 0x0CO0 These two bits control the method
used in rounding.
187_ROUND_NEAREST 0x0000 The rounding bits are 00 to round
to nearest or even.
187_ROUND_DOWN 0x0400 The rounding bits are 01 to round
down.
187_ROUND_UP 0x0800 The rounding bits are 10 to round
up.
187_ROUND_CHOP 0x0CO00 The rounding bits are 11 to
truncate toward zero.
I87_CONTROL_INFINITY? 0x1000 This bit controls whether projective
closure or affine closure is used to
represent infinity.

continued

iC-386 Compiler User's Guide Chapter 6 167

Table 6-13. Numeric Coprocessor Control Word M acros (continued)

Name Value Meaning

I87_INFINITY_PROJECTIVE? 0x0000 The infinity bit is O to use
projective closure (unsigned
infinity).

I87_INFINITY_AFFINE! 0x1000 The infinity bit is 1 to use affine
closure (signed infinities).

1 For 8087 and i287 numeric coprocessors only.

Status Word

The status word contains flags, condition codes, the top of the stack of numeric data
registers, and a busy bit. The flag bits correspond to the mask bits in the control word
(refer to Figure 6-12 for the format of the control word). Figure 6-13 shows the
format of the status word. Table 6-14 shows the values of the condition codes for the
Intel 387 numeric coprocessor or Intel487 FPU.

Busy

Condition Code 3

Stack top Pointer
Condition Code 2
Condition Code 1
Condition Code 0

Error Summary Status
(Set if any Unmasked
Exception bit is set, Else
Cleared)

Stack Flag for i387," i486" FPU

Exception Flags:
(1 = Exception has Occured)

Precision

Underflow

Overflow

Zero Divide
Denormalized Operand

(Invalid Operation

‘3‘03‘ ST ‘CZ‘CI‘CO‘ES‘SF‘PE‘UE‘OE‘ZE‘DE‘IE‘

15

8 0

ST Values: oo = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
010 = Register 2 is Top of Stack
011 = Register 3 is Top of Stack
100 = Register 4 is Top of Stack
101 = Register 5 is Top of Stack
110 = Register 6 is Top of Stack
111 = Register 7 is Top of Stack

w-3378

Figure 6-13. Numeric Coprocessor StatusWord

168 Chapter 6 Processor -specific Facilities

Table Error! Reference source not found.-14. Intel387 Numeric Coprocessor, and Intel486
or
Pentium Processor FPU Condition Codes

Instructions Cy C, C, Co Interpretation
FCOM, FCOMP, 0 0 OorO/U O stack top > operand
FCOMPP, FTST, 0 0 OorO/U 1 stack top < operand
FUCOM, FUCOMP, 1 0 OorO/U O stack top = operand 1
FUCOMPP, FICOM, 1 1 OorO/U 1 unordered
FICOMP
FPREM, FPREM1 Q1 0 Qo0 Q2 complete reduction
with 3 low bits of
quotient in CO, C3,
and C1 U
U 1 U U incomplete reduction
FXAM 0 0 Sign 0 unsupported 0
0 0 Sign 1 NaN
0 1 Sign 0 normal
0 1 Sign 1 infinity
1 0 Sign 0 zero
1 0 Sign 1 empty
1 1 Sign 0 denormal
FCHS, FABS, FXCH, U U OorO/U U
FINCTOP,
FDECTOP, Constant
loads, FXTRACT,
FLD, FILD, FBLD,
FSTP
FIST, FBSTP, U U Round U rounding valid when
FRNDINT, FST, or O/U PE bit of status word
FSTP, FADD, FMUL, is set
FDIV, FDIVR, FSUB,
FSUBR, FSCALE,
FSQRT, FPATAN,
F2XM1, FYL2X,
FYL2XP1

continued

iC-386 Compiler User's Guide Chapter 6 169

Table Error! Reference source not found.-14. Intel387 Numeric Coprocessor, and Intel486
or
Pentium Processor FPU Condition Codes (continued)

Instructions Cs C, C, Co Interpretation
FPTAN, FSIN, FCOS, U 0 Round U complete reduction
FSINCOS or O/U

U 1 U U incomplete reduction
FLDENV, FRSTOR Loaded Loaded Loaded Loaded each bitloaded from

memory

FLDCW, FSTENV, U U U U undefined
FSTCW, FSTSW,
FCLEX, FINIT,
FSAVE
Key:

O/U = When IE and SF bits of status word are set

1 = stack overflow and 0 = stack underflow

U = instruction leaves value undefined

Qp, = quotient bit n following complete reduction (C,=0)

Theget r eal er ror function returns the contents of the low-order byte of the status
word and then clears the exception flagsin the status word to zeros. Thisisthe
prototype for get real error:

unsi gned short getrealerror (void);

170 Chapter 6 Processor -specific Facilities

Table Error! Reference sour ce not found.-15 lists the names of the macrosin the
i 86. h header file that isolate information from the status word. These macro names
must be uppercase in the source text.

Table Error! Reference source not found.-15. Numeric Coprocessor Status Word

Macros
Name Value Meaning
187_STATUS_ERROR 0x0080 This bit is 1 if any unmasked

exception bit is set.

187_STATUS_STACKTOP_MASK 0x3800 These three bits indicate the
numeric register that is at the top
of the stack.

I87_STATUS_STACKTOP_SHIFT 11 Used by
I87_STATUS_STACKTOP to shift
the stack top hits.

I87_STATUS_STACKTOP(env)?! Isolates the stack top bits in the
low-order bits of a word.
187_STATUS_BUSY 0x8000 This bit is 1 when the

coprocessor is executing or 0
when the coprocessor is idle.

187_STATUS_CONDITION_CODE 0x4700 These four bits are the condition
code bits; they reflect the
outcome of arithmetic operations.

187_CONDITION_CO 0x0100 This bit is condition code bit 0
(see Table 6-14).
187_CONDITION_C1 0x0200 This bit is condition code bit 1
(see Table 6-14).
187_CONDITION_C2 0x0400 This bit is condition code bit 2
(see Table 6-14).
187_CONDITION_C3 0x4000 This bit is condition code bit 3

(see Table 6-14).

1 This is the macro definition:
#define |187_STACKTOP(env) (((env).status &
| 87_STATUS_STACKTOP_IASK)

>> \ |1 87_STATUS STACKTOP_SHI FT)

iC-386 Compiler User's Guide Chapter 6 171

Intel387™ Numeric Coprocessor, and Intel486 or Pentium
Processor FPU Data Pointer and Instruction Pointer

Figure 6-14 shows the protected mode format of the data pointer and instruction
pointer for the Intel 387 numeric coprocessor, and the Intel486 or Pentium processor
FPU.

Protected Mode

Reserved ‘ Operand Selector
Data Pointer

Operand Offset

Instruction Opcode 10..0 ‘ CS Selector
1
Pointer

IP Offset

31 26 15 0

Reserved by Intel, Must be Zeros
W-3379

Figure 6-14. Intel387 Numeric Coprocessor, and Intel486 or Pentium Processor
FPU Data Pointer and Instruction Pointer

Thei 387_pr ot ect ed_addr datatype definesthe structure of the information in
the data pointer or instruction pointer for the Intel 387 numeric coprocessor, and the
Intel486 or Pentium processor FPU.

Thei 387_pr ot ect ed_addr structure type accommodates the value of the
protected mode data pointer or instruction pointer. The opcode field is undefined for
the data pointer. Thisisthe structure definition:

#pragma ALI GN("i 387_protected_addr")
struct i387_protected_addr

{
unsi gned i p_offset: 32;
unsi gned cs_sel : 16;
unsi gned opcode 11, @ 5;
unsi gned op_of fset: 32;
unsi gned op_sel : 16, : 16;
b

Saving and Restoring the Numeric Coprocessor State

The numeric coprocessor's environment is the contents of the control word, status
word, tag word, instruction pointer, and data pointer. The numeric coprocessor's state
is the contents of the environment registers plus the numeric data register stack.

Refer to Figures 6-9 and 6-10 for the general format of these registers.

172 Chapter 6 Processor -specific Facilities

Thei 387_envi r onnent data type defines the environment for the Intel 387
coprocessor, and the Intel 486 or Pentium processor FPU. Thei 87_t enpr eal data
type and thet enpr eal _t typedef define the format of one numeric register. The

i 387_st at e data type defines the structure of all the registers for the Intel 387
coprocessor, and the Intel486 or Pentium processor FPU. The saver eal st at us
andr est or er eal st at us functions manipulate the entire state of the numeric
COprocessor.

Thei 387_envi ronnment structure type defines the Intel 387 numeric coprocessor,
and the Intel486 or Pentium processor FPU environment. Thisisthe structure
definition:

#pragma ALI GN("i 387_environment ")

struct i387_environnent

{
unsi gned control: 16, : 16;
unsi gned status : 16, : 16;
unsi gned tag : 16, : 16;
uni on i 387_address ptrs_n_opcode;

}

Thei 87_t enpr eal structuretypeandt enpreal _t typedef define the fieldsin one
numeric register. You can define the SBI TFI ELD macro to control whether the
one-bit sign field is signed or unsigned. These are the definitionsfor i 87_t enpr eal
andtenpreal _t:

#pragma NOALI GN ("i87_tenpreal ")
struct i87_tenpreal
{
char signi ficand[8] ;
unsi gned exponent: 15;
#i f defined(SBI TFI ELD)

si gned sign 1
#el se

unsi gned sign 1
#endi f

b
typedef struct i87_tenpreal tenpreal _t;

Thei 387_st at e structure defines the state of the Intel 387 numeric coprocessor, and
the Intel 486 or Pentium processor FPU. Thisisthe structure definition:

struct i387_state

{

struct i387_environnent environment;

iC-386 Compiler User's Guide Chapter 6 173

174

tenmpreal _t stack[8] ;
H

Thesaver eal st at us function copies the contents of the numeric coprocessor state
into a specific location of typei 387_st at e for the Intel387 coprocessor, and the
Intel486 or Pentium processor FPU. The function takes a pointer to this destination
as an argument.

The prototype for saver eal st at us for the Intel 387 coprocessor, and the I ntel 486
or Pentium processor FPU is:

voi d savereal status (struct i387_state * destinationptr);

Ther est or er eal st at us function loads values into all the numeric coprocessor
registers. The function takes as an argument a pointer to thei 387_st at e save area
for the Intel 387 coprocessor, and the Intel 486 or Pentium processor FPU.

The prototype for r est or er eal st at us for the Intel387 coprocessor, and the
Intel486 or Pentium processor FPU is:

void restorereal status (struct i387_state const * sourceptr);

Chapter 6 Processor -specific Facilities

Assembler Header File

Theuti | . ah header file contains macros that help interface assembly routinesto
iC-386 programs. To use these facilities, include the header file in your assembly
routines. Theuti | . ah assembler header file provides these facilities:

e Segmentation and linkage directives and generic data type specifiers for any
standard memory model; for iRM X applications, use compact model

» Standard prolog and epilog for conformance to either the variable parameter list
(VPL) or the fixed parameter list (FPL) calling convention

« Simpledirectives for using parameters and automatic variables

To select these features, use header controls that the ut i | . ah macros recognize.
The source for theut i | . ah header file is common for ASM 86, ASM 286, and
ASM 386.

See also: Sample code in rmx386\demo\c\intro compiler directory for examples
of code using macros, source files, expanded source code for ASM 386
for the compact memory model, and implementations of the st r cnp
and mencpy functions,

Macro Selection

The macros defined inut i | . ah fall into five groups:

Flag macros indicate segmentation model, calling convention, and
instruction set used in the assembly.

Register macros are generic register names and expand to appropriate registers
depending on the calling convention.

Segment macros are names of segments or groups as determined by
segmentation model.

Type macros are generic data type specifications and expand to appropriate

types depending on segmentation model.

Operation macros areinstructions or directives for commonly used assembly
language operations.

iC-386 Compiler User's Guide Chapter 7 175

176

Ensurethat the: i ncl ude: environment variable contains the path for theuti | . ah
file. For example, set: i ncl ude: asfollows:

C. > set :include:=\intel\lib\
Use thisline in your assembly source text to includeuti | . ah:
$i ncl ude(:include: util.ah)

The expansion of the macrosinuti | . ah depends on the value of a macro named
cont r ol s, which contains alist of header controls that specify the behavior of the
util.ah macros. Table 7-1 liststhe header controlsto use for iRMX applications.

Table 7-1. Assembler Header Controlsfor Macro Selection

Header Control Abbr. Description Default

asm386 generate code for ASM386 asm86

compact cp generate code for compact small |
memory model

fixedparams fp generate prolog/epilog for fixedparams
FPL calling convention

varparams vp generate prolog/epilog for fixedparams
VPL calling convention

'module=name'? set module name module=anonymous

ram generate code for RAM ram
sub-model

rom generate code for ROM ram
sub-model

'stacksize=size'! set size of the stack segment stacksize=0

1 Use single quotation marks around these header controls on the assembler invocation line.

If youincludeuti | . ah, you must definethe cont r ol s macro in the assembler
invocation or in the assembly source text before the lineincluding uti | . ah.
Otherwise, the assembler reports an undefined macro error. Y ou can define the
cont r ol s macro with an empty value; any header controls that you do not specify
take on their default settings.

Chapter 7 Assembler Header File

Y ou can define the cont r ol s macro in the assembler invocation, or in the source
text, or both places:

» If you definethe cont r ol s macro in the assembler invocation, provide a
definition for the cont r ol s macro each time you assemble the program. Thus,
each time you assembl e the program you can specify any header control settings
or define the cont r ol s macro with an empty value, letting the unspecified
controls take on their default settings.

* If you definethe cont r ol s macro in the assembly source text asasimplelist of
header controls, you can change the header control settings only by modifying
the source text. When the assembler processes a macro definition, it discards
any existing definition of that macro, so defining the cont r ol s macro in the
assembler invocation has no effect.

* You can definethe cont r ol s macro in the assembler invocation, then use that
definition of it as part of aredefinition of the cont r ol s macro in the assembly
source text. This forces some header control settings to take effect any time you
invoke the assembler for that source text. Y ou can also override other header
control settings and let some header controls take on their global default settings.

Thisisthe DOS syntax for the assembler invocation:

asnB86 file [asmcontrol s] %lefine(controls)([header_controls])

Where:
file isthe source file to assemble.
asmcontrol s are controls for the assembly.

See also: ASM controls, ASVI386 Macro Assembler
Operating Instructions

header _control s areheader controlsfrom Table 7-1, separated by spaces.

Within the source text, thisis the syntax for defining the cont r ol s macro and
including theut i I . ah header file:

%lefi ne(controls)
([file_default_ctls] %ontrols [file_override_ctls])
$i ncl ude(:include:util.ah)

iC-386 Compiler User's Guide Chapter 7 177

178

If you specify conflicting controls, the last one encountered by the assembler takes
effect. These are the precedence levels of the header controls:

Thefile_override_ctls, specifiedlastinthecont r ol s definition in the
source text, have the highest precedence. Thefil e_override_ctl s aways
take effect, overriding any conflicting control in the header _control s or
file_default_ctls.

Theheader _cont rol s, specified in the assembler invocation (and expanded in
the source text from the % ont r ol s embedded in the cont r ol s definition),
have second precedence. The header _cont r ol s take effect when they do not
conflict withthefil e_override_ctls. A control intheheader _control s
overrides any conflicting control inthefi | e_defaul t _ctl s.

Thefile_default_ctls, specified firstinthe cont r ol s definition in the
source text, have third precedence. Thefil e_defaul t _ct! s take effect
whenever they do not conflict with the header _control s or
file_override_ctls.

The global default controls, listed in Table 7-2, have the lowest precedence. The
global default controls take effect only when they do not conflict with the
file_override_ctls,header_controls,orfile_default_ctls.

Chapter 7 Assembler Header File

Figure 7-1 shows the precedence relationship depending on where controls are
placed.

Highest

file_override_controls
Precedence

(Last in Controls Definition
in Source Text)

Overrides
Conflicting

v

header_controls
(In Assembler Invocation and Expanded in Source
Text at %controls)
\
Overrides
Conflicting

v

file_default_ctrls
(First in Controls Definition
in Source Text)

Overrides
Conflicting

Default Controls

Lowest From Table 7-2

Precedence

W-3380

Figure 7-1. Precedence Levelsof Assembler Header Controls

These examples demonstrate invoking the assembler with header controls to select
macros.

1. Thisexample invokes the ASM 386 assembler with non-default assembler
settings and header controls. The assembler processes the source text in the file

ut est . asmusing the compact model, and produces an object module with
variable parameter list (VPL) calling convention.

C. > asnB86 utest.asm %lefine(controls)(cp vp)

iC-386 Compiler User's Guide Chapter 7 179

180

2. Thisexample defines cont r ol s in the assembly source text. The header control

settings specify ASM 386, the compact model, and the ROM submodel.

%defi ne(control s) (asnB86 cp rom
$i ncl ude(:include: util.ah)

This example defines header control defaults partly different from the global
default controls. The assembly source text contains:

%ef i ne(control s)
(cp vp 'stacksize=50" %ontrols 'nodul e=utl")

This definition of the cont r ol s macro sets these defaults:
e The object module is compact model rather than small.

» Thecalling convention is variable parameter-list (VPL) rather than fixed
parameter list (FPL).

* Thestack sizeis 50 rather than O.

e Themodule nameisut 1 instead of anonynous and cannot be overridden;
its position after 9%cont r ol s indicatesthat it isafile override control.

Thisisthe assembler invocation for ASM 386 on DOS:
C. > asnB86 utest.asm %lefine(control s)(asnB86 rom

The cont r ol s defined in the assembler invocation override only the file default
controls that specify the memory model:

e The object module is ROM model rather than RAM.

» Thecalling convention is VPL and the stack sizeis 50, as specified in the
file default contrals.

Chapter 7 Assembler Header File

Flag Macros

The value of aflag macroiseither 1 (set) or 0. Use flag macrosin ASM macro
programming language % f constructs.

