Boost Development Tools Quick Reference Guide
tenisys

"INtime Boost is a library that utilizes Boost headers but is
configured to use INtime Libraries by overriding files and using
I n Sta I I BOOSt project preprocessor definitions.

1. Install Git e You can use your own favorite, but this example shows Tortoise Git.
e Install Tortoise Git from https://tortoisegit.org/

2. Clone Boost from the

e e Clone boost from https://github.com/boostorg/boost.git choosing your directory.

https://github.com/boostorg/boost.git

45" Git clone - TortoiseGit

Clone Existing Repasitory

URL: G https: ffgithub. com/boostorg/boost.ait

Directory: C:\boost [or put your selection here]

[Depth 1
[Branch
[Load Putty Key

From SYM Repository
|:| From SVM Repository

Trunk: | trunk

From: [i]

[recursive || Clone into Bare Repo [] Mo Chedkout
|:| Origin Mame
Tags: tags Branch: branches
Username:

Browse...

QK

J [Cancel] [Help

Boost Submodules

Update Using Git
Select:
TortoiseGit
Switch/Checkout

Please see
Boost_release_notes.txt
(located in the INtime\help
directory) for the boost
submodule version to
download.

Then add the Commit
Version to the Commit Field
Then Overwrite Tree
Changes.

B <

E‘? Liﬁ;ﬁ

-]

>

fiiy iy i v

Expand

Qpen in Yisual Studio

Qpen in new window

7-Zip

CRC SH2,

Agent Ransack..,

Select Left Folder for Cormpare

Share with

Git Sync..,
Git Comenit..
TartoiseGit

Hg “Workbench
TortoiseHg

Add to archive...

Add to "boost.rar”

Caormpress and ermail..

Cormpress to "boostrar” and email
Restare previous wersions

Include in library
Send to

Cut
Copy

Delete

Rename
T ey

Properties

Cloning the project doesn’t get the source from boost, we must
update the submodules. Right click on the download directory and

select the following.

Diff

AP

Diff with previous wersion

Show log

Shour Reflog
Browwse References
Daermon

Revizsion graph
Repo-browser

Check for modifications

P PPOPTE

i Rebase..,

Stash Sawve

b

Bisect start

Resolwe..,
Rewert...

Clean up..

Switch/Checkout..,
Merge...
Create Branch...

Create Tag..

D19« Q5 &

Export...

&

Add...

Submodule Add...
Submodule Update,.,

Create Patch Serial..
Apply Patch Serial...

Settings

e BB N e

£° C\git\boost_172 - Switch/Checkout - TortoiseGit pd
Switch To
() Branch
OTag boost-0.7.0
@ Commit Ab0cod768db45ded8fballeadcfialac0233df0a R
Option
Then click on [] Create New Branch Branch_4b0cid76
Update Submodules. o
[] Overwrite working tree changes (force) [] Merge
Track
QOverride branch if exists
oK Cancel Help

nt Ciboost_installboost - Git Cormmand Progress - TortoiseGit

RN (O X5

Succesz (3057 m= @ 10F26F201% 4:5&6:39 PM)

Update Submaodules | »]

Close

git.exe checkout -f Zhdch97cdlebcfd794c]ldadfdEizcafaclcBEfLEZ ——

HEAD is now at Zbdcbhb57cd Update poly collection from master

abark

-
42" CAINTime\Componentsiboostli.\madularized_boost - Git Comman... E@g

&

Tioor orroy

Submodule path "libs/farray': checked out

'Gf3aea2i00fadbed4cliEzib3d3148432867ddagT"

git_exe submodule update --init --recursive --force —-
"liksz/asic”

43" CAINTime\Components\boostlib\git\modularized_boost - Submodule Upda...
Path:
tools/check_build D
Aln
Submodule Update Options
Initialize submodules (—init) No fetch
Recursive Merge
Farce Rebase
Remaote tracking branch
[select/deselect al I oK I [Cancel] | Help
[Iwihole Project

Install Intime's

As of intime7.0, the boost SDK is available via the download page
for each release of INtime. For example boost172sdk-24050-1.zip
corresponds to Intime version 24050-1.

Boost167sdk is phased out as of Intime 7.

a.

