
Boost Development Tools Quick Reference Guide

"INtime Boost is a library that utilizes Boost headers but is
configured to use INtime Libraries by overriding files and using
project preprocessor definitions.

 1. Install Git • You can use your own favorite, but this example shows Tortoise Git.

• Install Tortoise Git from https://tortoisegit.org/

 2. Clone Boost from the
repository

• Clone boost from https://github.com/boostorg/boost.git choosing your directory.

1 Install Boost

https://github.com/boostorg/boost.git

Cloning the project doesn’t get the source from boost, we must
update the submodules. Right click on the download directory and
select the following.

Update Using Git
Select:
TortoiseGit
Switch/Checkout

Please see
Boost_release_notes.txt
(located in the INtime\help
directory) for the boost
submodule version to
download.

Then add the Commit
Version to the Commit Field
Then Overwrite Tree
Changes.

2 Boost Submodules

Then click on
Update Submodules.

As of intime7.0, the boost SDK is available via the download page
for each release of INtime. For example boost172sdk-24050-1.zip
corresponds to Intime version 24050-1.
Boost167sdk is phased out as of Intime 7.

3 Install Intime's

Boost SDK

a. Work around
for missing
application
wizard after
installing
boost.

If the boost application wizard doesn’t show up as shown in the following picture. Please uninstall the platform
tools for the visual studio version that you are using to develop and reinstall them. This will make sure that the
wizards are installed in the correct locations.

Since the boost project is vast, it is recommended that INtime
boost projects use the Property Manager in Visual Studio with
project property sheets. These property sheets provide project
property definitions (PRPD) for include directories, linker library
directories, and linker input dependencies.

b. Decide how
you want to
configure
your project.

In Visual Studio, and INtime, you can create a boost application. The following shows for an empty project.

4 Set Up Project

c. Create A
New Project

d. If developing
projects for
testing
please
uncheck
place
solution and
project in
same
directory.

The tests require files which
are read from dynamically,
Installation_Paths.txt is
located in the support_folder
located in the solution
directory. The checkbox
needs to be unchecked for
this file to be found during
runtime.

e. Empty
Project

f. Boost Wizard The wizard sets the property manager, and project property definitions (PRPD) for you.
You may select if you want to configure boost examples or boost tests.

Since the boost project is vast, we use property sheets to
configure the PRPD (project property definitions).

a. Property Sheets The boost wizard adds the following property sheets to the project. (PRPD)
project property definitions.
boostlib.props – (PRPD) used to build the cpp11 - vs2015 project.
boost17.props – (PRPD) used to build the cpp17 - vs2017 project.
Boost20.props – (PRPD) used to build the cpp20 - vs2019 project or vs2022
project.
boostlibtest.props – This sheet sets the (PRPD) for the test directories of INtime
boost.
boostlibExample.props – This sheet sets the (PRPD) for the example directories
of Intime.
Note: INtimeInstallDirectory is usually at C:\Program Files (x86)\INtime, and
vstudioVersion for visual studio 2015 is vstudio140
Verify that steps 6 and 7 are what you expect and make changes when
necessary.

b. How to manually update the Property
Manager Config

Within Visual Studio, click the View tab. In the Other Windows group, click
Property Manager. In the property manager window right click on your project
and click on Add Existing Property Sheet button. Select the boost[…].props file
from INtimeInstallDirectory\INtime\vstudioVersion\wizards\boostprojects.

c. How to change include paths. In C++ General group modify the Additional Include Directories:
Note since boost overrides everything else, it’s important to have
$(boost_lib_include_paths) as the first entry, so that it takes
precedence. Otherwise overrides could be missed and may result in compile
errors. The developer may have to add additional include directories for their
project. In this case it is recommended to add them at the tail of the string.
This is represented as $(other); below.