See also: Macro programming language, ASMI386 Macro Assembler Operating
Instructions

Use the flag macros to test these conditions:

%onst _i n_code

% ar _code

% ar _dat a

% ar _st ack

% pl

% 186_instrs

% 386_asm

indicates that constants are in the code segment; set by ther om
header control.

indicates that function pointers are far.

indicates that data pointers are far; set by the conpact, or r om
header controls.

indicates that the stack is in a separate segment, that is, the SS
register value is not the same as the DS register value; set by
the conpact header control.

indicates that the calling convention is fixed parameter list
(FPL); set by thefi xedpar ans header control.

indicates whether to use or smulate instructions available only
in 186 and higher instruction sets; set by the asn886 header
controls.

indicates code specific to a particular architecture when codeis
common between products targeted for 86, 286, or Intel 386
processors; set by asnB886 header control.

Table 7-2 lists which flag macros are set when you specify various header controls.

Table 7-2. Assembler Flag Macros Set by Header Controls

Header Control Flag Macros Set

asm386 %i386_asm
%i186_instrs

compact %far_data
%far_stack

fixedparams %fpl

rom %const_in_code

%far_data

iC-386 Compiler User's Guide Chapter 7 181

Register Macros

Y ou can use aregister macro as an instruction operand in place of the register name.
Table 7-3 shows macros useful in specifying operands to instructions.

Table 7-3. Assembler Register Macros

Macro

ASM386 Expansion

%ax
%bx
%cCx
%dx
%bp
%sp
%si

%di

eax
ebx
ecx
edx
ebp
esp
esi

edi

These are the register macros and the registers they reference:

% et of isthe register that holds the offset portion of a pointer return value. The

% et of f macro expandsto eax for ASM386.

% et sel isthe register that holds the selector portion of a pointer return value.
The % et sel macro expandsto edx for ASM386.

182 Chapter 7

Assembler Header File

Segment Macros

Each segment macro expands to the name of a segment. The memory model
determines the segment names. The segment names conform exactly to those used
by C and PL/M. Y ou can use these names as instruction operands and in
segmentation directives.

The segment macros correspond to the names of segments. These are the segment
names and what each macro expands to:

%egroup the segment to which the CSregister points
% ode the code segment name

%onst the constant segment name

Ydat a the data segment name

st ack the stack segment name

%group the segment to which the DS register points
%sgroup the segment to which the SSregister points

Table 7-4 shows the segment macro expansion for the compact memory model for
ASM386.

Table 7-4. ASM 386 Segment Macro Expansion for Compact Memory M odel

Macro Model Sub-model Expansion
%code compact RAM or ROM CODE32
%cgroup compact RAM or ROM %code
%data compact RAM or ROM DATA
%dgroup compact RAM or ROM %data
%stack compact RAM or ROM STACK
%sgroup compact RAM or ROM %stack
%const compact RAM %data
compact ROM %code
iC-386 Compiler User's Guide Chapter 7 183

This example uses %DATA to bracket static variable data:

%lat a segnent

; assenbl er comands, e.g.,
var dw 0

%dat a ends

This example expands to:

DATA segnent

; assenbl er comands, e.g.,
var dw 0

DATA ends

184 Chapter 7 Assembler Header File

Type Macros

Y ou can use atype macro wherever an ASM data type (such asbyt e, wor d, dwor d,
etc.) can be used.

The type macros correspond to the data types of objects:
% nc the type of aglobal function

% nc_ptr thesizeof apointer to afunction

Yptr the size of a pointer to data

% eg_si ze the size of apointer

% nt the size of an integer

%di nt the size of adouble integer

Table 7-5 shows the type macro expansion for the compact memory model.

Table 7-5. ASM 386 Type Macro Expansion for Compact Memory M odel

Macro Model Sub-model Expansion
%fnc compact RAM or ROM near
%fnc_ptr compact RAM or ROM dword
Yoptr compact RAM or ROM pword
%reg_size compact RAM or ROM dword ptr
%int compact RAM or ROM dword
%dint compact RAM or ROM dd

iC-386 Compiler User's Guide Chapter 7 185

Operation Macros

The operation macros are grouped in four different classes according to their

function:

External expand to declarations of external variables, constants, and

declaration macros functions.

Instruction macros expand to code simulating instructions or the instructions
themselves, depending on the instruction set used.

Conditional macros expand to instructions that test or load data pointers. The
expansion depends on whether data pointers have selectors.

Function definition expand to the basic parts of afunction definition.

macros

External Declaration Macros

186

Use the external declaration macros as follows:

%extern(type, vnane)

%ext ern_const (type, cname)

%ext ern_f nc(fnane)

to declare an external variable wheret ype isa
valid assembler data type or atype macro, and
vname isavariable name; can be used only
outside all functions and segments.

to declare an external constant wheret ype isa
valid assembler data type or atype macro, and
cnane isaconstant name; can be used only
outside all functions and segments.

to declare an externa function where f name is
afunction name; can be used only outside all
functions and segments.

Table 7-6 shows the external definition macro expansion for the compact memory

model for ASM386.

Chapter 7

Assembler Header File

Table 7-6. ASM 386 External Declaration Macro Expansion
for Compact Memory Model

Macro Model Sub-model Expansion
Y%extern compact RAM or ROM DATA segment
extrn vname:type
DATA ends
%extern_const compact RAM CONST segment
extrn aconst:type
CONST ends
compact ROM CODE32 segment

extrn aconst:type
CODE32 ends

%extern_fnc compact RAM or ROM CODE32 segment
extrn fname:near
CODE32 ends

Instruction Macros

The instruction macros provide compatibility between 86 and higher processor

instruction sets.

%ent er expands to the ent er instruction.

% eave expandsto | eave instruction for 186 and higher instruction
sets.

%pusha expands to the pushad instruction for the Intel 386 instruction
Set.

%popa expands to the popad instruction for the Intel 386 instruction
Set.

%pushf expands to pushf d for the Intel 386 instruction set.

%OV SX expands to novsx for the Intel 386 instruction set.

%MoV ZX expands to novzx for the Intel 386 instruction set.

iC-386 Compiler User's Guide Chapter 7 187

Conditional Macros

The conditional macros select source text for assembly depending on whether data
pointers have selectors (the far address format). The conditional macros expand as

follows:

%ov| | sr

% f_sel (text)

% f _nsel (text)

expands to nov if 9% ar _dat a is not set, or to the register load
instruction you specify asthe | sr argument if % ar _dat a is
set. Use this macro as an instruction mnemonic for loading a
datapointer. Thel sr argument can be either | ds, | es, | f s,
or | gs. Notethat %rov usesavertical bar (|) rather than
parentheses to delimit its argument.

expands only if data pointers have selectors. Thet ext
argument is the source text to be conditionally assembled.
Thismacro is equivalent to:

%f (% ar_data) then (text) fi

expands only if data pointers do not have selectors. Thet ext
argument is source text to be conditionally assembled. This
macro is equivalent to:

%f (not % ar_data) then (text) fi

Function Definition Macros

These entries describe the function macrosin detail in their order of use:

% unction
Ypar am
Yparam flt
%aut o

%pr ol og
%epi | og

% et

%endf

188 Chapter 7

open afunction definition

define a parameter name

define a floating-point parameter name
define alocal automatic variable
generate afunction prolog

generate afunction epilog

generate a return instruction

close a function definition

Assembler Header File

%function

%function
Open afunction definition

Syntax

% uncti on(f name)

Where:

f name is the name of the function to be opened.
Discussion

Use % unct i on asthefirst statement in a function definition, to open the function
definition.

For ASM 386 compact model, the % unct i on macro expands to:

CODE32 segnent
fname proc near
public fnane

iC-386 Compiler User's Guide Chapter 7 189

Yparam

Yoparam

Define a parameter name
Syntax

Y%par an{type, pnane)

Where:

type is the data type of the parameter.

pname is the name of the parameter, which is defined as a macro such that

%pnane expandsto avalid reference to the parameter.

Discussion

Use %par amto define a parameter name. Use %par amonly between % unct i on
and %pr ol og. When you define a parameter of datatypet ype, the size of the
parameter block increases by the number of bytes occupied by a parameter of data

typet ype.

Regardless of whether the calling convention is fixed parameter list (FPL) or variable
parameter list (VPL), parameters must be declared in the order that their
corresponding arguments occur in the ASM function call expression.

190 Chapter 7 Assembler Header File

Y%param_flt

%param_flt

Define a floating-point parameter name

Syntax
Y%param flt(type, fpnane)
Where:
type is the data type of the parameter
f pnane is the name of the floating-point parameter, which is defined as a macro
such that % pnane expandsto avalid reference to the fl oating-point
parameter.
Discussion

Use %par am f I t to define afloating-point parameter name. Use %par am f1t only
between % unct i on and %pr ol og.

If you specify the var par ans header control, the effect of %par am f 1t isidentical
to that of %par am If you specify thef i xedpar ans header control, %par am f | t
has no effect, since floating-point arguments are passed on the numeric coprocessor
stack instead of on the processor stack. In general, you must handle floating-point
arguments with a construct such as:

%f (not %pl) then (
fld % pnanme ; load the argunment
) fi
body of code

iC-386 Compiler User's Guide Chapter 7 191

%auto

%auto

Define alocal automatic variable

Syntax
%ut o(type, mmane)
Where:
type can be any valid assembler data type or atype macro.
mane is the name of the variable, which is defined as a macro such that
%mmane expandsto avalid reference to the variable.
Discussion

Use %aut o to define alocal automatic variable. Use %aut o only between

% unct i on and %or ol og. When you define alocal automatic variable of datatype
t ype, the size of the local area allocated by %pr ol og increases by the number of
bytes occupied by avariable of datatypet ype.

192 Chapter 7 Assembler Header File

%prolog

%prolog

Generate a function prolog

Syntax
%pr ol og(registers)
Where:

regi sters isalist of segment registers and general registers. However, the macro
ignores al but the DS, ES, EDI, and ESI registers for ASM 386.
Separate the register names with spaces.

Discussion

Use %pr ol og to generate a prolog function. Use %pr ol og only after % uncti on
and before any other instructions. Use %pr ol og whenever you use %epi | og,

%par am Y%par am f 1 t, or ¥aut o, and be sure to use %pr ol og after %par m

Yparm flt,and %ut o. Youmust also use %epi | og whenever you use %pr ol og.

Of theregistersyou list inther egi st er s argument list, the prolog function pushes
only those that the calling convention requires to be preserved. The prolog function
performs these tasks:

* Pushesregisters

e Pushes EBP for ASM 386 (the base pointer register) and initializesit for useasa
local frame pointer using the ENTER assembler instruction

e SetsESPfor ASM386 using the ENTER assembler instruction

e Allocates space for automatic variables

iC-386 Compiler User's Guide Chapter 7 193

%epilog

%epilog

Generate a function epilog

Syntax
%epi | og

Discussion

Use %epi | og to generate afunction epilog. Use %epi | og only immediately before
areturninstruction. The epilog deall ocates space for automatic variables (allocated
by the %aut o function macro) and pops registers pushed by the %pr ol og function
macro. The epilog also issues the LEAVE assembler instruction, thereby restoring the
EBP register for ASM386; and the ESP register for ASM 386.

194 Chapter 7 Assembler Header File

O%ret

Ooret

Generate areturn instruction

Syntax
% et

Discussion

Use % et to generate areturninstruction. The expansion of % et depends on
whether you specify the var par ans or the f i xedpar anms header control, as follows.

Under the var par ans header control, % et expandsto:
ret

Under thef i xedpar ans header control, % et expandsto:
ret paransize

The par ansi ze isthe sum of the sizes of all the parameters declared with %par am
The par ansi ze must be an even value, since parameters are word-aligned.

iC-386 Compiler User's Guide Chapter 7 195

%endf

%endf

Close a function definition

Syntax
Y%endf (f name)

Where:

f nanme is the name of the function to be closed.

Discussion

Use %endf asthelast statement in afunction definition to close the function
definition. The %endf macro always expands to:

fname endp

196 Chapter 7 Assembler Header File

Function-calling Conventions

To interface functionsin different languages, a programmer must know the calling
convention, data types, and segmentation model used by the different trandators.
This chapter discusses calling conventions for interfacing iC-386 functions with
functions written in other Intel programming languages.

This chapter contains information on how iC-386 generates object code for afunction
call, and how the fixed parameter list and variable parameter list conventions differ.

See also: Segmentation memory models in Chapter 4;
data types, reserved words, conformance to the ANSI C standard,
implementation-dependent compiler features, in Chapter 10

A large application can consist of many separately compiled modules. The binding
process combines the modul es before execution to satisfy references to external
symbols. Use Intel trandators and binding tools to ensure compatibility with the
segmentation model of the microprocessor.

A function-calling convention establishes rules and responsibilities for these
activities:

e Passing arguments to the called function

* Returning avalue from the called function to the calling function

e Saving registers

» Cleaning up the stack

iC-386 Compiler User's Guide Chapter 8 197

The compiler generates four sections of object code for afunction call. These
sections contain the code that handles the function-calling convention. Figure 8-1
shows these four sections of code. The sections are;

setup code in the calling function that the processor executes just before
control transfers to the called function

prolog code in the called function that the processor executes first when control
has transferred from the calling function

epilog code in the called function that the processor executes just before
control returnsto the calling function

cleanup code in the calling function that the processor executes just after control
returns from the called function

Calling Function: Control Transfer Called Function:

Y

Prolog

Setup

(Call) < (Body)

Cleanup

Epilog

W-3381

Figure 8-1. Four Sectionsof Codefor a Function Call

198 Chapter 8 Function-calling Conventions

TheiC-386 compiler supports two calling conventions: fixed parameter list (FPL)
and variable parameter list (VPL). The FPL calling convention is the default for the
iC-386 compiler and for most non-C compilers or trandators. Ensure that the object
code for the calling function and for the called function use the same convention. For
iC-386, usethef i xedpar ans control for the FPL convention and the var par ans
control for the VPL convention.

See also: Individual control descriptionsin Chapter 3

|:| Note

TheiC-386 compiler uses the fixed parameter list (FPL) calling
convention asits default. This feature produces more compact
code. Intel C compilersfor Intel386 and Intel 486 processors before
Version 4.1 use the variable parameter list (VPL) calling
convention. If the calling function and the called function do not
use the same calling convention, the result is unpredictable.

Passing Arguments

A calling function passes some or all of its arguments to the called function on the
processor stack. These points differ in calling conventions:

» Position that arguments occupy on the stack, or order in which arguments are
pushed onto the stack

* Whether the calling function passes an argument by value (the actual value of the
argument appears on the stack) or passes an argument by reference (a pointer to
the argument appears on the stack)

e Theformat of pass-by-value arguments on the stack

TheiC-386 compiler always uses pass-by-reference for passing arrays and
pass-by-value for other objects. The calling function's setup code pushes arguments
onto the stack.

iC-386 Compiler User's Guide Chapter 8 199

FPL Argument Passing

200

In the FPL convention, the calling function pushes all non-floating-point arguments
onto the processor stack, and the first seven (left-to-right) floating-point arguments
onto the numeric coprocessor (or numeric coprocessor emulator) stack. The calling
function pushes all remaining floating-point arguments onto the processor stack.

The FPL convention pushes the leftmost argument in the function call first and the
rightmost argument last. Therefore, the first argument in the list occupies the highest
memory location of all the arguments on the stack for this function call, and the last
argument in the list is on the top of the stack.

Aggregate objects occupy memory on the stack in the same way that they exist in the
data segment: bytes match from low-order memory to high-order memory.

Each argument on the processor stack occupies a multiple of four bytes. If the size of
the argument is less than four bytes, the compiler pads the argument to four bytes
with undefined bits. The compiler pads aggregate arguments to a multiple of four
bytes with undefined bits.

The floating-point arguments on the numeric coprocessor stack occupy 80 bits each
(extended precision). In conformance to the ANSI C standard, the parameter
prototype declaration determines the size of any floating-point arguments on the
processor stack. In the absence of a prototype, or if the parameter isthe eight or
subsequent floating-point value, the calling function pushes floating-point arguments
indoubl e format (64 bits).

When the calling function expects a structure or union as a return value, the calling
function pushes last an argument that is an address where the called function places
the structure or union.

Chapter 8 Function-calling Conventions

|:| Note

A non-prototyped FPL function risks using incorrect offsets for all
parameters following the eighth floating-point parameter if the
eighth or subsequent floating-point parameter is declared within the
function asf | oat instead of doubl e, asfollows:

1. Under the FPL calling convention, the first seven floating-
point arguments are passed in the numeric coprocessor
registers, and all subsequent floating-point arguments are
passed on the CPU stack.

2. Inthe absence of a prototype for the called function, the
calling function always promotes an argument of typef | oat
to type doubl e before passing the argument on the CPU
stack to the called function.

3. If thecalled function declares the eighth or subsequent
floating-point parameter astypef | oat (instead of type
doubl e, as passed), the called function usesincorrect offsets
to access the ninth and subsequent parameters, and the stack
is not adjusted correctly upon return to the calling function.

To avoid such errors, always provide prototypes for all FPL functions
that include floating-point parameters.

VPL Argument Passing

In the VPL convention, the calling function pushes all arguments, including
floating-point arguments, onto the processor stack.

The VPL convention pushes the rightmost argument in the function call first and the
leftmost argument last. Therefore, the last argument in the list occupies the highest
memory location of all the arguments on the stack for this function call, and the first
argument in the list is on the top of the stack.

Aggregate objects occupy memory on the stack in the same way that they exist in the
data segment: bytes match from low-order memory to high-order memory.

Each argument on the processor stack occupies a multiple of four bytes. If the size of
the argument is less than four bytes, the compiler zero-extends or sign-extends to four
bytes depending on the argument's data type. The compiler pads aggregate
arguments to a multiple of four bytes with undefined bytes.

iC-386 Compiler User's Guide Chapter 8 201

In conformance to the ANSI C standard, the parameter prototype declaration
determines the size of a floating-point argument on the processor stack. Inthe
absence of a prototype, or if the parameter is beyond the ellipsis, the calling function
pushes a floating-point argument in doubl e format (64 bits).

When the calling function expects a structure or union as a return value, the calling
function pushes last an argument that is an address where the called function places
the structure or union.

D Note

Variables declared with the r egi st er storage class are candidates
for storage in registers only under the VPL calling convention. The
regi st er storage classisignored under the FPL calling
convention.