Work around
for missing
application
wizard after
installing
boost.

If the boost application wizard doesn’t show up as shown in the following picture. Please uninstall the platform
tools for the visual studio version that you are using to develop and reinstall them. This will make sure that the
wizards are installed in the correct locations.

= m] X
Create a new project boost -
Clear al
Recent project templates All languages - All platforms - All project types -
@ Application Wizard (,; Boost Application Wizard

"’ Create an INtime Boost Application Skeleton
@ Boost Application Wizard

] Python Application Python
Not finding what you're looking for?

. Install more tools and features
i Dynamic-Link Library (DLL) Crt

*% Static Library Wizard

1 CLR Empty Project (NET) Cis
R CLR Empty Project (NET Framework) C+t
B Console Application c#

Back Next

L}

INtime Development Environment Configuration

Visual Studio 2012 Install Uninstall
Visual Studio 2013 Install Uninstall
Visual Studio 2015 Install
Visual Studio 2017 Install Uninstall
Visual Studio 2019 Install Uninstall
Visual Studio 2022 Install Uninstall

oK Help

Since the boost project is vast, it is recommended that INtime
boost projects use the Property Manager in Visual Studio with

. project property sheets. These property sheets provide project
Set U p P rOJ eCt property definitions (PRPD) for include directories, linker library
directories, and linker input dependencies.

b. Decide how
you want to
configure
your project.

In Visual Studio, and INtime, you can create a boost application. The following shows for an empty project.

C.

Create A
New Project

-
New Project

A~

b Recent

4 Installed

4 Templates
b Visual C#
I+ Visual Basic
Visual F#
4 Visual C++
b Windows
ATL
CLR
General
MFC
Test
Win32

Extensibility
IMtime Projects
Python

I JavaScript
PowerShell
I TypeScript

Game

Ruild Acceleratar -
b Online Click here to go online and find templates.
Narne: INtimeBoostApp2 I
Location:

Solution name:

Cross Platform

.MET Framework 4.52 = Sertby: Default -

Search Installed Templates (Ctrl+E) P~

@ Application Wizard IMtime Projects Type: INtime Projects
-

Create an INtime Boost Application
Wizard INtime Projects Skeleton.

ﬁ Shared Library Wizard INtime Projects
..
=

Boost Appl

Static Library Wizard INtime Projects

CAINTimel M

INtimeBoostApp2 Create directory for solution
[] Create new Git repository

d. If developing
projects for
testing
please
uncheck
place
solution and
project in
same
directory.

The tests require files which
are read from dynamically,
Installation_Paths.txt is
located in the support_folder
located in the solution
directory. The checkbox
needs to be unchecked for
this file to be found during
runtime.

Configure your new project

Boost Application Wizard

Project name

Location

CAUsers\SSemon\source\repos

Solution name @

INtimeBoostApp4

k solution and project in the same directory
Make sure this is

|"\ unchecked if running the

supplied boost tests and
examples.

Back

Create

e.

Empty
Project

-
INtime Application Wizard - INtimeBoostApp2

tenAsys’

Real-time Virtualization Experts

®©

O

O

]

What kind of INtime/Boost application do you want to create?

An empty project
A "Hello World" application

A full-featured application

Generate Intime C++ source (using INtime (rtpp) classes where applicable)

oK Cancel

Help

f.

Boost Wizard The wizard sets the property manager, and project property definitions (PRPD) for you.

You may select if you want to configure boost examples or boost tests.

:

INtime Application Wizard - INtimeBoostApp2

tenAsys’

Real-time Virtualization Experts

Please see the IntimeBoostQuickRefGuide.docx for reference.

This will be included within your project.

[] cConfigure INTime BOOST tests

[] Configure INTime BOOST examples

Property Sheets

a. Property Sheets

b. How to manually update the Property
Manager Config

Since the boost project is vast, we use property sheets to
configure the PRPD (project property definitions).

The boost wizard adds the following property sheets to the project. (PRPD)
project property definitions.

boostlib.props — (PRPD) used to build the cpp11 - vs2015 project.
boost17.props — (PRPD) used to build the cpp17 - vs2017 project.
Boost20.props — (PRPD) used to build the cpp20 - vs2019 project or vs2022
project.

boostlibtest.props — This sheet sets the (PRPD) for the test directories of INtime
boost.

boostlibExample.props — This sheet sets the (PRPD) for the example directories
of Intime.