Generic Boost:
$(boost_lib_include_paths);$(other);%(AdditionalIncludeDirectories)
For Boost Tests:
$(boost_lib_include_paths);$(other);
(boost_test_include_directories); %(AdditionalIncludeDirectories)
For Boost Examples:
$(boost_lib_include_paths);$(other);
$(boost_example_include_directories);
%(AdditionalIncludeDirectories)

d. How to change
preprocessor definitions
and macros.

In C++ General group modify the Preprocessor Definitions, you will at least want to have:
For Cpp11/Vs2015:
__INTIME_BOOST__;__INTIME_CPP11;__INTIME_USE_IOCP__;
__INTIME_PTHREAD__;_WIN32;_WIN32_WINNT=0x0501;_HAS_NAMESPACE;
_USRDLL;_USE_64BIT_TIME_T;__INTIME_TEST_TOOLS;
_BOOST_GIL_NO_TIFF_LIB;BOOST_GIL_NO_PNG_LIB;
BOOST_THREAD_USES_CHRONO;
BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED;
BOOST_USE_OWN_EXCEPTIONS;$(wolfssl_macros);%(PreprocessorDefinitions)

For Cpp17/Vs2017:
__INTIME_BOOST__;__INTIME_CPP17;__INTIME_USE_IOCP__;
__INTIME_PTHREAD__;_WIN32;_WIN32_WINNT=0x0501;_HAS_NAMESPACE;
_USRDLL;_USE_64BIT_TIME_T;__INTIME_TEST_TOOLS;
BOOST_GIL_NO_TIFF_LIB;BOOST_GIL_NO_PNG_LIB; BOOST_THREAD_USES_CHRONO;
BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED;
BOOST_USE_OWN_EXCEPTIONS;
SILENCE_ALL_CXX17_DEPRECATION_WARNINGS;
_SILENCE_BOGUS_WARNINGS;__BYPASS_ITERATOR_DEBUG_LEVEL_2__;
$(wolfssl_macros);%(PreprocessorDefinitions)

For Cpp20/Vs2020, or Cpp20/Vs2022:
__INTIME_BOOST__;__INTIME_CPP20;__INTIME_USE_IOCP__;
__INTIME_PTHREAD__;WIN32;_WIN32_WINNT=0x0501;_HAS_NAMESPACE;
_USRDLL;_USE_64BIT_TIME_T;__INTIME_TEST_TOOLS;
BOOST_GIL_NO_TIFF_LIB;BOOST_GIL_NO_PNG_LIB; BOOST_THREAD_USES_CHRONO;
BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED;
BOOST_USE_OWN_EXCEPTIONS;
SILENCE_ALL_CXX17_DEPRECATION_WARNINGS;
_SILENCE_BOGUS_WARNINGS;__BYPASS_ITERATOR_DEBUG_LEVEL_2__;
$(wolfssl_macros);%(PreprocessorDefinitions)

e. Macros to
disable
warnings.

Since boost has many uninitialized variables, and some deprecated items that the developer may still want
the use. A few macros are added to disable some of these warnings.
SILENCE_ALL_CXX17_DEPRECATION_WARNINGS and _SILENCE_BOGUS_WARNINGS;
 <boost/config.hpp> has the _SILENCE_BOGUS_WARNINGS and disables the following warnings:
#pragma warning(disable : 4018) // '<': signed/unsigned mismatch
#pragma warning(disable : 4100) // 'variable_name': unreferenced formal parameter
#pragma warning(disable : 4189) // 'variable name': local variable is initialized but not referenced
#pragma warning(disable : 4456) // declaration of 'variable name' hides previous local declaration
#pragma warning(disable : 4458) // declaration of 'variable name' hides class member
#pragma warning(disable : 4459) // declaration of 'variable name' hides global declaration
#pragma warning(disable : 4503) // 'variable name': decorated name length exceeded, name was truncated
#pragma warning(disable : 4702) // unreachable code
#pragma warning(disable : 4706) // assignment within conditional expression
#pragma warning(disable : 4709) // comma operator within arr index expression
#pragma warning(disable : 4714) // marked as __forceinline not inlined
#pragma warning(disable : 4718) // recursive call has no side effects, deleting
#pragma warning(disable : 4800) // unsigned int': forcing value to bool 'true' or 'false' (performance
warning)
#pragma warning(disable : 4834) // discarding return value of function with 'nodiscard' attribute
#pragma warning(disable : 4326) // return type of 'main' should be 'int' instead of 'void'
#pragma warning(disable : 4700) // uninitialized local'variable name' used
#pragma warning(disable : 4701) // potentially uninitialized local variable