Returning a Value

Both the FPL and VPL calling conventions return scalar valuesin aregister and a
floating-point value on the top of the numeric coprocessor stack.

The called function copies a returned union or structure starting at the memory
location pointed to by the last argument on the stack. The called function also loads
the address of the structure or union into aregister, asif returning a pointer to the
return object.

Loading the register and copying a returned union or structure occurs in the called
function's epilog code.

Table 8-1 shows the registers used for different scalar objects for iC-386.

Table8-1. iC-386 FPL and VPL Return Register Use

Data Type FPL or VPL

8-bit result AL

16-bit result AX

32-bit result EAX

64-bit result EDX:EAX

near (short) pointer EAX

far (long) pointer EDX:EAX

real top of coprocessor or
emulator stack

202 Chapter 8 Function-calling Conventions

Saving and Restoring Registers

The FPL and VPL calling conventions preserve different sets of registers. The VPL
calling convention preserves the EDI, ESI, and EBX registers. Table 8-2 showsthe
register preservation scheme of iC-386 for the FPL and VPL conventions.

In the FPL convention, if the calling function uses register variables, the calling
function isresponsible for saving their valuesin the setup code. The balance of

register preservation occursin the called function's prolog code.

Table8-2. iC-386 FPL and VPL Register Preservation

FPL FPL not VPL VPL not

Register Preserved Preserved Preserved Preserved

EAX X X

EBX X X

ECX X X

EDX X X

ESP X X

EBP X X

EDI X X X

ESI X X

CS X X

DS X X

SS X X

ES X X

FS X X

GS X X
iC-386 Compiler User's Guide Chapter 8

203

Cleaning Up the Stack

In the FPL calling convention, the called function pops all the arguments off the
processor stack in its epilog before it returns control to the calling function.

In the VPL calling convention, the calling function pops all the arguments off the
processor stack in its cleanup code after the called function returns control.

In both conventions, the called function's prolog code pops any floating-point
arguments off the numeric coprocessor stack and saves them aslocal variables. If the
called function returns a floating-point value, it isleft on the top of the numeric
coprocessor stack and is overwritten by the next floating-point operand.

204 Chapter 8 Function-calling Conventions

Subsystems

This chapter tells how to use subsystems to create extended segmentation models,
and contains these topics:

e When to use subsystems

* How subsystems combine to form extended segmentation models
e Syntax for defining subsystems

» Example definitions

Segmentation is the term for the division of code, data, and stacks in the Intel 386,
Intel486, and Pentium architectures. The compact segmentation memory model
described in Chapter 4 isthe standard way that iC-386 creates code, data, and stack
segments. When your program contains large amounts of data or code, the standard
segmentation memory models do not offer away to group code and data references
and to structure your program into more segments to take advantage of segmentation
protection mechanisms.

Subsystems extend the efficiency and protection of the compact segmentation
memory model described in Chapter 4. A subsystem is a collection of program
modules that uses the same standard model of segmentation. If you use only the
standard segmentation controls (and not the subsys control) to compile your
program modules, then your program consists of one subsystem with all modules
using the same model of segmentation. The term "extended segmentation model"
refers to the memory model used by any program that consists of more than one
subsystem.

Extended segmentation models offer these advantages:
» Each program subsystem can execute at a different protection level.

» Each subsystem enjoys the segmentation protection mechanisms of the processor
architecture, such as restricted entry points and protection from segment
overruns.

Use compact subsystems for iRMX applications.

iC-386 Compiler User's Guide Chapter 9 205

A subsystem uses either the RAM or the ROM submodel, with constants in the data
segment or code segment, respectively. A program can contain subsystems that use
different submodels.

To compile amodule that is part of a subsystem, place the definitions for the
subsystems in a special text file and use the subsys compiler control in the
invocation or in a#pr agma preprocessor directive to include the special filein each
compilation. If you usesubsys ina#pr agma directive, the directive must precede
any data definitions or executable statements.

Dividing a Program into Subsystems

Using subsystems is an efficient way to structure programs that have large amounts
of dataor code. For example, consider a program consisting of 10 modules, nod1
through mod10. Modules nod1 through nod3 deal with input and initial processing.
Modules nod4 through nod8 do the main data processing. Modules nod9 and
mod10 output the data. Figure 9-1 illustrates the program structure and data flow.

INPUT PROCESS OUTPUT
(mod1 (mod4 (mod9
Data Data Data Data
Input mod2 Flow mod5 Flow mod10) Output
mod3) mod6 -

mod7

mod8)

W-3382

Figure 9-1. Subsystems Example Program Structure

Under the compact segmentation memory model described in Chapter 4, the binder
combines the segments for this program into one code segment containing all the
code from nod1 through nod10, one data segment containing all the data from nod1
through mod 10, and one stack segment, as shown in Figure 9-2.

206 Chapter 9 Subsystems

CODE32 DATA STACK
(All Modules) (All Modules) (All Modules)

<-Cs <-DS <—SS

W-3383

Figure 9-2. Subsystems Example Program in Regular
Compact Segmentation Memory M odel

Suppose the program is restructured using an extended segmentation model
composed of three compact-model subsystems. Each subsystem is given aname
indicating its function:

Subsystem Name Modules in Subsystem

SUBINPUT mod1 through mod3
SUBPROCESS mod4 through mod8
SUBOUTPUT mod9 and mod10

In aprogram composed of compact-model subsystems, modules are combined by the
binder so that:

» Each subsystem has one code segment.
» Each subsystem has one data segment.
e All subsystems share one stack segment.

Figure 9-3 shows the segments for the example if the modules are grouped into three
small-model subsystems.

iC-386 Compiler User's Guide Chapter 9 207

SUBINPUT_CODE32 SUBPROCESS_CODE32 SUBOUTPUT_CODE32

(Code From mod1 (Code From mod4 (Code From mod9
Through mod3) Through mod8) and mod10)

. <

CS Register Changes During Execution

SUBINPUT_DATA SUBPROCESS_DATA SUBOUTPUT DATA STACK
(Data From mod1 (Data From mod4 (Data From mod9 (Stack For
Through mod3) Through mod8) Through mod10) All Modules)
<ss

DS Register Changes During Execution
W-3384

Figure 9-3. Subsystems Example Program Using Small-model Subsystems

The program is efficient because most of the calls and references are near and take
place within a subsystem, and each subsystem enjoys segmentation protection. Far
calls are needed only between the subsystems. Far data references are needed only if
datais referenced between subsystems, or if constants are in code. The compiler
implicitly modifies the declarations of symbols referred to by other subsystems by
inserting the f ar keyword in the appropriate place in the declarations even if the

ext end control isnot in effect.

Y ou do not increase efficiency or protection by merely dividing a program into
subsystems. If all the even-numbered modules are placed in one subsystem, for
instance, and all the odd-numbered ones in another, the program becomes less
efficient due to the greater number of far calls and far data references between
subsystems. A program is most efficient and takes best advantage of segmentation
protection when you place data accessed by a collection of modules and the functions
that refer to that data into a subsystem. Data and code in another subsystem are
protected and can be accessed only if explicitly declared in the subsystem definition.
All code references within a subsystem are near calls. |f you choose the member
modules for your subsystem carefully, you ensure few far calls.

208 Chapter 9 Subsystems

Segment Combination in Subsystems

Chapter 4 describes the way the binder combines segments under the standard
segmentation memory models. To understand the combination of segments for
programs structured with subsystems, you must understand the distinction between
compiling modules with iC-386 and combining modules into a program with
BND386.

The compiler compiles only one module at atime. During these separate
compilations, the compiler generates many code, data, and stack segment definitions.
Then, the binder creates an executable program by combining the segments that have
compatible attributes.

See also: Chapter 4 for more information on segment attributes that the binder
uses, such as like names

Both the standard segmentation control conpact and the extended segmentation
control subsys determine the way segments are combined by controlling the way
segments are named.

Compact-model Subsystems

Recall that the binder combines compiler-generated segments that have the same
name and compatible characteristics. A linked compact-model subsystem named
COVPSUB contains three segments. COVPSUB_CODE3?2 for iC-386, COVPSUB_DATA,
and STACK. When code in the subsystem is executing, the CS register contains the
selector for COVPSUB_CODE32, the DS register contains the selector for
COVPSUB_DATA, and the SS register contains the selector for STACK.

Table 9-1 shows the compiler ssgment definitions for a module compiled with the
subsys control and a definition for a compact-model subsystem. When you specify
-const in code- inthe subsystem definition, the compiler places the constantsin
the modul€e's code segment, which is like specifying the r omcontrol when you are not
using subsystems. When you specify - const i n dat a- inthe subsystem
definition, the compiler places the constants in the modul€'s data segment, which is
like specifying the r amcontrol when you are not using subsystems. |f the subsystem
definition containsasubsyst em i d, making a closed subsystem as defined in Open
and Closed Subsystems, the identifier and an underscore (_) prefix the CODE32 and
DATA segment names.

iC-386 Compiler User's Guide Chapter 9 209

Table 9-1. iC-386 Segment Definitions for Compact-model Subsystems

Description Name Combine-type Access
code segment [subsystem-id_]JCODE32 normal execute-read
data segment [subsystem-id_]DATA normal read-write
stack segment STACK stack read-write

The binder combines segments with the same name when linking the modules for the
program. Thus, each compact-model subsystem contains its own code segment up to
4 gigabytes for iC-386 and its own data segment up to 4 gigabytes for iC-386. All
stack segments from all compact-model subsystems are combined into one stack
segment up to 4 gigabytes for iC-386.

Function pointers are near by default (the offset-only address format). Data pointers
are far by default (the segment-sel ector-and-offset format). Compact-model
subsystems can pass pointer arguments between compact-model RAM,
compact-model ROM, small-model ROM, and large-model modul es without
specifying the f ar keyword because data pointers are always far pointers.

See also: near and far address formats in Chapter 4

If afunction in a compact-model subsystem accepts a pointer parameter exported
from a small-model RAM subsystem, the small-model RAM subsystem must
explicitly usethe f ar keyword in a prototype, declaration, or cast to pass the data
pointer.

Efficient Data and Code References

210

The most efficient and compact code contains few far calls and few far data
references. A call from any subsystem to another subsystem is always afar call.
Data references to and from other subsystems are far references.

Thenear andf ar keywords are type qualifiersthat allow programs to override the
default address size generated for adata or code reference. Y ou must use the

ext end control when you compile programs that use the near and f ar keywords.
Table 9-2 shows the default address sizes for code and data referencesin all
subsystem models.

See also: near andf ar keywordsin Chapter 4,
ext end control description in Chapter 3

Chapter 9 Subsystems

Table 9-2. Subsystems and Default Address Sizes

Subsystem Model Code Reference Data Reference
compact RAM offset selector and offset
compact ROM offset selector and offset

Creating Subsystem Definitions

A text file contains the definition for a subsystem. To compile a module as part of a
subsystem, use the subsys compiler control in the invocation or in a#pr agna
preprocessor directive to include the definition file in the compilation. The subsys
control isaprimary control and must appear in the invocation line or in a#pr agna
preprocessor directive before the first line of data declaration or executable source
text. A #pragna preprocessor directive containing the nodul enane control cannot
follow any #pr agnma containing the subsys control.

See also: subsys control descriptionin Chapter 3

Open and Closed Subsystems

The subsystems that make up an iC-386 program can be either open or closed. The
definition for a closed subsystem must list every program module within it. An open
subsystem contains all modules not specified as part of another subsystem by defaullt.
A program can use open and closed subsystems, according to one of these options:

» All subsystemsin a program are closed.
e A program can have many closed subsystems and a single open subsystem.
» By default, a program has one open subsystem and no closed subsystems.

The syntax for a subsystem definition is shown in the Syntax section. For a closed
subsystem, the compiler must know the name of the subsystem, the subsyst em i d,
and the modules belonging to it, the has list. For an open subsystem, the definition
cannot have asubsyst em i d. By omitting the subsystem name in one subsystem
definition, you automatically create an open subsystem that contains all modules not
claimed in another subsystem's has list. Y ou can add modules not named in a closed
subsystem definition to your program at any time, and the modules automatically
become part of this open subsystem without changing any subsystem definition.

iC-386 Compiler User's Guide Chapter 9 211

Syntax

Defining subsystems tells the compiler:

e The memory model that each subsystem uses

* Whether to place the constantsin the code segment or data segment for the

subsystem

e The modules that belong to each subsystem

» Thefunctions and data that are accessible from outside the subsystem

Making all functions and data available to all subsystems defeats the purpose of
subsystems and decreases the efficiency of the program. For example, if a subsystem
definition declares a function to be accessible from another subsystem, the function is
afar function, making all callsfar calls, even if the function actually is never
accessed from outside its subsystem.

A function or data that is accessible to another subsystem must have external linkage.
In the C programming language, public and external symbols are functions or
variables with external linkage. The binder resolves the addresses for such symbols.
These definitions identify public and external symbols:

Public variable

Public function

External function

External function

212 Chapter 9

defined at the file level, not within a function, and without the
st ati c keyword. By default, a public variable is globally
accessible within its subsystem. Other subsystems can refer
to apublic variable if the definition for the containing
subsystem exports the variable.

defined without the static keyword. The public definition
includes the function code. By default, a public function is
globally accessible within its subsystem. Other subsystems
can call apublic function if the definition for the containing
subsystem exports the function name.

declared with the extern keyword. The external declaration
refersto a corresponding public definition for the variable in
another module within the same or another subsystem.

declared with the extern keyword. The external declaration
can take on the form of a function prototype. The external
declaration does not contain the function code but refersto a
corresponding public definition for the function in another
modul e within the same or another subsystem.

Subsystems

Each subsystem in a program must have a subsystem definition. In this subsystem
definition syntax, itemsin brackets ([]) are optional, itemsin braces ({ }) arealist
from which to choose, and[; ...] indicatesyou can choose another item from the
previous list, separating adjacent list items with a semicolon (;). Enter the dollar
sign ($) and parentheses (()) as shown:

$ nodel ([subsystemid]
Where:

nodel

subsystemid

subnodel

[subnodel] [{has mbdule-list | exports public-list} [; ...] 1)

specifies the segmentation model for the subsystem. Caseis
not significant in the conpact keywords. All modulesin a
subsystem must be compiled with the same model of
segmentation.

specifies a unique name for a closed subsystem. This name
can be up to 31 characters long and must not conflict with any
module name. The compiler forces this identifier to all
uppercase. Theidentifier can contain dollar signs ($), which
the compiler ignores.

specifies the submodel, which defines the placement of
congtants. Use- const in code- for placing constantsin
the code segment or - const i n dat a- (default) for placing
congtants in the data segment. Case is not significant in the
-const in code- and-const in data- keywords. All
modules in one subsystem are compiled with the same
submodel.

iC-386 Compiler User's Guide Chapter 9 213

214

has nodul e- | i st

specifies the modules that make up the subsystem. Case is not
significant in the has keyword. A has specification is
required for a closed subsystem, and the nodul e- | i st must
contain all the closed subsystem modules. A has specification
is optional for an open subsystem, and the nodul e- 1 i st does
not have to contain all of the open subsystem modules.
Identifiersin the nodul e- 1 i st can be up to 31 characters
long and are forced to all uppercase.

Each identifier in the nodul e- | i st must match amodule
name to be included in the subsystem. A module nameisthe
module's source file name without extension, unless specified
differently by the nodul enane control. A particular module
name can appear in only onemodul e- | i st (i.e., amodule
can belong to only one subsystem). Any module whose name
does not appear in anodul e- | i st becomes part of the open
subsystem. Module names can appear in any order in the
nodul e- i st.

exports public-Ilist

Chapter 9

lists the functions and variables exported by the subsystem,
which are the functions and variables that the subsystem
wishes to make accessible to other subsystems. Caseis not
significant in theexpor t s keyword. Any symbol named in
thepubl i c-1i st must be apublic symbol in one of the
subsystem modules. Each symbol must be declared as an
external symbol in all modules accessing the identified
function or variable, whether or not these modules are within
the same subsystem. Caseis significant in symbolsin the
public-1ist. Every subsystem definition, with the possible
exception of the subsystem that contains the nai n() function,
must have an export s list that contains at least the public
symbol for the entry point to the subsystem.

Thepublic-1ist mustlistal symbolsreferred to by other
subsystems. Public symbolsnotinthepublic-1i st are
accessible only from within the subsystem itself. Non-public
symbols do not appear inthe publ i c-1i st. Public symbols
can appear in any order inthepubl i c-1ist.

Subsystems

Exported functions have these :
e They usethefar form of call and return.
» They save and restore the caller's DS register upon entry and exit.

e They reload the DS register with their associated data segment selector upon
entry.

The compiler implicitly modifies the declarations of exported symbols, if necessary,
by inserting the f ar keyword in the appropriate place in the declarations. The
modifications occur even if the ext end control is not in effect.

Export afunction only if it is referenced outside the defining subsystem, because
accessing exported functions requires more code and more execution time than
accessing functions within the same subsystem.

Within aprogram, the subsyst em i d name must be distinct from all module names
because both share the same name space. Within a program (across all subsystems),
exported symbols must also be unique. However, subsyst em i d hames and
module names do not share name space with public symbals.

Thehas and export s lists often have several dozen entries each. To accommodate
lists of thislength, a subsystem definition can be continued over more than one line.
The continuation lines must be contiguous, each must begin with adollar sign ($) in
the first column, and the next non-whitespace character cannot be acommac(,), a
right parenthesis ()), or asemicolon (;). You can specify any number of has and
export s listsin adefinition, in any order, which allows you to format your
subsystem specification file so it can be easily read and maintained.

Compile all modulesin your program with the same set of subsystem definitions, so
that the compiler makes consistent assumptions about the location of external
symbols. To avoid conflicting definitions, place all of the subsystem definitionsin
onefile and use the subsys control in the invocation line or in a#pr agma
preprocessor directive for every compilation. Inconsistent subsystem definitions
cause the binder to issue an error.

iC-386 Compiler User's Guide Chapter 9 215

216

|:| Notes
Do not use the codesegnent or dat asegnent control inan
invocation that specifiesthe subsys control, or when the source
text contains the subsys control in a#pr agma preprocessor
directive. The compiler issues an error or awarning, depending on
whether the subsys control isfound in the invocation lineor ina
#pr agna preprocessor directive, respectively.