Note: INtimelnstallDirectory is usually at C:\Program Files (x86)\INtime, and
vstudioVersion for visual studio 2015 is vstudio140

Verify that steps 6 and 7 are what you expect and make changes when
necessary.

Within Visual Studio, click the View tab. In the Other Windows group, click
Property Manager. In the property manager window right click on your project
and click on Add Existing Property Sheet button. Select the boost][...].props file
from INtimelnstallDirectory\INtime\vstudioVersion\wizards\boostprojects.

C.

How to change include paths.

In C++ General group modify the Additional Include Directories:

Note since boost overrides everything else, it’s important to have
S(boost_1ib_include_paths) asthe first entry, so that it takes
precedence. Otherwise overrides could be missed and may result in compile
errors. The developer may have to add additional include directories for their
project. In this case it is recommended to add them at the tail of the string.
This is represented as S(other); below.

Generic Boost:

S(boost_1ib include_ paths);S(other);%(AdditionalincludeDirectories)
For Boost Tests:

S(boost_1ib_include_paths);S(other);
(boost_test_include_directories); %(AdditionalincludeDirectories)
For Boost Examples:

S(boost_1ib_include_paths);$(other);
S(boost_example_include_directories);
%(AdditionallncludeDirectories)

d. How to change
preprocessor definitions
and macros.

In C++ General group modify the Preprocessor Definitions, you will at least want to have:

For Cpp11/Vs2015:

__INTIME_BOOST__; INTIME_CPP11; INTIME_USE_IOCP__;

__INTIME_PTHREAD__; WIN32; WIN32_WINNT=0x0501; HAS NAMESPACE;
_USRDLL; _USE_64BIT_TIME_T;__INTIME_TEST_TOOLS;
_BOOST_GIL_NO_TIFF_LIB;BOOST_GIL_NO_PNG_LIB;
BOOST_THREAD_USES_CHRONO;
BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED;
BOOST_USE_OWN_EXCEPTIONS;S(wolfssl_macros);%(PreprocessorDefinitions)

For Cpp17/Vs2017:

__INTIME_BOOST__;__INTIME_CPP17;__INTIME_USE_IOCP__;

__INTIME_PTHREAD__; WIN32;_WIN32_WINNT=0x0501; HAS_NAMESPACE;
_USRDLL; USE_64BIT_TIME_T;__INTIME_TEST_TOOLS;
BOOST_GIL_NO_TIFF_LIB;BOOST_GIL_NO_PNG_LIB; BOOST_THREAD_USES_CHRONO;
BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED;
BOOST_USE_OWN_EXCEPTIONS;

SILENCE_ALL_CXX17_DEPRECATION_WARNINGS;
_SILENCE_BOGUS_WARNINGS;__BYPASS_ITERATOR_DEBUG_LEVEL 2_;
S(wolfssl_macros);%(PreprocessorDefinitions)

For Cpp20/Vs2020, or Cpp20/Vs2022:
__INTIME_BOOST__;__INTIME_CPP20;__INTIME_USE_IOCP__;
__INTIME_PTHREAD__;WIN32; WIN32_WINNT=0x0501; HAS_NAMESPACE;
_USRDLL;_USE_64BIT_TIME_T;__INTIME_TEST_TOOLS;
BOOST_GIL_NO_TIFF_LIB;BOOST_GIL_NO_PNG_LIB; BOOST_THREAD_USES_CHRONO;
BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED;
BOOST_USE_OWN_EXCEPTIONS;

SILENCE_ALL_CXX17_DEPRECATION_WARNINGS;

_SILENCE_BOGUS_WARNINGS; _BYPASS_ITERATOR_DEBUG_LEVEL_2_;
S(wolfssl_macros);%(PreprocessorDefinitions)

e.

Macros to
disable
warnings.