f. How to change linker properties In Linker General group modify the Additional Library Directories, you will at
least want to have:
Generic Boost: C:\INtime\rt\lib; or $(boost_lib_directories)
In Linker Input group modify the Additional Dependencies you will at least
want to have.
Generic Boost: $(boost_lib_dependencies);
For Boost Tests: $(boost_test_dependencies);
For Boost Examples: $(boost_example_dependencies);

g. Set Project Property Definitions (PRPD)
within the property sheets.

After the property manager is set up, you may want to update the default
settings.
boostlib.props / Boost17.props / Boost20.props
 Modify your submodule install location within this placeholder.
<!--USER UPDATES HERE-->
<!-- Boost's Submodules Download Location -->

<boost_submodules_location>
 Put_boost_submodules_location_here
<boost_submodules_location>
This is the location where you downloaded boost including the \lib,
so add the whole path there including the \lib. For example, I
used: c:\git\boost\libs.
If necessary, modify the INtime header locations for the INtime
boost here.
<boost_mod_root_location>$(INtime)\rt\include\boost</boost_mod_root
_location>

boostlib.props / cpp11/ vs2015
If necessary, modify the INtime header locations here.
<INtime_include>
 $(INtime)\rt\include\cpp11;
 $(wolfssl_location);
 $(zlib_location);
 $(pthreads_root);
 $(INtime)\rt\include\network7;
 $(INtime)\rt\include\network7\sys;
 $(INtime)\rt\include;
</INtime_include>
<!-- LibJpeg Include Path -->
<jpeg_include_path>$(INtime)\rt\include\jpeglib</jpeg_include_path>

Boost17.props / cpp17/ vs2017
If necessary, modify the INtime header locations here.
<INtime_include>
 $(INtime)\rt\include\cpp17;
 $(wolfssl_location);
 $(zlib_location);
 $(pthreads_root);
 $(INtime)\rt\include\network7;
 $(INtime)\rt\include\network7\sys;
 $(INtime)\rt\include;
 </INtime_include>
 <!-- LibJpeg Include Path -->

<jpeg_include_path>$(INtime)\rt\include\jpeglib</jpeg_include_path>

Boost20.props / cpp20/ vs2019/vs2022
If necessary, modify the INtime header locations here.
<INtime_include>
 $(INtime)\rt\include\cpp20;
 $(wolfssl_location);
 $(zlib_location);
 $(pthreads_root);
 $(INtime)\rt\include\network7;
 $(INtime)\rt\include\network7\sys;
 $(INtime)\rt\include;
 </INtime_include>
 <!-- LibJpeg Include Path -->

<jpeg_include_path>$(INtime)\rt\include\jpeglib</jpeg_include_path>

h. Setup to use Wolfssl If the developer would like to use WolfSSl in their project, they first must
contact wolf ssl and purchase a license.
Thus after doing so they may update the following properties in the
Boost[…].props file.
<wolfssl_location>
 Locations where the wolfssl headers are.
</wolfssl_location>
<wolfssl_macros>
 BOOST_ASIO_USE_WOLFSSL;
 WOLFSSL_ASIO;
 INTIME_RTOS;
 OPENSSL_EXTRA;
 OPENSSL_ALL;
 WOLFSSL_ALLOW_SSLV3;
</wolfssl_macros>
<wolfssl_lib
 //the library name.
 libwolfssl551.lib
</wolfssl_lib>

i. Setup to use Zlib If the developer would like to use zlib in their project they should first
download the zlib repository from https://github.com/madler/zlib.git. We
provide the library and is available in $(Intime)\rt\lib.
The developer may then update the following properties in the Boost[…].props
file.
<zlib_location>
 Location where the zlib git headers are.
</zlib_location>
<zlib_lib>
 zlibstaticd.lib;
</zlib_lib>

https://github.com/madler/zlib.git

The wizard attempts to setup most of project examples for you
automatically, however, there are a few settings that need to be
manually configured. Note the examples will be provided as
requested.