A #pr agnma preprocessor directive specifying the nodul enanme
control must precede any #pr agma directives that specify the
subsys control.

The definition for an open subsystem without submodel, has list, or export s list
can be placed on the invocation line. Place al definitions of closed subsystemsinside
the subsystem definitionsfile.

Programs written in iC-386 and in PL/M-386 can share subsystem definitions
because the syntax for the definitionsisidentical for both languages. Symbol names
inthe export s list must match the case used in the C program because C is a case-
sensitive language.

The compiler preserves case distinction in identifiersin expor t s lists. The compiler
alwaysignores dollar signs ($) in identifiers, even if the ext end control isnot in
affect. The compiler ignoresvalid PL/M controls unrelated to segmentation, such as
$1 Fand $1 NCLUDE. The compiler ignores lines whose first character is not a dollar
sign ($).

Chapter 9 Subsystems

Example Definitions

Recall the example program in Dividing a Program into Subsystems. This example
guides you through creating subsystem definitions for the compact model subsystems
in Figure 9-3.

Creating Three Compact-model RAM Subsystems

These subsystem definitions define three compact model RAM subsystems for the
program, which are closed subsystems by definition. The SUBPROCESS and
SUBQUTPUT subsystems export their entry-point functions. No other symbols are
exported. The definitions default to the - const i n dat a- submodel specification.

$ conpact (SUBI NPUT
$ has nodl, npd2, nopd3)
$ conpact (SUBPROCESS

$ has nod4, nod5, nopd6, nod7, nod§;
$ exports process_entry)

$ conpact (SUBOUTPUT

$ has npd9, npdl0;

$ exports output_entry)

The program does not contain calls or references that require the f ar keyword,
because all three subsystems share one single DATA segment, which contains
constants.

iC-386 Compiler User's Guide Chapter 9 217

Assuming that the nod3_f n function in the nrod3 module callsthe pr ocess_entry
function defined in the nod4 module and passes a pointer to some data called

dat a_obj ect , the definitions of nbd3_f n and pr ocess_ent ry have the general
form:

/* in SUBI NPUT */
i nt data_object;

int mod3_fn ()

{
extern int process_entry ((int far *)int far *);
/* calling a function in another */
/* subsystem causes a load to a */
/* segment register */
process_entry (&data_object);
}
55 * [
/* in SUBPROCESS */

int process_entry (int far * data)

{

int nmod4int;

/* de-referencing the pointer causes */
/* a load to a segnent register */

mod4int = *data + 1;

218 Chapter 9 Subsystems

If the subsystem definitions are in afile named conpss. def , the compilation of
mod3. c is:

C.> i¢c386 nod3.c cp subsys(conpss. def)

iC-386 Compiler User's Guide Chapter 9 219

220 Chapter 9 Subsystems

Language Implementation

This chapter contains information on the iC-386 implementation of the C
programming language, and is divided into these topics:

e Datatypesand keywords
e Conformance to the ANSI C standard
e Implementation-dependent compiler features

Where applicable throughout the chapter, conformance to the ANSI C standard is
noted.

Data Types

TheiC-386 compiler recognizes three classes of datatypes: scalar, aggregate, and
voi d. This section describes the iC-386 implementation of the data types.

Objects of adatatype longer than one byte occupy consecutive bytesin memory.
Objects reside in memory from low-order to high-order bytes within aword and from
low address to high address across multiple bytes. The address of an object isthe
address of the low-order byte of the object.

iC-386 Compiler User's Guide Chapter 10 221

Many names of the data types serve as keywords in the source text. These are
keywordsin iC-386:

aut o do goto si gned unsi gned
br eak doubl e i f si zeof voi d
case el se i nt static vol atile
char enum | ong struct whil e
const extern register switch

conti nue fl oat return t ypedef

def aul t for short uni on

These additional keywords are supported by iC-386 if the ext end control isin effect:

alien is a storage-class specifier that indicates a function uses the fixed
parameter list calling convention.

far isatype qualifier that indicates a segment-sel ector-and-offset address.

near isatype qualifier that indicates an offset-only address.

readonly isatype quaifier that is equivalent to the const keyword.
See also: Using the near and f ar qualifiers, in Chapter 4

Scalar Types

A scalar object isasingle value, such as the integer value 42 or the bit field 10011.
Most scalar objects occupy 1, 2, 4, or 8 bytes of memory. Bit fields occupy as many
bits as assigned and need not be a multiple of one byte long (8 bits). A hit field
cannot be longer than one word (4 bytes for iC-386).

Table 10-1 shows the scalar data types for iC-386, the amount of memory occupied
by the data type's object, the arithmetic format, and the range of accepted values.

TheiC-386 compiler supports the declaration of:
* Achar toexplicitly be declared si gned or unsi gned
e Aninteger constant to be declared | ong, unsi gned, or unsi gned | ong

* Enumerated types

222 Chapter 10 L anguage Implementation

Table 10-1. Intel386 Processor Scalar Data Types

Data Type Size in Bytes Format Range
charl 1 integer or 0 to 255 or
two's-complement integer -128 to 127

unsigned char 1 integer 0 to 255

signed char two's-complement integer -128 to 127

enum 4 two's-complement integer -2,147,483,648 to
2,147,483,647

unsigned short 2 integer 0 to 65,535

signed short 2 two's-complement integer -32,768 to 32,767

unsigned int 4 integer 0 to 4,294,967,295

signed int 4 two's-complement integer -2,147,483,648 to
2,147,483,647

unsigned long 4 or8 integer 0 to 4,294,967,295 or
0 to 264-1

signed long 4or8 two's-complement integer -2,147,483,648 to
2,147,483,647 or
-263 10 268-1

float 4 single precision 8.43 x 1037 t0 3.37 x 1038

floating-point (approximate absolute value)

double or 8 double precision 4.19 x 10307 t0 1.67 x 10308

long double floating-point (approximate absolute value)

bit field 1 to 32 bits integer depends on number of bits

near pointer 4 offset-only address 4 gigabytes

far pointer 6 4-byte offset and 2-byte 64 terabytes

selector

1

the si gnedchar control is in effect (default).

Integer (unsigned) if the nosi gnedchar control is in effect, or two's complement integer (signed) if

TheiC-386 compiler supports two precisions for floating-point numbers: f 1 oat and
doubl e. The compiler treatsthe doubl e and | ong doubl e formatsasdoubl e.
The numeric coprocessor automatically promotesf | oat and doubl e objectsto
extended precision for arithmetic operations.

iC-386 Compiler User's Guide

Chapter 10 223

Aggregate Types

An object of an aggregate typeisagroup of one or more scalar objects. These are
the iC-386 aggregate data types:

array

structure

union

Void Type

Thevoi d data type has no values and no operations. Usethevoi d keyword for a
function that returns no value or for afunction that takes no arguments. Usevoi d *
to denote a pointer to an unspecified data type or a pointer to a function that returns
no value. Cast tovoi d to explicitly discard avalue. These are sample declarations
for these uses:

224

has one or more scalar or aggregate elements. All elementsin an array
are the same datatype. The elements reside in contiguous locations
from first to last. Multi-dimensional arraysreside in memory in
row-major order.

has one or more scalar or aggregate components. The different
components of a structure can be different data types. The components
of astructure reside in memory in the order that they appear in the
structure definition, but may have unused memory between
components.

See also: al i gn control and the alocation of structuresin
Chapter 3

has one piece of contiguous memory that can hold one of afixed set of
components of different datatypes. The amount of memory for a union
is sufficient to contain the largest of its components. A union holds
only one component at atime, and the union's data type is the data type
of the component most recently assigned.

void retnothing (int a); /* function returns no val ue */

int intfunc (void); /* function takes no argunents */
void * genericptr(); /* pointer to unspecified type */
(void) intfunc(); /* discard the return val ue */

Chapter 10 L anguage Implementation

1IC-386 Support for ANSI C Features

This section provides information about featuresin the ANSI C standard that are not
discussed elsewhere in this chapter. The iC-386 compiler supports these features
unless otherwise noted.

Lexical Elements and Identifiers

Trigraphs allow C programs to be written without using characters reserved by SO
(International Standards Organization) as alphabet extensions.

Character constants and string literals can contain numeric escape codes in
hexadecimal format.

Wide characters support very large character sets, such as pictographic alphabets.
TheiC-386 compiler recognizes the ANSI wide-character syntax but implements
wide characters the same as ASCI| characters by truncation.

At least 31 characters of non-external names must be significant. The compiler
supports 40-character significance in internal and external names. Caseis significant
ininternal names.

Preprocessing

The operator concatenates adjacent tokens in macro definitions, forming asingle
token.

The compiler concatenates adjacent string literals.

Preprocessor directivesin the source text do not have to begin in column one; the #
character must be the first nonblank character of a preprocessor directive line.

The # operator, followed by the name of a macro parameter, expands to the actua
argument enclosed in quotation marks ("). When creating the string, the
preprocessing facility precedes quotation marks (") and backs ashes (\) within the
argument with a backslash.

The ANSI C standard specifiesthe new #el i f preprocessor directive and the
def i ned preprocessor operator.

A single-character character constant inan#i f or #el i f conditional preprocessor
directive has the same value as the same character in the execution character set.

The #pr agnma preprocessor directive allows communication of
implementation-specific information to the compiler. Most of the iC-386 compiler
controls can be used in a#pr agma preprocessor directive.

See also: Using #pr agnma and compiler control syntax in Chapter 3

iC-386 Compiler User's Guide Chapter 10 225

The maximum length of a#pr agma preprocessor directive is 1 kilobyte characters.
All compiler controls except def i ne andi ncl ude can be specified in a#pr agma
preprocessor directive. Where cont r ol isasingle compiler control and an optional
argument list a#pr agma hasthe form:

#pragma control

An#i ncl ude preprocessor directive can use a macro to identify the file or header
file.

The argumentsto a#l i ne preprocessor directive may result from macro expansion.
The#er r or preprocessor directive reports user-defined diagnostics.

The maximum nesting level of conditional compilation directivesis 16. The
maximum nesting level of macro invocationsis 64.

The maximum number of argumentsin macro invocation is 31.

See also: List of predefined macrosin Chapter 5

226 Chapter 10 L anguage Implementation

Implementation-dependent iC-386 Features

This section provides additional information about how iC-386 implements the
implementation-dependent characteristics of the C language as specified by the ANSI
C standard.

The compiler'sword sizeis 4 bytesfor iC-386. By default, memory read and write
operationsin the Intel 386, Intel486, and Pentium processors occur from low-order
address to high-order address (little endian). Objects over 32 kilobytes do not
conform to ANSI standards for pointer arithmetic.

Characters

The source character set is 7-bit ASCII, except in comments and strings, whereit is
8-hit ASCII. The execution character set is 8-bit ASCII. The compiler maps
characters one-to-one from the source to the execution character set. You can
represent all character constants in the execution character set. The iC-386 compiler
recognizes the wide-character ANSI syntax. Wide characters are implemented the
same as ASCI| characters.

Thesi gnedchar | nosi gnedchar control determines whether the compiler
considersachar that is declared without the si gned or unsi gned keywordsto be
si gned or unsi gned. Thedefault control issi gnedchar. A character value
occupies asingle byte. Each character is made up of 8 bits, ordered from right to left,
or least significant to most significant.

In a character constant, the compiler assigns up to four charactersfor iC-386 to a
word, with the first character in the low-order byte. Inwords containing at |east one
character, when any byte does not contain a character, the compiler fills the byte with
the sign of the highest-order byte that does contain a character. An unused byteis
sign-extended if the si gnedchar control isin effect (default), or zero-extended if
the nosi gnedchar control isin effect.

The encoding of multi-byte characters does not depend on any shift state.

Integers

When a signed or unsigned integer is converted to a narrower signed integer, or an
unsigned integer is converted to a signed integer of equal width, overflow isignored
and high-order bits are truncated; a sign change can occur.

The compiler treats signed integers as bit strings in bitwise operations.

The sign of the remainder on integer division isthe same as the sign of the dividend.
A right shift of asigned integral typeis arithmetic.

See Table 10-1 for types and sizes of integers.

iC-386 Compiler User's Guide Chapter 10 227

Floating-point Numbers

When the compiler converts:

An integral number to a floating-point number, any truncation is controlled by
the numeric coprocessor or emulator.

A floating-point number to a narrower floating-point number, the direction of
rounding is controlled by the numeric coprocessor or emulator.

See Table 10-1 for types and sizes of floating-point numbers.

Arrays and Pointers

Character string initializers within a character array are not null-terminated.

228

An unsigned integer is large enough to hold the maximum size of an array. An
integer is large enough to hold the difference between two pointers to members of the
same array.

When you cast:

A near pointer toi nt , the compiler preserves the bit representation.

A near pointer to | ong, the iC-386 compiler sign-extends the offset if the
| ong64 control isin effect. If the nol ong64 control isin effect, the result isthe
same as casting a near pointer toi nt .

A far pointer toi nt , the compiler yields the offset-only part of the pointer value
and discards the selector.

A far pointer to | ong, the iC-386 compiler sign-extends the high-order 16 bits if
thel ong64 control isin effect. If thenol ong64 control isin effect, theresult is
the same as casting afar pointer toi nt .

Ani nt constant to anear pointer, the compiler preserves the bit representation.

Ani nt constant expression to afar pointer, the compiler uses zero hits for the
selector. Casting any other i nt expression to afar pointer uses the current value
of the DS register for the selector.

A | ong integer to a near pointer, the iC-386 compiler discards the high-order 32
bitsif thel ong64 control isin effect. If thenol ong64 control isin effect, the
result isthe same as casting ani nt to a near pointer.

A | ong integer to af ar pointer, theiC-386 compiler discards the high-order 16
bitsif thel ong64 control isin effect. If thenol ong64 control isin effect, the
result isthe same as casting ani nt to afar pointer.

The compiler can initialize arrays with storage class aut o.

See Table 10-1 for the types and sizes of pointers.

Chapter 10 L anguage Implementation

Register Variables

The ESI and EDI registers can contain objects of ther egi st er storageclass. The
regi st er storageclassis effective only for enum si gned short, si gned char,
i nt,unsi gned i nt,andnear pointer objects. Register storage is honored only
under the variable parameter list (VPL) function calling convention.

TheiC-386 compiler allocates registers for register objectsin this order (only under
VPL):

1. Parameters, inthe order that they appear in the function declaration
2. Loca variables, in the order that the code references them

When alocal variable assigned to aregister goes out of scope, its register becomes
available again.

Structures, Unions, Enumerations, and Bit Fields

Each of the sets of structure, union, and enumeration tags has its own name space.
Each function has a name space for itslabels. Each structure or union has a name
space for its members. Identical names in different name spaces do not conflict.

See also: Virtual symbol table capacity in this chapter

Assignment expressions can assign to structures or unions. A function can have
structures and unions as parameters. The function call passes structures and unions
by value. A function can return a structure or a union.

The compiler can initialize unions and structures of storage class aut o.

When the program accesses a member of a union object using a member of a
different type than was last assigned, the result is undefined.

The first member in a union declaration determines the map of the union'sinitializer.
The compiler represents enumeration typesasi nt .

Bit fields are not necessarily allocated on word boundaries; if abit field is short
enough, it occupies the space between the end of the previous bit field and the end of
the word the previous bit field occupies.

See also: Using the al i gn control to allocate bit fields on word boundariesin
Chapter 3

The compiler treats a bit field that is declared without the si gned or unsi gned
keywords assi gned.

The alocation of hit fieldsin an integer islow-order to high-order.

iC-386 Compiler User's Guide Chapter 10 229

Declarators and Qualifiers

Objects can be declared as being const or vol ati | e. Pointers can point to const
orvol atil e objects. A const object cannot be modified by assignment. The
compiler does not remove referencesto vol at i | e objects during optimization.

Accesstoavol ati | e object constitutes two references, aload and a store, when an
object qualified with thevol at i | e keyword occurs as any of these:

e Anoperand of apre-increment operator

» Anoperand of a pre-decrement operator

e Anoperand of a post-increment operator

» Anoperand of a post-decrement operator

» A left operand of a compound assignment operator

Every other occurrence of avol at i | e object constitutes one reference.

TheiC-386 compiler allows attribute specifiersto follow aleft parenthesis (() or
comma(,). Inthe ANSI C standard, attribute specifiers are valid in declarators only
when subordinate to an asterisk (*). For example, thislineisinvalid inthe ANSI C
standard:

int (const i), volatile j;

However, the iC-386 compiler recognizes the line above as equivalent to these lines:
int const i;
int volatile j;

This extended syntax does not affect the semantics of any source text that conforms
fully to the rules of the ANSI C standard. The extension causes an asymmetry. For
example, the first of these two declarations causes x, y, and z al to be read-only
variables. The second declaration causes only y to be read-only; x and z are both
modifiable:

int const x, y, z; [/* valid for ANSI C */
int x, const y, z; [/* extended syntax */

See also: alien, far,andnear typequalifiersin Chapter 4

230 Chapter 10 L anguage Implementation

Statements, Expressions, and References
The maximum number of:
* Casevauesinaswit ch statement is 512
* Functions defined in amoduleis 1,022
+ Externd referencesin amoduleis511
* Argumentsinafunction cal is 31
The maximum nesting level of:
+ Statementsis 32
* Functions specified in function argument listsis 20

TheiC-386 opt i m ze control governs association of subexpressionsin evaluation.

Virtual Symbol Table

The maximum virtual symbol table sizeis 512 kilobytes. Thissizeislarge enough to
hold over 8,000 C symbols or over 16,000 macros. The virtual symbol table also
stores identifiers and macro bodies. In addition, the compiler generates a symbol for
each string literal, floating-point constant, and temporary variable.