Since boost has many uninitialized variables, and some deprecated items that the developer may still want
the use. A few macros are added to disable some of these warnings.
SILENCE_ALL_CXX17_DEPRECATION_WARNINGS and _SILENCE_BOGUS_WARNINGS;

<boost/config.hpp> has the SILENCE_BOGUS_WARNINGS and disables the following warnings:

#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
warning)

#pragma warning(disable
#pragma warning(disable
#pragma warning(disable
#pragma warning(disable

:4018) // '<": signed/unsigned mismatch

:4100) // 'variable_name': unreferenced formal parameter

: 4189) // 'variable name': local variable is initialized but not referenced

: 4456) // declaration of 'variable name' hides previous local declaration

: 4458) // declaration of 'variable name' hides class member

: 4459) // declaration of 'variable name' hides global declaration

: 4503) // 'variable name': decorated name length exceeded, name was truncated
:4702) // unreachable code

: 4706) // assignment within conditional expression

:4709) // comma operator within arr index expression

:4714) // marked as __forceinline not inlined

: 4718) // recursive call has no side effects, deleting

: 4800) // unsigned int'": forcing value to bool 'true' or 'false' (performance

: 4834) // discarding return value of function with 'nodiscard' attribute
:4326) // return type of 'main' should be 'int' instead of 'void'

: 4700) // uninitialized local'variable name' used

: 4701) // potentially uninitialized local variable

f. How to change linker properties

g. Set Project Property Definitions (PRPD)
within the property sheets.

In Linker General group modify the Additional Library Directories, you will at
least want to have:
Generic Boost: C:\INtime\rt\lib; or S(boost_1ib directories)
In Linker Input group modify the Additional Dependencies you will at least
want to have.
Generic Boost: $(boost_1ib_dependencies);
For Boost Tests: $(boost_test dependencies);
For Boost Examples: $(boost_example dependencies);
After the property manager is set up, you may want to update the default
settings.
boostlib.props / Boost17.props / Boost20.props
Modify your submodule install location within this placeholder.
<!--USER UPDATES HERE-->
<!-- Boost's Submodules Download Location -->
<boost_submodules location>

Put_boost submodules location_here
<boost_submodules location>
This is the location where you downloaded boost including the \1lib,
so add the whole path there including the \1lib. For example, I
used: c:\git\boost\libs.
If necessary, modify the INtime header locations for the INtime
boost here.
<boost_mod_root_location>$(INtime)\rt\include\boost</boost_mod_root
_location>

boostlib.props / cpp11/ vs2015
If necessary, modify the INtime header locations here.
<INtime_include>
$(INtime)\rt\include\cppll;
$(wolfssl location);
$(z1ib_location);
$(pthreads_root);
$(INtime)\rt\include\network7;
$(INtime)\rt\include\network7\sys;
$(INtime)\rt\include;
</INtime_include>
<!-- LibJpeg Include Path -->
<jpeg_include_path>$(INtime)\rt\include\jpeglib</jpeg include_path>

Boost17.props / cppl7/ vs2017

If necessary, modify the INtime header locations here.

<INtime_include>
$(INtime)\rt\include\cppl7;
$(wolfssl location);
$(z1ib_location);
$(pthreads_root);
$(INtime)\rt\include\network?7;
$(INtime)\rt\include\network7\sys;
$(INtime)\rt\include;

</INtime_include>

<!-- LibJpeg Include Path -->

<jpeg_include_path>$(INtime)\rt\include\jpeglib</jpeg include_path>

Boost20.props / cpp20/ vs2019/vs2022

If necessary, modify the INtime header locations here.

<INtime_include>
$(INtime)\rt\include\cpp20;
$(wolfssl location);
$(z1lib_location);
$(pthreads_root);
$(INtime)\rt\include\network7;
$(INtime)\rt\include\network7\sys;
$(INtime)\rt\include;

</INtime_include>

<!-- LibJpeg Include Path -->

<jpeg_include_path>$(INtime)\rt\include\jpeglib</jpeg include_path>

h. Setup to use Wolfssl If the developer would like to use WolfSSl in their project, they first must
contact wolf ssl and purchase a license.
Thus after doing so they may update the following properties in the
Boost][...].props file.
<wolfss|_location>
Locations where the wolfssl headers are.
</wolfss|_location>
<wolfssl_macros>
BOOST_ASIO_USE_WOLFSSL;
WOLFSSL_ASIO;
INTIME_RTOS;
OPENSSL_EXTRA;
OPENSSL_ALL;
WOLFSSL_ALLOW_SSLV3;
</wolfssl_macros>
<wolfss|_lib
//the library name.
libwolfssI551.lib
</wolfssl|_lib>

i. Setup to use Zlib If the developer would like to use zlib in their project they should first
download the zlib repository from https://github.com/madler/zlib.git. We
provide the library and is available in S(Intime)\rt\lib.