 1. Config Update the Installation_Paths.txt file BOOST_EXAMPLES::C:/boost_examples to the location you chose to

extract them. This text file is used to allow for the project to run any example from any location. Set
Project Property Definitions (PRPD) within the boostlibExample.props property sheets.

 boostlibExample.props: Modify your example location with this placeholder.
<Choose>;
Otherwise>
<!--USER UPDATES HERE-->
<PropertyGroup Label="UserMacros">
<!-- Location where examples were installed -->
<root_example_location>'Put where you installed the examples here'</root_example_location>

6 Setup Examples

The wizard attempts to setup most of project for tests for you
automatically, however, there are a few settings that need to be
manually configured. Note the tests will be provided as requested.

 1. Config Update the Installation_Paths.txt file BOOST_TESTS::C:/boost_tests to the location you chose to extract

them. This text file is used to allow for the project to run any test from any location. Set Project Property
Definitions (PRPD) within the boostlibtest.props property sheets.

 boostlibtest.props: Modify your test location with this placeholder.
<Choose>;
Otherwise>
<!--USER UPDATES HERE-->
<PropertyGroup Label="UserMacros">
<!-- Location where examples were installed -->
><root_test_location>'Put where you installed the tests here'</root_test_location>

7 Setup Tests

After the setup is complete you may want to test your project. This
may just be deciding if the project builds or if you would like to run
the examples or the tests.

 1. Empty Project Recommend using an empty project. Add a blank .cpp file to the project.
 2. Running Examples Copy one of the examples into the .cpp file. Build the project and run it.
 3. Running Tests Copy one of the tests into the .cpp file. Build the project and run it.

8 Test your project

The wizard Install an automation script to run tests automatically.
However, this need to be configured.

 1. Edit

Installation_Paths.txt

2. Config

3. Commands

This file is used to find the path of runtime files used by the tests. In order to use this the solution and
project must be in separate directories.
BOOST_EXAMPLES::C:/BoostTest/boost_examples, or where you placed the examples.
BOOST_TESTS::C:/BoostTest/boost_tests, or where you placed the tests.
Edit the following files: (Note: boost17 files have a 17.cmd, boost20 have 20.cmd)
TestOne.cmd, TestOneWNodeReset.cmd, testdir.cmd, testall.cmd
TestOne.cmd/TestOneWNodeReset.cmd:
set solutionName=’The solution you chose with the wizard.
set projectName=the project name you chose with the wizard.
set cppFile=the file name that you added to the empty project.

Edit the testall.cmd by changing the testdir parameter to where the installer placed the files.
For example, I used: set testdir=C:/boost_tests/
Open a visual studio command prompt. i.e. Developer Command Prompt for VS2015
Set current directory to your project location. for example, I used:
cd C:\Users\ssemon\Documents\Visual Studio 2015\Projects\INtimeApp1>
Set this at the command prompt: call testall.cmd C:\boost_tests >
C:\INtime\Tests\boostlibtest\all_test_results.txt
Where C:\boost_tests could be where you installed the examples or tests.
And C:\INtime\Tests\boostlibtest\all_test_results.txtis an output log file.
You may also use call testall_custom.cmd, to test a feature.
You may test a directory with call testdir.cmd C:\boost_tests\sub_directory >
C:\INtime\Tests\boostlibtest\sub_directory_results.txt.

9 Setup Automation