The type table can contain a maximum of 2,048 entries. Each distinct type takes up
one entry in the type table. The compiler does not duplicate identical pointer, array,
function, or qualified types, except that every prototype has a unique entry, even if an
identical prototype entry exists.

iC-386 Compiler User's Guide Chapter 10 231

232 Chapter 10 L anguage Implementation

Messages

TheiC-386 compiler can issue these types of messages:

Fatal errors

Errors (syntax and semantic)
Warnings

Remarks

Subsystem diagnostics
Internal errors

1/0O errors

All messages, except fatal and internal error messages, are reported in the print file.
Fatal and internal errors appear on the screen, abort compilation, and no object
module is produced. Other errors do not abort compilation but no object module is
produced. Warnings and remarks usually provide information only and do not
necessarily indicate a condition affecting the object module.

iC-386 messages relating to syntax are interspersed in the listing at the point of error.
Messages relating to semantics are interspersed in the listing or displayed at the end
of the source program listing; they refer to the statement number on which the error
occurred.

iC-386 Compiler User's Guide Chapter 11 233

Fatal Error Messages

Fatal error messages have the syntax:

i C-386 FATAL ERRCR
message

These are the fatal error messages, in aphabetic order:

argunment expected for control contro
A compiler control is specified without the argument required by context. Not
having arequired argument isafatal error if it occursin the compiler invocation, but
the preprocessor only issues awarning if it occursin a#pr agna directive.

See also: Compiler control syntax in Chapter 3

argunent length limt exceeded for control control
The length of the argument to the control exceeds the maximum allowable by the
compiler. For example, an argument to nodul enane exceeds 40 characters.

conpiler error
This message follows internal compiler error messages. If you receive this message,
contact Radi Sys customer service.

control control cannot be negated
Y ou cannot use the no prefix with this compiler control. Improper negating is a fatal
error if it occursin the compiler invocation, but the preprocessor only issues a
warning if it occursin a#pr agma directive.

See also: Negating compiler controlsin Chapter 3

duplicate control contro
A control that must not be specified more than once was specified more than once.
Only these controls can be specified more than once:

align i ncl ude subsys
defi ne i nterrupt var par ans
fi xedparans sear chi ncl ude

See also: Individual control descriptionsin Chapter 3

If you specify a compiler control both in the compiler invocation and in a#pr agma
preprocessor directive, the compiler invocation specification takes precedence. A
duplicate control isafatal error if it occursin the compiler invocation but the
preprocessor only issuesawarning if it occursin a#pr agna directive.

duplicate interrupt nunber: interrupt_nunber
Indicatesi nt errupt _nunber was used more than onceini nt errupt controls. A
duplicate interrupt number isafatal error if it occursin the compiler invocation, but
the preprocessor only issues awarning if it occursin a#pr agna directive.

234 Chapter 11 M essages

expressi on too conpl ex
A complex expression exhausted an internal structure in the compiler. Break the
expression down into simpler components, or try alower optimization level.

illegal macro definition: rmacro_nane
Aninvalid macro was defined on the command line with the def i ne control.
i nput pathname i s nissing
A primary source file pathname was not specified in the compiler invocation.
i nsufficient menory
There is not enough memory available for the compiler to run. Check the available
system memory.

i nsufficient menmory for nacro expansi on
Aninternal structure was exhausted during macro expansion. Two causes of this
error are: the macro or the actual arguments are too complex, or the macro's
expansion is too deeply nested.

See also: Macro limitsin Chapter 10; and the related error message, macr o
expansi on too nested

internal error: invalid dictionary access, case 3
This error occurs when the compiler isused in a DOS window for Windows 3.0 or
3.1

* You may not have enough expanded memory for the compiler. Try compiling
the source file outside of Windows, and if this is successful, make more
expanded memory available to the compiler.

e |If youareusingemB86, do not set the noens switch.

invalid control: control
A control not supported by the compiler was specified. Check the spelling of the
control. Aninvalid control isafatal error if it occursin the compiler invocation but
the preprocessor only issues awarning if the invalid control occursin a#pr agma
directive.

See also: List of iC-386 controlsin Chapter 3

invalid control syntax
The compiler control contained a syntax error. Invalid control syntax is afatal error
if it occursin the compiler invocation, but the preprocessor only issues awarning if
theinvalid syntax occursin a#pr agna directive.

See also: Compiler control syntax in Chapter 3

iC-386 Compiler User's Guide Chapter 11 235

invalid decimal paraneter: value
Non-decimal characters were found in an argument that must be a decimal value. An
improper non-decimal argument isafatal error if it occursin the compiler invocation,
but the preprocessor only issues awarning if the improper argument occursin a
#pr agma directive.

See also: Compiler control syntax in Chapter 3

invalid identifier: identifier
An identifier does not follow the rules for forming identifiersin C. Aninvalid
identifier isafatal error if it occursin the compiler invocation, but the preprocessor
only issues awarning if theinvalid identifier occursin a#pr agna directive.

invalid syntax for control control
Invalid syntax isafatal error if it occursin the compiler invocation, but the
preprocessor only issues awarning if the improper control syntax occursin a
#pr agma directive.

See also: Compiler control syntax in Chapter 3

nm ssing or msplaced right parenthesis
A right parenthesisis required to delimit arguments to a compiler control. An
improper right parenthesisisafatal error if it occurs in the compiler invocation, but
the preprocessor only issues awarning if the misplaced or missing parenthesis occurs
ina#pr agma directive.

See also: Compiler control syntax in Chapter 3

no nore free space
Theinternal structure used to hold macrosis exhausted. Use fewer macrosin your
program.

See also: Macro limitsin Chapter 10

nul | argurment for control control
Null arguments for compiler controls are not allowed. For example, thisisillegal:

ALl GN(si ga=2, , si gh=2)

A null argument is afatal error if it occursin the compiler invocation, but the
preprocessor only issues awarning if the null argument occursin a#pr agna
directive.

parameter not allowed for control control
This message indicates an attempt to pass arguments to a control that accepts none.
Improper argument passing is afatal error if it occursin the compiler invocation, but
the preprocessor only issues awarning if the improper argument occursin a#pr agna
directive.

236 Chapter 11 M essages

parameter not allowed for negated control control
Negated controls generally do not accept arguments. The noal i gn control isthe
only exception. Animproper argument for a negated control is afatal error if it
occursin the compiler invocation, but the preprocessor only issues awarning if the
improper argument occursin a#pr agna directive.

paranmeter out of range for control control: paraneter
This message indicates an attempt to use an argument value that is out of the valid
range. An out-of-range argument isafatal error if it occurs in the compiler
invocation, but the preprocessor only issues awarning if the improper argument
occursin a#pr agna directive.

See also: Argument values accepted by compiler controls, in Chapter 3

parameter required for control control
A missing required argument is afatal error if it occursin the compiler invocation,
but the preprocessor only issues awarning if the missing argument occursin a
#pr agma directive.

previous errors prevent further conpilation
The compiler was unable to recover from previous errorsin the compilation. Correct
the errors reported thus far, then recompile.

subsys control conflicts with codeseg/dataseg control
A subsys control cannot occur while the codesegnent or dat asegnent control is
in effect, and vice versa.

switch table overflow
Too many active cases existinaswi t ch statement that has not yet been compl eted.

See also: Switch statement limitsin Chapter 10

too many directories are specified for search - pat hnane
Too many directories are specified in the compiler invocation with the control
sear chi ncl ude. The pat hname isthe directory at which the error occurred, that
is, the first directory over the limit.

See also: Search limitsin Chapter 10

type table full
Too many symbols with non-standard data types are defined in the module. Remove
unused definitions, or break down the module.

iC-386 Compiler User's Guide Chapter 11 237

unabl e to recover fromsyntax error
A syntax error has put the compiler in a state that would lead to spurious error
messages or internal error messages if the compiler continues to process the program.
For example:

» Usingthef ar or near keywordsin aprogram compiled without the ext end
control

e Omitting a semicolon from a function declaration, asin this code:
struct a { int ¢} s /* No semcolon after s */

main () {s.c = 0;}

Y ou can correct the problem by adding a semicolon after the declaration of the

structure s:
struct a { int c} s; /* Sem colon added after s */

main () {s.c = 0;}

* Not defining amacro for a user-defined name for a standard data type, asin this
code:
I NT i;
mai n()
{i =201}
Y ou can eliminate the error by using:
#define INT int
whiles, fors, etc. too deeply nested
The statement nesting structure of the module exhausted an internal structure in the
compiler.

See also: Nesting limitsin Chapter 10

238 Chapter 11 M essages

Error Messages
Syntax error messages have the format:

*** ERROR AT LINE number OF file: syntax error near token

Where:

nunber isthe line number of the offending source line.

file is the name of the sourcefile.

t oken is the token in the source text near where the error occurred.

Semantic error messages have the syntax:
*** ERROR AT LINE nn OF filenane: nmessage

Where:

fil ename isthe name of the primary source file or include file in which the error
occurred.

nn is the source line number where the error is detected.

message isthe explanation.

Following is an aphabetic list of error messages.

operator nissing macro paraneter operand
The # operator must be followed by a macro parameter.

operator occurs at beginning or end of macro body
The ## (token concatenation) operator is used to paste together adjacent
preprocessing tokens, so it cannot be used at the beginning or end of a macro body.

a semantic token cannot precede subsys control
Text that congtitutes a semantic token cannot occur before a#pr agma subsys.

align/noalign control not allowed with union/enumtag
A union or enumeration tag cannot be used as an argument to the al i gn or noal i gn
control. Use a structure tag only.

an attenpt to undefine a non-existent nacro
The name in the #undef preprocessor directive is not recognized as a macro.

anonynous par anet er
A parameter in a function definition is prototyped but not named.

argunments not al | owed
Arguments were passed to a function that does not accept arguments.

array too |arge
This error occurs when the size of an array exceeds 4 gigabytes for iC-386.

iC-386 Compiler User's Guide Chapter 11 239

attenpt to use 0 as divisor in division/nodulo
A divide-by-0 was detected in a divide or modulo operation.

basi c bl ock too conpl ex
Thiserror is caused by afunction with along list of statements without any
statements such as| abel , case, i f, got o, or r et ur n. Break the function into
several smaller functions, or add |abels to some statements.

call not to a function
A call is made to a symbol whichis not afunction.

call to interrupt handl er
An interrupt handler can be activated only by an interrupt.

cannot initialize
The type or number of initializers does not match the initialized variable.

cannot initialize extern in block scope
An external declaration cannot be initialized in any scope other than file scope. This
exampleis an invalid external declaration:

f()

{ externint i =1
}

case not in swtch
A case was specified, but not within aswi t ch statement.

code segnment too |large
The size of the code segment exceeds 4 gigabytes for iC-386. Break the moduleinto
two or more separately compiled modules, or use subsystem definitions.

See also: Defining subsystemsin Chapter 9

condi tional conpilation directive is too nested
The module contains more than the maximum number of conditional statements.

See also: Nesting limitsin Chapter 10

constant expected
A non-constant expression appears when a constant expression is expected (e.g., a
non-constant expression as array bounds or as the width of a bit field).

constant val ue rmust be an int
The constant specified must be representable as the data typei nt .

data segment too |large
The size of the data segment exceeds 4 gigabytes for iC-386. Break the module into
two or more separately compiled modules, or use subsystem definitions.

See also: Defining subsystemsin Chapter 9

240 Chapter 11 M essages

default not inside switch
A def aul t label was specified outside of aswi t ch statement.

dupl i cate caseinsw tch, nunber
The same value, nunber , was specified in more than one case inthe sameswi t ch
Statement.

duplicate default in switch
More than one def aul t label was specified within the same swi t ch statement.

duplicate | abel
A label was defined more than once within the same function.

dupl i cate paraneter name
The same identifier was found more than once in the identifier list of afunction
declarator. For example, this code contains a duplicate a identifier:

int f(a, a) {}

duplicate tag
A tag was defined more than once within the same scope.

enpty character constant
A character constant should include at least one character or escape sequence.

floating point operand not allowed
An operand is non-integral, but the operator requires integral operands. That is, ~, &,
| ,*, % >>, and << all require integral operands.
function body for non-function
A function body was supplied for an identifier that does not have function type, asin
this example:
int i {}
function declaration in bad context
A function is defined (i.e., appears with aformal parameter list), but not at module-

level. Or, afunction declarator with an identifier list, which islegal only for function
definitions, was encountered within a function, asin this example:

int main(voi d)

{
int f(a);

}

function redefinition
More than one function body has been found for a single function, asin this example:

int £() {}
int £() {}

iC-386 Compiler User's Guide Chapter 11 241

illegal assignnent to const object
Constants cannot be modified.

illegal break
A br eak statement appears outside of any swi t ch, f or, do, or whi | e statement.

illegal constant expression
The expression withinan #i f or #el i f isnot built correctly.

illegal constant suffix
The suffix of anumber isnot L, U, or alegal combination of the two.

illegal continue
A cont i nue statement appears, but not within any f or , do, or whi | e statement.

illegal #elif directive
An#el i f directiveis encountered after an #el se directive.

illegal #else directive
An #el se directive is encountered after an initial #el se directive.

illegal field size
Legal field sizes are 0-32 for unnamed fields, and 1-32 for named fields.

illegal floating point constant in exponent
A floating-point constant cannot be an exponent.

illegal function declaration
Internal error; may be caused by an earlier syntax error.

illegal hex constant
A hexadecimal constant contains non-hex characters or iswithout a O prefix.

illegal macro redefinition
A macro can be redefined only if the body of the redefined macro is exactly the same
as the body of the originally defined macro.

illegal nesting of blocks, ends not bal anced
Braces delimiting a block of code are unbalanced.

illegal syntax - left parenthesis is expected
The name of amacro that accepts arguments is specified with no argument list, or the
argument list is not properly delimited with parentheses.

illegal syntax in a directive line
A syntax error is encountered in a preprocessor directive.

illegal syntax in a directive line - newine expected
A preprocessor directive line is not terminated with a newline character.

illegal syntax in an argunent |ist
An argument list in a macro contains misplaced or illegal characters.

i nconpati bl e types
The two operands of a binary operator have incompatible types, for example,
assigning a non-zero integer to a pointer.

242 Chapter 11 M essages

nconpl ete type
The compiler detected a variable whose type is incomplete, such as this example
declaration where the type of s is not complete if the program contains no previous
declaration defining the tag S.

int f(struct S s)
{ ...}

nvalid argunment for builtin function
For example, the built-in function causei nt er r upt appears with a non-constant
argument. Built-in functions are the functions that provide direct access to various
processor features.

See also: Syntax of the built-in function callsin Chapter 6

nvalid attribute for: function_nane
The source program attempted to set multiple and conflicting attributes for a
function. For example, avar par ans or f i xedpar ans control appears for a
function whose calling convention has already been established by use, definition,
declaration, or a previous calling-convention control. For another example, a
function identifier appears asan argument to ani nt er r upt control which appeared
in a previous calling-convention or i nt er r upt control, or the function identifier has
been previously used, defined, or declared.

nvalid built-in function
Use Intel486- and Pentium-specific built-in functions only with the nod486 control.
Use Intel 386-specific built-in functions only with the iC-386 compiler.

See also: Built-in functions in Chapter 6

nval i d cast
These are examples of invalid casts:

e castingtoor fromstruct or uni on

e casting avoi d expression to any type other than voi d
nvalid field definition
A field definition appears outside a structure definition or is attached to an invalid
type.
nvalid i nterrupt handl er
Interrupt handlers take no arguments and return no value (voi d).

nval id nmenber nane
The member name (that is, the right operand of a. or a- >) isnot amember of the
corresponding structure or union.

nval i d nunber of paraneters
The number of actual arguments passed to a function does not match the number
defined in the prototype of that function.

iC-386 Compiler User's Guide Chapter 11 243

nval i d obj ect type

Aninvalid object type has been detected in a declaration, for example voi d
array[5] ;.

nvalid pointer arithnetic
The only arithmetic allowed on pointersisto add or subtract an integral value from a
pointer, or to subtract two pointers of the same type. Any other arithmetic operation
isillegal.

nval i d redecl aration nane
An object is being redeclared, but not with the same type. For example, afunction
reference implicitly declares the function as a function returning ani nt . If the actua
definition follows, and it is different, it isan error.

nval i d regi ster nunber
Only certain of the Intel 386, Intel 486, or Pentium processor special registers are
available for usein built-in functions. The register number specified must be a
numeric constant.

See also: Intel386, Intel486, and Pentium processor special registersin Chapter 6

nval i d storage cl ass
The storage classisinvalid for the object declared. For example, al i en can be used
only for external procedures, or amodule-level object cannot be aut o or r egi st er.

nval i d storage cl ass conbi nation
Y ou cannot have more than one storage class specifier in a declaration.

nvalid structure reference
The left operand of a. isnot astructure or a union; or the left operand of a- > is not
apointer to a structure or a pointer to aunion. This error message also occursif an
assignment is made from one structure to another of a different type.

nvalid type
An invalid combination of type modifiers was specified.

nval i d type conbination
An invalid combination of type specifiers was specified.

nval i d use of void expression
An expression of datatype voi d was used in an expression.

eft operand nust be I|val ue
The left operand of an assignment operator, and of the ++ and
- - operators, must be an "lvalue;" that is, it must have an address.

limt exceeded: number of externals
The number of external declarations has exceeded the compiler limit.

See also: Externa declaration limitsin Chapter 10

244 Chapter 11 M essages

macr o expansi on buffer overfl ow
Insufficient memory exists for expansion of a macro; the macro is not expanded.

nmacro expansi on too nested
The maximum nesting level of macro expansion has been exceeded. Macro
recursion, direct or indirect, can also cause this error.

See also: Nesting limitsin Chapter 10

nmenber of unknown size
The data type of amember of a structureis not sufficiently specified.

nmssing left brace
Theinitialization data for an aggregate object (array, structure, or union) must be
enclosed by at least one pair of braces.

nmul tiple parameters for a macro
Two parametersin the definition of amacro areidentical. Every parameter must be
unigque in its macro definition.

nesting too deep
See nesting level limitsin Chapter 10.

new ine in string or char constant
The new-line character can appear in a string or character constant only when it is
preceded by a backslash (\).

no nore room for macro body
Parameter substitution in the macro has increased the number of charactersto more
than the maximum allowed.