The developer may then update the following properties in the Boost][...].props
file.
<zlib_location>
Location where the zlib git headers are.
</zlib_location>
<zlib_lib>
zlibstaticd.lib;
</zlib_lib>

https://github.com/madler/zlib.git

Setup Examples

1.

Config

The wizard attempts to setup most of project examples for you
automatically, however, there are a few settings that need to be
manually configured. Note the examples will be provided as
requested.

Update the Installation_Paths.txt file BOOST_EXAMPLES::C:/boost_examples to the location you chose to
extract them. This text file is used to allow for the project to run any example from any location. Set

Project Property Definitions (PRPD) within the boostlibExample.props property sheets.
boostlibExample.props: Modify your example location with this placeholder.

<Choose>;

Otherwise>

<!--USER UPDATES HERE-->

<PropertyGroup Label="UserMacros">

<!-- Location where examples were installed -->

<root_example_location>'Put where you installed the examples here'</root_example_location>

1.

The wizard attempts to setup most of project for tests for you

automatically, however, there are a few settings that need to be
Setup Tests

Config

manually configured. Note the tests will be provided as requested.

Update the Installation_Paths.txt file BOOST_TESTS::C:/boost_tests to the location you chose to extract
them. This text file is used to allow for the project to run any test from any location. Set Project Property
Definitions (PRPD) within the boostlibtest.props property sheets.

boostlibtest.props: Modify your test location with this placeholder.

<Choose>;

Otherwise>

<!--USER UPDATES HERE-->

<PropertyGroup Label="UserMacros">

<!-- Location where examples were installed -->

><root_test_location>'Put where you installed the tests here'</root_test location>

After the setup is complete you may want to test your project. This
may just be deciding if the project builds or if you would like to run

Te St yo ur p rOJ eCt the examples or the tests.
1. Empty Project Recommend using an empty project. Add a blank .cpp file to the project.
2. Running Examples Copy one of the examples into the .cpp file. Build the project and run it.

3. Running Tests Copy one of the tests into the .cpp file. Build the project and run it.

Setup Automation

1. Edit
Installation_Paths.txt

2. Config

3. Commands

The wizard Install an automation script to run tests automatically.
However, this need to be configured.

This file is used to find the path of runtime files used by the tests. In order to use this the solution and

project must be in separate directories.
BOOST_EXAMPLES: :C:/BoostTest/boost_examples, or where you placed the examples.
BOOST_TESTS: :C:/BoostTest/boost_tests, or where you placed the tests.

Edit the following files: (Note: boost17 files have a 17.cmd, boost20 have 20.cmd)
TestOne.cmd, TestOneWNodeReset.cmd, testdir.cmd, testall.cmd
TestOne.cmd/TestOneWNodeReset.cmd:

set solutionName='The solution you chose with the wizard.

set projectName=the project name you chose with the wizard.

set cppFile=the file name that you added to the empty project.

Edit the testall.cmd by changing the testdir parameter to where the installer placed the files.
For example, | used: set testdir=C:/boost_tests/

Open a visual studio command prompt. i.e. Developer Command Prompt for VS2015
Set current directory to your project location. for example, | used:

cd C:\Users\ssemon\Documents\Visual Studio 2015\Projects\INtimeApp1>

Set this at the command prompt: call testall.cmd C:\boost_tests >
C:\INtime\Tests\boostlibtest\all_test_results.txt

Where C:\boost_tests could be where you installed the examples or tests.

And C:\INtime\Tests\boostlibtest\all_test_results.txtis an output log file.

You may also use call testall_custom.cmd, to test a feature.

You may test a directory with call testdir.cmd C:\boost_tests\sub_directory >
C:\INtime\Tests\boostlibtest\sub_directory_results.txt.