See also: Macro limitsin Chapter 10

non addressabl e operand
The & operator isused illegally (such as to take an address of aregister or of an
expression).

non- const ant case expression
The expression in acase isnot a constant.

not hi ng decl ared
A data type without an associated object or function name is specified.

nunmber of argunents does not match nunber of paraneters
The number of arguments specified for the macro expansion does not match the
number of parameters specified in the macro definition.

operand stack overfl ow
Anillegal constant expression existsin a preprocessor directive line.

operand stack underfl ow
Anillegal constant expression existsin a preprocessor directive line.

iC-386 Compiler User's Guide Chapter 11 245

operator not allowed on pointer
An operand is a pointer, but the operator requires non-pointer integral operands (e.g.,
&1| |A1*|/1%>>|<<)'

operator stack overflow
Anillegal constant expression existsin a preprocessor directive line.

operator stack underfl ow
Anillegal constant expression existsin a preprocessor directive line.

parameter |ist cannot be inherited fromtypedef
A function body was supplied for an identifier that has function type, but whose type
was specified viaat ypedef identifier, asin this example:

typedef void func(void);
func f {}

paranmeters can't be initialized
An attempt was made to initialize the parametersin a function definition.

procedure too conplex for optimze (2)
The combined complexity of statements, user-defined labels, and compiler-generated
labelsistoo great. Simplify as much as possible, breaking the function into several
smaller functions, or specify alower level of optimization.

See also: Optimization in Chapter 3
programtoo conpl ex

The program has too many complex functions, expressions, and cases. Break it into
smaller modules.

real expression too conpl ex
Thereal stack has eight registers. Heavily nested use of real functions with real
expressions as arguments is excessively complex. Simplify as much as possible.
respeci fi ed storage cl ass
A storage class specifier is duplicated in a declaration.

respecified type
A type specifier is duplicated in a declaration.

respeci fied type qualifier
A type qualifier is duplicated in a declaration.

si zeof invalid object
Animplicit or explicit si zeof operation is needed on an object with an unknown
size. Examples of invalid implicit si zeof operations are * p++, where p isa pointer
toafunction, or st ruct si gt ype si ga, whensi gt ype is not yet completely
defined.

statenent is too large
A statement istoo large for the compiler. Break it into several smaller statements.

246 Chapter 11 M essages

string too | ong
A string of over 1024 charactersis being defined.

syntax error near 'string'
A syntax error occurred in the program. Thenear st ri ng information attempts to
identify the error more precisely.

t oo many active cases
The limit of active casesin an uncompleted swi t ch statement was exceeded.

See also: Switch statement limitsin Chapter 10
too nmany active functions
The number of function calls within a single expression has exceeded the compiler
limit.
See also: Function call limitsin Chapter 10

too many characters in a character constant
A character constant can include one to four characters. The effect of thiserror on
the object code is that the character constant val ue remains undefined.

See also: Character constant size for your target processor in Chapter 10

too nmany cross-references, data truncated
The cumulative number of cross-references exceeded the compiler'sinternal limit.
Cross-references appear in the symbol table listing when the xr ef control is active.

too many externals
Too many external identifiers were declared.

See also: External identifier limitsin Chapter 10

too many functions
Too many functions were declared.

See also: Function limitsin Chapter 10

too many initializers
An array isinitialized with more items than the number of elements specified in the
array definition.

too neny macro arguments
The maximum number of arguments specified for a macro was exceeded.

See also: Macro limitsin Chapter 10

too many nested calls
The nesting limit for functions called in function argument lists has been exceeded.

See also: Nesting limitsin Chapter 10

iC-386 Compiler User's Guide Chapter 11 247

too many nested struct/unions
Thelexical nesting of st ruct and uni on member listsis limited to a depth of 32.

too many paraneters for one function
The maximum number of parameters specified for one function was exceeded.

See also: Function parameter limitsin Chapter 10

t oo many par aneters for one nacro
The maximum number of parameters specified for one macro was exceeded.

See also: Macro parameter limitsin Chapter 10

unbal anced condi tional conpilation directive
Conditional compilation directives are improperly formed. For example, the program
contains too many #endi f preprocessor directives, or an #el se preprocessor
directive without a matching #i f preprocessor directive.

undefined identifier: identifier
The program contains a reference to an identifier that has not been previously
declared.

undefi ned | abel: | abel

A label has been referenced in the function, but has never been defined.

undefined or not a | abel
An identifier following a got o must be alabel; the identifier was declared otherwise,
or the identifier was declared as a label but was not defined.

undefi ned paraneter
The argument being defined did not appear in the formal parameter list of the
function.

unexpect ed EOF
Theinput source file or files ended in the middle of atoken, such as a character
constant, string literal, or comment.

unit string literal too |ong; truncated
The maximum length of astring is 1024 characters.

variable reinitialization
Aninitializer for this variable was already processed.

void function cannot return val ue
A return with an expression is encountered in a function that is declared as type
voi d. Insuch functions, all returns must be without a value.

248 Chapter 11 M essages

Warnings
Warnings have the syntax:
*** WARNI NG AT LINE nn OF fil enanme: nessage
Where:
fil ename isthe name of the file in which the warning occurred.
nn is the source line number where the warning is detected.
message isthe explanation.

Following is an aphabetic list of warnings.

a #endif directive is missing
At least one #endi f preprocessor directive ismissing at the end of the input source
file(s). The#if,#elif,and#endi f preprocessor directives are not balanced.

an old builtin header file has been used
A built-in header file from a previous rel ease of the compiler has been used. Obtain
the built-in header file provided with this release and useit.

argunment expected for control contro
A compiler control is specified without the argument required by context. A missing
required argument isafatal error if it occursin the compiler invocation, but the
preprocessor only issuesawarning if it occursin a#pr agna directive.

bad octal digit: hex_value (hex)
An octal number contains a non-octal character. The hex_val ue isthe ASCII value
of theillegal character.

comment extends across the end of a file
A comment that is started in afile is not closed before the end of the file.

control control cannot be negated
The prefix no cannot be specified for this compiler control. Improper negating is a
fatal error if it occurs in the compiler invocation, but the preprocessor only issues a
warning if it occursin a#pr agma directive.

See also: List of compiler controls that can be negated in Chapter 3

control control not allowed in pragm
The compiler encountered either adef i ne or ani ncl ude control in a#pr agnma
preprocessor directive.

di fferent enumtypes
An attempt was made to assign one enumtype to a different enumtype.

iC-386 Compiler User's Guide Chapter 11 249

directive line too | ong
The line length limit for #pr agma preprocessor directives was exceeded.

See also: Linelength limit in Chapter 10
di vision by 0
A division by the constant 0 was specified.
escape sequence val ue overfl ow
The escape sequence is undefined.
export ignored: identifier
An identifier that is an enumeration constant appeared in the EXPORTS list of a
subsystem specification. An enumeration constant cannot bef ar .

See also: Subsystemsin Chapter 9

exported identifier: identifier
Anidentifier that is either a built-in or appears as an argument to thei nt er r upt
control, appears also in the EXPORTS list of a subsystem specification.

extra characters in pragna ignored: string
The st ri ng represents characters that the compiler cannot process as part of the
current #pr agma.

filename too | ong; truncated
The filename length exceeded the limit of the OS.

illegal character in header nane: hex_val ue (hex)
Anillegal character was found in the header name of an#i ncl ude < > preprocessor
directive.

illegal character: hex_val ue (hex)
The character with the ASCII value hex_val ue isnot part of the iC-386 character
Set.

illegal escape sequence
The sequence following the backslash is not alegal escape sequence. The compiler
ignores the backslash and prints the sequence.

illegal syntax in a directive line
A preprocessor directive lineis not terminated with a new-line character.

illegal syntax in a directive line - newine expected
A preprocessor directive lineis not terminated with a new-line character.

indirection to different types
A pointer to one data type was used to reference a different data type.

250 Chapter 11 M essages

initializing with ROM option in effect
When aprogram is placed in ROM, initialization of a variable that does not have the
const type qualifier has no effect.

See also: r amand r omcompiler controlsin Chapter 3

invalid control syntax
Invalid control syntax isafatal error if it occursin the compiler invocation, but the
preprocessor only issues awarning if it occursin a#pr agna directive.

See also: Compiler control syntax in Chapter 3

invalid decimal paraneter: value
Non-decimal characters were found in an argument that requires a decimal value.
Invalid non-decimal argument isafatal error if it occursin the compiler invocation,
but the preprocessor only issues awarning if the invalid argument occursin a
#pr agma directive.

invalid identifier: identifier
An identifier does not follow the rules for forming identifiersin C. Aninvalid
identifier isafatal error if it occursin the compiler invocation, but the preprocessor
only issues awarning if theinvalid identifier occursin a#pr agna directive.

invalid syntax for control control
Invalid syntax isafatal error if it occursin the compiler invocation, but the
preprocessor only issues awarning if the invalid syntax occursin a#pr agna
directive.

See also: Compiler control syntax in Chapter 3

nm ssing or msplaced right parenthesis
A right parenthesisis required to delimit arguments to a compiler control. Improper
right parenthesisis afatal error if it occursin the compiler invocation, but the
preprocessor only issues awarning if the missing or misplaced parenthesis occursin a
#pr agma directive.

nul | argurment for control control
Null arguments for compiler controls are not allowed. For example, thisisillegal:

al i gn(si ga=2,, si gh=2)

A null argument isafatal error if it occursin the compiler invocation, but the
preprocessor only issues awarning if the null argument occursin a#pr agma
directive.

iC-386 Compiler User's Guide Chapter 11 251

parameter not allowed for control control
An argument or arguments were passed to a control that accepts none. Improper
argument passing isafatal error if it occursin the compiler invocation, but the
preprocessor only issues awarning if the argument occursin a#pr agna directive.

See also: Compiler control syntax in Chapter 3

parameter not allowed for negated control control
Negated controls generally do not accept arguments (noal i gn isthe only exception).
An improper argument for a negated control is afatal error if it occursin the
compiler invocation, but the preprocessor only issues awarning if the argument
occursin a#pr agna directive.

parameter out of range for control control: parm
An argument or arguments were passed that were out of the specified range for the
parameter. An out of range argument isafatal error if it occurs in the compiler
invocation, but the preprocessor only issues awarning if the argument occursin a
#pr agma directive.

See also: Values accepted by compiler controls in Chapter 3

parameter required for control control
A missing required argument isafatal error if it occursin the compiler invocation,
but the preprocessor only issues awarning if the argument occursin a#pr agma
directive.

See also: Compiler control syntax in Chapter 3

poi nter extension
Anintegral expression is being converted to afar pointer type, and the current value
of DS isbeing inserted as the selector part. Later operations using this value,
particularly comparison against the NULL constant, may not give correct results.

poi nter truncation
A far pointer expression is being converted to a narrower type, which cannot
represent the value of the selector part of the pointer. Later indirection using this
value can give incorrect results.

pragma i gnored
An entire #pr agnma preprocessor directive was ignored as aresult of an error.
Whenever an error isfound in a#pr agma preprocessor directive, the diagnostic is
followed by either this message or r emai nder of pragna i gnor ed, whichever is
appropriate. This message is usually paired with one of several other messages.

predefi ned macros cannot be del et ed/redefined
The predefined macros(e.g., __LINE__ or __FI LE__) cannot be deleted or
redefined by the preprocessor directives #def i ne or #undef i ne.

252 Chapter 11 M essages

remai nder of pragnma ignored
This message indicates that a #pr agna preprocessor directiveis partially ignored as
aresult of an error. Whenever an error isfound in a#pr agna preprocessor directive,
the message is followed by either this message or pr agna i gnor ed, whichever is
appropriate. This message is usually paired with one of several other messages.

subsys control conflicts with codeseg/datasegcontrol
A subsys control cannot occur while the codesegnent or dat asegnment control is
in effect, and vice versa. The preprocessor detected both controlsin #pr agna
preprocessing directives.

token too long; ignored fromcharacter: hex_val ue (hex)
A character sequence was too long (such as an identifier or a macro argument).

too many alignment specifiers for this tag: structure_tag
Alignment has already been specified for thisst r uct ur e_t ag, either in the current
or inaprevious align control. Redundant alignment specification is afatal error if it
occurs in the compiler invocation, but the preprocessor only issues awarning if it
occursin a#pr agna directive.

zero or negative subscript
In an array declaration, the value of an array subscript must be a positive integer.

iC-386 Compiler User's Guide Chapter 11 253

Remarks
Remarks have the syntax:
*** REMARK AT LINE nn OF fil ename: nessage
Where:
fil ename isthe name of the filein which the remark occurred.
nn is the source line number where the remark is detected.
message isthe explanation.

Following is an alphabetic list of remark messages.

a constant in a selection statenent
A constant is encountered in the expression of a selection statement such asani f,
el se, or swi t ch statement.

inmplicit function declaration
The function is used without any previous declarations.

i nval i d nunber of paraneters
The actual number of argumentsin afunction call do not agree with the number of
parameters in a function definition that is not a prototype.

return statenent has no expression
A return statement with no return expression is encountered in a function definition
which returns an expression other than voi d.

statenent has no apparent effect
A statement that does not have any effect in the source code is encountered, asin this
example:
var + 1;

the characters /* are found in a coment
A comment-start delimiter (/ *) occurs between a comment-start delimiter and a
comment-end delimiter (*/).

254 Chapter 11 M essages

Subsystem Diagnostics

Subsystem diagnostic messages have the syntax:
*** ERROR AT LINE nn OF filenane: nmessage

Where:

fil ename isthe name of the primary source file or include file in which the error
occurred.

nn is the source line number where the error is detected.

message isthe explanation.

Following is an alphabetic list of subsystem diagnostic messages.

conflicting segnmentation controls
More than one segmentation control affecting the module being compiled was
encountered. One common cause is specifying both - const i n code- ina
subsystem definition and the r omcontral.

illegal identifier in subsystem specification
An identifier was encountered that does not follow rules for PL/M identifiers.

See also: Subsystem identifiersin Chapter 9

invalid contro
An unrecognized control isin the subsystem definition.

See also: Subsystem definitionsin Chapter 9

subsystem al ready defi ned
The subsystem name has already been defined.

synmbol exists in nore than one has |ist
A module name can occur in only one HAS list.

unexpect ed end of control
A subsystem definition was expecting a continuation line or aright parenthesis.

iC-386 Compiler User's Guide Chapter 11 255

Internal Error Messages

Internal error messages have the syntax:
internal error: nessage

If your compilation consistently produces any of these errors, contact your RadiSys
representative.

IRMX Condition Codes in Error Messages

In some cases, such as areference to a non-existent file, the compiler passesiRMX
condition codes, as shown below.

See also: List of iIRMX condition codes, System Call Reference
ERROR: EXCEPTI ON: 0021H FI LE DOES NOT EXI ST
Check to see that the specified file exists.

If you are using a submit file and it uses library files, check that the path to the library
filesisfully expanded.

If you have just installed DOSRM X, verify that the autoexec.bat file sets the path to
the C header files, then reboot your system.

256 Chapter 11 M essages

Glossary

Absolute address

Access attributes

Aggregate data
type

Alignment (of an
object)
Alignment (of a
segment)
Big-endian

Binder, BND386

Build file

Builder, BLD386

Calling convention

Code segment

Compiler control

iC-386 Compiler User's Guide

An address in memory relative to the beginning of memory.

Characteristics which define the type of segment access allowed:
read-only data, read-write data, execute-read code, or execute-only
code. These attributes are represented by bits 41 (Writable/Readable)
and 43 (Executable) in the segment descriptor.

A datatypethat is a collection of scalar and sometimes aggregate data
types, treated either as a unit, or asindividual scalar or aggregate data

types.
The allocation of an object in memory relative to byte, even-byte, or
4-byte addresses and boundaries.

The allocation of a segment in memory relative to byte, word,
paragraph, or page addresses and boundaries.

A processor that stores multi-byte objects starting with the high-order
byte at the lowest address.

The utility that performslinking. The binder combines segments with
like names and resolves symbolic addressing.

A file of system implementation definitions used by BLD386, to
create an absolutely-located system. The definitions describe system
data structures, initial values for the system, and memory
configuration.

The utility that creates an absolutely-located system from linkable
input modules and system definitionsin abuild file.

The set of instructions that the compiler inserts in object code to
handle parameter passing, stack and register use, and return valuesin a
function call.

A memory segment containing instructions and sometimes constants.

A directive you can specify in the compiler invocation.

Glossary 257

Compiler
invocation

Conditional
compilation

Cross-referenced
symbol table

Current segment

D hit

(Intel386, Intel 486,
and Pentium
processors)

Dataregister

Data segment
Datatype
Debugger

Descriptor

Descriptor
privilege level

Development tool

EFLAGS register
(Intel386, Intel486,
and Pentium
processors)

Error

Expand-down

258

The command that causes the compiler to begin execution.

Compiling only part of the source code, depending on the
preprocessor's evaluation of conditions in the source code.

A symbol table containing source line-number reference information.

The segment pointed to by a segment register at any particular time
during execution.

Bit 54 (B/D) in a segment descriptor. The D bit refers to the default
operand size of a code segment. If the bit is 1, the default operand
sizeis 32 hits. If thebit is O, the default operand sizeis 16 bits.

One of four 32-bit registers (EAX, EBX, ECX, or EDX for Intel 386,
Intel486, and Pentium processors); the processor usually uses data
registersin arithmetic and logical operations.

A segment containing data (e.g., variables and constants).

The format for representing a value.

A development tool that enables you to observe and manipulate the
step-by-step execution of your program.

An eight-byte data structure containing the base, limit, and access
attributes for a given region of linear address space such as a segment,
table, or task state segment.

Bits 29 and 30 in a segment descriptor. The segmentation hardware
checks descriptor privilege levels on accesses to code and data
segments to ensure that the referring code has sufficient privilege.

Any product used for application development.

The processor register containing indicators of the current state of the
processor and of the result of the just-completed instruction.

An exception that does not immediately terminate compilation but can
cause an invalid object module.

A special kind of data segment useful for stacks. The expand-down
attribute isin bit 42 of the segment descriptor. A software system can
dynamically increase the expand-down segment size by lowering the
[imit in the segment descriptor.

Glossary

External reference

Far;far, definition
G-

Fatal error

Filetype

Filename

Filename base

Filename extension

FLAGS register

Gate

General control

General register

Global descriptor
table (GDT)

Global descriptor
table register
(GDTR)

Hardware flags
Host system

iC-386 Compiler User's Guide

A reference to alocation in a different object module via a data
pointer or function call.

A reference from alocation in one segment to alocation in a different
segment; an address with both the segment selector and offset
specified.

An exception that terminates compilation; no object moduleis
produced.

The characteristics of afilereflected in the characters of the filename
following the dot character.

The name of afile, including the device and directory path, if
necessary.

The part of afilename that is |eft of the dot character.
The part of afilename that isright of the dot character.

The processor register containing indicators of the current state of the
processor and of the result of the just-completed instruction. The low-
order 16 hits of the EFLAGS register in Intel 386, Intel486, and
Pentium processors.

An eight-byte data structure used to regulate transfer of control to
another code segment. A gate is sometimes called a descriptor
because it has alayout similar to a segment descriptor. Gates provide
indirection that allows the processor to perform protection checks.

A compiler control that you can specify on the command lineand in a
#pragma preprocessor directive anywhere in the source code as often
as necessary.

Any of the data, pointer, or index registers.

An array of descriptors defining segments and gates available for use
by all tasksin the system. A software system contains only one global
descriptor table.

The system register that contains the base address and limit of the
global descriptor table.

See FLAGS register and EFLAGS register.

The system on which the compiler executes. (See also: Target
system)

Glossary 259

Identifier

In-circuit emulator

Include files

Index register

Instruction set

Interrupt descriptor

table (IDT)

Interrupt descriptor

table register
(IDTR)

Interrupt handler

Listing controls

Little endian

Local descriptor
table (LDT)

Local descriptor
table register
(LDTR)

Lowercase

Machine status
word (MSW)

Macro

The name you specify in your source code to refer to an object or
function.

A system of hardware and software that emulates the operation of a
microprocessor or microcontroller within atarget system.

The source files other than the primary source file; specified in the
include compiler control or in the #include preprocessor directive.

One of two registers, ES| or EDI (for Intel 386, Intel486, and Pentium
processors) that you use for addressing operands during execution.

The executable elements of the object code.

An array of task, interrupt, and trap gates that act as interrupt vectors.
A software system contains only one interrupt descriptor table.

The system register that contains the base address and limit of the
interrupt descriptor table.

The function called when an interrupt occurs.

Controls which specify the names, locations, and contents of the
output listing files.

A processor that stores multi-byte objects starting with the low-order
byte at the lowest address.

An array of descriptors defining segments and gates protected from
use by al but specified tasks in the system. Tasksthat have a pointer
to alocal descriptor in their task state segment can access that table.
The global descriptor table can hold descriptors for local descriptor
tables. A software system can contain many local descriptor tables.

The system register that contains the selector for the descriptor of the
currently active local descriptor table.

For ASCII characters a through z, the hexadecimal values 61 through
TA.

A 16-bit register whose value indicates the configuration and status of
the processor. In Intel 386 and higher processors, the MSW is the low-
order 16 bits of control register 0 (CRO).

A string that the preprocessor replaces with text you specify.

260 Glossary

Module

Near

Numeric
COprocessor

Object

Object code
Object file

Object-file content
controls

Object module

Offset

Output listing
Pathname
Pointer registers

Preprint file

Primary control

Primary source file
Primary source text

Print file

iC-386 Compiler User's Guide

A file of code in some stage of trandation. An object module refersto
the output of atrandator, linker, binder, or system builder. An input
module refersto afile in the form accepted by trandlating, binding, or
building software.

A reference from one location to another within the same segment; an
offset-only address.

An Intel 387 coprocessor, or the Intel486 or Pentium processor on-chip
floating-point unit.

A variable, temporary variable, constant, literal, or macro. (See also:
Object module)

Executable instructions and associated data in binary format.
The file containing the object module that the compiler generates.

Controls which determine the internal configuration of the object file.

The formatted object code that the compiler generates.

The displacement; the number of units (usually bytes) away from the
zero location in memory, or the number of units away from the base
address of the enclosing segment or data structure.

The print file and preprint file that the compiler generates.
The name of adirectory or file relative to a given directory.

The base pointer (EBP for Intel 386, Intel486, and Pentium processors)
and stack pointer (ESP for Intel 386, Intel 486, and Pentium processors)
registers.

A text file that the compiler generates, containing the intermediate
source code after macro expansion, filesincluded using the include
control or the #include preprocessor directive, and conditional
compilation.

A compiler control that can only be specified once. When you specify
it in a preprocessor directive, you must specify it before the first line
of data definition or executable source code.

The file specified as the source file in a compiler invocation.
The contents of the primary source file.

A compiler-generated text file containing code listings, symbolic
information, and information about the compilation.

Glossary 261

Privilege level

Privileged
instructions

Program

Protected mode

Protection

Protection-enable
bit (PE)

Qualifier
Real mode

Relative address
Scalar datatype
Search path

Segment
Segment register

Segmentation
model

One of four valuesin bits 45 and 46 of a segment or special descriptor:
0 (most privileged), 1, 2, or 3 (least privileged). The descriptor
privilege level (DPL) of the currently executing code segment is also
called the current privilege level (CPL).

Instructions that affect system registers or halt the processor. These
instructions can only be executed when the current privilege level isO.

A set of compiled modules ready to be linked or located, or the
complete associated source text.

A mode of execution where the protection-enable bit (PE) ison in the
machine status word. The first far jump has been executed. This
mode uses selectors and descriptors to calcul ate addresses.

The mechanisms implemented by the hardware of the processor,
especially when the protection-enable bit (PE) is on and the first far
jump has been executed. There are five basic kinds of protection
available: type checking, limit checking, restricting addressable
domain, restricting entry points, and restricting instruction set.

Bit 0 in the machine status word. If PE is1, the processor executesin
protected mode. If PE isO, the processor executesin real mode.

Invocation command el ement that controls the result of the invocation.

The mode of execution of the 86 processor, or of higher processors
with the protection-enable bit (PE) off. The 286 and higher processors
execute in this mode upon reset, except the 376 processor executes in
protected mode on reset.

An offset into a segment, before the segment loads into memory.
A datatypetreated asasingle value.

A list of stringsthat the debugger uses as default prefixes of possible
pathnamesto afile.

A continuous piece of memory defined by a base address and a limit.

One of the CS, SS, DS, and ES registers (or FS and GSregistersin
Intel 386 and higher processors) containing a segment selector.

The format used to combine object modules into individual or
contiguous blocks of memory addressable by the processor determines
the placement of constants and the number and names of segments
generated by the compiler.

262 Glossary

Selector

Separately-
compiled code

Source directory

Source-processing
controls

Source text

Stack segment

Symbol table
Symbolic debugger

Symbolic
information

System data
structures
Target system
Task

Uppercase

Warning

iC-386 Compiler User's Guide

A system data structure used in computing an address that identifies a
descriptor by specifying a descriptor table and an index to a descriptor
within that table. A selector also contains a requested privilege level
(RPL), which is the descriptor privilege level (DPL) of the referring
segment.

Individual object modules each resulting from its own compilation.

The directory containing your primary source file.

Controls which specify the names and locations of input files or define
macros at compile time.

Text you write in a programming language such as C.

A segment reserved for dynamic memory allocation for objects such
as temporary variables and function activation records.

A chart in the print file containing symbolic information.
See debugger.

Information about the format, location, and identifier of an object or
function.

Descriptors, tables, gates, selectors, and task state segments.

The system on which your compiled program is intended to execute.
(See also: Host system)

The code, data, and system data structures which collectively define a
sequential thread of execution.

For ASCII characters A through Z, the hexadecimal values 41 through
5A.

A message indicating a situation that is probably unusual but that does
not terminate compilation and probably does not invalidate the object
module.

Glossary 263

Word

Work file

264

Glossary

Two bytes on al Intel family processors. In C programming, a word
isthe amount of storage reserved for an integer, which is 32 bits for
iC-386. The Intel386, Intel486, and Pentium processor documentation
and ASM 386 instruction sets refer to a 16-bit word and a 32-bit word.

A file that the compiler creates, uses, and deletes during compilation.

Index

operator, 225

operator, 225

#define preprocessor directive, 60, 61
#DELETE# DATE__ macro, 126
#DELETE# _FILE__macro, 126
#DELETE# _LINE__macro, 126
#DELETE# _STDC__ macro, 126
#DELETE# _TIME__ macro, 126

#DELETE# ARCHITECTURE_ macro, 127

#DELETE# FAR_CODE_ macro, 127
#DELETE# FAR_DATA_macro, 127
#DELETE# L ONG64_macro, 127
#DELETE# NPX_ macro, 127
#DELETE# OPTIMIZE_macro, 127
#DELETE# ROM_ macro, 127

#elif preprocessor directive, 225

#error preprocessor directive, 125, 226

#include preprocessor directive, 10, 70, 76, 97,

125, 127, 131, 226

#line preprocessor directive, 125, 127, 226
#pragma preprocessor directive, 40, 206, 211,

215, 225
#undef preprocessing directive, 25
#undef preprocessor directive, 60
$dollar signinidentifiers

extend control, 65

%auto assembler macro, 192
%cgroup assembler macro, 183
%code assembler macro, 183
%const assembler macro, 183
%oconst_in_code assembler macro, 181
%/data assembler macro, 183
%dgroup assembler macro, 183
%dint assembler macro, 185
%endf assembler macro, 196
%epilog assembler macro, 194
%extern assembler macro, 186
Y%extern_const assembler macro, 186

iC-386 Compiler User’s Guide

%extern_fnc assembler macro, 186
%far_code assembler macro, 181
%far_data assembler macro, 181
%far_stack assembler macro, 181
%fnc assembler macro, 185
%fnc_ptr assembler macro, 185
%fpl assembler macro, 181
%ifunction assembler macro, 189
%i 186 _instrs assembler macro, 181
%i 386 _asm assembler macro, 181
%if_nsel assembler macro, 188
%if_sel assembler macro, 188
%int assembler macro, 185

%l eave assembler macro, 187
%mov|lsr assembler macro, 188
%movsx assembler macro, 187
%movzx assembler macro, 187
%param assembler macro, 190
%param_flt assembler macro, 191
%popa assembler macro, 187
%prolog assembler macro, 193
%ptr assembler macro, 185
%pusha assembler macro, 187
%pushf assembler macro, 187
%reg_size assembler macro, 185
%ret assembler macro, 195
%sgroup assembler macro, 183
Y%stack assembler macro, 183

(E)DI register, used for register variables, 203
(E)S! register, used for register variables, 203

. extension, 16

st extension, 16
.obj extension, 14
/lang directory, 9

Index

265

A

abnormal termination, 12
access rights
compact-model subsystem, 210
iC-386 compact model, 116
access rights (iC-386), 114
activation records, 115
address
of an object, 221
size, 127
aggregate types, 221, 224
aliasing variables, 86
alien keyword
extend control, 65
align | noalign control, 45, 46, 47
examples, 47, 48, 50
ANSI C standard, 5, 7, 25, 65, 221, 225, 227
conformance, 126, 201
application development, 2
examples, 24
modular, 4, 22
tasks, 1
application system, 5
arguments
maximum number, 231
array, 224,228
assembler invocation, 177
auto storage class specifier, 228, 229
automatic variables, 115

B

big endian, 162
binder, 207, 215

combining segments, 209, 210
binding

compact model, 116
binding (iC-386), 114
bit fields, 222, 229
BLD386, 4,113

interrupt gate, 71
block nesting level, 131
blockinbyte function, 145
blockinhword function, 145
blockinword function, 145
blockoutbyte function, 145

266 Index

blockoutword function, 145
BND286/386
syntax, 22
BND386, 4, 22
example, 24
object control, 24
rconfigure control, 24
renameseg control, 24
using libraries, 24
Bootstrap Loader, 1
buildptr function, 138
built-in functions, 135
byteswap function, 162

C

Clibraries, 24
C-386 compatibility, 53, 57
CALL instruction for Intel386 and Intel 486
processors, 79
caling convention, 66, 67, 108
calling convention, see aso function-calling
convention, 198
case significance, 225
control arguments, 40
controls, 40
case values
maximum, 231
casting
pointer to near, 119
to and from pointers, 228
causeinterrupt function, 146
char datatype, 98
character
constant, 227
set, 227
strings, 115
cleaning up the stack, seefixed parameter list
and variable parameter list
cleanup code, 198, 203
cleartaskswitchedflag function, 151
CODE
compact-model subsystem, 210
iC-86/286 compact model, 116
code | nocode control, 51
code access
efficiency, 113, 119

code segment, 53, 54, 94, 115
compact model, 116
compact-model subsystem, 210

CODE32, 209
compact-model subsystem, 210
iC-386 compact model, 116

CODE32 segment name (iC-386), 53

codesegment control, 53, 216

combine-type
compact model, 116
compact-model subsystem, 210

combine-type (iC-386), 114

combining application withiRMX, 1

command line
preserving case, 40
preserving special characters, 44

compact control, 54, 55, 115, 116, 209

compact model, 113, 205, 206, 210
default address size, 116
dynamic data segments, 116
efficiency, 116
maximum program size, 116
number of segments, 116
segment definitions, 116
segments, 116
selector register use, 116

compact-model subsystems, 207
example, 207
far keyword, 210
segment definition, 209
segment definitions, 210
selector, 209

compatibility
function calling conventions, 65
iC-386 with C-386, 53, 57
non-C trandators, 4
other intel compilers, 65, 66
with Intel tools, 6

compilation heading, 129, 130
example, 130

compilation summary, 130, 133

compiler capabilities, 5

compiler version, 7, 130

compiling, 125

cond | nocond control, 56, 132

conditiona assembler macros, 188

conditiona code, 132

iC-386 Compiler User’s Guide

in sourcelisting, 56
conditional compilation, 91, 125, 128
example, 61
macros, 60
maximum nesting, 226
conditional directives, 128
const attribute specifier, 94, 230
constants, 94
code or data segment, 115
compact model, 116
compact-model subsystem, 210
definition, 115
continued lines
in sourcetext listing, 131
control arguments
case significance, 40
special characters, 44
control register 0 (CRO), 150, 160
control registers, 159
control word macros
numeric coprocessor, 167, 168
controls, 39, 40, 41, 44
arguments, 10
case significance, 10
debugging, 2
for print file, 73, 74
optimizing, 4
converting
char objects, 98
floating-point to integer, 87

cross-reference listing, 102, 106, 111, 130, 133

CSregister
compact model, 55, 116
far function, 119
near variable, 119

D

data
definition, 115
compact model, 116
compact-model subsystem, 210
data access
efficiency, 113, 119
data pointers, 210
compact model, 116
data segment, 54, 57, 94, 115

Index

267

allocating dynamically, 116
compact model, 116
compact-model subsystem, 210
datatypes, 221
char, 98
iC-386, 78
void*, 138
datasegment control, 216
iC-386, 57
iC-386, and subsys control, 57
debug | nodebug control, 58
debug information, 58, 106
debug registers, 159
debugging, 84
line control, 72
source file information, 99
using print file, 51
debugging information
compatibility, 3
declaration syntax, 120
default address size, 210
compact model, 116
overriding, 118, 119
examples, 120
segmentation models, 118
default address size (iC-386), 114
define control, 60
example, 61
defined preprocessor operator, 225

descriptor:, see specia descriptor. see genera

descriptor. see gate descriptor
descriptor_table reg structure, 148
diagnostic control, 12, 62, 63, 132

diagnostic messages, 76, 92, 94, 105, 129, 233

disable function, 146
dollar sign ($), 100, 215
inidentifiers
extend control, 65
DOS applications
iC-86 compiler controls, 5
numeric coprocessor, 5
DSregister
compact model, 55, 116
near variable, 119

268 Index

E

gject control, 64
embedded applications, 5
enable function, 146
enumeration types, 229
epilog code, 198
interrupt handlers, 71
error messages, 62, 63, 233, 239
errors, 129, 132
ESregister
compact model, 116
de-referencing, 119
far variable, 119
exit status, 63
extend | noextend control, 65, 222
extend control, 118, 208, 210
extended segmentation models, 205
definition, 205
extended syntax, 230
extensionsto ANSI C, 65
extern keyword, 212
extern storage class specifier

examples with far type qualifier, 121

externa
linkage, definition, 212
External
function, definition, 212
variable, definition, 212

external declaration assembler macros, 186

external references
maximum per module, 231
external symbols, 106
definition, 212
type information, 58

F

far address
compact model, 116

far function, 119

far keyword, 208, 210
extend control, 65

far pointers, 127, 138
compact model, 55
converting to near pointer, 138
converting to selector, 138

far type qualifier, 118, 119 %epilog, 194

effect, 118 %function, 189
examples, 120, 121, 122, 123 Y%param, 190
whento use, 118 Y%param_flt, 191
whereto use, 120 %prolog, 193
far variable, 119 %ret, 195
fatal error messages, 233, 234

function pointers, 210
compact model, 116
function-calling convention
calling function and called function, 199

fileuse, 13

fixed parameter list (FPL), 66, 108, 198, 222
argument passing, 199
cleaning up the stack, 204

order of arguments on the stack, 199 passing arguments, 199

returning values in registers, 202 returning avalue, 202

saving and restoring registers, 202, 203 saving and restoring registers, 203
fixedparams control, 66, 68, 198 stack use, 204

examples, 67 functions
flag assembler macros, 181, 182 interfacing, 197
flag macros, 142, 143 maximum in argument list, 231
flags maximum per module, 231

examples manipulating, 143
FLAGS register, 140

floating-point, 228 G
in-line functions, 27
libraries, 24 gae
precisions, 223 descriptor, 14? .
unit, 135 GDTR (global descriptor table register), 149
unit, special functions, 163 generd controls, 40
using specid libraries, 24 getcontrolregister function, 159
floating-point literals, 115 getdebugregister function, 159
floating-point unit:, see numeric coprocessor getflags function, 140
form feed in print file, 64 getlocaltable function, 149
FS register getmachinestatus function, 150
de-referencing, 119 getrealerror function, 170
FS register (Intel386) gettaskregister function, 148
far variable, 119 gettestregister function, 159
function global descriptor table register (GDTR), 148,
far, 119 149
pear, 1719_ global functions, 212
function acivation records, 115 global varicbles, 115, 212

granularity (iC-386), 114
group definition
compact-model subsystem, 210

conventions, 66
four sections of code for, 198
maximum arguments, 231

function calling conventions, 67 GS register

function definition assembler macros, 188 de-referencing, 119
%auto, 192 GSregister (Intel386)
%endf, 196 far variable, 119

iC-386 Compiler User’s Guide Index 269

H

halt function, 139, 146

header controls, 176, 177, 178, 179
controls assembler macro, 175, 176, 177,

178, 179
syntax, 177

defaults, 176
flag assembler macros, 181, 182
operation assembler macros, 186
precedence, 177,178, 179
register assembler macros, 182
segment assembler macros, 183, 184
type assembler macros, 184

header files, 97
in-line functions, 25

1/0 layer, 1
1/0O ports

reading and writing, 144
1186.h header file, 135, 136
i286.h header file, 135
i386.h header file, 135, 137
i387_environment structure type, 173
i387_protected_addr structure type, 172
i1387_state structure type, 174
1486.h header file, 135
i8086.h header file, 135
i86.h header file, 135, 136
i87_tempreal structuretype, 173
ICU, 1,5
identifiers, 225

with dollar signs, 100
IDTR (interrupt descriptor table register), 149
inbyte function, 144
in-circuit emulator, 1, 2
include control, 13, 69, 70, 76, 97, 125, 127, 131
includefiles, 69, 76, 97, 132

nesting, 70, 131
inhword function, 144
instruction assembler macros, 187
instruction set, 127

Intel 386 and Intel486, 79

seeing effect in print file, 51
integers, 227

270 Index

integral type

converting to selector type, 138
Intel C

VPL calling convention, 199
Intel development tools

application development, 4

experience with, 9

host systems, 1
Intel publications

ordering, 7
Intel 486 processor, 79, 135
interactive configuration utility, see ICU
internal error messages, 256
interrupt

task switch, 146
interrupt control, 71, 147
interrupt descriptor table (IDT), 71
interrupt descriptor table register (IDTR), 148,

149

interrupt gate, 147

vs. trap gate and task gate, 147
interrupt gate (iC-386), 71
interrupt handlers, 71, 147

286 and higher processors, 146
interrupt number (iC-386), 71
interrupts

manipulating, 146
invalidatedatacache function, 162
invalidatetlbentry function, 162
invocation

example, 130

messages, 12

syntax, 10
invocation line

continuing, 10

length, 10
invocation-only controls, 40
inword function, 144
iPPS PROM programming software, 5
iRMX memory models, 115

K
keywords, 222

L

language directory, 9
language implementation, 221
large segmentation model, 205, 210
LDTR (local descriptor table register), 149
LIBn86, 4
libraries, 2, 22
binding, 22
choosing for binding, 24
choosing for iC-386, 24
far cals, 118
floating-point, 24
operating system interface, 24
line | noline control, 72
LINK86, 4
syntax, 22
linker, 207
combining segments, 209, 210
linking
compact model, 116
list | nolist control, 73, 74, 132
listexpand | nolistexpand control, 75, 132
listinclude | nolistinclude control, 76, 132
listing, seeprint file
listing files, 13
little endian, 162, 227
LOCS86, 4
local descriptor table register (LDTR), 148, 149
|ocation counter, 132
lockset function, 139
logical names
language directory, 9
long data type (iC-386), 127
long type qualifier (iC-386), 78
long64 | nolong64 control, 223
long64 | nolong64 control (iC-386), 78
aligning structures, 48, 50

M

machine status word (MSW), 150
machine status word macros, 151
macro, 91
defining with define control, 60
expansion
In print file, 75

iC-386 Compiler User’s Guide

scope, 69
Macro
example, 61
macro definition, 25
macro expansion, 132
macro invocation
maximum arguments, 226
maximum nesting, 226
macros, 126
predefined, 126
manual scope, 7
memory model
compact, 54,55
memory model:, see also segmentation memory
model
messages, 132, 233
console, 12
diagnogtic, 62
Diagnostic, 63
print file, 12
mod486 | nomod486 control, 79
modulename control, 81, 211, 214, 216
and subsys control, 81

N

name space, 229
near address
compact model, 116
near function, 119
near keyword, 210
extend control, 65
near pointers, 127
compact model, 55
converting to far pointer, 138
near type qudlifier, 118, 119
effect, 118
whento use, 119
whereto use, 120
near variable, 119
norma completion, 12
notational conventions, 44
numeric coprocessor, 24, 87, 135
control word, 164, 166
macros, 167, 168
data pointer, 164
environment, 164, 173

Index 271

flags, 168 using FPL calling convention, 66

instruction pointer, 164 optimization example, 27
Intel 387, Intel486, and Pentium condition level 0, 27, 30
codes, 169 pseudo-assembly code, 30
numeric registers, 163 level 1, 31
stack top, 168 pseudo-assembly code, 31
registers, 164 level 2, 33
special functions, 163 pseudo-assembly code, 33
state, 164, 173 level 3, 35
status word, 164, 168 source code, 27
macros, 171 optimize control, 27, 84, 127, 231
tag word, 164, 165 order of arguments on the stack, see fixed
macros, 165 parameter list and variable parameter list
numerics libraries for iC-386, 24 outbyte function, 144
outhword function, 144
@) outword function, 144

object | noobject control, 14, 82, 83 =

object code
compqnents 1.15 oo page break in print file, 64
offset information, limiting, 99 page header, 129, 130

object file, 13 pagewidth control, 89

defau!ts, 1.4 pass-by-reference arguments, 199
. red_u cing size, 99 pass-by-value arguments, 199
Objef]tam: 83 path prefix, 96, 97
pseudo-assembly listing, 83 Pem um processor, 135
object module pointer, 228
name. 81 compact model, 55
reducing the size of, 84, 106 ~ seeing sizeinprint file, 51
size, 133 pointer indirection, 86
object module format (OMF), 3 precedence of controls, 40
offset-only address, 222 preprint | nopreprint control, 13, 14, 16, 90, 125
format, 210 preprint file, 90, 93
OH386. 5 contents of, 14, 125
OHn86: 4 defaults, 14, 16
operation assembler macros, 186 Preprint file
classes, 186 Defaults, 16
conditional assembler macros, 188 preprocessing, 16, 90, 105, 125
externa declaration assembler macros, 186 conditional compilation directives, 56
function definition assembler macros, 188 diagnostic messages, 63
instruction assembler macros, 187 macro expansion, 75
optimization, 4, 84, 87 preprocessing directives, 128
at different levels, 27 preprocessor directives, 125, 225
reducing debug information, 58, 72 primary controls, 40
run-time performance, 135 primary sourcefile, 10, 69, 90, 91, 92, 96
structure digning, 46 print | noprint control, 12, 14, 16, 92, 125

272 Index

print file, 12, 91, 92, 93, 98, 101, 102, 106, 109,

131, 233
assembly code, 51
characters per line, 89
characters per tab stop, 103
contents, 14
contents of, 125
controls that affect contents, 129
defaults, 14, 16
form feed, 64
lines per page, 88
page heading, 88
page numbers, 130
source listing, 56, 73, 74, 75
includefiles, 69
titlein, 104
Print file
source listing
Includefiles, 76
privilege level, 118
privilege leve (iC-386), 114
processor
1/O ports
reading and writing, 144
program
efficiency, 208
programming for ROM, 5
prolog code, 198
interrupt handlers, 71
protected mode
interrupt handlers, 146
protection, 205, 208
levels, 205
prototype, 109
pseudo-assembly code
example, 30, 31, 33
pseudo-assembly language listing, 51
pseudo-assembly listing, 129, 132
Public function
definition, 212
public symbols, 106
definition, 212
name space, 215
type information, 58
Public variable
definition, 212
punctuation in control syntax, 44

iC-386 Compiler User’s Guide

Q

quotation marks around control arguments, 40,

a4

R

ram control, 94, 115, 127, 209
compact model, 116

reading and writing 1/0 ports, 144

register assembler macros, 182

register storage class, 202

register variables, 229

registers, 108

related publications, 7

remarks, 62, 63, 129, 132, 233, 254

reserved words, see keywords, 222

restoreglobaltable function, 149

restoreinterrupttable function, 149

restorereal status function, 174

rom control, 94, 115, 127, 209
compact model, 116

ROM, programming for, 4

run-time libraries, 2

S

saveglobaltable function, 149
saveinterrupttable function, 149
savereal status function, 174
SBITFIELD macro, 173

scalar datatypes, 221, 222, 223

searchinclude | nosearchinclude control, 69, 96

segment
address in memory, 113
atributes, 113
binding, 113, 116
binding iC-386, 114
compact model, 116
iC-386 characteristics, 114
segment assembler macros, 183
example, 184
segmentation
definition, 205
protection mechanisms, 205
see also memory model, 39
segmentation control, 209

Index

273

segmentation memory model, 209
choosing for iC-86/286, 113
efficiency, 113
extending with subsystems, 114
implementation, 113
iRMX operating systems, 55
number of segments, 115

segmentation protection mechanisms, 205

segments
attributes, 209
compact-model subsystem, 210
name, 209

segment-sel ector-and-offset address, 222

segment-sel ector-and-offset format, 210

selector register
compact model, 55, 116

selector type, 138
converting to far pointer, 138
converting to integral type, 138

setcontrolregister function, 160

setdebugregister function, 160

setflags function, 140

setlocaltable function, 149

setmachinestatus function, 150

setrealmode function, 166

settaskregister function, 148

settestregister function, 160

setup code, 198

signedchar | nosignedchar control, 98, 227

sign-off message, 12

sign-on message, 12

small segmentation model, 208, 210

Soft-Scope debugger, 1

source text
filename, 126
line number, 126
listing, 111, 129, 131

source text listing, 131

specia charactersin control arguments, 44

srclines | nosrclines control, 99

SS register
compact model, 55, 116

stack, 108
definition, 115

STACK
compact model, 116
compact-model subsystem, 210

274 Index

stack segment, 115
compact model, 54, 116
compact-model subsystem, 210
statement numbers, 131
Statements
maximum nesting level, 231
static keyword, 212
static variables, 94, 115
initidlizing, 94
status word macros
numeric coprocessor, 171
storage-class specifier, 222
string literals
preprocessing, 225
structure, 224, 229
structure aligning, 45, 46
by structure tag, 46
with typedef, 47
structures

passing and returning, see fixed parameter

list and variable parameter list
submit files, 5

subsys control, 97, 100, 205, 206, 209, 211, 216

and modulename control, 101
subsystem definitions, 211
constants, 212, 213
examples, 217, 219
exports keyword, 214
functions and data, 212, 213
has keyword, 214
memory model, 212, 213
modules, 212, 213, 214
syntax, 211, 213
continuation lines, 215
sharing with PL/M, 216
subsystem error messages, 255
subsystems, 100, 205
closed, 209, 211, 214, 216
code segment, 209
compact keyword, 213
compact-model, 207
example, 207
compiling, 206
consistent definitions, 215
-const in code-, 209, 213
-const in data-, 209, 213
constants, 205

data segment, 209
definition, 114, 205
efficiency, 208, 210
example, 206
exported functions, 215
characteristics, 215
exported symbols
name space, 215
exportslist, 214, 215
far cals, 118, 208
far datareferences, 208
far keyword, 215
haslist, 211, 215
has specification, 214

implicit declaration modification, 208, 215

module name
name space, 215
near calls, 208
open, 211, 214, 216
RAM and ROM submodels, 205
subsystem-id, 209, 211, 213
name space, 215
switch statement
maximum case values, 231
symbol attributes, 106
symbol tables, 229, 231
symbolic debugger, 2, 106
Symbolic debugger, 58
symbols | nosymbols control, 102, 133
symbolslisting, 102, 106, 111, 130, 133
syntax conventions, 44
system address registers, 148
system calls, 71
System Debugger, 1

T

tabwidth control, 103
tag word macros
numeric coprocessor, 165
target environments, 5
task gate, 147
Vvs. interrupt gate and trap gate, 147
task register (TR), 148
task switch in nested interrupt task, 146
tempreal_t typedef, 174
test registers, 159

iC-386 Compiler User’s Guide

title control, 104

trandate | notrandate control, 12, 14, 16, 105

trandation, 105
trap gate, 147
vs. interrupt gate and task gate, 147
trigraphs, 225
type | notype control, 106
and debug control, 58
type assembler macros, 184
type checking, 58, 106
type information, 106
type qudifiers, 222
interpreting, 121
near and far keywords, 118, 210
typetable, 231
typedef, 3
aigning structures, 47

U

union, 224, 229
util.ah header file, 175
assembling with, 177

controls assembler macro, 175, 176, 177,

178, 179
header controls, 176, 177, 178, 179
including in assembly text, 175
syntax, 177
macro groups, 175
utilities, 4

\Y,

variable parameter list (VPL), 66, 108, 198
argument passing, 201
cleaning up the stack, 204
example, 110
order of arguments on the stack, 199
returning values in registers, 202
saving and restoring registers, 202, 203
variables
diasing, 86
far, 119
near, 119
static, 94
varparams control, 108, 198
examples, 68

Index

275

version of compiler, 7
void * datatype, 138
void datatype, 221, 224
void type specifier
interrupt handlers, 71
volatile attribute specifier, 230

w
warnings, 62, 63, 129, 132, 233, 249

276 Index

whinvalidatedatacache function, 162
wide characters, 225

word size, 227

work files, 13

X

xref | noxref control, 111, 133

	IC�386 Compiler User’s Guide
	Quick Contents
	Contents
	Chapter 1: Overview
	Software Development With iC˚386
	Using the Run-time Libraries
	Debugging
	Optimizing
	Using the Utilities
	Programming for Embedded ROM Systems

	Compiler Capabilities
	Compatibility With Other Development Tools
	About This Manual
	Related Publications

	Chapter 2: Compiling and Binding
	Using Files and Directories
	Invoking the iC-386 Compiler
	Invocation Syntax on iRMX Systems
	Invocation Syntax on DOS Systems
	Sign˚on and Sign˚off Messages

	Files That the Compiler Uses
	Work Files
	Object File
	Listing Files

	Using Submit, Batch and Command Files
	Using iRMX Submit Files
	Using DOS Batch Files for DOSRMX Systems
	Using DOS Command Files in DOSRMX Systems

	Binding Object Files
	Choosing the Files to Bind
	Examples of Binding

	In˚line Functions
	Compiling at Different Optimization Levels
	Results at Optimization Level 0
	Results at Optimization Level 1
	Results at Optimization Level 2
	Results at Optimization Level 3

	Chapter 3: Compiler Controls
	How Controls Affect the Compilation
	Where to Use Controls
	Alphabetical Reference of Controls
	align | noalign
	code | nocode
	codesegment
	compact
	cond | nocond
	datasegment
	debug | nodebug
	define
	diagnostic
	eject
	extend | noextend
	fixedparams
	include
	interrupt
	line | noline
	list | nolist
	listexpand | nolistexpand
	listinclude | nolistinclude
	long64 | nolong64
	mod486 | nomod486
	modulename
	object | noobject
	optimize
	pagelength
	pagewidth
	preprint | nopreprint
	print | noprint
	ram | rom
	searchinclude | nosearchinclude
	signedchar | nosignedchar
	srclines | nosrclines
	subsys
	symbols | nosymbols
	tabwidth
	title
	translate | notranslate
	type | notype
	varparams
	xref | noxref

	Chapter 4: Segmentation Memory Models
	How the Binder Combines Segments
	Combining iC˚386 Segments With BND386
	How Subsystems Extend Segmentation

	Compact Segmentation Memory Model
	Compact Model

	Using near and far
	Addressing Under the Segmentation Models
	Using far and near in Declarations
	Examples Using far

	Chapter 5: Listing Files
	Preprint File
	Macros
	Include Files
	Conditional Compilation
	Propagated Directives

	Print File
	Print File Contents
	Page Header
	Compilation Heading
	Source Text Listing
	Remarks, Warnings, and Errors
	Pseudo˚assembly Listing
	Symbol Table and Cross˚reference
	Compilation Summary

	Chapter 6: Processor-specific Facilities
	Making Selectors, Far Pointers, and Near Pointers
	Using Special Control Functions
	Examining and Modifying the FLAGS Register
	Examining and Modifying the Input/Output Ports
	Enabling and Causing Interrupts
	Interrupt Handlers

	Protected Mode Features of Intel386 and Higher Processors
	Manipulating System Address Registers
	Manipulating the Machine Status Word
	Accessing Descriptor Information
	Adjusting Requested Privilege Level

	Manipulating the Control, Test, and Debug Registers of Intel386™, Intel486™, and Pentium(Processors
	Managing the Features of the Intel486 and Pentium Processors
	Manipulating the Numeric Coprocessor
	Tag Word
	Control Word
	Status Word
	Intel387™ Numeric Coprocessor, and Intel486 or Pentium Processor FPU Data Pointer and Instruction Pointer
	Saving and Restoring the Numeric Coprocessor State

	Chapter 7: Assembler Header File
	Macro Selection
	Flag Macros
	Register Macros
	Segment Macros
	Type Macros
	Operation Macros
	External Declaration Macros
	Instruction Macros
	Conditional Macros
	Function Definition Macros

	%function
	%param
	%param_flt
	%auto
	%prolog
	%epilog
	%ret
	%endf

	Chapter 8: Function-calling Conventions
	Passing Arguments
	FPL Argument Passing
	VPL Argument Passing

	Returning a Value
	Saving and Restoring Registers
	Cleaning Up the Stack

	Chapter 9: Subsystems
	Dividing a Program into Subsystems
	Segment Combination in Subsystems
	Compact-model Subsystems
	Efficient Data and Code References

	Creating Subsystem Definitions
	Open and Closed Subsystems
	Syntax

	Example Definitions
	Creating Three Compact-model RAM Subsystems

	Chapter 10: Language Implementation
	Data Types
	Scalar Types
	Aggregate Types
	Void Type

	iC˚386 Support for ANSI C Features
	Lexical Elements and Identifiers
	Preprocessing

	Implementation˚dependent iC˚386 Features
	Characters
	Integers
	Floating˚point Numbers
	Arrays and Pointers
	Register Variables
	Structures, Unions, Enumerations, and Bit Fields
	Declarators and Qualifiers
	Statements, Expressions, and References
	Virtual Symbol Table

	Chapter 11: Messages
	Fatal Error Messages
	Error Messages
	Warnings
	Remarks
	Subsystem Diagnostics
	Internal Error Messages
	iRMX Condition Codes in Error Messages

	Glossary
	Index

